1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 34 /* 35 * Test patch to inline a certain number of bi_io_vec's inside the bio 36 * itself, to shrink a bio data allocation from two mempool calls to one 37 */ 38 #define BIO_INLINE_VECS 4 39 40 /* 41 * if you change this list, also change bvec_alloc or things will 42 * break badly! cannot be bigger than what you can fit into an 43 * unsigned short 44 */ 45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { 47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 48 }; 49 #undef BV 50 51 /* 52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 53 * IO code that does not need private memory pools. 54 */ 55 struct bio_set *fs_bio_set; 56 EXPORT_SYMBOL(fs_bio_set); 57 58 /* 59 * Our slab pool management 60 */ 61 struct bio_slab { 62 struct kmem_cache *slab; 63 unsigned int slab_ref; 64 unsigned int slab_size; 65 char name[8]; 66 }; 67 static DEFINE_MUTEX(bio_slab_lock); 68 static struct bio_slab *bio_slabs; 69 static unsigned int bio_slab_nr, bio_slab_max; 70 71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 72 { 73 unsigned int sz = sizeof(struct bio) + extra_size; 74 struct kmem_cache *slab = NULL; 75 struct bio_slab *bslab, *new_bio_slabs; 76 unsigned int new_bio_slab_max; 77 unsigned int i, entry = -1; 78 79 mutex_lock(&bio_slab_lock); 80 81 i = 0; 82 while (i < bio_slab_nr) { 83 bslab = &bio_slabs[i]; 84 85 if (!bslab->slab && entry == -1) 86 entry = i; 87 else if (bslab->slab_size == sz) { 88 slab = bslab->slab; 89 bslab->slab_ref++; 90 break; 91 } 92 i++; 93 } 94 95 if (slab) 96 goto out_unlock; 97 98 if (bio_slab_nr == bio_slab_max && entry == -1) { 99 new_bio_slab_max = bio_slab_max << 1; 100 new_bio_slabs = krealloc(bio_slabs, 101 new_bio_slab_max * sizeof(struct bio_slab), 102 GFP_KERNEL); 103 if (!new_bio_slabs) 104 goto out_unlock; 105 bio_slab_max = new_bio_slab_max; 106 bio_slabs = new_bio_slabs; 107 } 108 if (entry == -1) 109 entry = bio_slab_nr++; 110 111 bslab = &bio_slabs[entry]; 112 113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 115 SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); 164 165 if (idx == BIOVEC_MAX_IDX) 166 mempool_free(bv, pool); 167 else { 168 struct biovec_slab *bvs = bvec_slabs + idx; 169 170 kmem_cache_free(bvs->slab, bv); 171 } 172 } 173 174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 175 mempool_t *pool) 176 { 177 struct bio_vec *bvl; 178 179 /* 180 * see comment near bvec_array define! 181 */ 182 switch (nr) { 183 case 1: 184 *idx = 0; 185 break; 186 case 2 ... 4: 187 *idx = 1; 188 break; 189 case 5 ... 16: 190 *idx = 2; 191 break; 192 case 17 ... 64: 193 *idx = 3; 194 break; 195 case 65 ... 128: 196 *idx = 4; 197 break; 198 case 129 ... BIO_MAX_PAGES: 199 *idx = 5; 200 break; 201 default: 202 return NULL; 203 } 204 205 /* 206 * idx now points to the pool we want to allocate from. only the 207 * 1-vec entry pool is mempool backed. 208 */ 209 if (*idx == BIOVEC_MAX_IDX) { 210 fallback: 211 bvl = mempool_alloc(pool, gfp_mask); 212 } else { 213 struct biovec_slab *bvs = bvec_slabs + *idx; 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); 215 216 /* 217 * Make this allocation restricted and don't dump info on 218 * allocation failures, since we'll fallback to the mempool 219 * in case of failure. 220 */ 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 222 223 /* 224 * Try a slab allocation. If this fails and __GFP_WAIT 225 * is set, retry with the 1-entry mempool 226 */ 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { 229 *idx = BIOVEC_MAX_IDX; 230 goto fallback; 231 } 232 } 233 234 return bvl; 235 } 236 237 static void __bio_free(struct bio *bio) 238 { 239 bio_disassociate_task(bio); 240 241 if (bio_integrity(bio)) 242 bio_integrity_free(bio); 243 } 244 245 static void bio_free(struct bio *bio) 246 { 247 struct bio_set *bs = bio->bi_pool; 248 void *p; 249 250 __bio_free(bio); 251 252 if (bs) { 253 if (bio_flagged(bio, BIO_OWNS_VEC)) 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); 255 256 /* 257 * If we have front padding, adjust the bio pointer before freeing 258 */ 259 p = bio; 260 p -= bs->front_pad; 261 262 mempool_free(p, bs->bio_pool); 263 } else { 264 /* Bio was allocated by bio_kmalloc() */ 265 kfree(bio); 266 } 267 } 268 269 void bio_init(struct bio *bio) 270 { 271 memset(bio, 0, sizeof(*bio)); 272 bio->bi_flags = 1 << BIO_UPTODATE; 273 atomic_set(&bio->__bi_remaining, 1); 274 atomic_set(&bio->__bi_cnt, 1); 275 } 276 EXPORT_SYMBOL(bio_init); 277 278 /** 279 * bio_reset - reinitialize a bio 280 * @bio: bio to reset 281 * 282 * Description: 283 * After calling bio_reset(), @bio will be in the same state as a freshly 284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 285 * preserved are the ones that are initialized by bio_alloc_bioset(). See 286 * comment in struct bio. 287 */ 288 void bio_reset(struct bio *bio) 289 { 290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 291 292 __bio_free(bio); 293 294 memset(bio, 0, BIO_RESET_BYTES); 295 bio->bi_flags = flags | (1 << BIO_UPTODATE); 296 atomic_set(&bio->__bi_remaining, 1); 297 } 298 EXPORT_SYMBOL(bio_reset); 299 300 static void bio_chain_endio(struct bio *bio, int error) 301 { 302 bio_endio(bio->bi_private, error); 303 bio_put(bio); 304 } 305 306 /* 307 * Increment chain count for the bio. Make sure the CHAIN flag update 308 * is visible before the raised count. 309 */ 310 static inline void bio_inc_remaining(struct bio *bio) 311 { 312 bio->bi_flags |= (1 << BIO_CHAIN); 313 smp_mb__before_atomic(); 314 atomic_inc(&bio->__bi_remaining); 315 } 316 317 /** 318 * bio_chain - chain bio completions 319 * @bio: the target bio 320 * @parent: the @bio's parent bio 321 * 322 * The caller won't have a bi_end_io called when @bio completes - instead, 323 * @parent's bi_end_io won't be called until both @parent and @bio have 324 * completed; the chained bio will also be freed when it completes. 