xref: /linux/block/bio.c (revision 340f42f7ff0b87a92e69b50706a6c872da756c89)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 static struct biovec_slab {
29 	int nr_vecs;
30 	char *name;
31 	struct kmem_cache *slab;
32 } bvec_slabs[] __read_mostly = {
33 	{ .nr_vecs = 16, .name = "biovec-16" },
34 	{ .nr_vecs = 64, .name = "biovec-64" },
35 	{ .nr_vecs = 128, .name = "biovec-128" },
36 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
37 };
38 
39 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
40 {
41 	switch (nr_vecs) {
42 	/* smaller bios use inline vecs */
43 	case 5 ... 16:
44 		return &bvec_slabs[0];
45 	case 17 ... 64:
46 		return &bvec_slabs[1];
47 	case 65 ... 128:
48 		return &bvec_slabs[2];
49 	case 129 ... BIO_MAX_VECS:
50 		return &bvec_slabs[3];
51 	default:
52 		BUG();
53 		return NULL;
54 	}
55 }
56 
57 /*
58  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
59  * IO code that does not need private memory pools.
60  */
61 struct bio_set fs_bio_set;
62 EXPORT_SYMBOL(fs_bio_set);
63 
64 /*
65  * Our slab pool management
66  */
67 struct bio_slab {
68 	struct kmem_cache *slab;
69 	unsigned int slab_ref;
70 	unsigned int slab_size;
71 	char name[8];
72 };
73 static DEFINE_MUTEX(bio_slab_lock);
74 static DEFINE_XARRAY(bio_slabs);
75 
76 static struct bio_slab *create_bio_slab(unsigned int size)
77 {
78 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
79 
80 	if (!bslab)
81 		return NULL;
82 
83 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
84 	bslab->slab = kmem_cache_create(bslab->name, size,
85 			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
86 	if (!bslab->slab)
87 		goto fail_alloc_slab;
88 
89 	bslab->slab_ref = 1;
90 	bslab->slab_size = size;
91 
92 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
93 		return bslab;
94 
95 	kmem_cache_destroy(bslab->slab);
96 
97 fail_alloc_slab:
98 	kfree(bslab);
99 	return NULL;
100 }
101 
102 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
103 {
104 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
105 }
106 
107 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
108 {
109 	unsigned int size = bs_bio_slab_size(bs);
110 	struct bio_slab *bslab;
111 
112 	mutex_lock(&bio_slab_lock);
113 	bslab = xa_load(&bio_slabs, size);
114 	if (bslab)
115 		bslab->slab_ref++;
116 	else
117 		bslab = create_bio_slab(size);
118 	mutex_unlock(&bio_slab_lock);
119 
120 	if (bslab)
121 		return bslab->slab;
122 	return NULL;
123 }
124 
125 static void bio_put_slab(struct bio_set *bs)
126 {
127 	struct bio_slab *bslab = NULL;
128 	unsigned int slab_size = bs_bio_slab_size(bs);
129 
130 	mutex_lock(&bio_slab_lock);
131 
132 	bslab = xa_load(&bio_slabs, slab_size);
133 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 		goto out;
135 
136 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
137 
138 	WARN_ON(!bslab->slab_ref);
139 
140 	if (--bslab->slab_ref)
141 		goto out;
142 
143 	xa_erase(&bio_slabs, slab_size);
144 
145 	kmem_cache_destroy(bslab->slab);
146 	kfree(bslab);
147 
148 out:
149 	mutex_unlock(&bio_slab_lock);
150 }
151 
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
153 {
154 	BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
155 
156 	if (nr_vecs == BIO_MAX_VECS)
157 		mempool_free(bv, pool);
158 	else if (nr_vecs > BIO_INLINE_VECS)
159 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
160 }
161 
162 /*
163  * Make the first allocation restricted and don't dump info on allocation
164  * failures, since we'll fall back to the mempool in case of failure.
165  */
166 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
167 {
168 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
169 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
170 }
171 
172 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
173 		gfp_t gfp_mask)
174 {
175 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
176 
177 	if (WARN_ON_ONCE(!bvs))
178 		return NULL;
179 
180 	/*
181 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
182 	 * We also rely on this in the bvec_free path.
183 	 */
184 	*nr_vecs = bvs->nr_vecs;
185 
186 	/*
187 	 * Try a slab allocation first for all smaller allocations.  If that
188 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
189 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
190 	 */
191 	if (*nr_vecs < BIO_MAX_VECS) {
192 		struct bio_vec *bvl;
193 
194 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
195 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
196 			return bvl;
197 		*nr_vecs = BIO_MAX_VECS;
198 	}
199 
200 	return mempool_alloc(pool, gfp_mask);
201 }
202 
203 void bio_uninit(struct bio *bio)
204 {
205 #ifdef CONFIG_BLK_CGROUP
206 	if (bio->bi_blkg) {
207 		blkg_put(bio->bi_blkg);
208 		bio->bi_blkg = NULL;
209 	}
210 #endif
211 	if (bio_integrity(bio))
212 		bio_integrity_free(bio);
213 
214 	bio_crypt_free_ctx(bio);
215 }
216 EXPORT_SYMBOL(bio_uninit);
217 
218 static void bio_free(struct bio *bio)
219 {
220 	struct bio_set *bs = bio->bi_pool;
221 	void *p;
222 
223 	bio_uninit(bio);
224 
225 	if (bs) {
226 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
227 
228 		/*
229 		 * If we have front padding, adjust the bio pointer before freeing
230 		 */
231 		p = bio;
232 		p -= bs->front_pad;
233 
234 		mempool_free(p, &bs->bio_pool);
235 	} else {
236 		/* Bio was allocated by bio_kmalloc() */
237 		kfree(bio);
238 	}
239 }
240 
241 /*
242  * Users of this function have their own bio allocation. Subsequently,
243  * they must remember to pair any call to bio_init() with bio_uninit()
244  * when IO has completed, or when the bio is released.
