1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/blk-crypto.h> 20 #include <linux/xarray.h> 21 22 #include <trace/events/block.h> 23 #include "blk.h" 24 #include "blk-rq-qos.h" 25 #include "blk-cgroup.h" 26 27 #define ALLOC_CACHE_THRESHOLD 16 28 #define ALLOC_CACHE_MAX 256 29 30 struct bio_alloc_cache { 31 struct bio *free_list; 32 struct bio *free_list_irq; 33 unsigned int nr; 34 unsigned int nr_irq; 35 }; 36 37 static struct biovec_slab { 38 int nr_vecs; 39 char *name; 40 struct kmem_cache *slab; 41 } bvec_slabs[] __read_mostly = { 42 { .nr_vecs = 16, .name = "biovec-16" }, 43 { .nr_vecs = 64, .name = "biovec-64" }, 44 { .nr_vecs = 128, .name = "biovec-128" }, 45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 46 }; 47 48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 49 { 50 switch (nr_vecs) { 51 /* smaller bios use inline vecs */ 52 case 5 ... 16: 53 return &bvec_slabs[0]; 54 case 17 ... 64: 55 return &bvec_slabs[1]; 56 case 65 ... 128: 57 return &bvec_slabs[2]; 58 case 129 ... BIO_MAX_VECS: 59 return &bvec_slabs[3]; 60 default: 61 BUG(); 62 return NULL; 63 } 64 } 65 66 /* 67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 68 * IO code that does not need private memory pools. 69 */ 70 struct bio_set fs_bio_set; 71 EXPORT_SYMBOL(fs_bio_set); 72 73 /* 74 * Our slab pool management 75 */ 76 struct bio_slab { 77 struct kmem_cache *slab; 78 unsigned int slab_ref; 79 unsigned int slab_size; 80 char name[8]; 81 }; 82 static DEFINE_MUTEX(bio_slab_lock); 83 static DEFINE_XARRAY(bio_slabs); 84 85 static struct bio_slab *create_bio_slab(unsigned int size) 86 { 87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 88 89 if (!bslab) 90 return NULL; 91 92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 93 bslab->slab = kmem_cache_create(bslab->name, size, 94 ARCH_KMALLOC_MINALIGN, 95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 96 if (!bslab->slab) 97 goto fail_alloc_slab; 98 99 bslab->slab_ref = 1; 100 bslab->slab_size = size; 101 102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 103 return bslab; 104 105 kmem_cache_destroy(bslab->slab); 106 107 fail_alloc_slab: 108 kfree(bslab); 109 return NULL; 110 } 111 112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 113 { 114 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 115 } 116 117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 118 { 119 unsigned int size = bs_bio_slab_size(bs); 120 struct bio_slab *bslab; 121 122 mutex_lock(&bio_slab_lock); 123 bslab = xa_load(&bio_slabs, size); 124 if (bslab) 125 bslab->slab_ref++; 126 else 127 bslab = create_bio_slab(size); 128 mutex_unlock(&bio_slab_lock); 129 130 if (bslab) 131 return bslab->slab; 132 return NULL; 133 } 134 135 static void bio_put_slab(struct bio_set *bs) 136 { 137 struct bio_slab *bslab = NULL; 138 unsigned int slab_size = bs_bio_slab_size(bs); 139 140 mutex_lock(&bio_slab_lock); 141 142 bslab = xa_load(&bio_slabs, slab_size); 143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 144 goto out; 145 146 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 147 148 WARN_ON(!bslab->slab_ref); 149 150 if (--bslab->slab_ref) 151 goto out; 152 153 xa_erase(&bio_slabs, slab_size); 154 155 kmem_cache_destroy(bslab->slab); 156 kfree(bslab); 157 158 out: 159 mutex_unlock(&bio_slab_lock); 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 163 { 164 BUG_ON(nr_vecs > BIO_MAX_VECS); 165 166 if (nr_vecs == BIO_MAX_VECS) 167 mempool_free(bv, pool); 168 else if (nr_vecs > BIO_INLINE_VECS) 169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 170 } 171 172 /* 173 * Make the first allocation restricted and don't dump info on allocation 174 * failures, since we'll fall back to the mempool in case of failure. 175 */ 176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 177 { 178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 180 } 181 182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 183 gfp_t gfp_mask) 184 { 185 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 186 187 if (WARN_ON_ONCE(!bvs)) 188 return NULL; 189 190 /* 191 * Upgrade the nr_vecs request to take full advantage of the allocation. 192 * We also rely on this in the bvec_free path. 193 */ 194 *nr_vecs = bvs->nr_vecs; 195 196 /* 197 * Try a slab allocation first for all smaller allocations. If that 198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 199 * The mempool is sized to handle up to BIO_MAX_VECS entries. 200 */ 201 if (*nr_vecs < BIO_MAX_VECS) { 202 struct bio_vec *bvl; 203 204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 206 return bvl; 207 *nr_vecs = BIO_MAX_VECS; 208 } 209 210 return mempool_alloc(pool, gfp_mask); 211 } 212 213 void bio_uninit(struct bio *bio) 214 { 215 #ifdef CONFIG_BLK_CGROUP 216 if (bio->bi_blkg) { 217 blkg_put(bio->bi_blkg); 218 bio->bi_blkg = NULL; 219 } 220 #endif 221 if (bio_integrity(bio)) 222 bio_integrity_free(bio); 223 224 bio_crypt_free_ctx(bio); 225 } 226 EXPORT_SYMBOL(bio_uninit); 227 228 static void bio_free(struct bio *bio) 229 { 230 struct bio_set *bs = bio->bi_pool; 231 void *p = bio; 232 233 WARN_ON_ONCE(!bs); 234 235 bio_uninit(bio); 236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 237 mempool_free(p - bs->front_pad, &bs->bio_pool); 238 } 239 240 /* 241 * Users of this function have their own bio allocation. Subsequently, 242 * they must remember to pair any call to bio_init() with bio_uninit() 243 * when IO has completed, or when the bio is released. 244 */ 245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 246 unsigned short max_vecs, blk_opf_t opf) 247 { 248 bio->bi_next = NULL; 249 bio->bi_bdev = bdev; 250 bio->bi_opf = opf; 251 bio->bi_flags = 0; 252 bio->bi_ioprio = 0; 253 bio->bi_write_hint = 0; 254 bio->bi_status = 0; 255 bio->bi_iter.bi_sector = 0; 256 bio->bi_iter.bi_size = 0; 257 bio->bi_iter.bi_idx = 0; 258 bio->bi_iter.bi_bvec_done = 0; 259 bio->bi_end_io = NULL; 260 bio->bi_private = NULL; 261 #ifdef CONFIG_BLK_CGROUP 262 bio->bi_blkg = NULL; 263 bio->bi_issue.value = 0; 264 if (bdev) 265 bio_associate_blkg(bio); 266 #ifdef CONFIG_BLK_CGROUP_IOCOST 267 bio->bi_iocost_cost = 0; 268 #endif 269 #endif 270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 271 bio->bi_crypt_context = NULL; 272 #endif 273 #ifdef CONFIG_BLK_DEV_INTEGRITY 274 bio->bi_integrity = NULL; 275 #endif 276 bio->bi_vcnt = 0; 277 278 atomic_set(&bio->__bi_remaining, 1); 279 atomic_set(&bio->__bi_cnt, 1); 280 bio->bi_cookie = BLK_QC_T_NONE; 281 282 bio->bi_max_vecs = max_vecs; 283 bio->bi_io_vec = table; 284 bio->bi_pool = NULL; 285 } 286 EXPORT_SYMBOL(bio_init); 287 288 /** 289 * bio_reset - reinitialize a bio 290 * @bio: bio