325 * 326 * The caller must not set bi_private or bi_end_io in @bio. 327 */ 328 void bio_chain(struct bio *bio, struct bio *parent) 329 { 330 BUG_ON(bio->bi_private || bio->bi_end_io); 331 332 bio->bi_private = parent; 333 bio->bi_end_io = bio_chain_endio; 334 bio_inc_remaining(parent); 335 } 336 EXPORT_SYMBOL(bio_chain); 337 338 static void bio_alloc_rescue(struct work_struct *work) 339 { 340 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 341 struct bio *bio; 342 343 while (1) { 344 spin_lock(&bs->rescue_lock); 345 bio = bio_list_pop(&bs->rescue_list); 346 spin_unlock(&bs->rescue_lock); 347 348 if (!bio) 349 break; 350 351 generic_make_request(bio); 352 } 353 } 354 355 static void punt_bios_to_rescuer(struct bio_set *bs) 356 { 357 struct bio_list punt, nopunt; 358 struct bio *bio; 359 360 /* 361 * In order to guarantee forward progress we must punt only bios that 362 * were allocated from this bio_set; otherwise, if there was a bio on 363 * there for a stacking driver higher up in the stack, processing it 364 * could require allocating bios from this bio_set, and doing that from 365 * our own rescuer would be bad. 366 * 367 * Since bio lists are singly linked, pop them all instead of trying to 368 * remove from the middle of the list: 369 */ 370 371 bio_list_init(&punt); 372 bio_list_init(&nopunt); 373 374 while ((bio = bio_list_pop(current->bio_list))) 375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 376 377 *current->bio_list = nopunt; 378 379 spin_lock(&bs->rescue_lock); 380 bio_list_merge(&bs->rescue_list, &punt); 381 spin_unlock(&bs->rescue_lock); 382 383 queue_work(bs->rescue_workqueue, &bs->rescue_work); 384 } 385 386 /** 387 * bio_alloc_bioset - allocate a bio for I/O 388 * @gfp_mask: the GFP_ mask given to the slab allocator 389 * @nr_iovecs: number of iovecs to pre-allocate 390 * @bs: the bio_set to allocate from. 391 * 392 * Description: 393 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 394 * backed by the @bs's mempool. 395 * 396 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be 397 * able to allocate a bio. This is due to the mempool guarantees. To make this 398 * work, callers must never allocate more than 1 bio at a time from this pool. 399 * Callers that need to allocate more than 1 bio must always submit the 400 * previously allocated bio for IO before attempting to allocate a new one. 401 * Failure to do so can cause deadlocks under memory pressure. 402 * 403 * Note that when running under generic_make_request() (i.e. any block 404 * driver), bios are not submitted until after you return - see the code in 405 * generic_make_request() that converts recursion into iteration, to prevent 406 * stack overflows. 407 * 408 * This would normally mean allocating multiple bios under 409 * generic_make_request() would be susceptible to deadlocks, but we have 410 * deadlock avoidance code that resubmits any blocked bios from a rescuer 411 * thread. 412 * 413 * However, we do not guarantee forward progress for allocations from other 414 * mempools. Doing multiple allocations from the same mempool under 415 * generic_make_request() should be avoided - instead, use bio_set's front_pad 416 * for per bio allocations. 417 * 418 * RETURNS: 419 * Pointer to new bio on success, NULL on failure. 420 */ 421 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 422 { 423 gfp_t saved_gfp = gfp_mask; 424 unsigned front_pad; 425 unsigned inline_vecs; 426 unsigned long idx = BIO_POOL_NONE; 427 struct bio_vec *bvl = NULL; 428 struct bio *bio; 429 void *p; 430 431 if (!bs) { 432 if (nr_iovecs > UIO_MAXIOV) 433 return NULL; 434 435 p = kmalloc(sizeof(struct bio) + 436 nr_iovecs * sizeof(struct bio_vec), 437 gfp_mask); 438 front_pad = 0; 439 inline_vecs = nr_iovecs; 440 } else { 441 /* should not use nobvec bioset for nr_iovecs > 0 */ 442 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 443 return NULL; 444 /* 445 * generic_make_request() converts recursion to iteration; this 446 * means if we're running beneath it, any bios we allocate and 447 * submit will not be submitted (and thus freed) until after we 448 * return. 449 * 450 * This exposes us to a potential deadlock if we allocate 451 * multiple bios from the same bio_set() while running 452 * underneath generic_make_request(). If we were to allocate 453 * multiple bios (say a stacking block driver that was splitting 454 * bios), we would deadlock if we exhausted the mempool's 455 * reserve. 456 * 457 * We solve this, and guarantee forward progress, with a rescuer 458 * workqueue per bio_set. If we go to allocate and there are 459 * bios on current->bio_list, we first try the allocation 460 * without __GFP_WAIT; if that fails, we punt those bios we 461 * would be blocking to the rescuer workqueue before we retry 462 * with the original gfp_flags. 463 */ 464 465 if (current->bio_list && !bio_list_empty(current->bio_list)) 466 gfp_mask &= ~__GFP_WAIT; 467 468 p = mempool_alloc(bs->bio_pool, gfp_mask); 469 if (!p && gfp_mask != saved_gfp) { 470 punt_bios_to_rescuer(bs); 471 gfp_mask = saved_gfp; 472 p = mempool_alloc(bs->bio_pool, gfp_mask); 473 } 474 475 front_pad = bs->front_pad; 476 inline_vecs = BIO_INLINE_VECS; 477 } 478 479 if (unlikely(!p)) 480 return NULL; 481 482 bio = p + front_pad; 483 bio_init(bio); 484 485 if (nr_iovecs > inline_vecs) { 486 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 487 if (!bvl && gfp_mask != saved_gfp) { 488 punt_bios_to_rescuer(bs); 489 gfp_mask = saved_gfp; 490 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 491 } 492 493 if (unlikely(!bvl)) 494 goto err_free; 495 496 bio->bi_flags |= 1 << BIO_OWNS_VEC; 497 } else if (nr_iovecs) { 498 bvl = bio->bi_inline_vecs; 499 } 500 501 bio->bi_pool = bs; 502 bio->bi_flags |= idx << BIO_POOL_OFFSET; 503 bio->bi_max_vecs = nr_iovecs; 504 bio->bi_io_vec = bvl; 505 return bio; 506 507 err_free: 508 mempool_free(p, bs->bio_pool); 509 return NULL; 510 } 511 EXPORT_SYMBOL(bio_alloc_bioset); 512 513 void zero_fill_bio(struct bio *bio) 514 { 515 unsigned long flags; 516 struct bio_vec bv; 517 struct bvec_iter iter; 518 519 bio_for_each_segment(bv, bio, iter) { 520 char *data = bvec_kmap_irq(&bv, &flags); 521 memset(data, 0, bv.bv_len); 522 flush_dcache_page(bv.bv_page); 523 bvec_kunmap_irq(data, &flags); 524 } 525 } 526 EXPORT_SYMBOL(zero_fill_bio); 527 528 /** 529 * bio_put - release a reference to a bio 530 * @bio: bio to release reference to 531 * 532 * Description: 533 * Put a reference to a &struct bio, either one you have gotten with 534 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 535 **/ 536 void bio_put(struct bio *bio) 537 { 538 if (!bio_flagged(bio, BIO_REFFED)) 539 bio_free(bio); 540 else { 541 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 542 543 /* 544 * last put frees it 545 */ 546 if (atomic_dec_and_test(&bio->__bi_cnt)) 547 bio_free(bio); 548 } 549 } 550 EXPORT_SYMBOL(bio_put); 551 552 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 553 { 554 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 555 blk_recount_segments(q, bio); 556 557 return bio->bi_phys_segments; 558 } 559 EXPORT_SYMBOL(bio_phys_segments); 560 561 /** 562 * __bio_clone_fast - clone a bio that shares the original bio's biovec 563 * @bio: destination bio 564 * @bio_src: bio to clone 565 * 566 * Clone a &bio. Caller will own the returned bio, but not 567 * the actual data it points to. Reference count of returned 568 * bio will be one. 569 * 570 * Caller must ensure that @bio_src is not freed before @bio. 571 */ 572 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 573 { 574 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); 575 576 /* 577 * most users will be overriding ->bi_bdev with a new target, 578 * so we don't set nor calculate new physical/hw segment counts here 579 */ 580 bio->bi_bdev = bio_src->bi_bdev; 581 bio->bi_flags |= 1 << BIO_CLONED; 582 bio->bi_rw = bio_src->bi_rw; 583 bio->bi_iter = bio_src->bi_iter; 584 bio->bi_io_vec = bio_src->bi_io_vec; 585 } 586 EXPORT_SYMBOL(__bio_clone_fast); 587 588 /** 589 * bio_clone_fast - clone a bio that shares the original bio's biovec 590 * @bio: bio to clone 591 * @gfp_mask: allocation priority 592 * @bs: bio_set to allocate from 593 * 594 * Like __bio_clone_fast, only also allocates the returned bio 595 */ 596 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 597 { 598 struct bio *b; 599 600 b = bio_alloc_bioset(gfp_mask, 0, bs); 601 if (!b) 602 return NULL; 603 604 __bio_clone_fast(b, bio); 605 606 if (bio_integrity(bio)) { 607 int ret; 608 609 ret = bio_integrity_clone(b, bio, gfp_mask); 610 611 if (ret < 0) { 612 bio_put(b); 613 return NULL; 614 } 615 } 616 617 return b; 618 } 619 EXPORT_SYMBOL(bio_clone_fast); 620 621 /** 622 * bio_clone_bioset - clone a bio 623 * @bio_src: bio to clone 624 * @gfp_mask: allocation priority 625 * @bs: bio_set to allocate from 626 * 627 * Clone bio. Caller will own the returned bio, but not the actual data it 628 * points to. Reference count of returned bio will be one. 629 */ 630 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 631 struct bio_set *bs) 632 { 633 struct bvec_iter iter; 634 struct bio_vec bv; 635 struct bio *bio; 636 637 /* 638 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 639 * bio_src->bi_io_vec to bio->bi_io_vec. 640 * 641 * We can't do that anymore, because: 642 * 643 * - The point of cloning the biovec is to produce a bio with a biovec 644 * the caller can modify: bi_idx and bi_bvec_done should be 0. 645 * 646 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 647 * we tried to clone the whole thing bio_alloc_bioset() would fail. 648 * But the clone should succeed as long as the number of biovecs we 649 * actually need to allocate is fewer than BIO_MAX_PAGES. 650 * 651 * - Lastly, bi_vcnt should not be looked at or relied upon by code 652 * that does not own the bio - reason being drivers don't use it for 653 * iterating over the biovec anymore, so expecting it to be kept up 654 * to date (i.e. for clones that share the parent biovec) is just 655 * asking for trouble and would force extra work on 656 * __bio_clone_fast() anyways. 657 */ 658 659 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 660 if (!bio) 661 return NULL; 662 663 bio->bi_bdev = bio_src->bi_bdev; 664 bio->bi_rw = bio_src->bi_rw; 665 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 666 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 667 668 if (bio->bi_rw & REQ_DISCARD) 669 goto integrity_clone; 670 671 if (bio->bi_rw & REQ_WRITE_SAME) { 672 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 673 goto integrity_clone; 674 } 675 676 bio_for_each_segment(bv, bio_src, iter) 677 bio->bi_io_vec[bio->bi_vcnt++] = bv; 678 679 integrity_clone: 680 if (bio_integrity(bio_src)) { 681 int ret; 682 683 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 684 if (ret < 0) { 685 bio_put(bio); 686 return NULL; 687 } 688 } 689 690 return bio; 691 } 692 EXPORT_SYMBOL(bio_clone_bioset); 693 694 /** 695 * bio_get_nr_vecs - return approx number of vecs 696 * @bdev: I/O target 697 * 698 * Return the approximate number of pages we can send to this target. 699 * There's no guarantee that you will be able to fit this number of pages 700 * into a bio, it does not account for dynamic restrictions that vary 701 * on offset. 702 */ 703 int bio_get_nr_vecs(struct block_device *bdev) 704 { 705 struct request_queue *q = bdev_get_queue(bdev); 706 int nr_pages; 707 708 nr_pages = min_t(unsigned, 709 queue_max_segments(q), 710 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); 711 712 return min_t(unsigned, nr_pages, BIO_MAX_PAGES); 713 714 } 715 EXPORT_SYMBOL(bio_get_nr_vecs); 716 717 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page 718 *page, unsigned int len, unsigned int offset, 719 unsigned int max_sectors) 720 { 721 int retried_segments = 0; 722 struct bio_vec *bvec; 723 724 /* 725 * cloned bio must not modify vec list 726 */ 727 if (unlikely(bio_flagged(bio, BIO_CLONED))) 728 return 0; 729 730 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 731 return 0; 732 733 /* 734 * For filesystems with a blocksize smaller than the pagesize 735 * we will often be called with the same page as last time and 736 * a consecutive offset. Optimize this special case. 737 */ 738 if (bio->bi_vcnt > 0) { 739 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 740 741 if (page == prev->bv_page && 742 offset == prev->bv_offset + prev->bv_len) { 743 unsigned int prev_bv_len = prev->bv_len; 744 prev->bv_len += len; 745 746 if (q->merge_bvec_fn) { 747 struct bvec_merge_data bvm = { 748 /* prev_bvec is already charged in 749 bi_size, discharge it in order to 750 simulate merging updated prev_bvec 751 as new bvec. */ 752 .bi_bdev = bio->bi_bdev, 753 .bi_sector = bio->bi_iter.bi_sector, 754 .bi_size = bio->bi_iter.bi_size - 755 prev_bv_len, 756 .bi_rw = bio->bi_rw, 757 }; 758 759 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { 760 prev->bv_len -= len; 761 return 0; 762 } 763 } 764 765 bio->bi_iter.bi_size += len; 766 goto done; 767 } 768 769 /* 770 * If the queue doesn't support SG gaps and adding this 771 * offset would create a gap, disallow it. 772 */ 773 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) && 774 bvec_gap_to_prev(prev, offset)) 775 return 0; 776 } 777 778 if (bio->bi_vcnt >= bio->bi_max_vecs) 779 return 0; 780 781 /* 782 * setup the new entry, we might clear it again later if we 783 * cannot add the page 784 */ 785 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 786 bvec->bv_page = page; 787 bvec->bv_len = len; 788 bvec->bv_offset = offset; 789 bio->bi_vcnt++; 790 bio->bi_phys_segments++; 791 bio->bi_iter.bi_size += len; 792 793 /* 794 * Perform a recount if the number of segments is greater 795 * than queue_max_segments(q). 