245  */
246 void bio_init(struct bio *bio, struct bio_vec *table,
247 	      unsigned short max_vecs)
248 {
249 	memset(bio, 0, sizeof(*bio));
250 	atomic_set(&bio->__bi_remaining, 1);
251 	atomic_set(&bio->__bi_cnt, 1);
252 
253 	bio->bi_io_vec = table;
254 	bio->bi_max_vecs = max_vecs;
255 }
256 EXPORT_SYMBOL(bio_init);
257 
258 unsigned int bio_max_size(struct bio *bio)
259 {
260 	struct block_device *bdev = bio->bi_bdev;
261 
262 	return bdev ? bdev->bd_disk->queue->limits.bio_max_bytes : UINT_MAX;
263 }
264 
265 /**
266  * bio_reset - reinitialize a bio
267  * @bio:	bio to reset
268  *
269  * Description:
270  *   After calling bio_reset(), @bio will be in the same state as a freshly
271  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
272  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
273  *   comment in struct bio.
274  */
275 void bio_reset(struct bio *bio)
276 {
277 	bio_uninit(bio);
278 	memset(bio, 0, BIO_RESET_BYTES);
279 	atomic_set(&bio->__bi_remaining, 1);
280 }
281 EXPORT_SYMBOL(bio_reset);
282 
283 static struct bio *__bio_chain_endio(struct bio *bio)
284 {
285 	struct bio *parent = bio->bi_private;
286 
287 	if (bio->bi_status && !parent->bi_status)
288 		parent->bi_status = bio->bi_status;
289 	bio_put(bio);
290 	return parent;
291 }
292 
293 static void bio_chain_endio(struct bio *bio)
294 {
295 	bio_endio(__bio_chain_endio(bio));
296 }
297 
298 /**
299  * bio_chain - chain bio completions
300  * @bio: the target bio
301  * @parent: the parent bio of @bio
302  *
303  * The caller won't have a bi_end_io called when @bio completes - instead,
304  * @parent's bi_end_io won't be called until both @parent and @bio have
305  * completed; the chained bio will also be freed when it completes.
306  *
307  * The caller must not set bi_private or bi_end_io in @bio.
308  */
309 void bio_chain(struct bio *bio, struct bio *parent)
310 {
311 	BUG_ON(bio->bi_private || bio->bi_end_io);
312 
313 	bio->bi_private = parent;
314 	bio->bi_end_io	= bio_chain_endio;
315 	bio_inc_remaining(parent);
316 }
317 EXPORT_SYMBOL(bio_chain);
318 
319 static void bio_alloc_rescue(struct work_struct *work)
320 {
321 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
322 	struct bio *bio;
323 
324 	while (1) {
325 		spin_lock(&bs->rescue_lock);
326 		bio = bio_list_pop(&bs->rescue_list);
327 		spin_unlock(&bs->rescue_lock);
328 
329 		if (!bio)
330 			break;
331 
332 		submit_bio_noacct(bio);
333 	}
334 }
335 
336 static void punt_bios_to_rescuer(struct bio_set *bs)
337 {
338 	struct bio_list punt, nopunt;
339 	struct bio *bio;
340 
341 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
342 		return;
343 	/*
344 	 * In order to guarantee forward progress we must punt only bios that
345 	 * were allocated from this bio_set; otherwise, if there was a bio on
346 	 * there for a stacking driver higher up in the stack, processing it
347 	 * could require allocating bios from this bio_set, and doing that from
348 	 * our own rescuer would be bad.
349 	 *
350 	 * Since bio lists are singly linked, pop them all instead of trying to
351 	 * remove from the middle of the list:
352 	 */
353 
354 	bio_list_init(&punt);
355 	bio_list_init(&nopunt);
356 
357 	while ((bio = bio_list_pop(&current->bio_list[0])))
358 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
359 	current->bio_list[0] = nopunt;
360 
361 	bio_list_init(&nopunt);
362 	while ((bio = bio_list_pop(&current->bio_list[1])))
363 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
364 	current->bio_list[1] = nopunt;
365 
366 	spin_lock(&bs->rescue_lock);
367 	bio_list_merge(&bs->rescue_list, &punt);
368 	spin_unlock(&bs->rescue_lock);
369 
370 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
371 }
372 
373 /**
374  * bio_alloc_bioset - allocate a bio for I/O
375  * @gfp_mask:   the GFP_* mask given to the slab allocator
376  * @nr_iovecs:	number of iovecs to pre-allocate
377  * @bs:		the bio_set to allocate from.
378  *
379  * Allocate a bio from the mempools in @bs.
380  *
381  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
382  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
383  * callers must never allocate more than 1 bio at a time from the general pool.
384  * Callers that need to allocate more than 1 bio must always submit the
385  * previously allocated bio for IO before attempting to allocate a new one.
386  * Failure to do so can cause deadlocks under memory pressure.
387  *
388  * Note that when running under submit_bio_noacct() (i.e. any block driver),
389  * bios are not submitted until after you return - see the code in
390  * submit_bio_noacct() that converts recursion into iteration, to prevent
391  * stack overflows.
392  *
393  * This would normally mean allocating multiple bios under submit_bio_noacct()
394  * would be susceptible to deadlocks, but we have
395  * deadlock avoidance code that resubmits any blocked bios from a rescuer
396  * thread.
397  *
398  * However, we do not guarantee forward progress for allocations from other
399  * mempools. Doing multiple allocations from the same mempool under
400  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
401  * for per bio allocations.
402  *
403  * Returns: Pointer to new bio on success, NULL on failure.
404  */
405 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
406 			     struct bio_set *bs)
407 {
408 	gfp_t saved_gfp = gfp_mask;
409 	struct bio *bio;
410 	void *p;
411 
412 	/* should not use nobvec bioset for nr_iovecs > 0 */
413 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
414 		return NULL;
415 
416 	/*
417 	 * submit_bio_noacct() converts recursion to iteration; this means if
418 	 * we're running beneath it, any bios we allocate and submit will not be
419 	 * submitted (and thus freed) until after we return.
420 	 *
421 	 * This exposes us to a potential deadlock if we allocate multiple bios
422 	 * from the same bio_set() while running underneath submit_bio_noacct().
423 	 * If we were to allocate multiple bios (say a stacking block driver
424 	 * that was splitting bios), we would deadlock if we exhausted the
425 	 * mempool's reserve.
426 	 *
427 	 * We solve this, and guarantee forward progress, with a rescuer
428 	 * workqueue per bio_set. If we go to allocate and there are bios on
429 	 * current->bio_list, we first try the allocation without
430 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
431 	 * blocking to the rescuer workqueue before we retry with the original
432 	 * gfp_flags.