to reset 291 * @bdev: block device to use the bio for 292 * @opf: operation and flags for bio 293 * 294 * Description: 295 * After calling bio_reset(), @bio will be in the same state as a freshly 296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 297 * preserved are the ones that are initialized by bio_alloc_bioset(). See 298 * comment in struct bio. 299 */ 300 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 301 { 302 bio_uninit(bio); 303 memset(bio, 0, BIO_RESET_BYTES); 304 atomic_set(&bio->__bi_remaining, 1); 305 bio->bi_bdev = bdev; 306 if (bio->bi_bdev) 307 bio_associate_blkg(bio); 308 bio->bi_opf = opf; 309 } 310 EXPORT_SYMBOL(bio_reset); 311 312 static struct bio *__bio_chain_endio(struct bio *bio) 313 { 314 struct bio *parent = bio->bi_private; 315 316 if (bio->bi_status && !parent->bi_status) 317 parent->bi_status = bio->bi_status; 318 bio_put(bio); 319 return parent; 320 } 321 322 static void bio_chain_endio(struct bio *bio) 323 { 324 bio_endio(__bio_chain_endio(bio)); 325 } 326 327 /** 328 * bio_chain - chain bio completions 329 * @bio: the target bio 330 * @parent: the parent bio of @bio 331 * 332 * The caller won't have a bi_end_io called when @bio completes - instead, 333 * @parent's bi_end_io won't be called until both @parent and @bio have 334 * completed; the chained bio will also be freed when it completes. 335 * 336 * The caller must not set bi_private or bi_end_io in @bio. 337 */ 338 void bio_chain(struct bio *bio, struct bio *parent) 339 { 340 BUG_ON(bio->bi_private || bio->bi_end_io); 341 342 bio->bi_private = parent; 343 bio->bi_end_io = bio_chain_endio; 344 bio_inc_remaining(parent); 345 } 346 EXPORT_SYMBOL(bio_chain); 347 348 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 349 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 350 { 351 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp); 352 353 if (bio) { 354 bio_chain(bio, new); 355 submit_bio(bio); 356 } 357 358 return new; 359 } 360 EXPORT_SYMBOL_GPL(blk_next_bio); 361 362 static void bio_alloc_rescue(struct work_struct *work) 363 { 364 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 365 struct bio *bio; 366 367 while (1) { 368 spin_lock(&bs->rescue_lock); 369 bio = bio_list_pop(&bs->rescue_list); 370 spin_unlock(&bs->rescue_lock); 371 372 if (!bio) 373 break; 374 375 submit_bio_noacct(bio); 376 } 377 } 378 379 static void punt_bios_to_rescuer(struct bio_set *bs) 380 { 381 struct bio_list punt, nopunt; 382 struct bio *bio; 383 384 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 385 return; 386 /* 387 * In order to guarantee forward progress we must punt only bios that 388 * were allocated from this bio_set; otherwise, if there was a bio on 389 * there for a stacking driver higher up in the stack, processing it 390 * could require allocating bios from this bio_set, and doing that from 391 * our own rescuer would be bad. 392 * 393 * Since bio lists are singly linked, pop them all instead of trying to 394 * remove from the middle of the list: 395 */ 396 397 bio_list_init(&punt); 398 bio_list_init(&nopunt); 399 400 while ((bio = bio_list_pop(¤t->bio_list[0]))) 401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 402 current->bio_list[0] = nopunt; 403 404 bio_list_init(&nopunt); 405 while ((bio = bio_list_pop(¤t->bio_list[1]))) 406 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 407 current->bio_list[1] = nopunt; 408 409 spin_lock(&bs->rescue_lock); 410 bio_list_merge(&bs->rescue_list, &punt); 411 spin_unlock(&bs->rescue_lock); 412 413 queue_work(bs->rescue_workqueue, &bs->rescue_work); 414 } 415 416 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) 417 { 418 unsigned long flags; 419 420 /* cache->free_list must be empty */ 421 if (WARN_ON_ONCE(cache->free_list)) 422 return; 423 424 local_irq_save(flags); 425 cache->free_list = cache->free_list_irq; 426 cache->free_list_irq = NULL; 427 cache->nr += cache->nr_irq; 428 cache->nr_irq = 0; 429 local_irq_restore(flags); 430 } 431 432 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 433 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 434 struct bio_set *bs) 435 { 436 struct bio_alloc_cache *cache; 437 struct bio *bio; 438 439 cache = per_cpu_ptr(bs->cache, get_cpu()); 440 if (!cache->free_list) { 441 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) 442 bio_alloc_irq_cache_splice(cache); 443 if (!cache->free_list) { 444 put_cpu(); 445 return NULL; 446 } 447 } 448 bio = cache->free_list; 449 cache->free_list = bio->bi_next; 450 cache->nr--; 451 put_cpu(); 452 453 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 454 bio->bi_pool = bs; 455 return bio; 456 } 457 458 /** 459 * bio_alloc_bioset - allocate a bio for I/O 460 * @bdev: block device to allocate the bio for (can be %NULL) 461 * @nr_vecs: number of bvecs to pre-allocate 462 * @opf: operation and flags for bio 463 * @gfp_mask: the GFP_* mask given to the slab allocator 464 * @bs: the bio_set to allocate from. 465 * 466 * Allocate a bio from the mempools in @bs. 467 * 468 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 469 * allocate a bio. This is due to the mempool guarantees. To make this work, 470 * callers must never allocate more than 1 bio at a time from the general pool. 471 * Callers that need to allocate more than 1 bio must always submit the 472 * previously allocated bio for IO before attempting to allocate a new one. 473 * Failure to do so can cause deadlocks under memory pressure. 474 * 475 * Note that when running under submit_bio_noacct() (i.e. any block driver), 476 * bios are not submitted until after you return - see the code in 477 * submit_bio_noacct() that converts recursion into iteration, to prevent 478 * stack overflows. 479 * 480 * This would normally mean allocating multiple bios under submit_bio_noacct() 481 * would be susceptible to deadlocks, but we have 482 * deadlock avoidance code that resubmits any blocked bios from a rescuer 483 * thread. 484 * 485 * However, we do not guarantee forward progress for allocations from other 486 * mempools. Doing multiple allocations from the same mempool under 487 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 488 * for per bio allocations. 489 * 490 * Returns: Pointer to new bio on success, NULL on failure. 