796 */ 797 798 while (bio->bi_phys_segments > queue_max_segments(q)) { 799 800 if (retried_segments) 801 goto failed; 802 803 retried_segments = 1; 804 blk_recount_segments(q, bio); 805 } 806 807 /* 808 * if queue has other restrictions (eg varying max sector size 809 * depending on offset), it can specify a merge_bvec_fn in the 810 * queue to get further control 811 */ 812 if (q->merge_bvec_fn) { 813 struct bvec_merge_data bvm = { 814 .bi_bdev = bio->bi_bdev, 815 .bi_sector = bio->bi_iter.bi_sector, 816 .bi_size = bio->bi_iter.bi_size - len, 817 .bi_rw = bio->bi_rw, 818 }; 819 820 /* 821 * merge_bvec_fn() returns number of bytes it can accept 822 * at this offset 823 */ 824 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) 825 goto failed; 826 } 827 828 /* If we may be able to merge these biovecs, force a recount */ 829 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 830 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 831 832 done: 833 return len; 834 835 failed: 836 bvec->bv_page = NULL; 837 bvec->bv_len = 0; 838 bvec->bv_offset = 0; 839 bio->bi_vcnt--; 840 bio->bi_iter.bi_size -= len; 841 blk_recount_segments(q, bio); 842 return 0; 843 } 844 845 /** 846 * bio_add_pc_page - attempt to add page to bio 847 * @q: the target queue 848 * @bio: destination bio 849 * @page: page to add 850 * @len: vec entry length 851 * @offset: vec entry offset 852 * 853 * Attempt to add a page to the bio_vec maplist. This can fail for a 854 * number of reasons, such as the bio being full or target block device 855 * limitations. The target block device must allow bio's up to PAGE_SIZE, 856 * so it is always possible to add a single page to an empty bio. 857 * 858 * This should only be used by REQ_PC bios. 859 */ 860 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, 861 unsigned int len, unsigned int offset) 862 { 863 return __bio_add_page(q, bio, page, len, offset, 864 queue_max_hw_sectors(q)); 865 } 866 EXPORT_SYMBOL(bio_add_pc_page); 867 868 /** 869 * bio_add_page - attempt to add page to bio 870 * @bio: destination bio 871 * @page: page to add 872 * @len: vec entry length 873 * @offset: vec entry offset 874 * 875 * Attempt to add a page to the bio_vec maplist. This can fail for a 876 * number of reasons, such as the bio being full or target block device 877 * limitations. The target block device must allow bio's up to PAGE_SIZE, 878 * so it is always possible to add a single page to an empty bio. 879 */ 880 int bio_add_page(struct bio *bio, struct page *page, unsigned int len, 881 unsigned int offset) 882 { 883 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 884 unsigned int max_sectors; 885 886 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 887 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size) 888 max_sectors = len >> 9; 889 890 return __bio_add_page(q, bio, page, len, offset, max_sectors); 891 } 892 EXPORT_SYMBOL(bio_add_page); 893 894 struct submit_bio_ret { 895 struct completion event; 896 int error; 897 }; 898 899 static void submit_bio_wait_endio(struct bio *bio, int error) 900 { 901 struct submit_bio_ret *ret = bio->bi_private; 902 903 ret->error = error; 904 complete(&ret->event); 905 } 906 907 /** 908 * submit_bio_wait - submit a bio, and wait until it completes 909 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 910 * @bio: The &struct bio which describes the I/O 911 * 912 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 913 * bio_endio() on failure. 914 */ 915 int submit_bio_wait(int rw, struct bio *bio) 916 { 917 struct submit_bio_ret ret; 918 919 rw |= REQ_SYNC; 920 init_completion(&ret.event); 921 bio->bi_private = &ret; 922 bio->bi_end_io = submit_bio_wait_endio; 923 submit_bio(rw, bio); 924 wait_for_completion(&ret.event); 925 926 return ret.error; 927 } 928 EXPORT_SYMBOL(submit_bio_wait); 929 930 /** 931 * bio_advance - increment/complete a bio by some number of bytes 932 * @bio: bio to advance 933 * @bytes: number of bytes to complete 934 * 935 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 936 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 937 * be updated on the last bvec as well. 938 * 939 * @bio will then represent the remaining, uncompleted portion of the io. 940 */ 941 void bio_advance(struct bio *bio, unsigned bytes) 942 { 943 if (bio_integrity(bio)) 944 bio_integrity_advance(bio, bytes); 945 946 bio_advance_iter(bio, &bio->bi_iter, bytes); 947 } 948 EXPORT_SYMBOL(bio_advance); 949 950 /** 951 * bio_alloc_pages - allocates a single page for each bvec in a bio 952 * @bio: bio to allocate pages for 953 * @gfp_mask: flags for allocation 954 * 955 * Allocates pages up to @bio->bi_vcnt. 956 * 957 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 958 * freed. 959 */ 960 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 961 { 962 int i; 963 struct bio_vec *bv; 964 965 bio_for_each_segment_all(bv, bio, i) { 966 bv->bv_page = alloc_page(gfp_mask); 967 if (!bv->bv_page) { 968 while (--bv >= bio->bi_io_vec) 969 __free_page(bv->bv_page); 970 return -ENOMEM; 971 } 972 } 973 974 return 0; 975 } 976 EXPORT_SYMBOL(bio_alloc_pages); 977 978 /** 979 * bio_copy_data - copy contents of data buffers from one chain of bios to 980 * another 981 * @src: source bio list 982 * @dst: destination bio list 983 * 984 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 985 * @src and @dst as linked lists of bios. 986 * 987 * Stops when it reaches the end of either @src or @dst - that is, copies 988 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 989 */ 990 void bio_copy_data(struct bio *dst, struct bio *src) 991 { 992 struct bvec_iter src_iter, dst_iter; 993 struct bio_vec src_bv, dst_bv; 994 void *src_p, *dst_p; 995 unsigned bytes; 996 997 src_iter = src->bi_iter; 998 dst_iter = dst->bi_iter; 999 1000 while (1) { 1001 if (!src_iter.bi_size) { 1002 src = src->bi_next; 1003 if (!src) 1004 break; 1005 1006 src_iter = src->bi_iter; 1007 } 1008 1009 if (!dst_iter.bi_size) { 1010 dst = dst->bi_next; 1011 if (!dst) 1012 break; 1013 1014 dst_iter = dst->bi_iter; 1015 } 1016 1017 src_bv = bio_iter_iovec(src, src_iter); 1018 dst_bv = bio_iter_iovec(dst, dst_iter); 1019 1020 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1021 1022 src_p = kmap_atomic(src_bv.bv_page); 1023 dst_p = kmap_atomic(dst_bv.bv_page); 1024 1025 memcpy(dst_p + dst_bv.bv_offset, 1026 src_p + src_bv.bv_offset, 1027 bytes); 1028 1029 kunmap_atomic(dst_p); 1030 kunmap_atomic(src_p); 1031 1032 bio_advance_iter(src, &src_iter, bytes); 1033 bio_advance_iter(dst, &dst_iter, bytes); 1034 } 1035 } 1036 EXPORT_SYMBOL(bio_copy_data); 1037 1038 struct bio_map_data { 1039 int is_our_pages; 1040 struct iov_iter iter; 1041 struct iovec iov[]; 1042 }; 1043 1044 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1045 gfp_t gfp_mask) 1046 { 1047 if (iov_count > UIO_MAXIOV) 1048 return NULL; 1049 1050 return kmalloc(sizeof(struct bio_map_data) + 1051 sizeof(struct iovec) * iov_count, gfp_mask); 1052 } 1053 1054 /** 1055 * bio_copy_from_iter - copy all pages from iov_iter to bio 1056 * @bio: The &struct bio which describes the I/O as destination 1057 * @iter: iov_iter as source 1058 * 1059 * Copy all pages from iov_iter to bio. 1060 * Returns 0 on success, or error on failure. 1061 */ 1062 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1063 { 1064 int i; 1065 struct bio_vec *bvec; 1066 1067 bio_for_each_segment_all(bvec, bio, i) { 1068 ssize_t ret; 1069 1070 ret = copy_page_from_iter(bvec->bv_page, 1071 bvec->bv_offset, 1072 bvec->bv_len, 1073 &iter); 1074 1075 if (!iov_iter_count(&iter)) 1076 break; 1077 1078 if (ret < bvec->bv_len) 1079 return -EFAULT; 1080 } 1081 1082 return 0; 1083 } 1084 1085 /** 1086 * bio_copy_to_iter - copy all pages from bio to iov_iter 1087 * @bio: The &struct bio which describes the I/O as source 1088 * @iter: iov_iter as destination 1089 * 1090 * Copy all pages from bio to iov_iter. 1091 * Returns 0 on success, or error on failure. 