433 	 */
434 	if (current->bio_list &&
435 	    (!bio_list_empty(&current->bio_list[0]) ||
436 	     !bio_list_empty(&current->bio_list[1])) &&
437 	    bs->rescue_workqueue)
438 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
439 
440 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
441 	if (!p && gfp_mask != saved_gfp) {
442 		punt_bios_to_rescuer(bs);
443 		gfp_mask = saved_gfp;
444 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
445 	}
446 	if (unlikely(!p))
447 		return NULL;
448 
449 	bio = p + bs->front_pad;
450 	if (nr_iovecs > BIO_INLINE_VECS) {
451 		struct bio_vec *bvl = NULL;
452 
453 		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
454 		if (!bvl && gfp_mask != saved_gfp) {
455 			punt_bios_to_rescuer(bs);
456 			gfp_mask = saved_gfp;
457 			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
458 		}
459 		if (unlikely(!bvl))
460 			goto err_free;
461 
462 		bio_init(bio, bvl, nr_iovecs);
463 	} else if (nr_iovecs) {
464 		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
465 	} else {
466 		bio_init(bio, NULL, 0);
467 	}
468 
469 	bio->bi_pool = bs;
470 	return bio;
471 
472 err_free:
473 	mempool_free(p, &bs->bio_pool);
474 	return NULL;
475 }
476 EXPORT_SYMBOL(bio_alloc_bioset);
477 
478 /**
479  * bio_kmalloc - kmalloc a bio for I/O
480  * @gfp_mask:   the GFP_* mask given to the slab allocator
481  * @nr_iovecs:	number of iovecs to pre-allocate
482  *
483  * Use kmalloc to allocate and initialize a bio.
484  *
485  * Returns: Pointer to new bio on success, NULL on failure.
486  */
487 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
488 {
489 	struct bio *bio;
490 
491 	if (nr_iovecs > UIO_MAXIOV)
492 		return NULL;
493 
494 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
495 	if (unlikely(!bio))
496 		return NULL;
497 	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
498 	bio->bi_pool = NULL;
499 	return bio;
500 }
501 EXPORT_SYMBOL(bio_kmalloc);
502 
503 void zero_fill_bio(struct bio *bio)
504 {
505 	unsigned long flags;
506 	struct bio_vec bv;
507 	struct bvec_iter iter;
508 
509 	bio_for_each_segment(bv, bio, iter) {
510 		char *data = bvec_kmap_irq(&bv, &flags);
511 		memset(data, 0, bv.bv_len);
512 		flush_dcache_page(bv.bv_page);
513 		bvec_kunmap_irq(data, &flags);
514 	}
515 }
516 EXPORT_SYMBOL(zero_fill_bio);
517 
518 /**
519  * bio_truncate - truncate the bio to small size of @new_size
520  * @bio:	the bio to be truncated
521  * @new_size:	new size for truncating the bio
522  *
523  * Description:
524  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
525  *   REQ_OP_READ, zero the truncated part. This function should only
526  *   be used for handling corner cases, such as bio eod.
527  */
528 void bio_truncate(struct bio *bio, unsigned new_size)
529 {
530 	struct bio_vec bv;
531 	struct bvec_iter iter;
532 	unsigned int done = 0;
533 	bool truncated = false;
534 
535 	if (new_size >= bio->bi_iter.bi_size)
536 		return;
537 
538 	if (bio_op(bio) != REQ_OP_READ)
539 		goto exit;
540 
541 	bio_for_each_segment(bv, bio, iter) {
542 		if (done + bv.bv_len > new_size) {
543 			unsigned offset;
544 
545 			if (!truncated)
546 				offset = new_size - done;
547 			else
548 				offset = 0;
549 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
550 			truncated = true;
551 		}
552 		done += bv.bv_len;
553 	}
554 
555  exit:
556 	/*
557 	 * Don't touch bvec table here and make it really immutable, since
558 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
559 	 * in its .end_bio() callback.
560 	 *
561 	 * It is enough to truncate bio by updating .bi_size since we can make
562 	 * correct bvec with the updated .bi_size for drivers.
563 	 */
564 	bio->bi_iter.bi_size = new_size;
565 }
566 
567 /**
568  * guard_bio_eod - truncate a BIO to fit the block device
569  * @bio:	bio to truncate
570  *
571  * This allows us to do IO even on the odd last sectors of a device, even if the
572  * block size is some multiple of the physical sector size.
573  *
574  * We'll just truncate the bio to the size of the device, and clear the end of
575  * the buffer head manually.  Truly out-of-range accesses will turn into actual
576  * I/O errors, this only handles the "we need to be able to do I/O at the final
577  * sector" case.
578  */
579 void guard_bio_eod(struct bio *bio)
580 {
581 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
582 
583 	if (!maxsector)
584 		return;
585 
586 	/*
587 	 * If the *whole* IO is past the end of the device,
588 	 * let it through, and the IO layer will turn it into
589 	 * an EIO.
590 	 */
591 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
592 		return;
593 
594 	maxsector -= bio->bi_iter.bi_sector;
595 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
596 		return;
597 
598 	bio_truncate(bio, maxsector << 9);
599 }
600 
601 /**
602  * bio_put - release a reference to a bio
603  * @bio:   bio to release reference to
604  *
605  * Description:
606  *   Put a reference to a &struct bio, either one you have gotten with
607  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
608  **/
609 void bio_put(struct bio *bio)
610 {
611 	if (!bio_flagged(bio, BIO_REFFED))
612 		bio_free(bio);
613 	else {
614 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
615 
616 		/*
617 		 * last put frees it
618 		 */
619 		if (atomic_dec_and_test(&bio->__bi_cnt))
620 			bio_free(bio);
621 	}
622 }
623 EXPORT_SYMBOL(bio_put);
624 
625 /**
626  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
627  * 	@bio: destination bio
628  * 	@bio_src: bio to clone
629  *
630  *	Clone a &bio. Caller will own the returned bio, but not
631  *	the actual data it points to. Reference count of returned
632  * 	bio will be one.
633  *
634  * 	Caller must ensure that @bio_src is not freed before @bio.