491 */ 492 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 493 blk_opf_t opf, gfp_t gfp_mask, 494 struct bio_set *bs) 495 { 496 gfp_t saved_gfp = gfp_mask; 497 struct bio *bio; 498 void *p; 499 500 /* should not use nobvec bioset for nr_vecs > 0 */ 501 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 502 return NULL; 503 504 if (opf & REQ_ALLOC_CACHE) { 505 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 506 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 507 gfp_mask, bs); 508 if (bio) 509 return bio; 510 /* 511 * No cached bio available, bio returned below marked with 512 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 513 */ 514 } else { 515 opf &= ~REQ_ALLOC_CACHE; 516 } 517 } 518 519 /* 520 * submit_bio_noacct() converts recursion to iteration; this means if 521 * we're running beneath it, any bios we allocate and submit will not be 522 * submitted (and thus freed) until after we return. 523 * 524 * This exposes us to a potential deadlock if we allocate multiple bios 525 * from the same bio_set() while running underneath submit_bio_noacct(). 526 * If we were to allocate multiple bios (say a stacking block driver 527 * that was splitting bios), we would deadlock if we exhausted the 528 * mempool's reserve. 529 * 530 * We solve this, and guarantee forward progress, with a rescuer 531 * workqueue per bio_set. If we go to allocate and there are bios on 532 * current->bio_list, we first try the allocation without 533 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 534 * blocking to the rescuer workqueue before we retry with the original 535 * gfp_flags. 536 */ 537 if (current->bio_list && 538 (!bio_list_empty(¤t->bio_list[0]) || 539 !bio_list_empty(¤t->bio_list[1])) && 540 bs->rescue_workqueue) 541 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 542 543 p = mempool_alloc(&bs->bio_pool, gfp_mask); 544 if (!p && gfp_mask != saved_gfp) { 545 punt_bios_to_rescuer(bs); 546 gfp_mask = saved_gfp; 547 p = mempool_alloc(&bs->bio_pool, gfp_mask); 548 } 549 if (unlikely(!p)) 550 return NULL; 551 if (!mempool_is_saturated(&bs->bio_pool)) 552 opf &= ~REQ_ALLOC_CACHE; 553 554 bio = p + bs->front_pad; 555 if (nr_vecs > BIO_INLINE_VECS) { 556 struct bio_vec *bvl = NULL; 557 558 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 559 if (!bvl && gfp_mask != saved_gfp) { 560 punt_bios_to_rescuer(bs); 561 gfp_mask = saved_gfp; 562 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 563 } 564 if (unlikely(!bvl)) 565 goto err_free; 566 567 bio_init(bio, bdev, bvl, nr_vecs, opf); 568 } else if (nr_vecs) { 569 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 570 } else { 571 bio_init(bio, bdev, NULL, 0, opf); 572 } 573 574 bio->bi_pool = bs; 575 return bio; 576 577 err_free: 578 mempool_free(p, &bs->bio_pool); 579 return NULL; 580 } 581 EXPORT_SYMBOL(bio_alloc_bioset); 582 583 /** 584 * bio_kmalloc - kmalloc a bio 585 * @nr_vecs: number of bio_vecs to allocate 586 * @gfp_mask: the GFP_* mask given to the slab allocator 587 * 588 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 589 * using bio_init() before use. To free a bio returned from this function use 590 * kfree() after calling bio_uninit(). A bio returned from this function can 591 * be reused by calling bio_uninit() before calling bio_init() again. 592 * 593 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 594 * function are not backed by a mempool can fail. Do not use this function 595 * for allocations in the file system I/O path. 596 * 597 * Returns: Pointer to new bio on success, NULL on failure. 598 */ 599 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 600 { 601 struct bio *bio; 602 603 if (nr_vecs > UIO_MAXIOV) 604 return NULL; 605 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 606 } 607 EXPORT_SYMBOL(bio_kmalloc); 608 609 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 610 { 611 struct bio_vec bv; 612 struct bvec_iter iter; 613 614 __bio_for_each_segment(bv, bio, iter, start) 615 memzero_bvec(&bv); 616 } 617 EXPORT_SYMBOL(zero_fill_bio_iter); 618 619 /** 620 * bio_truncate - truncate the bio to small size of @new_size 621 * @bio: the bio to be truncated 622 * @new_size: new size for truncating the bio 623 * 624 * Description: 625 * Truncate the bio to new size of @new_size. If bio_op(bio) is 626 * REQ_OP_READ, zero the truncated part. This function should only 627 * be used for handling corner cases, such as bio eod. 628 */ 629 static void bio_truncate(struct bio *bio, unsigned new_size) 630 { 631 struct bio_vec bv; 632 struct bvec_iter iter; 633 unsigned int done = 0; 634 bool truncated = false; 635 636 if (new_size >= bio->bi_iter.bi_size) 637 return; 638 639 if (bio_op(bio) != REQ_OP_READ) 640 goto exit; 641 642 bio_for_each_segment(bv, bio, iter) { 643 if (done + bv.bv_len > new_size) { 644 unsigned offset; 645 646 if (!truncated) 647 offset = new_size - done; 648 else 649 offset = 0; 650 zero_user(bv.bv_page, bv.bv_offset + offset, 651 bv.bv_len - offset); 652 truncated = true; 653 } 654 done += bv.bv_len; 655 } 656 657 exit: 658 /* 659 * Don't touch bvec table here and make it really immutable, since 660 * fs bio user has to retrieve all pages via bio_for_each_segment_all 661 * in its .end_bio() callback. 662 * 663 * It is enough to truncate bio by updating .bi_size since we can make 664 * correct bvec with the updated .bi_size for drivers. 665 */ 666 bio->bi_iter.bi_size = new_size; 667 } 668 669 /** 670 * guard_bio_eod - truncate a BIO to fit the block device 671 * @bio: bio to truncate 672 * 673 * This allows us to do IO even on the odd last sectors of a device, even if the 674 * block size is some multiple of the physical sector size. 675 * 676 * We'll just truncate the bio to the size of the device, and clear the end of 677 * the buffer head manually. Truly out-of-range accesses will turn into actual 678 * I/O errors, this only handles the "we need to be able to do I/O at the final 679 * sector" case. 680 */ 681 void guard_bio_eod(struct bio *bio) 682 { 683 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 684 685 if (!maxsector) 686 return; 687 688 /* 689 * If the *whole* IO is past the end of the device, 690 * let it through, and the IO layer will turn it into 691 * an EIO. 692 */ 693 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 694 return; 695 696 maxsector -= bio->bi_iter.bi_sector; 697 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 698 return; 699 700 bio_truncate(bio, maxsector << 9); 701 } 702 703 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, 704 unsigned int nr) 705 { 706 unsigned int i = 0; 707 struct bio *bio; 708 709 while ((bio = cache->free_list) != NULL) { 710 cache->free_list = bio->bi_next; 711 cache->nr--; 712 bio_free(bio); 713 if (++i == nr) 714 break; 715 } 716 return i; 717 } 718 719 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 720 unsigned int nr) 721 { 722 nr -= __bio_alloc_cache_prune(cache, nr); 723 if (!READ_ONCE(cache->free_list)) { 724 bio_alloc_irq_cache_splice(cache); 725 __bio_alloc_cache_prune(cache, nr); 726 } 727 } 728 729 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 730 { 731 struct bio_set *bs; 732 733 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 734 if (bs->cache) { 735 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 736 737 bio_alloc_cache_prune(cache, -1U); 738 } 739 return 0; 740 } 741 742 static void bio_alloc_cache_destroy(struct bio_set *bs) 743 { 744 int cpu; 745 746 if (!bs->cache) 747 return; 748 749 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 750 for_each_possible_cpu(cpu) { 751 struct bio_alloc_cache *cache; 752 753 cache = per_cpu_ptr(bs->cache, cpu); 754 bio_alloc_cache_prune(cache, -1U); 755 } 756 free_percpu(bs->cache); 757 bs->cache = NULL; 758 } 759 760 static inline void bio_put_percpu_cache(struct bio *bio) 761 { 762 struct bio_alloc_cache *cache; 763 764 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 765 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) 766 goto out_free; 767 768 if (in_task()) { 769 bio_uninit(bio); 770 bio->bi_next = cache->free_list; 771 /* Not necessary but helps not to iopoll already freed bios */ 772 bio->bi_bdev = NULL; 773 cache->free_list = bio; 774 cache->nr++; 775 } else if (in_hardirq()) { 776 lockdep_assert_irqs_disabled(); 777 778 bio_uninit(bio); 779 bio->bi_next = cache->free_list_irq; 780 cache->free_list_irq = bio; 781 cache->nr_irq++; 782 } else { 783 goto out_free; 784 } 785 put_cpu(); 786 return; 787 out_free: 788 put_cpu(); 789 bio_free(bio); 790 } 791 792 /** 793 * bio_put - release a reference to a bio 794 * @bio: bio to release reference to 795 * 796 * Description: 797 * Put a reference to a &struct bio, either one you have gotten with 798 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 799 **/ 800 void bio_put(struct bio *bio) 801 { 802 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 803 BUG_ON(!atomic_read(&bio->__bi_cnt)); 804 if (!atomic_dec_and_test(&bio->__bi_cnt)) 805 return; 806 } 807 if (bio->bi_opf & REQ_ALLOC_CACHE) 808 bio_put_percpu_cache(bio); 809 else 810 bio_free(bio); 811 } 812 EXPORT_SYMBOL(bio_put); 813 814 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 815 { 816 bio_set_flag(bio, BIO_CLONED); 817 bio->bi_ioprio = bio_src->bi_ioprio; 818 bio->bi_write_hint = bio_src->bi_write_hint; 819 bio->bi_iter = bio_src->bi_iter; 820 821 if (bio->bi_bdev) { 822 if (bio->bi_bdev == bio_src->bi_bdev && 823 bio_flagged(bio_src, BIO_REMAPPED)) 824 bio_set_flag(bio, BIO_REMAPPED); 825 bio_clone_blkg_association(bio, bio_src); 826 } 827 828 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 829 return -ENOMEM; 830 if (bio_integrity(bio_src) && 831 bio_integrity_clone(bio, bio_src, gfp) < 0) 832 return -ENOMEM; 833 return 0; 834 } 835 836 /** 837 * bio_alloc_clone - clone a bio that shares the original bio's biovec 838 * @bdev: block_device to clone onto 839 * @bio_src: bio to clone from 840 * @gfp: allocation priority 841 * @bs: bio_set to allocate from 842 * 843 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 844 * bio, but not the actual data it points to. 845 * 846 * The caller must ensure that the return bio is not freed before @bio_src. 847 */ 848 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 849 gfp_t gfp, struct bio_set *bs) 850 { 851 struct bio *bio; 852 853 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 854 if (!bio) 855 return NULL; 856 857 if (__bio_clone(bio, bio_src, gfp) < 0) { 858 bio_put(bio); 859 return NULL; 860 } 861 bio->bi_io_vec = bio_src->bi_io_vec; 862 863 return bio; 864 } 865 EXPORT_SYMBOL(bio_alloc_clone); 866 867 /** 868 * bio_init_clone - clone a bio that shares the original bio's biovec 869 * @bdev: block_device to clone onto 870 * @bio: bio to clone into 871 * @bio_src: bio to clone from 872 * @gfp: allocation priority 873 * 874 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 875 * The caller owns the returned bio, but not the actual data it points to. 876 * 877 * The caller must ensure that @bio_src is not freed before @bio. 878 */ 879 int bio_init_clone(struct block_device *bdev, struct bio *bio, 880 struct bio *bio_src, gfp_t gfp) 881 { 882 int ret; 883 884 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 885 ret = __bio_clone(bio, bio_src, gfp); 886 if (ret) 887 bio_uninit(bio); 888 return ret; 889 } 890 EXPORT_SYMBOL(bio_init_clone); 891 892 /** 893 * bio_full - check if the bio is full 894 * @bio: bio to check 895 * @len: length of one segment to be added 896 * 897 * Return true if @bio is full and one segment with @len bytes can't be 898 * added to the bio, otherwise return false 899 */ 900 static inline bool bio_full(struct bio *bio, unsigned len) 901 { 902 if (bio->bi_vcnt >= bio->bi_max_vecs) 903 return true; 904 if (bio->bi_iter.bi_size > UINT_MAX - len) 905 return true; 906 return false; 907 } 908 909 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page, 910 unsigned int len, unsigned int off, bool *same_page) 911 { 912 size_t bv_end = bv->bv_offset + bv->bv_len; 913 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 914 phys_addr_t page_addr = page_to_phys(page); 915 916 if (vec_end_addr + 1 != page_addr + off) 917 return false; 918 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 919 return false; 920 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) 921 return false; 922 923 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 924 if (!*same_page) { 925 if (IS_ENABLED(CONFIG_KMSAN)) 926 return false; 927 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE) 928 return false; 929 } 930 931 bv->bv_len += len; 932 return true; 933 } 934 935 /* 936 * Try to merge a page into a segment, while obeying the hardware segment 937 * size limit. This is not for normal read/write bios, but for passthrough 938 * or Zone Append operations that we can't split. 939 */ 940 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 941 struct page *page, unsigned len, unsigned offset, 942 bool *same_page) 943 { 944 unsigned long mask = queue_segment_boundary(q); 945 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 946 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 947 948 if ((addr1 | mask) != (addr2 | mask)) 949 return false; 950 if (len > queue_max_segment_size(q) - bv->bv_len) 951 return false; 952 return bvec_try_merge_page(bv, page, len, offset, same_page); 953 } 954 955 /** 956 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 957 * @q: the target queue 958 * @bio: destination bio 959 * @page: page to add 960 * @len: vec entry length 961 * @offset: vec entry offset 962 * @max_sectors: maximum number of sectors that can be added 963 * @same_page: return if the segment has been merged inside the same page 964 * 965 * Add a page to a bio while respecting the hardware max_sectors, max_segment 966 * and gap limitations. 