1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 #include <linux/sched/sysctl.h> 21 #include <linux/blk-crypto.h> 22 #include <linux/xarray.h> 23 24 #include <trace/events/block.h> 25 #include "blk.h" 26 #include "blk-rq-qos.h" 27 28 static struct biovec_slab { 29 int nr_vecs; 30 char *name; 31 struct kmem_cache *slab; 32 } bvec_slabs[] __read_mostly = { 33 { .nr_vecs = 16, .name = "biovec-16" }, 34 { .nr_vecs = 64, .name = "biovec-64" }, 35 { .nr_vecs = 128, .name = "biovec-128" }, 36 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 37 }; 38 39 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 40 { 41 switch (nr_vecs) { 42 /* smaller bios use inline vecs */ 43 case 5 ... 16: 44 return &bvec_slabs[0]; 45 case 17 ... 64: 46 return &bvec_slabs[1]; 47 case 65 ... 128: 48 return &bvec_slabs[2]; 49 case 129 ... BIO_MAX_VECS: 50 return &bvec_slabs[3]; 51 default: 52 BUG(); 53 return NULL; 54 } 55 } 56 57 /* 58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 59 * IO code that does not need private memory pools. 60 */ 61 struct bio_set fs_bio_set; 62 EXPORT_SYMBOL(fs_bio_set); 63 64 /* 65 * Our slab pool management 66 */ 67 struct bio_slab { 68 struct kmem_cache *slab; 69 unsigned int slab_ref; 70 unsigned int slab_size; 71 char name[8]; 72 }; 73 static DEFINE_MUTEX(bio_slab_lock); 74 static DEFINE_XARRAY(bio_slabs); 75 76 static struct bio_slab *create_bio_slab(unsigned int size) 77 { 78 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 79 80 if (!bslab) 81 return NULL; 82 83 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 84 bslab->slab = kmem_cache_create(bslab->name, size, 85 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL); 86 if (!bslab->slab) 87 goto fail_alloc_slab; 88 89 bslab->slab_ref = 1; 90 bslab->slab_size = size; 91 92 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 93 return bslab; 94 95 kmem_cache_destroy(bslab->slab); 96 97 fail_alloc_slab: 98 kfree(bslab); 99 return NULL; 100 } 101 102 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 103 { 104 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 105 } 106 107 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 108 { 109 unsigned int size = bs_bio_slab_size(bs); 110 struct bio_slab *bslab; 111 112 mutex_lock(&bio_slab_lock); 113 bslab = xa_load(&bio_slabs, size); 114 if (bslab) 115 bslab->slab_ref++; 116 else 117 bslab = create_bio_slab(size); 118 mutex_unlock(&bio_slab_lock); 119 120 if (bslab) 121 return bslab->slab; 122 return NULL; 123 } 124 125 static void bio_put_slab(struct bio_set *bs) 126 { 127 struct bio_slab *bslab = NULL; 128 unsigned int slab_size = bs_bio_slab_size(bs); 129 130 mutex_lock(&bio_slab_lock); 131 132 bslab = xa_load(&bio_slabs, slab_size); 133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 134 goto out; 135 136 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 137 138 WARN_ON(!bslab->slab_ref); 139 140 if (--bslab->slab_ref) 141 goto out; 142 143 xa_erase(&bio_slabs, slab_size); 144 145 kmem_cache_destroy(bslab->slab); 146 kfree(bslab); 147 148 out: 149 mutex_unlock(&bio_slab_lock); 150 } 151 152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 153 { 154 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS); 155 156 if (nr_vecs == BIO_MAX_VECS) 157 mempool_free(bv, pool); 158 else if (nr_vecs > BIO_INLINE_VECS) 159 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 160 } 161 162 /* 163 * Make the first allocation restricted and don't dump info on allocation 164 * failures, since we'll fall back to the mempool in case of failure. 165 */ 166 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 167 { 168 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 169 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 170 } 171 172 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 173 gfp_t gfp_mask) 174 { 175 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 176 177 if (WARN_ON_ONCE(!bvs)) 178 return NULL; 179 180 /* 181 * Upgrade the nr_vecs request to take full advantage of the allocation. 