1092 */ 1093 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1094 { 1095 int i; 1096 struct bio_vec *bvec; 1097 1098 bio_for_each_segment_all(bvec, bio, i) { 1099 ssize_t ret; 1100 1101 ret = copy_page_to_iter(bvec->bv_page, 1102 bvec->bv_offset, 1103 bvec->bv_len, 1104 &iter); 1105 1106 if (!iov_iter_count(&iter)) 1107 break; 1108 1109 if (ret < bvec->bv_len) 1110 return -EFAULT; 1111 } 1112 1113 return 0; 1114 } 1115 1116 static void bio_free_pages(struct bio *bio) 1117 { 1118 struct bio_vec *bvec; 1119 int i; 1120 1121 bio_for_each_segment_all(bvec, bio, i) 1122 __free_page(bvec->bv_page); 1123 } 1124 1125 /** 1126 * bio_uncopy_user - finish previously mapped bio 1127 * @bio: bio being terminated 1128 * 1129 * Free pages allocated from bio_copy_user_iov() and write back data 1130 * to user space in case of a read. 1131 */ 1132 int bio_uncopy_user(struct bio *bio) 1133 { 1134 struct bio_map_data *bmd = bio->bi_private; 1135 int ret = 0; 1136 1137 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1138 /* 1139 * if we're in a workqueue, the request is orphaned, so 1140 * don't copy into a random user address space, just free. 1141 */ 1142 if (current->mm && bio_data_dir(bio) == READ) 1143 ret = bio_copy_to_iter(bio, bmd->iter); 1144 if (bmd->is_our_pages) 1145 bio_free_pages(bio); 1146 } 1147 kfree(bmd); 1148 bio_put(bio); 1149 return ret; 1150 } 1151 EXPORT_SYMBOL(bio_uncopy_user); 1152 1153 /** 1154 * bio_copy_user_iov - copy user data to bio 1155 * @q: destination block queue 1156 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1157 * @iter: iovec iterator 1158 * @gfp_mask: memory allocation flags 1159 * 1160 * Prepares and returns a bio for indirect user io, bouncing data 1161 * to/from kernel pages as necessary. Must be paired with 1162 * call bio_uncopy_user() on io completion. 1163 */ 1164 struct bio *bio_copy_user_iov(struct request_queue *q, 1165 struct rq_map_data *map_data, 1166 const struct iov_iter *iter, 1167 gfp_t gfp_mask) 1168 { 1169 struct bio_map_data *bmd; 1170 struct page *page; 1171 struct bio *bio; 1172 int i, ret; 1173 int nr_pages = 0; 1174 unsigned int len = iter->count; 1175 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; 1176 1177 for (i = 0; i < iter->nr_segs; i++) { 1178 unsigned long uaddr; 1179 unsigned long end; 1180 unsigned long start; 1181 1182 uaddr = (unsigned long) iter->iov[i].iov_base; 1183 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1184 >> PAGE_SHIFT; 1185 start = uaddr >> PAGE_SHIFT; 1186 1187 /* 1188 * Overflow, abort 1189 */ 1190 if (end < start) 1191 return ERR_PTR(-EINVAL); 1192 1193 nr_pages += end - start; 1194 } 1195 1196 if (offset) 1197 nr_pages++; 1198 1199 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1200 if (!bmd) 1201 return ERR_PTR(-ENOMEM); 1202 1203 /* 1204 * We need to do a deep copy of the iov_iter including the iovecs. 1205 * The caller provided iov might point to an on-stack or otherwise 1206 * shortlived one. 1207 */ 1208 bmd->is_our_pages = map_data ? 0 : 1; 1209 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1210 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1211 iter->nr_segs, iter->count); 1212 1213 ret = -ENOMEM; 1214 bio = bio_kmalloc(gfp_mask, nr_pages); 1215 if (!bio) 1216 goto out_bmd; 1217 1218 if (iter->type & WRITE) 1219 bio->bi_rw |= REQ_WRITE; 1220 1221 ret = 0; 1222 1223 if (map_data) { 1224 nr_pages = 1 << map_data->page_order; 1225 i = map_data->offset / PAGE_SIZE; 1226 } 1227 while (len) { 1228 unsigned int bytes = PAGE_SIZE; 1229 1230 bytes -= offset; 1231 1232 if (bytes > len) 1233 bytes = len; 1234 1235 if (map_data) { 1236 if (i == map_data->nr_entries * nr_pages) { 1237 ret = -ENOMEM; 1238 break; 1239 } 1240 1241 page = map_data->pages[i / nr_pages]; 1242 page += (i % nr_pages); 1243 1244 i++; 1245 } else { 1246 page = alloc_page(q->bounce_gfp | gfp_mask); 1247 if (!page) { 1248 ret = -ENOMEM; 1249 break; 1250 } 1251 } 1252 1253 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1254 break; 1255 1256 len -= bytes; 1257 offset = 0; 1258 } 1259 1260 if (ret) 1261 goto cleanup; 1262 1263 /* 1264 * success 1265 */ 1266 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1267 (map_data && map_data->from_user)) { 1268 ret = bio_copy_from_iter(bio, *iter); 1269 if (ret) 1270 goto cleanup; 1271 } 1272 1273 bio->bi_private = bmd; 1274 return bio; 1275 cleanup: 1276 if (!map_data) 1277 bio_free_pages(bio); 1278 bio_put(bio); 1279 out_bmd: 1280 kfree(bmd); 1281 return ERR_PTR(ret); 1282 } 1283 1284 /** 1285 * bio_map_user_iov - map user iovec into bio 1286 * @q: the struct request_queue for the bio 1287 * @iter: iovec iterator 1288 * @gfp_mask: memory allocation flags 1289 * 1290 * Map the user space address into a bio suitable for io to a block 1291 * device. Returns an error pointer in case of error. 1292 */ 1293 struct bio *bio_map_user_iov(struct request_queue *q, 1294 const struct iov_iter *iter, 1295 gfp_t gfp_mask) 1296 { 1297 int j; 1298 int nr_pages = 0; 1299 struct page **pages; 1300 struct bio *bio; 1301 int cur_page = 0; 1302 int ret, offset; 1303 struct iov_iter i; 1304 struct iovec iov; 1305 1306 iov_for_each(iov, i, *iter) { 1307 unsigned long uaddr = (unsigned long) iov.iov_base; 1308 unsigned long len = iov.iov_len; 1309 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1310 unsigned long start = uaddr >> PAGE_SHIFT; 1311 1312 /* 1313 * Overflow, abort 1314 */ 1315 if (end < start) 1316 return ERR_PTR(-EINVAL); 1317 1318 nr_pages += end - start; 1319 /* 1320 * buffer must be aligned to at least hardsector size for now 1321 */ 1322 if (uaddr & queue_dma_alignment(q)) 1323 return ERR_PTR(-EINVAL); 1324 } 1325 1326 if (!nr_pages) 1327 return ERR_PTR(-EINVAL); 1328 1329 bio = bio_kmalloc(gfp_mask, nr_pages); 1330 if (!bio) 1331 return ERR_PTR(-ENOMEM); 1332 1333 ret = -ENOMEM; 1334 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1335 if (!pages) 1336 goto out; 1337 1338 iov_for_each(iov, i, *iter) { 1339 unsigned long uaddr = (unsigned long) iov.iov_base; 1340 unsigned long len = iov.iov_len; 1341 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1342 unsigned long start = uaddr >> PAGE_SHIFT; 1343 const int local_nr_pages = end - start; 1344 const int page_limit = cur_page + local_nr_pages; 1345 1346 ret = get_user_pages_fast(uaddr, local_nr_pages, 1347 (iter->type & WRITE) != WRITE, 1348 &pages[cur_page]); 1349 if (ret < local_nr_pages) { 1350 ret = -EFAULT; 1351 goto out_unmap; 1352 } 1353 1354 offset = uaddr & ~PAGE_MASK; 1355 for (j = cur_page; j < page_limit; j++) { 1356 unsigned int bytes = PAGE_SIZE - offset; 1357 1358 if (len <= 0) 1359 break; 1360 1361 if (bytes > len) 1362 bytes = len; 1363 1364 /* 1365 * sorry... 