967 */ 968 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 969 struct page *page, unsigned int len, unsigned int offset, 970 unsigned int max_sectors, bool *same_page) 971 { 972 unsigned int max_size = max_sectors << SECTOR_SHIFT; 973 974 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 975 return 0; 976 977 len = min3(len, max_size, queue_max_segment_size(q)); 978 if (len > max_size - bio->bi_iter.bi_size) 979 return 0; 980 981 if (bio->bi_vcnt > 0) { 982 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 983 984 if (bvec_try_merge_hw_page(q, bv, page, len, offset, 985 same_page)) { 986 bio->bi_iter.bi_size += len; 987 return len; 988 } 989 990 if (bio->bi_vcnt >= 991 min(bio->bi_max_vecs, queue_max_segments(q))) 992 return 0; 993 994 /* 995 * If the queue doesn't support SG gaps and adding this segment 996 * would create a gap, disallow it. 997 */ 998 if (bvec_gap_to_prev(&q->limits, bv, offset)) 999 return 0; 1000 } 1001 1002 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset); 1003 bio->bi_vcnt++; 1004 bio->bi_iter.bi_size += len; 1005 return len; 1006 } 1007 1008 /** 1009 * bio_add_pc_page - attempt to add page to passthrough bio 1010 * @q: the target queue 1011 * @bio: destination bio 1012 * @page: page to add 1013 * @len: vec entry length 1014 * @offset: vec entry offset 1015 * 1016 * Attempt to add a page to the bio_vec maplist. This can fail for a 1017 * number of reasons, such as the bio being full or target block device 1018 * limitations. The target block device must allow bio's up to PAGE_SIZE, 1019 * so it is always possible to add a single page to an empty bio. 1020 * 1021 * This should only be used by passthrough bios. 1022 */ 1023 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 1024 struct page *page, unsigned int len, unsigned int offset) 1025 { 1026 bool same_page = false; 1027 return bio_add_hw_page(q, bio, page, len, offset, 1028 queue_max_hw_sectors(q), &same_page); 1029 } 1030 EXPORT_SYMBOL(bio_add_pc_page); 1031 1032 /** 1033 * bio_add_zone_append_page - attempt to add page to zone-append bio 1034 * @bio: destination bio 1035 * @page: page to add 1036 * @len: vec entry length 1037 * @offset: vec entry offset 1038 * 1039 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 1040 * for a zone-append request. This can fail for a number of reasons, such as the 1041 * bio being full or the target block device is not a zoned block device or 1042 * other limitations of the target block device. The target block device must 1043 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 1044 * to an empty bio. 1045 * 1046 * Returns: number of bytes added to the bio, or 0 in case of a failure. 1047 */ 1048 int bio_add_zone_append_page(struct bio *bio, struct page *page, 1049 unsigned int len, unsigned int offset) 1050 { 1051 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1052 bool same_page = false; 1053 1054 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 1055 return 0; 1056 1057 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev))) 1058 return 0; 1059 1060 return bio_add_hw_page(q, bio, page, len, offset, 1061 queue_max_zone_append_sectors(q), &same_page); 1062 } 1063 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 1064 1065 /** 1066 * __bio_add_page - add page(s) to a bio in a new segment 1067 * @bio: destination bio 1068 * @page: start page to add 1069 * @len: length of the data to add, may cross pages 1070 * @off: offset of the data relative to @page, may cross pages 1071 * 1072 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 1073 * that @bio has space for another bvec. 1074 */ 1075 void __bio_add_page(struct bio *bio, struct page *page, 1076 unsigned int len, unsigned int off) 1077 { 1078 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 1079 WARN_ON_ONCE(bio_full(bio, len)); 1080 1081 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off); 1082 bio->bi_iter.bi_size += len; 1083 bio->bi_vcnt++; 1084 } 1085 EXPORT_SYMBOL_GPL(__bio_add_page); 1086 1087 /** 1088 * bio_add_page - attempt to add page(s) to bio 1089 * @bio: destination bio 1090 * @page: start page to add 1091 * @len: vec entry length, may cross pages 1092 * @offset: vec entry offset relative to @page, may cross pages 1093 * 1094 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1095 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1096 */ 1097 int bio_add_page(struct bio *bio, struct page *page, 1098 unsigned int len, unsigned int offset) 1099 { 1100 bool same_page = false; 1101 1102 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1103 return 0; 1104 if (bio->bi_iter.bi_size > UINT_MAX - len) 1105 return 0; 1106 1107 if (bio->bi_vcnt > 0 && 1108 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 1109 page, len, offset, &same_page)) { 1110 bio->bi_iter.bi_size += len; 1111 return len; 1112 } 1113 1114 if (bio->bi_vcnt >= bio->bi_max_vecs) 1115 return 0; 1116 __bio_add_page(bio, page, len, offset); 1117 return len; 1118 } 1119 EXPORT_SYMBOL(bio_add_page); 1120 1121 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 1122 size_t off) 1123 { 1124 WARN_ON_ONCE(len > UINT_MAX); 1125 WARN_ON_ONCE(off > UINT_MAX); 1126 __bio_add_page(bio, &folio->page, len, off); 1127 } 1128 1129 /** 1130 * bio_add_folio - Attempt to add part of a folio to a bio. 1131 * @bio: BIO to add to. 1132 * @folio: Folio to add. 1133 * @len: How many bytes from the folio to add. 1134 * @off: First byte in this folio to add. 1135 * 1136 * Filesystems that use folios can call this function instead of calling 1137 * bio_add_page() for each page in the folio. If @off is bigger than 1138 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1139 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1140 * 1141 * Return: Whether the addition was successful. 