635  */
636 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
637 {
638 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
639 
640 	/*
641 	 * most users will be overriding ->bi_bdev with a new target,
642 	 * so we don't set nor calculate new physical/hw segment counts here
643 	 */
644 	bio->bi_bdev = bio_src->bi_bdev;
645 	bio_set_flag(bio, BIO_CLONED);
646 	if (bio_flagged(bio_src, BIO_THROTTLED))
647 		bio_set_flag(bio, BIO_THROTTLED);
648 	if (bio_flagged(bio_src, BIO_REMAPPED))
649 		bio_set_flag(bio, BIO_REMAPPED);
650 	bio->bi_opf = bio_src->bi_opf;
651 	bio->bi_ioprio = bio_src->bi_ioprio;
652 	bio->bi_write_hint = bio_src->bi_write_hint;
653 	bio->bi_iter = bio_src->bi_iter;
654 	bio->bi_io_vec = bio_src->bi_io_vec;
655 
656 	bio_clone_blkg_association(bio, bio_src);
657 	blkcg_bio_issue_init(bio);
658 }
659 EXPORT_SYMBOL(__bio_clone_fast);
660 
661 /**
662  *	bio_clone_fast - clone a bio that shares the original bio's biovec
663  *	@bio: bio to clone
664  *	@gfp_mask: allocation priority
665  *	@bs: bio_set to allocate from
666  *
667  * 	Like __bio_clone_fast, only also allocates the returned bio
668  */
669 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
670 {
671 	struct bio *b;
672 
673 	b = bio_alloc_bioset(gfp_mask, 0, bs);
674 	if (!b)
675 		return NULL;
676 
677 	__bio_clone_fast(b, bio);
678 
679 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
680 		goto err_put;
681 
682 	if (bio_integrity(bio) &&
683 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
684 		goto err_put;
685 
686 	return b;
687 
688 err_put:
689 	bio_put(b);
690 	return NULL;
691 }
692 EXPORT_SYMBOL(bio_clone_fast);
693 
694 const char *bio_devname(struct bio *bio, char *buf)
695 {
696 	return bdevname(bio->bi_bdev, buf);
697 }
698 EXPORT_SYMBOL(bio_devname);
699 
700 static inline bool page_is_mergeable(const struct bio_vec *bv,
701 		struct page *page, unsigned int len, unsigned int off,
702 		bool *same_page)
703 {
704 	size_t bv_end = bv->bv_offset + bv->bv_len;
705 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
706 	phys_addr_t page_addr = page_to_phys(page);
707 
708 	if (vec_end_addr + 1 != page_addr + off)
709 		return false;
710 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
711 		return false;
712 
713 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
714 	if (*same_page)
715 		return true;
716 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
717 }
718 
719 /*
720  * Try to merge a page into a segment, while obeying the hardware segment
721  * size limit.  This is not for normal read/write bios, but for passthrough
722  * or Zone Append operations that we can't split.
723  */
724 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
725 				 struct page *page, unsigned len,
726 				 unsigned offset, bool *same_page)
727 {
728 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
729 	unsigned long mask = queue_segment_boundary(q);
730 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
731 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
732 
733 	if ((addr1 | mask) != (addr2 | mask))
734 		return false;
735 	if (bv->bv_len + len > queue_max_segment_size(q))
736 		return false;
737 	return __bio_try_merge_page(bio, page, len, offset, same_page);
738 }
739 
740 /**
741  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
742  * @q: the target queue
743  * @bio: destination bio
744  * @page: page to add
745  * @len: vec entry length
746  * @offset: vec entry offset
747  * @max_sectors: maximum number of sectors that can be added
748  * @same_page: return if the segment has been merged inside the same page
749  *
750  * Add a page to a bio while respecting the hardware max_sectors, max_segment
751  * and gap limitations.
752  */
753 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
754 		struct page *page, unsigned int len, unsigned int offset,
755 		unsigned int max_sectors, bool *same_page)
756 {
757 	struct bio_vec *bvec;
758 
759 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
760 		return 0;
761 
762 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
763 		return 0;
764 
765 	if (bio->bi_vcnt > 0) {
766 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
767 			return len;
768 
769 		/*
770 		 * If the queue doesn't support SG gaps and adding this segment
771 		 * would create a gap, disallow it.
772 		 */
773 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
774 		if (bvec_gap_to_prev(q, bvec, offset))
775 			return 0;
776 	}
777 
778 	if (bio_full(bio, len))
779 		return 0;
780 
781 	if (bio->bi_vcnt >= queue_max_segments(q))
782 		return 0;
783 
784 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
785 	bvec->bv_page = page;
786 	bvec->bv_len = len;
787 	bvec->bv_offset = offset;
788 	bio->bi_vcnt++;
789 	bio->bi_iter.bi_size += len;
790 	return len;
791 }
792 
793 /**
794  * bio_add_pc_page	- attempt to add page to passthrough bio
795  * @q: the target queue
796  * @bio: destination bio
797  * @page: page to add
798  * @len: vec entry length
799  * @offset: vec entry offset
800  *
801  * Attempt to add a page to the bio_vec maplist. This can fail for a
802  * number of reasons, such as the bio being full or target block device
803  * limitations. The target block device must allow bio's up to PAGE_SIZE,
804  * so it is always possible to add a single page to an empty bio.
805  *
806  * This should only be used by passthrough bios.
807  */
808 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
809 		struct page *page, unsigned int len, unsigned int offset)
810 {
811 	bool same_page = false;
812 	return bio_add_hw_page(q, bio, page, len, offset,
813 			queue_max_hw_sectors(q), &same_page);
814 }
815 EXPORT_SYMBOL(bio_add_pc_page);
816 
817 /**
818  * bio_add_zone_append_page - attempt to add page to zone-append bio
819  * @bio: destination bio
820  * @page: page to add
821  * @len: vec entry length
822  * @offset: vec entry offset
823  *
824  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
825  * for a zone-append request. This can fail for a number of reasons, such as the
826  * bio being full or the target block device is not a zoned block device or
827  * other limitations of the target block device. The target block device must
828  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
829  * to an empty bio.
830  *
831  * Returns: number of bytes added to the bio, or 0 in case of a failure.