1366 */ 1367 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1368 bytes) 1369 break; 1370 1371 len -= bytes; 1372 offset = 0; 1373 } 1374 1375 cur_page = j; 1376 /* 1377 * release the pages we didn't map into the bio, if any 1378 */ 1379 while (j < page_limit) 1380 page_cache_release(pages[j++]); 1381 } 1382 1383 kfree(pages); 1384 1385 /* 1386 * set data direction, and check if mapped pages need bouncing 1387 */ 1388 if (iter->type & WRITE) 1389 bio->bi_rw |= REQ_WRITE; 1390 1391 bio->bi_flags |= (1 << BIO_USER_MAPPED); 1392 1393 /* 1394 * subtle -- if __bio_map_user() ended up bouncing a bio, 1395 * it would normally disappear when its bi_end_io is run. 1396 * however, we need it for the unmap, so grab an extra 1397 * reference to it 1398 */ 1399 bio_get(bio); 1400 return bio; 1401 1402 out_unmap: 1403 for (j = 0; j < nr_pages; j++) { 1404 if (!pages[j]) 1405 break; 1406 page_cache_release(pages[j]); 1407 } 1408 out: 1409 kfree(pages); 1410 bio_put(bio); 1411 return ERR_PTR(ret); 1412 } 1413 1414 static void __bio_unmap_user(struct bio *bio) 1415 { 1416 struct bio_vec *bvec; 1417 int i; 1418 1419 /* 1420 * make sure we dirty pages we wrote to 1421 */ 1422 bio_for_each_segment_all(bvec, bio, i) { 1423 if (bio_data_dir(bio) == READ) 1424 set_page_dirty_lock(bvec->bv_page); 1425 1426 page_cache_release(bvec->bv_page); 1427 } 1428 1429 bio_put(bio); 1430 } 1431 1432 /** 1433 * bio_unmap_user - unmap a bio 1434 * @bio: the bio being unmapped 1435 * 1436 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1437 * a process context. 1438 * 1439 * bio_unmap_user() may sleep. 1440 */ 1441 void bio_unmap_user(struct bio *bio) 1442 { 1443 __bio_unmap_user(bio); 1444 bio_put(bio); 1445 } 1446 EXPORT_SYMBOL(bio_unmap_user); 1447 1448 static void bio_map_kern_endio(struct bio *bio, int err) 1449 { 1450 bio_put(bio); 1451 } 1452 1453 /** 1454 * bio_map_kern - map kernel address into bio 1455 * @q: the struct request_queue for the bio 1456 * @data: pointer to buffer to map 1457 * @len: length in bytes 1458 * @gfp_mask: allocation flags for bio allocation 1459 * 1460 * Map the kernel address into a bio suitable for io to a block 1461 * device. Returns an error pointer in case of error. 1462 */ 1463 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1464 gfp_t gfp_mask) 1465 { 1466 unsigned long kaddr = (unsigned long)data; 1467 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1468 unsigned long start = kaddr >> PAGE_SHIFT; 1469 const int nr_pages = end - start; 1470 int offset, i; 1471 struct bio *bio; 1472 1473 bio = bio_kmalloc(gfp_mask, nr_pages); 1474 if (!bio) 1475 return ERR_PTR(-ENOMEM); 1476 1477 offset = offset_in_page(kaddr); 1478 for (i = 0; i < nr_pages; i++) { 1479 unsigned int bytes = PAGE_SIZE - offset; 1480 1481 if (len <= 0) 1482 break; 1483 1484 if (bytes > len) 1485 bytes = len; 1486 1487 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1488 offset) < bytes) { 1489 /* we don't support partial mappings */ 1490 bio_put(bio); 1491 return ERR_PTR(-EINVAL); 1492 } 1493 1494 data += bytes; 1495 len -= bytes; 1496 offset = 0; 1497 } 1498 1499 bio->bi_end_io = bio_map_kern_endio; 1500 return bio; 1501 } 1502 EXPORT_SYMBOL(bio_map_kern); 1503 1504 static void bio_copy_kern_endio(struct bio *bio, int err) 1505 { 1506 bio_free_pages(bio); 1507 bio_put(bio); 1508 } 1509 1510 static void bio_copy_kern_endio_read(struct bio *bio, int err) 1511 { 1512 char *p = bio->bi_private; 1513 struct bio_vec *bvec; 1514 int i; 1515 1516 bio_for_each_segment_all(bvec, bio, i) { 1517 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1518 p += bvec->bv_len; 1519 } 1520 1521 bio_copy_kern_endio(bio, err); 1522 } 1523 1524 /** 1525 * bio_copy_kern - copy kernel address into bio 1526 * @q: the struct request_queue for the bio 1527 * @data: pointer to buffer to copy 1528 * @len: length in bytes 1529 * @gfp_mask: allocation flags for bio and page allocation 1530 * @reading: data direction is READ 1531 * 1532 * copy the kernel address into a bio suitable for io to a block 1533 * device. Returns an error pointer in case of error. 1534 */ 1535 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1536 gfp_t gfp_mask, int reading) 1537 { 1538 unsigned long kaddr = (unsigned long)data; 1539 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1540 unsigned long start = kaddr >> PAGE_SHIFT; 1541 struct bio *bio; 1542 void *p = data; 1543 int nr_pages = 0; 1544 1545 /* 1546 * Overflow, abort 1547 */ 1548 if (end < start) 1549 return ERR_PTR(-EINVAL); 1550 1551 nr_pages = end - start; 1552 bio = bio_kmalloc(gfp_mask, nr_pages); 1553 if (!bio) 1554 return ERR_PTR(-ENOMEM); 1555 1556 while (len) { 1557 struct page *page; 1558 unsigned int bytes = PAGE_SIZE; 1559 1560 if (bytes > len) 1561 bytes = len; 1562 1563 page = alloc_page(q->bounce_gfp | gfp_mask); 1564 if (!page) 1565 goto cleanup; 1566 1567 if (!reading) 1568 memcpy(page_address(page), p, bytes); 1569 1570 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1571 break; 1572 1573 len -= bytes; 1574 p += bytes; 1575 } 1576 1577 if (reading) { 1578 bio->bi_end_io = bio_copy_kern_endio_read; 1579 bio->bi_private = data; 1580 } else { 1581 bio->bi_end_io = bio_copy_kern_endio; 1582 bio->bi_rw |= REQ_WRITE; 1583 } 1584 1585 return bio; 1586 1587 cleanup: 1588 bio_free_pages(bio); 1589 bio_put(bio); 1590 return ERR_PTR(-ENOMEM); 1591 } 1592 EXPORT_SYMBOL(bio_copy_kern); 1593 1594 /* 1595 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1596 * for performing direct-IO in BIOs. 1597 * 1598 * The problem is that we cannot run set_page_dirty() from interrupt context 1599 * because the required locks are not interrupt-safe. So what we can do is to 1600 * mark the pages dirty _before_ performing IO. And in interrupt context, 1601 * check that the pages are still dirty. If so, fine. If not, redirty them 1602 * in process context. 1603 * 1604 * We special-case compound pages here: normally this means reads into hugetlb 1605 * pages. The logic in here doesn't really work right for compound pages 1606 * because the VM does not uniformly chase down the head page in all cases. 1607 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1608 * handle them at all. So we skip compound pages here at an early stage. 1609 * 1610 * Note that this code is very hard to test under normal circumstances because 1611 * direct-io pins the pages with get_user_pages(). This makes 1612 * is_page_cache_freeable return false, and the VM will not clean the pages. 1613 * But other code (eg, flusher threads) could clean the pages if they are mapped 1614 * pagecache. 1615 * 1616 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1617 * deferred bio dirtying paths. 