1142 */ 1143 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1144 size_t off) 1145 { 1146 if (len > UINT_MAX || off > UINT_MAX) 1147 return false; 1148 return bio_add_page(bio, &folio->page, len, off) > 0; 1149 } 1150 EXPORT_SYMBOL(bio_add_folio); 1151 1152 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1153 { 1154 struct folio_iter fi; 1155 1156 bio_for_each_folio_all(fi, bio) { 1157 struct page *page; 1158 size_t nr_pages; 1159 1160 if (mark_dirty) { 1161 folio_lock(fi.folio); 1162 folio_mark_dirty(fi.folio); 1163 folio_unlock(fi.folio); 1164 } 1165 page = folio_page(fi.folio, fi.offset / PAGE_SIZE); 1166 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE - 1167 fi.offset / PAGE_SIZE + 1; 1168 do { 1169 bio_release_page(bio, page++); 1170 } while (--nr_pages != 0); 1171 } 1172 } 1173 EXPORT_SYMBOL_GPL(__bio_release_pages); 1174 1175 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 1176 { 1177 size_t size = iov_iter_count(iter); 1178 1179 WARN_ON_ONCE(bio->bi_max_vecs); 1180 1181 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1182 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1183 size_t max_sectors = queue_max_zone_append_sectors(q); 1184 1185 size = min(size, max_sectors << SECTOR_SHIFT); 1186 } 1187 1188 bio->bi_vcnt = iter->nr_segs; 1189 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1190 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1191 bio->bi_iter.bi_size = size; 1192 bio_set_flag(bio, BIO_CLONED); 1193 } 1194 1195 static int bio_iov_add_page(struct bio *bio, struct page *page, 1196 unsigned int len, unsigned int offset) 1197 { 1198 bool same_page = false; 1199 1200 if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len)) 1201 return -EIO; 1202 1203 if (bio->bi_vcnt > 0 && 1204 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 1205 page, len, offset, &same_page)) { 1206 bio->bi_iter.bi_size += len; 1207 if (same_page) 1208 bio_release_page(bio, page); 1209 return 0; 1210 } 1211 __bio_add_page(bio, page, len, offset); 1212 return 0; 1213 } 1214 1215 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page, 1216 unsigned int len, unsigned int offset) 1217 { 1218 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1219 bool same_page = false; 1220 1221 if (bio_add_hw_page(q, bio, page, len, offset, 1222 queue_max_zone_append_sectors(q), &same_page) != len) 1223 return -EINVAL; 1224 if (same_page) 1225 bio_release_page(bio, page); 1226 return 0; 1227 } 1228 1229 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1230 1231 /** 1232 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1233 * @bio: bio to add pages to 1234 * @iter: iov iterator describing the region to be mapped 1235 * 1236 * Extracts pages from *iter and appends them to @bio's bvec array. The pages 1237 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag. 1238 * For a multi-segment *iter, this function only adds pages from the next 1239 * non-empty segment of the iov iterator. 1240 */ 1241 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1242 { 1243 iov_iter_extraction_t extraction_flags = 0; 1244 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1245 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1246 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1247 struct page **pages = (struct page **)bv; 1248 ssize_t size, left; 1249 unsigned len, i = 0; 1250 size_t offset; 1251 int ret = 0; 1252 1253 /* 1254 * Move page array up in the allocated memory for the bio vecs as far as 1255 * possible so that we can start filling biovecs from the beginning 1256 * without overwriting the temporary page array. 1257 */ 1258 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1259 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1260 1261 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) 1262 extraction_flags |= ITER_ALLOW_P2PDMA; 1263 1264 /* 1265 * Each segment in the iov is required to be a block size multiple. 1266 * However, we may not be able to get the entire segment if it spans 1267 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 1268 * result to ensure the bio's total size is correct. The remainder of 1269 * the iov data will be picked up in the next bio iteration. 1270 */ 1271 size = iov_iter_extract_pages(iter, &pages, 1272 UINT_MAX - bio->bi_iter.bi_size, 1273 nr_pages, extraction_flags, &offset); 1274 if (unlikely(size <= 0)) 1275 return size ? size : -EFAULT; 1276 1277 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 1278 1279 if (bio->bi_bdev) { 1280 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); 1281 iov_iter_revert(iter, trim); 1282 size -= trim; 1283 } 1284 1285 if (unlikely(!size)) { 1286 ret = -EFAULT; 1287 goto out; 1288 } 1289 1290 for (left = size, i = 0; left > 0; left -= len, i++) { 1291 struct page *page = pages[i]; 1292 1293 len = min_t(size_t, PAGE_SIZE - offset, left); 1294 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1295 ret = bio_iov_add_zone_append_page(bio, page, len, 1296 offset); 1297 if (ret) 1298 break; 1299 } else 1300 bio_iov_add_page(bio, page, len, offset); 1301 1302 offset = 0; 1303 } 1304 1305 iov_iter_revert(iter, left); 1306 out: 1307 while (i < nr_pages) 1308 bio_release_page(bio, pages[i++]); 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1315 * @bio: bio to add pages to 1316 * @iter: iov iterator describing the region to be added 1317 * 1318 * This takes either an iterator pointing to user memory, or one pointing to 1319 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1320 * map them into the kernel. On IO completion, the caller should put those 1321 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1322 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1323 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1324 * completed by a call to ->ki_complete() or returns with an error other than 1325 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1326 * on IO completion. If it isn't, then pages should be released. 1327 * 1328 * The function tries, but does not guarantee, to pin as many pages as 1329 * fit into the bio, or are requested in @iter, whatever is smaller. If 1330 * MM encounters an error pinning the requested pages, it stops. Error 1331 * is returned only if 0 pages could be pinned. 1332 */ 1333 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1334 { 1335 int ret = 0; 1336 1337 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1338 return -EIO; 1339 1340 if (iov_iter_is_bvec(iter)) { 1341 bio_iov_bvec_set(bio, iter); 1342 iov_iter_advance(iter, bio->bi_iter.bi_size); 1343 return 0; 1344 } 1345 1346 if (iov_iter_extract_will_pin(iter)) 1347 bio_set_flag(bio, BIO_PAGE_PINNED); 1348 do { 1349 ret = __bio_iov_iter_get_pages(bio, iter); 1350 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1351 1352 return bio->bi_vcnt ? 0 : ret; 1353 } 1354 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1355 1356 static void submit_bio_wait_endio(struct bio *bio) 1357 { 1358 complete(bio->bi_private); 1359 } 1360 1361 /** 1362 * submit_bio_wait - submit a bio, and wait until it completes 1363 * @bio: The &struct bio which describes the I/O 1364 * 1365 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1366 * bio_endio() on failure. 