832  */
833 int bio_add_zone_append_page(struct bio *bio, struct page *page,
834 			     unsigned int len, unsigned int offset)
835 {
836 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
837 	bool same_page = false;
838 
839 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
840 		return 0;
841 
842 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
843 		return 0;
844 
845 	return bio_add_hw_page(q, bio, page, len, offset,
846 			       queue_max_zone_append_sectors(q), &same_page);
847 }
848 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
849 
850 /**
851  * __bio_try_merge_page - try appending data to an existing bvec.
852  * @bio: destination bio
853  * @page: start page to add
854  * @len: length of the data to add
855  * @off: offset of the data relative to @page
856  * @same_page: return if the segment has been merged inside the same page
857  *
858  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
859  * useful optimisation for file systems with a block size smaller than the
860  * page size.
861  *
862  * Warn if (@len, @off) crosses pages in case that @same_page is true.
863  *
864  * Return %true on success or %false on failure.
865  */
866 bool __bio_try_merge_page(struct bio *bio, struct page *page,
867 		unsigned int len, unsigned int off, bool *same_page)
868 {
869 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
870 		return false;
871 
872 	if (bio->bi_vcnt > 0) {
873 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
874 
875 		if (page_is_mergeable(bv, page, len, off, same_page)) {
876 			if (bio->bi_iter.bi_size > bio_max_size(bio) - len) {
877 				*same_page = false;
878 				return false;
879 			}
880 			bv->bv_len += len;
881 			bio->bi_iter.bi_size += len;
882 			return true;
883 		}
884 	}
885 	return false;
886 }
887 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
888 
889 /**
890  * __bio_add_page - add page(s) to a bio in a new segment
891  * @bio: destination bio
892  * @page: start page to add
893  * @len: length of the data to add, may cross pages
894  * @off: offset of the data relative to @page, may cross pages
895  *
896  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
897  * that @bio has space for another bvec.
898  */
899 void __bio_add_page(struct bio *bio, struct page *page,
900 		unsigned int len, unsigned int off)
901 {
902 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
903 
904 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
905 	WARN_ON_ONCE(bio_full(bio, len));
906 
907 	bv->bv_page = page;
908 	bv->bv_offset = off;
909 	bv->bv_len = len;
910 
911 	bio->bi_iter.bi_size += len;
912 	bio->bi_vcnt++;
913 
914 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
915 		bio_set_flag(bio, BIO_WORKINGSET);
916 }
917 EXPORT_SYMBOL_GPL(__bio_add_page);
918 
919 /**
920  *	bio_add_page	-	attempt to add page(s) to bio
921  *	@bio: destination bio
922  *	@page: start page to add
923  *	@len: vec entry length, may cross pages
924  *	@offset: vec entry offset relative to @page, may cross pages
925  *
926  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
927  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
928  */
929 int bio_add_page(struct bio *bio, struct page *page,
930 		 unsigned int len, unsigned int offset)
931 {
932 	bool same_page = false;
933 
934 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
935 		if (bio_full(bio, len))
936 			return 0;
937 		__bio_add_page(bio, page, len, offset);
938 	}
939 	return len;
940 }
941 EXPORT_SYMBOL(bio_add_page);
942 
943 void bio_release_pages(struct bio *bio, bool mark_dirty)
944 {
945 	struct bvec_iter_all iter_all;
946 	struct bio_vec *bvec;
947 
948 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
949 		return;
950 
951 	bio_for_each_segment_all(bvec, bio, iter_all) {
952 		if (mark_dirty && !PageCompound(bvec->bv_page))
953 			set_page_dirty_lock(bvec->bv_page);
954 		put_page(bvec->bv_page);
955 	}
956 }
957 EXPORT_SYMBOL_GPL(bio_release_pages);
958 
959 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
960 {
961 	WARN_ON_ONCE(bio->bi_max_vecs);
962 
963 	bio->bi_vcnt = iter->nr_segs;
964 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
965 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
966 	bio->bi_iter.bi_size = iter->count;
967 	bio_set_flag(bio, BIO_NO_PAGE_REF);
968 	bio_set_flag(bio, BIO_CLONED);
969 }
970 
971 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
972 {
973 	__bio_iov_bvec_set(bio, iter);
974 	iov_iter_advance(iter, iter->count);
975 	return 0;
976 }
977 
978 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
979 {
980 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
981 	struct iov_iter i = *iter;
982 
983 	iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
984 	__bio_iov_bvec_set(bio, &i);
985 	iov_iter_advance(iter, i.count);
986 	return 0;
987 }
988 
989 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
990 
991 /**
992  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
993  * @bio: bio to add pages to
994  * @iter: iov iterator describing the region to be mapped
995  *
996  * Pins pages from *iter and appends them to @bio's bvec array. The
997  * pages will have to be released using put_page() when done.
998  * For multi-segment *iter, this function only adds pages from the
999  * next non-empty segment of the iov iterator.
1000  */
1001 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1002 {
1003 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1004 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1005 	unsigned int bytes_left = bio_max_size(bio) - bio->bi_iter.bi_size;
1006 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1007 	struct page **pages = (struct page **)bv;
1008 	bool same_page = false;
1009 	ssize_t size, left;
1010 	unsigned len, i;
1011 	size_t offset;
1012 
1013 	/*
1014 	 * Move page array up in the allocated memory for the bio vecs as far as
1015 	 * possible so that we can start filling biovecs from the beginning
1016 	 * without overwriting the temporary page array.
1017 	*/
1018 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1019 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1020 
1021 	size = iov_iter_get_pages(iter, pages, bytes_left, nr_pages,
1022 				  &offset);
1023 	if (unlikely(size <= 0))
1024 		return size ? size : -EFAULT;
1025 
1026 	for (left = size, i = 0; left > 0; left -= len, i++) {
1027 		struct page *page = pages[i];
1028 
1029 		len = min_t(size_t, PAGE_SIZE - offset, left);
1030 
1031 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1032 			if (same_page)
1033 				put_page(page);
1034 		} else {
1035 			if (WARN_ON_ONCE(bio_full(bio, len)))
1036                                 return -EINVAL;
1037 			__bio_add_page(bio, page, len, offset);
1038 		}
1039 		offset = 0;
1040 	}
1041 
1042 	iov_iter_advance(iter, size);
1043 	return 0;
1044 }
1045 
1046 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1047 {
1048 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1049 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1050 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1051 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1052 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1053 	struct page **pages = (struct page **)bv;
1054 	ssize_t size, left;
1055 	unsigned len, i;
1056 	size_t offset;
1057 	int ret = 0;
1058 
1059 	if (WARN_ON_ONCE(!max_append_sectors))
1060 		return 0;
1061 
1062 	/*
1063 	 * Move page array up in the allocated memory for the bio vecs as far as
1064 	 * possible so that we can start filling biovecs from the beginning
1065 	 * without overwriting the temporary page array.