1618 */ 1619 1620 /* 1621 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1622 */ 1623 void bio_set_pages_dirty(struct bio *bio) 1624 { 1625 struct bio_vec *bvec; 1626 int i; 1627 1628 bio_for_each_segment_all(bvec, bio, i) { 1629 struct page *page = bvec->bv_page; 1630 1631 if (page && !PageCompound(page)) 1632 set_page_dirty_lock(page); 1633 } 1634 } 1635 1636 static void bio_release_pages(struct bio *bio) 1637 { 1638 struct bio_vec *bvec; 1639 int i; 1640 1641 bio_for_each_segment_all(bvec, bio, i) { 1642 struct page *page = bvec->bv_page; 1643 1644 if (page) 1645 put_page(page); 1646 } 1647 } 1648 1649 /* 1650 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1651 * If they are, then fine. If, however, some pages are clean then they must 1652 * have been written out during the direct-IO read. So we take another ref on 1653 * the BIO and the offending pages and re-dirty the pages in process context. 1654 * 1655 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1656 * here on. It will run one page_cache_release() against each page and will 1657 * run one bio_put() against the BIO. 1658 */ 1659 1660 static void bio_dirty_fn(struct work_struct *work); 1661 1662 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1663 static DEFINE_SPINLOCK(bio_dirty_lock); 1664 static struct bio *bio_dirty_list; 1665 1666 /* 1667 * This runs in process context 1668 */ 1669 static void bio_dirty_fn(struct work_struct *work) 1670 { 1671 unsigned long flags; 1672 struct bio *bio; 1673 1674 spin_lock_irqsave(&bio_dirty_lock, flags); 1675 bio = bio_dirty_list; 1676 bio_dirty_list = NULL; 1677 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1678 1679 while (bio) { 1680 struct bio *next = bio->bi_private; 1681 1682 bio_set_pages_dirty(bio); 1683 bio_release_pages(bio); 1684 bio_put(bio); 1685 bio = next; 1686 } 1687 } 1688 1689 void bio_check_pages_dirty(struct bio *bio) 1690 { 1691 struct bio_vec *bvec; 1692 int nr_clean_pages = 0; 1693 int i; 1694 1695 bio_for_each_segment_all(bvec, bio, i) { 1696 struct page *page = bvec->bv_page; 1697 1698 if (PageDirty(page) || PageCompound(page)) { 1699 page_cache_release(page); 1700 bvec->bv_page = NULL; 1701 } else { 1702 nr_clean_pages++; 1703 } 1704 } 1705 1706 if (nr_clean_pages) { 1707 unsigned long flags; 1708 1709 spin_lock_irqsave(&bio_dirty_lock, flags); 1710 bio->bi_private = bio_dirty_list; 1711 bio_dirty_list = bio; 1712 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1713 schedule_work(&bio_dirty_work); 1714 } else { 1715 bio_put(bio); 1716 } 1717 } 1718 1719 void generic_start_io_acct(int rw, unsigned long sectors, 1720 struct hd_struct *part) 1721 { 1722 int cpu = part_stat_lock(); 1723 1724 part_round_stats(cpu, part); 1725 part_stat_inc(cpu, part, ios[rw]); 1726 part_stat_add(cpu, part, sectors[rw], sectors); 1727 part_inc_in_flight(part, rw); 1728 1729 part_stat_unlock(); 1730 } 1731 EXPORT_SYMBOL(generic_start_io_acct); 1732 1733 void generic_end_io_acct(int rw, struct hd_struct *part, 1734 unsigned long start_time) 1735 { 1736 unsigned long duration = jiffies - start_time; 1737 int cpu = part_stat_lock(); 1738 1739 part_stat_add(cpu, part, ticks[rw], duration); 1740 part_round_stats(cpu, part); 1741 part_dec_in_flight(part, rw); 1742 1743 part_stat_unlock(); 1744 } 1745 EXPORT_SYMBOL(generic_end_io_acct); 1746 1747 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1748 void bio_flush_dcache_pages(struct bio *bi) 1749 { 1750 struct bio_vec bvec; 1751 struct bvec_iter iter; 1752 1753 bio_for_each_segment(bvec, bi, iter) 1754 flush_dcache_page(bvec.bv_page); 1755 } 1756 EXPORT_SYMBOL(bio_flush_dcache_pages); 1757 #endif 1758 1759 static inline bool bio_remaining_done(struct bio *bio) 1760 { 1761 /* 1762 * If we're not chaining, then ->__bi_remaining is always 1 and 1763 * we always end io on the first invocation. 1764 */ 1765 if (!bio_flagged(bio, BIO_CHAIN)) 1766 return true; 1767 1768 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1769 1770 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1771 clear_bit(BIO_CHAIN, &bio->bi_flags); 1772 return true; 1773 } 1774 1775 return false; 1776 } 1777 1778 /** 1779 * bio_endio - end I/O on a bio 1780 * @bio: bio 1781 * @error: error, if any 1782 * 1783 * Description: 1784 * bio_endio() will end I/O on the whole bio. bio_endio() is the 1785 * preferred way to end I/O on a bio, it takes care of clearing 1786 * BIO_UPTODATE on error. @error is 0 on success, and and one of the 1787 * established -Exxxx (-EIO, for instance) error values in case 1788 * something went wrong. No one should call bi_end_io() directly on a 1789 * bio unless they own it and thus know that it has an end_io 1790 * function. 1791 **/ 1792 void bio_endio(struct bio *bio, int error) 1793 { 1794 while (bio) { 1795 if (error) 1796 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1797 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1798 error = -EIO; 1799 1800 if (unlikely(!bio_remaining_done(bio))) 1801 break; 1802 1803 /* 1804 * Need to have a real endio function for chained bios, 1805 * otherwise various corner cases will break (like stacking 1806 * block devices that save/restore bi_end_io) - however, we want 1807 * to avoid unbounded recursion and blowing the stack. Tail call 1808 * optimization would handle this, but compiling with frame 1809 * pointers also disables gcc's sibling call optimization. 1810 */ 1811 if (bio->bi_end_io == bio_chain_endio) { 1812 struct bio *parent = bio->bi_private; 1813 bio_put(bio); 1814 bio = parent; 1815 } else { 1816 if (bio->bi_end_io) 1817 bio->bi_end_io(bio, error); 1818 bio = NULL; 1819 } 1820 } 1821 } 1822 EXPORT_SYMBOL(bio_endio); 1823 1824 /** 1825 * bio_split - split a bio 1826 * @bio: bio to split 1827 * @sectors: number of sectors to split from the front of @bio 1828 * @gfp: gfp mask 1829 * @bs: bio set to allocate from 1830 * 1831 * Allocates and returns a new bio which represents @sectors from the start of 1832 * @bio, and updates @bio to represent the remaining sectors. 1833 * 1834 * Unless this is a discard request the newly allocated bio will point 1835 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1836 * @bio is not freed before the split. 1837 */ 1838 struct bio *bio_split(struct bio *bio, int sectors, 1839 gfp_t gfp, struct bio_set *bs) 1840 { 1841 struct bio *split = NULL; 1842 1843 BUG_ON(sectors <= 0); 1844 BUG_ON(sectors >= bio_sectors(bio)); 1845 1846 /* 1847 * Discards need a mutable bio_vec to accommodate the payload 1848 * required by the DSM TRIM and UNMAP commands. 