1367 * 1368 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1369 * result in bio reference to be consumed. The caller must drop the reference 1370 * on his own. 1371 */ 1372 int submit_bio_wait(struct bio *bio) 1373 { 1374 DECLARE_COMPLETION_ONSTACK_MAP(done, 1375 bio->bi_bdev->bd_disk->lockdep_map); 1376 1377 bio->bi_private = &done; 1378 bio->bi_end_io = submit_bio_wait_endio; 1379 bio->bi_opf |= REQ_SYNC; 1380 submit_bio(bio); 1381 blk_wait_io(&done); 1382 1383 return blk_status_to_errno(bio->bi_status); 1384 } 1385 EXPORT_SYMBOL(submit_bio_wait); 1386 1387 void __bio_advance(struct bio *bio, unsigned bytes) 1388 { 1389 if (bio_integrity(bio)) 1390 bio_integrity_advance(bio, bytes); 1391 1392 bio_crypt_advance(bio, bytes); 1393 bio_advance_iter(bio, &bio->bi_iter, bytes); 1394 } 1395 EXPORT_SYMBOL(__bio_advance); 1396 1397 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1398 struct bio *src, struct bvec_iter *src_iter) 1399 { 1400 while (src_iter->bi_size && dst_iter->bi_size) { 1401 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1402 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1403 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1404 void *src_buf = bvec_kmap_local(&src_bv); 1405 void *dst_buf = bvec_kmap_local(&dst_bv); 1406 1407 memcpy(dst_buf, src_buf, bytes); 1408 1409 kunmap_local(dst_buf); 1410 kunmap_local(src_buf); 1411 1412 bio_advance_iter_single(src, src_iter, bytes); 1413 bio_advance_iter_single(dst, dst_iter, bytes); 1414 } 1415 } 1416 EXPORT_SYMBOL(bio_copy_data_iter); 1417 1418 /** 1419 * bio_copy_data - copy contents of data buffers from one bio to another 1420 * @src: source bio 1421 * @dst: destination bio 1422 * 1423 * Stops when it reaches the end of either @src or @dst - that is, copies 1424 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1425 */ 1426 void bio_copy_data(struct bio *dst, struct bio *src) 1427 { 1428 struct bvec_iter src_iter = src->bi_iter; 1429 struct bvec_iter dst_iter = dst->bi_iter; 1430 1431 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1432 } 1433 EXPORT_SYMBOL(bio_copy_data); 1434 1435 void bio_free_pages(struct bio *bio) 1436 { 1437 struct bio_vec *bvec; 1438 struct bvec_iter_all iter_all; 1439 1440 bio_for_each_segment_all(bvec, bio, iter_all) 1441 __free_page(bvec->bv_page); 1442 } 1443 EXPORT_SYMBOL(bio_free_pages); 1444 1445 /* 1446 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1447 * for performing direct-IO in BIOs. 1448 * 1449 * The problem is that we cannot run folio_mark_dirty() from interrupt context 1450 * because the required locks are not interrupt-safe. So what we can do is to 1451 * mark the pages dirty _before_ performing IO. And in interrupt context, 1452 * check that the pages are still dirty. If so, fine. If not, redirty them 1453 * in process context. 1454 * 1455 * Note that this code is very hard to test under normal circumstances because 1456 * direct-io pins the pages with get_user_pages(). This makes 1457 * is_page_cache_freeable return false, and the VM will not clean the pages. 1458 * But other code (eg, flusher threads) could clean the pages if they are mapped 1459 * pagecache. 1460 * 1461 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1462 * deferred bio dirtying paths. 1463 */ 1464 1465 /* 1466 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1467 */ 1468 void bio_set_pages_dirty(struct bio *bio) 1469 { 1470 struct folio_iter fi; 1471 1472 bio_for_each_folio_all(fi, bio) { 1473 folio_lock(fi.folio); 1474 folio_mark_dirty(fi.folio); 1475 folio_unlock(fi.folio); 1476 } 1477 } 1478 EXPORT_SYMBOL_GPL(bio_set_pages_dirty); 1479 1480 /* 1481 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1482 * If they are, then fine. If, however, some pages are clean then they must 1483 * have been written out during the direct-IO read. So we take another ref on 1484 * the BIO and re-dirty the pages in process context. 1485 * 1486 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1487 * here on. It will unpin each page and will run one bio_put() against the 1488 * BIO. 1489 */ 1490 1491 static void bio_dirty_fn(struct work_struct *work); 1492 1493 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1494 static DEFINE_SPINLOCK(bio_dirty_lock); 1495 static struct bio *bio_dirty_list; 1496 1497 /* 1498 * This runs in process context 1499 */ 1500 static void bio_dirty_fn(struct work_struct *work) 1501 { 1502 struct bio *bio, *next; 1503 1504 spin_lock_irq(&bio_dirty_lock); 1505 next = bio_dirty_list; 1506 bio_dirty_list = NULL; 1507 spin_unlock_irq(&bio_dirty_lock); 1508 1509 while ((bio = next) != NULL) { 1510 next = bio->bi_private; 1511 1512 bio_release_pages(bio, true); 1513 bio_put(bio); 1514 } 1515 } 1516 1517 void bio_check_pages_dirty(struct bio *bio) 1518 { 1519 struct folio_iter fi; 1520 unsigned long flags; 1521 1522 bio_for_each_folio_all(fi, bio) { 1523 if (!folio_test_dirty(fi.folio)) 1524 goto defer; 1525 } 1526 1527 bio_release_pages(bio, false); 1528 bio_put(bio); 1529 return; 1530 defer: 1531 spin_lock_irqsave(&bio_dirty_lock, flags); 1532 bio->bi_private = bio_dirty_list; 1533 bio_dirty_list = bio; 1534 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1535 schedule_work(&bio_dirty_work); 1536 } 1537 EXPORT_SYMBOL_GPL(bio_check_pages_dirty); 1538 1539 static inline bool bio_remaining_done(struct bio *bio) 1540 { 1541 /* 1542 * If we're not chaining, then ->__bi_remaining is always 1 and 1543 * we always end io on the first invocation. 1544 */ 1545 if (!bio_flagged(bio, BIO_CHAIN)) 1546 return true; 1547 1548 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1549 1550 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1551 bio_clear_flag(bio, BIO_CHAIN); 1552 return true; 1553 } 1554 1555 return false; 1556 } 1557 1558 /** 1559 * bio_endio - end I/O on a bio 1560 * @bio: bio 1561 * 1562 * Description: 1563 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1564 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1565 * bio unless they own it and thus know that it has an end_io function. 1566 * 1567 * bio_endio() can be called several times on a bio that has been chained 1568 * using bio_chain(). The ->bi_end_io() function will only be called the 1569 * last time. 1570 **/ 1571 void bio_endio(struct bio *bio) 1572 { 1573 again: 1574 if (!bio_remaining_done(bio)) 1575 return; 1576 if (!bio_integrity_endio(bio)) 1577 return; 1578 1579 rq_qos_done_bio(bio); 1580 1581 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1582 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1583 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1584 } 1585 1586 /* 1587 * Need to have a real endio function for chained bios, otherwise 1588 * various corner cases will break (like stacking block devices that 1589 * save/restore bi_end_io) - however, we want to avoid unbounded 1590 * recursion and blowing the stack. Tail call optimization would 1591 * handle this, but compiling with frame pointers also disables 1592 * gcc's sibling call optimization. 