1066 	 */
1067 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1068 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1069 
1070 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1071 	if (unlikely(size <= 0))
1072 		return size ? size : -EFAULT;
1073 
1074 	for (left = size, i = 0; left > 0; left -= len, i++) {
1075 		struct page *page = pages[i];
1076 		bool same_page = false;
1077 
1078 		len = min_t(size_t, PAGE_SIZE - offset, left);
1079 		if (bio_add_hw_page(q, bio, page, len, offset,
1080 				max_append_sectors, &same_page) != len) {
1081 			ret = -EINVAL;
1082 			break;
1083 		}
1084 		if (same_page)
1085 			put_page(page);
1086 		offset = 0;
1087 	}
1088 
1089 	iov_iter_advance(iter, size - left);
1090 	return ret;
1091 }
1092 
1093 /**
1094  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1095  * @bio: bio to add pages to
1096  * @iter: iov iterator describing the region to be added
1097  *
1098  * This takes either an iterator pointing to user memory, or one pointing to
1099  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1100  * map them into the kernel. On IO completion, the caller should put those
1101  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1102  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1103  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1104  * completed by a call to ->ki_complete() or returns with an error other than
1105  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1106  * on IO completion. If it isn't, then pages should be released.
1107  *
1108  * The function tries, but does not guarantee, to pin as many pages as
1109  * fit into the bio, or are requested in @iter, whatever is smaller. If
1110  * MM encounters an error pinning the requested pages, it stops. Error
1111  * is returned only if 0 pages could be pinned.
1112  *
1113  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1114  * responsible for setting BIO_WORKINGSET if necessary.
1115  */
1116 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1117 {
1118 	int ret = 0;
1119 
1120 	if (iov_iter_is_bvec(iter)) {
1121 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1122 			return bio_iov_bvec_set_append(bio, iter);
1123 		return bio_iov_bvec_set(bio, iter);
1124 	}
1125 
1126 	do {
1127 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1128 			ret = __bio_iov_append_get_pages(bio, iter);
1129 		else
1130 			ret = __bio_iov_iter_get_pages(bio, iter);
1131 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1132 
1133 	/* don't account direct I/O as memory stall */
1134 	bio_clear_flag(bio, BIO_WORKINGSET);
1135 	return bio->bi_vcnt ? 0 : ret;
1136 }
1137 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1138 
1139 static void submit_bio_wait_endio(struct bio *bio)
1140 {
1141 	complete(bio->bi_private);
1142 }
1143 
1144 /**
1145  * submit_bio_wait - submit a bio, and wait until it completes
1146  * @bio: The &struct bio which describes the I/O
1147  *
1148  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1149  * bio_endio() on failure.
1150  *
1151  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1152  * result in bio reference to be consumed. The caller must drop the reference
1153  * on his own.
1154  */
1155 int submit_bio_wait(struct bio *bio)
1156 {
1157 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1158 			bio->bi_bdev->bd_disk->lockdep_map);
1159 	unsigned long hang_check;
1160 
1161 	bio->bi_private = &done;
1162 	bio->bi_end_io = submit_bio_wait_endio;
1163 	bio->bi_opf |= REQ_SYNC;
1164 	submit_bio(bio);
1165 
1166 	/* Prevent hang_check timer from firing at us during very long I/O */
1167 	hang_check = sysctl_hung_task_timeout_secs;
1168 	if (hang_check)
1169 		while (!wait_for_completion_io_timeout(&done,
1170 					hang_check * (HZ/2)))
1171 			;
1172 	else
1173 		wait_for_completion_io(&done);
1174 
1175 	return blk_status_to_errno(bio->bi_status);
1176 }
1177 EXPORT_SYMBOL(submit_bio_wait);
1178 
1179 /**
1180  * bio_advance - increment/complete a bio by some number of bytes
1181  * @bio:	bio to advance
1182  * @bytes:	number of bytes to complete
1183  *
1184  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1185  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1186  * be updated on the last bvec as well.
1187  *
1188  * @bio will then represent the remaining, uncompleted portion of the io.
1189  */
1190 void bio_advance(struct bio *bio, unsigned bytes)
1191 {
1192 	if (bio_integrity(bio))
1193 		bio_integrity_advance(bio, bytes);
1194 
1195 	bio_crypt_advance(bio, bytes);
1196 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1197 }
1198 EXPORT_SYMBOL(bio_advance);
1199 
1200 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1201 			struct bio *src, struct bvec_iter *src_iter)
1202 {
1203 	struct bio_vec src_bv, dst_bv;
1204 	void *src_p, *dst_p;
1205 	unsigned bytes;
1206 
1207 	while (src_iter->bi_size && dst_iter->bi_size) {
1208 		src_bv = bio_iter_iovec(src, *src_iter);
1209 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1210 
1211 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1212 
1213 		src_p = kmap_atomic(src_bv.bv_page);
1214 		dst_p = kmap_atomic(dst_bv.bv_page);
1215 
1216 		memcpy(dst_p + dst_bv.bv_offset,
1217 		       src_p + src_bv.bv_offset,
1218 		       bytes);
1219 
1220 		kunmap_atomic(dst_p);
1221 		kunmap_atomic(src_p);
1222 
1223 		flush_dcache_page(dst_bv.bv_page);
1224 
1225 		bio_advance_iter_single(src, src_iter, bytes);
1226 		bio_advance_iter_single(dst, dst_iter, bytes);
1227 	}
1228 }
1229 EXPORT_SYMBOL(bio_copy_data_iter);
1230 
1231 /**
1232  * bio_copy_data - copy contents of data buffers from one bio to another
1233  * @src: source bio
1234  * @dst: destination bio
1235  *
1236  * Stops when it reaches the end of either @src or @dst - that is, copies
1237  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1238  */
1239 void bio_copy_data(struct bio *dst, struct bio *src)
1240 {
1241 	struct bvec_iter src_iter = src->bi_iter;
1242 	struct bvec_iter dst_iter = dst->bi_iter;
1243 
1244 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1245 }
1246 EXPORT_SYMBOL(bio_copy_data);
1247 
1248 void bio_free_pages(struct bio *bio)
1249 {
1250 	struct bio_vec *bvec;
1251 	struct bvec_iter_all iter_all;
1252 
1253 	bio_for_each_segment_all(bvec, bio, iter_all)
1254 		__free_page(bvec->bv_page);
1255 }
1256 EXPORT_SYMBOL(bio_free_pages);
1257 
1258 /*
1259  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1260  * for performing direct-IO in BIOs.