1849 */ 1850 if (bio->bi_rw & REQ_DISCARD) 1851 split = bio_clone_bioset(bio, gfp, bs); 1852 else 1853 split = bio_clone_fast(bio, gfp, bs); 1854 1855 if (!split) 1856 return NULL; 1857 1858 split->bi_iter.bi_size = sectors << 9; 1859 1860 if (bio_integrity(split)) 1861 bio_integrity_trim(split, 0, sectors); 1862 1863 bio_advance(bio, split->bi_iter.bi_size); 1864 1865 return split; 1866 } 1867 EXPORT_SYMBOL(bio_split); 1868 1869 /** 1870 * bio_trim - trim a bio 1871 * @bio: bio to trim 1872 * @offset: number of sectors to trim from the front of @bio 1873 * @size: size we want to trim @bio to, in sectors 1874 */ 1875 void bio_trim(struct bio *bio, int offset, int size) 1876 { 1877 /* 'bio' is a cloned bio which we need to trim to match 1878 * the given offset and size. 1879 */ 1880 1881 size <<= 9; 1882 if (offset == 0 && size == bio->bi_iter.bi_size) 1883 return; 1884 1885 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1886 1887 bio_advance(bio, offset << 9); 1888 1889 bio->bi_iter.bi_size = size; 1890 } 1891 EXPORT_SYMBOL_GPL(bio_trim); 1892 1893 /* 1894 * create memory pools for biovec's in a bio_set. 1895 * use the global biovec slabs created for general use. 1896 */ 1897 mempool_t *biovec_create_pool(int pool_entries) 1898 { 1899 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; 1900 1901 return mempool_create_slab_pool(pool_entries, bp->slab); 1902 } 1903 1904 void bioset_free(struct bio_set *bs) 1905 { 1906 if (bs->rescue_workqueue) 1907 destroy_workqueue(bs->rescue_workqueue); 1908 1909 if (bs->bio_pool) 1910 mempool_destroy(bs->bio_pool); 1911 1912 if (bs->bvec_pool) 1913 mempool_destroy(bs->bvec_pool); 1914 1915 bioset_integrity_free(bs); 1916 bio_put_slab(bs); 1917 1918 kfree(bs); 1919 } 1920 EXPORT_SYMBOL(bioset_free); 1921 1922 static struct bio_set *__bioset_create(unsigned int pool_size, 1923 unsigned int front_pad, 1924 bool create_bvec_pool) 1925 { 1926 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1927 struct bio_set *bs; 1928 1929 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1930 if (!bs) 1931 return NULL; 1932 1933 bs->front_pad = front_pad; 1934 1935 spin_lock_init(&bs->rescue_lock); 1936 bio_list_init(&bs->rescue_list); 1937 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1938 1939 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1940 if (!bs->bio_slab) { 1941 kfree(bs); 1942 return NULL; 1943 } 1944 1945 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1946 if (!bs->bio_pool) 1947 goto bad; 1948 1949 if (create_bvec_pool) { 1950 bs->bvec_pool = biovec_create_pool(pool_size); 1951 if (!bs->bvec_pool) 1952 goto bad; 1953 } 1954 1955 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1956 if (!bs->rescue_workqueue) 1957 goto bad; 1958 1959 return bs; 1960 bad: 1961 bioset_free(bs); 1962 return NULL; 1963 } 1964 1965 /** 1966 * bioset_create - Create a bio_set 1967 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1968 * @front_pad: Number of bytes to allocate in front of the returned bio 1969 * 1970 * Description: 1971 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1972 * to ask for a number of bytes to be allocated in front of the bio. 1973 * Front pad allocation is useful for embedding the bio inside 1974 * another structure, to avoid allocating extra data to go with the bio. 1975 * Note that the bio must be embedded at the END of that structure always, 1976 * or things will break badly. 1977 */ 1978 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1979 { 1980 return __bioset_create(pool_size, front_pad, true); 1981 } 1982 EXPORT_SYMBOL(bioset_create); 1983 1984 /** 1985 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 1986 * @pool_size: Number of bio to cache in the mempool 1987 * @front_pad: Number of bytes to allocate in front of the returned bio 1988 * 1989 * Description: 1990 * Same functionality as bioset_create() except that mempool is not 1991 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 1992 */ 1993 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 1994 { 1995 return __bioset_create(pool_size, front_pad, false); 1996 } 1997 EXPORT_SYMBOL(bioset_create_nobvec); 1998 1999 #ifdef CONFIG_BLK_CGROUP 2000 2001 /** 2002 * bio_associate_blkcg - associate a bio with the specified blkcg 2003 * @bio: target bio 2004 * @blkcg_css: css of the blkcg to associate 2005 * 2006 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 2007 * treat @bio as if it were issued by a task which belongs to the blkcg. 2008 * 2009 * This function takes an extra reference of @blkcg_css which will be put 2010 * when @bio is released. The caller must own @bio and is responsible for 2011 * synchronizing calls to this function. 2012 */ 2013 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 2014 { 2015 if (unlikely(bio->bi_css)) 2016 return -EBUSY; 2017 css_get(blkcg_css); 2018 bio->bi_css = blkcg_css; 2019 return 0; 2020 } 2021 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 2022 2023 /** 2024 * bio_associate_current - associate a bio with %current 2025 * @bio: target bio 2026 * 2027 * Associate @bio with %current if it hasn't been associated yet. Block 2028 * layer will treat @bio as if it were issued by %current no matter which 2029 * task actually issues it. 2030 * 2031 * This function takes an extra reference of @task's io_context and blkcg 2032 * which will be put when @bio is released. The caller must own @bio, 2033 * ensure %current->io_context exists, and is responsible for synchronizing 2034 * calls to this function. 2035 */ 2036 int bio_associate_current(struct bio *bio) 2037 { 2038 struct io_context *ioc; 2039 2040 if (bio->bi_css) 2041 return -EBUSY; 2042 2043 ioc = current->io_context; 2044 if (!ioc) 2045 return -ENOENT; 2046 2047 get_io_context_active(ioc); 2048 bio->bi_ioc = ioc; 2049 bio->bi_css = task_get_css(current, blkio_cgrp_id); 2050 return 0; 2051 } 2052 EXPORT_SYMBOL_GPL(bio_associate_current); 2053 2054 /** 2055 * bio_disassociate_task - undo bio_associate_current() 2056 * @bio: target bio 2057 */ 2058 void bio_disassociate_task(struct bio *bio) 2059 { 2060 if (bio->bi_ioc) { 2061 put_io_context(bio->bi_ioc); 2062 bio->bi_ioc = NULL; 2063 } 2064 if (bio->bi_css) { 2065 css_put(bio->bi_css); 2066 bio->bi_css = NULL; 2067 } 2068 } 2069 2070 #endif /* CONFIG_BLK_CGROUP */ 2071 2072 static void __init biovec_init_slabs(void) 2073 { 2074 int i; 2075 2076 for (i = 0; i < BIOVEC_NR_POOLS; i++) { 2077 int size; 2078 struct biovec_slab *bvs = bvec_slabs + i; 2079 2080 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2081 bvs->slab = NULL; 2082 continue; 2083 } 2084 2085 size = bvs->nr_vecs * sizeof(struct bio_vec); 2086 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2087 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2088 } 2089 } 2090 2091 static int __init init_bio(void) 2092 { 2093 bio_slab_max = 2; 2094 bio_slab_nr = 0; 2095 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2096 if (!bio_slabs) 2097 panic("bio: can't allocate bios\n"); 2098 2099 bio_integrity_init(); 2100 biovec_init_slabs(); 2101 2102 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2103 if (!fs_bio_set) 2104 panic("bio: can't allocate bios\n"); 2105 2106 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2107 panic("bio: can't create integrity pool\n"); 2108 2109 return 0; 2110 } 2111 subsys_initcall(init_bio); 2112