1593 */ 1594 if (bio->bi_end_io == bio_chain_endio) { 1595 bio = __bio_chain_endio(bio); 1596 goto again; 1597 } 1598 1599 blk_throtl_bio_endio(bio); 1600 /* release cgroup info */ 1601 bio_uninit(bio); 1602 if (bio->bi_end_io) 1603 bio->bi_end_io(bio); 1604 } 1605 EXPORT_SYMBOL(bio_endio); 1606 1607 /** 1608 * bio_split - split a bio 1609 * @bio: bio to split 1610 * @sectors: number of sectors to split from the front of @bio 1611 * @gfp: gfp mask 1612 * @bs: bio set to allocate from 1613 * 1614 * Allocates and returns a new bio which represents @sectors from the start of 1615 * @bio, and updates @bio to represent the remaining sectors. 1616 * 1617 * Unless this is a discard request the newly allocated bio will point 1618 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1619 * neither @bio nor @bs are freed before the split bio. 1620 */ 1621 struct bio *bio_split(struct bio *bio, int sectors, 1622 gfp_t gfp, struct bio_set *bs) 1623 { 1624 struct bio *split; 1625 1626 BUG_ON(sectors <= 0); 1627 BUG_ON(sectors >= bio_sectors(bio)); 1628 1629 /* Zone append commands cannot be split */ 1630 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1631 return NULL; 1632 1633 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1634 if (!split) 1635 return NULL; 1636 1637 split->bi_iter.bi_size = sectors << 9; 1638 1639 if (bio_integrity(split)) 1640 bio_integrity_trim(split); 1641 1642 bio_advance(bio, split->bi_iter.bi_size); 1643 1644 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1645 bio_set_flag(split, BIO_TRACE_COMPLETION); 1646 1647 return split; 1648 } 1649 EXPORT_SYMBOL(bio_split); 1650 1651 /** 1652 * bio_trim - trim a bio 1653 * @bio: bio to trim 1654 * @offset: number of sectors to trim from the front of @bio 1655 * @size: size we want to trim @bio to, in sectors 1656 * 1657 * This function is typically used for bios that are cloned and submitted 1658 * to the underlying device in parts. 1659 */ 1660 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1661 { 1662 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1663 offset + size > bio_sectors(bio))) 1664 return; 1665 1666 size <<= 9; 1667 if (offset == 0 && size == bio->bi_iter.bi_size) 1668 return; 1669 1670 bio_advance(bio, offset << 9); 1671 bio->bi_iter.bi_size = size; 1672 1673 if (bio_integrity(bio)) 1674 bio_integrity_trim(bio); 1675 } 1676 EXPORT_SYMBOL_GPL(bio_trim); 1677 1678 /* 1679 * create memory pools for biovec's in a bio_set. 1680 * use the global biovec slabs created for general use. 1681 */ 1682 int biovec_init_pool(mempool_t *pool, int pool_entries) 1683 { 1684 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1685 1686 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1687 } 1688 1689 /* 1690 * bioset_exit - exit a bioset initialized with bioset_init() 1691 * 1692 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1693 * kzalloc()). 1694 */ 1695 void bioset_exit(struct bio_set *bs) 1696 { 1697 bio_alloc_cache_destroy(bs); 1698 if (bs->rescue_workqueue) 1699 destroy_workqueue(bs->rescue_workqueue); 1700 bs->rescue_workqueue = NULL; 1701 1702 mempool_exit(&bs->bio_pool); 1703 mempool_exit(&bs->bvec_pool); 1704 1705 bioset_integrity_free(bs); 1706 if (bs->bio_slab) 1707 bio_put_slab(bs); 1708 bs->bio_slab = NULL; 1709 } 1710 EXPORT_SYMBOL(bioset_exit); 1711 1712 /** 1713 * bioset_init - Initialize a bio_set 1714 * @bs: pool to initialize 1715 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1716 * @front_pad: Number of bytes to allocate in front of the returned bio 1717 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1718 * and %BIOSET_NEED_RESCUER 1719 * 1720 * Description: 1721 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1722 * to ask for a number of bytes to be allocated in front of the bio. 1723 * Front pad allocation is useful for embedding the bio inside 1724 * another structure, to avoid allocating extra data to go with the bio. 1725 * Note that the bio must be embedded at the END of that structure always, 1726 * or things will break badly. 1727 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1728 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1729 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1730 * to dispatch queued requests when the mempool runs out of space. 1731 * 1732 */ 1733 int bioset_init(struct bio_set *bs, 1734 unsigned int pool_size, 1735 unsigned int front_pad, 1736 int flags) 1737 { 1738 bs->front_pad = front_pad; 1739 if (flags & BIOSET_NEED_BVECS) 1740 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1741 else 1742 bs->back_pad = 0; 1743 1744 spin_lock_init(&bs->rescue_lock); 1745 bio_list_init(&bs->rescue_list); 1746 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1747 1748 bs->bio_slab = bio_find_or_create_slab(bs); 1749 if (!bs->bio_slab) 1750 return -ENOMEM; 1751 1752 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1753 goto bad; 1754 1755 if ((flags & BIOSET_NEED_BVECS) && 1756 biovec_init_pool(&bs->bvec_pool, pool_size)) 1757 goto bad; 1758 1759 if (flags & BIOSET_NEED_RESCUER) { 1760 bs->rescue_workqueue = alloc_workqueue("bioset", 1761 WQ_MEM_RECLAIM, 0); 1762 if (!bs->rescue_workqueue) 1763 goto bad; 1764 } 1765 if (flags & BIOSET_PERCPU_CACHE) { 1766 bs->cache = alloc_percpu(struct bio_alloc_cache); 1767 if (!bs->cache) 1768 goto bad; 1769 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1770 } 1771 1772 return 0; 1773 bad: 1774 bioset_exit(bs); 1775 return -ENOMEM; 1776 } 1777 EXPORT_SYMBOL(bioset_init); 1778 1779 static int __init init_bio(void) 1780 { 1781 int i; 1782 1783 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags)); 1784 1785 bio_integrity_init(); 1786 1787 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1788 struct biovec_slab *bvs = bvec_slabs + i; 1789 1790 bvs->slab = kmem_cache_create(bvs->name, 1791 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1792 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1793 } 1794 1795 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1796 bio_cpu_dead); 1797 1798 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 1799 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 1800 panic("bio: can't allocate bios\n"); 1801 1802 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1803 panic("bio: can't create integrity pool\n"); 1804 1805 return 0; 1806 } 1807 subsys_initcall(init_bio); 1808