1261  *
1262  * The problem is that we cannot run set_page_dirty() from interrupt context
1263  * because the required locks are not interrupt-safe.  So what we can do is to
1264  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1265  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1266  * in process context.
1267  *
1268  * We special-case compound pages here: normally this means reads into hugetlb
1269  * pages.  The logic in here doesn't really work right for compound pages
1270  * because the VM does not uniformly chase down the head page in all cases.
1271  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1272  * handle them at all.  So we skip compound pages here at an early stage.
1273  *
1274  * Note that this code is very hard to test under normal circumstances because
1275  * direct-io pins the pages with get_user_pages().  This makes
1276  * is_page_cache_freeable return false, and the VM will not clean the pages.
1277  * But other code (eg, flusher threads) could clean the pages if they are mapped
1278  * pagecache.
1279  *
1280  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1281  * deferred bio dirtying paths.
1282  */
1283 
1284 /*
1285  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1286  */
1287 void bio_set_pages_dirty(struct bio *bio)
1288 {
1289 	struct bio_vec *bvec;
1290 	struct bvec_iter_all iter_all;
1291 
1292 	bio_for_each_segment_all(bvec, bio, iter_all) {
1293 		if (!PageCompound(bvec->bv_page))
1294 			set_page_dirty_lock(bvec->bv_page);
1295 	}
1296 }
1297 
1298 /*
1299  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1300  * If they are, then fine.  If, however, some pages are clean then they must
1301  * have been written out during the direct-IO read.  So we take another ref on
1302  * the BIO and re-dirty the pages in process context.
1303  *
1304  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1305  * here on.  It will run one put_page() against each page and will run one
1306  * bio_put() against the BIO.
1307  */
1308 
1309 static void bio_dirty_fn(struct work_struct *work);
1310 
1311 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1312 static DEFINE_SPINLOCK(bio_dirty_lock);
1313 static struct bio *bio_dirty_list;
1314 
1315 /*
1316  * This runs in process context
1317  */
1318 static void bio_dirty_fn(struct work_struct *work)
1319 {
1320 	struct bio *bio, *next;
1321 
1322 	spin_lock_irq(&bio_dirty_lock);
1323 	next = bio_dirty_list;
1324 	bio_dirty_list = NULL;
1325 	spin_unlock_irq(&bio_dirty_lock);
1326 
1327 	while ((bio = next) != NULL) {
1328 		next = bio->bi_private;
1329 
1330 		bio_release_pages(bio, true);
1331 		bio_put(bio);
1332 	}
1333 }
1334 
1335 void bio_check_pages_dirty(struct bio *bio)
1336 {
1337 	struct bio_vec *bvec;
1338 	unsigned long flags;
1339 	struct bvec_iter_all iter_all;
1340 
1341 	bio_for_each_segment_all(bvec, bio, iter_all) {
1342 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1343 			goto defer;
1344 	}
1345 
1346 	bio_release_pages(bio, false);
1347 	bio_put(bio);
1348 	return;
1349 defer:
1350 	spin_lock_irqsave(&bio_dirty_lock, flags);
1351 	bio->bi_private = bio_dirty_list;
1352 	bio_dirty_list = bio;
1353 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1354 	schedule_work(&bio_dirty_work);
1355 }
1356 
1357 static inline bool bio_remaining_done(struct bio *bio)
1358 {
1359 	/*
1360 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1361 	 * we always end io on the first invocation.
1362 	 */
1363 	if (!bio_flagged(bio, BIO_CHAIN))
1364 		return true;
1365 
1366 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1367 
1368 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1369 		bio_clear_flag(bio, BIO_CHAIN);
1370 		return true;
1371 	}
1372 
1373 	return false;
1374 }
1375 
1376 /**
1377  * bio_endio - end I/O on a bio
1378  * @bio:	bio
1379  *
1380  * Description:
1381  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1382  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1383  *   bio unless they own it and thus know that it has an end_io function.
1384  *
1385  *   bio_endio() can be called several times on a bio that has been chained
1386  *   using bio_chain().  The ->bi_end_io() function will only be called the
1387  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1388  *   generated if BIO_TRACE_COMPLETION is set.
1389  **/
1390 void bio_endio(struct bio *bio)
1391 {
1392 again:
1393 	if (!bio_remaining_done(bio))
1394 		return;
1395 	if (!bio_integrity_endio(bio))
1396 		return;
1397 
1398 	if (bio->bi_bdev)
1399 		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1400 
1401 	/*
1402 	 * Need to have a real endio function for chained bios, otherwise
1403 	 * various corner cases will break (like stacking block devices that
1404 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1405 	 * recursion and blowing the stack. Tail call optimization would
1406 	 * handle this, but compiling with frame pointers also disables
1407 	 * gcc's sibling call optimization.
1408 	 */
1409 	if (bio->bi_end_io == bio_chain_endio) {
1410 		bio = __bio_chain_endio(bio);
1411 		goto again;
1412 	}
1413 
1414 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1415 		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1416 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1417 	}
1418 
1419 	blk_throtl_bio_endio(bio);
1420 	/* release cgroup info */
1421 	bio_uninit(bio);
1422 	if (bio->bi_end_io)
1423 		bio->bi_end_io(bio);
1424 }
1425 EXPORT_SYMBOL(bio_endio);
1426 
1427 /**
1428  * bio_split - split a bio
1429  * @bio:	bio to split
1430  * @sectors:	number of sectors to split from the front of @bio
1431  * @gfp:	gfp mask
1432  * @bs:		bio set to allocate from
1433  *
1434  * Allocates and returns a new bio which represents @sectors from the start of
1435  * @bio, and updates @bio to represent the remaining sectors.
1436  *
1437  * Unless this is a discard request the newly allocated bio will point
1438  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1439  * neither @bio nor @bs are freed before the split bio.
1440  */
1441 struct bio *bio_split(struct bio *bio, int sectors,
1442 		      gfp_t gfp, struct bio_set *bs)
1443 {
1444 	struct bio *split;
1445 
1446 	BUG_ON(sectors <= 0);
1447 	BUG_ON(sectors >= bio_sectors(bio));
1448 
1449 	/* Zone append commands cannot be split */
1450 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1451 		return NULL;
1452 
1453 	split = bio_clone_fast(bio, gfp, bs);
1454 	if (!split)
1455 		return NULL;
1456 
1457 	split->bi_iter.bi_size = sectors << 9;
1458 
1459 	if (bio_integrity(split))
1460 		bio_integrity_trim(split);
1461 
1462 	bio_advance(bio, split->bi_iter.bi_size);
1463 
1464 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1465 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1466 
1467 	return split;
1468 }
1469 EXPORT_SYMBOL(bio_split);
1470 
1471 /**
1472  * bio_trim - trim a bio
1473  * @bio:	bio to trim
1474  * @offset:	number of sectors to trim from the front of @bio
1475  * @size:	size we want to trim @bio to, in sectors
1476  */
1477 void bio_trim(struct bio *bio, int offset, int size)
1478 {
1479 	/* 'bio' is a cloned bio which we need to trim to match
1480 	 * the given offset and size.
1481 	 */
1482 
1483 	size <<= 9;
1484 	if (offset == 0 && size == bio->bi_iter.bi_size)
1485 		return;
1486 
1487 	bio_advance(bio, offset << 9);
1488 	bio->bi_iter.bi_size = size;
1489 
1490 	if (bio_integrity(bio))
1491 		bio_integrity_trim(bio);
1492 
1493 }
1494 EXPORT_SYMBOL_GPL(bio_trim);
1495 
1496 /*
1497  * create memory pools for biovec's in a bio_set.
1498  * use the global biovec slabs created for general use.
1499  */
1500 int biovec_init_pool(mempool_t *pool, int pool_entries)
1501 {
1502 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1503 
1504 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1505 }
1506 
1507 /*
1508  * bioset_exit - exit a bioset initialized with bioset_init()
1509  *
1510  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1511  * kzalloc()).
1512  */
1513 void bioset_exit(struct bio_set *bs)
1514 {
1515 	if (bs->rescue_workqueue)
1516 		destroy_workqueue(bs->rescue_workqueue);
1517 	bs->rescue_workqueue = NULL;
1518 
1519 	mempool_exit(&bs->bio_pool);
1520 	mempool_exit(&bs->bvec_pool);
1521 
1522 	bioset_integrity_free(bs);
1523 	if (bs->bio_slab)
1524 		bio_put_slab(bs);
1525 	bs->bio_slab = NULL;
1526 }
1527 EXPORT_SYMBOL(bioset_exit);
1528 
1529 /**
1530  * bioset_init - Initialize a bio_set
1531  * @bs:		pool to initialize
1532  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1533  * @front_pad:	Number of bytes to allocate in front of the returned bio
1534  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1535  *              and %BIOSET_NEED_RESCUER
1536  *
1537  * Description:
1538  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1539  *    to ask for a number of bytes to be allocated in front of the bio.
1540  *    Front pad allocation is useful for embedding the bio inside
1541  *    another structure, to avoid allocating extra data to go with the bio.
1542  *    Note that the bio must be embedded at the END of that structure always,
1543  *    or things will break badly.
1544  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1545  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1546  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1547  *    dispatch queued requests when the mempool runs out of space.
1548  *
1549  */
1550 int bioset_init(struct bio_set *bs,
1551 		unsigned int pool_size,
1552 		unsigned int front_pad,
1553 		int flags)
1554 {
1555 	bs->front_pad = front_pad;
1556 	if (flags & BIOSET_NEED_BVECS)
1557 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1558 	else
1559 		bs->back_pad = 0;
1560 
1561 	spin_lock_init(&bs->rescue_lock);
1562 	bio_list_init(&bs->rescue_list);
1563 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1564 
1565 	bs->bio_slab = bio_find_or_create_slab(bs);
1566 	if (!bs->bio_slab)
1567 		return -ENOMEM;
1568 
1569 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1570 		goto bad;
1571 
1572 	if ((flags & BIOSET_NEED_BVECS) &&
1573 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1574 		goto bad;
1575 
1576 	if (!(flags & BIOSET_NEED_RESCUER))
1577 		return 0;
1578 
1579 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1580 	if (!bs->rescue_workqueue)
1581 		goto bad;
1582 
1583 	return 0;
1584 bad:
1585 	bioset_exit(bs);
1586 	return -ENOMEM;
1587 }
1588 EXPORT_SYMBOL(bioset_init);
1589 
1590 /*
1591  * Initialize and setup a new bio_set, based on the settings from
1592  * another bio_set.
1593  */
1594 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1595 {
1596 	int flags;
1597 
1598 	flags = 0;
1599 	if (src->bvec_pool.min_nr)
1600 		flags |= BIOSET_NEED_BVECS;
1601 	if (src->rescue_workqueue)
1602 		flags |= BIOSET_NEED_RESCUER;
1603 
1604 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1605 }
1606 EXPORT_SYMBOL(bioset_init_from_src);
1607 
1608 static int __init init_bio(void)
1609 {
1610 	int i;
1611 
1612 	bio_integrity_init();
1613 
1614 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1615 		struct biovec_slab *bvs = bvec_slabs + i;
1616 
1617 		bvs->slab = kmem_cache_create(bvs->name,
1618 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1619 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1620 	}
1621 
1622 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1623 		panic("bio: can't allocate bios\n");
1624 
1625 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1626 		panic("bio: can't create integrity pool\n");
1627 
1628 	return 0;
1629 }
1630 subsys_initcall(init_bio);
1631