182 * We also rely on this in the bvec_free path. 183 */ 184 *nr_vecs = bvs->nr_vecs; 185 186 /* 187 * Try a slab allocation first for all smaller allocations. If that 188 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 189 * The mempool is sized to handle up to BIO_MAX_VECS entries. 190 */ 191 if (*nr_vecs < BIO_MAX_VECS) { 192 struct bio_vec *bvl; 193 194 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 195 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 196 return bvl; 197 *nr_vecs = BIO_MAX_VECS; 198 } 199 200 return mempool_alloc(pool, gfp_mask); 201 } 202 203 void bio_uninit(struct bio *bio) 204 { 205 #ifdef CONFIG_BLK_CGROUP 206 if (bio->bi_blkg) { 207 blkg_put(bio->bi_blkg); 208 bio->bi_blkg = NULL; 209 } 210 #endif 211 if (bio_integrity(bio)) 212 bio_integrity_free(bio); 213 214 bio_crypt_free_ctx(bio); 215 } 216 EXPORT_SYMBOL(bio_uninit); 217 218 static void bio_free(struct bio *bio) 219 { 220 struct bio_set *bs = bio->bi_pool; 221 void *p; 222 223 bio_uninit(bio); 224 225 if (bs) { 226 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 227 228 /* 229 * If we have front padding, adjust the bio pointer before freeing 230 */ 231 p = bio; 232 p -= bs->front_pad; 233 234 mempool_free(p, &bs->bio_pool); 235 } else { 236 /* Bio was allocated by bio_kmalloc() */ 237 kfree(bio); 238 } 239 } 240 241 /* 242 * Users of this function have their own bio allocation. Subsequently, 243 * they must remember to pair any call to bio_init() with bio_uninit() 244 * when IO has completed, or when the bio is released. 245 */ 246 void bio_init(struct bio *bio, struct bio_vec *table, 247 unsigned short max_vecs) 248 { 249 memset(bio, 0, sizeof(*bio)); 250 atomic_set(&bio->__bi_remaining, 1); 251 atomic_set(&bio->__bi_cnt, 1); 252 253 bio->bi_io_vec = table; 254 bio->bi_max_vecs = max_vecs; 255 } 256 EXPORT_SYMBOL(bio_init); 257 258 unsigned int bio_max_size(struct bio *bio) 259 { 260 struct block_device *bdev = bio->bi_bdev; 261 262 return bdev ? bdev->bd_disk->queue->limits.bio_max_bytes : UINT_MAX; 263 } 264 265 /** 266 * bio_reset - reinitialize a bio 267 * @bio: bio to reset 268 * 269 * Description: 270 * After calling bio_reset(), @bio will be in the same state as a freshly 271 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 272 * preserved are the ones that are initialized by bio_alloc_bioset(). See 273 * comment in struct bio. 274 */ 275 void bio_reset(struct bio *bio) 276 { 277 bio_uninit(bio); 278 memset(bio, 0, BIO_RESET_BYTES); 279 atomic_set(&bio->__bi_remaining, 1); 280 } 281 EXPORT_SYMBOL(bio_reset); 282 283 static struct bio *__bio_chain_endio(struct bio *bio) 284 { 285 struct bio *parent = bio->bi_private; 286 287 if (bio->bi_status && !parent->bi_status) 288 parent->bi_status = bio->bi_status; 289 bio_put(bio); 290 return parent; 291 } 292 293 static void bio_chain_endio(struct bio *bio) 294 { 295 bio_endio(__bio_chain_endio(bio)); 296 } 297 298 /** 299 * bio_chain - chain bio completions 300 * @bio: the target bio 301 * @parent: the parent bio of @bio 302 * 303 * The caller won't have a bi_end_io called when @bio completes - instead, 304 * @parent's bi_end_io won't be called until both @parent and @bio have 305 * completed; the chained bio will also be freed when it completes. 306 * 307 * The caller must not set bi_private or bi_end_io in @bio. 308 */ 309 void bio_chain(struct bio *bio, struct bio *parent) 310 { 311 BUG_ON(bio->bi_private || bio->bi_end_io); 312 313 bio->bi_private = parent; 314 bio->bi_end_io = bio_chain_endio; 315 bio_inc_remaining(parent); 316 } 317 EXPORT_SYMBOL(bio_chain); 318 319 static void bio_alloc_rescue(struct work_struct *work) 320 { 321 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 322 struct bio *bio; 323 324 while (1) { 325 spin_lock(&bs->rescue_lock); 326 bio = bio_list_pop(&bs->rescue_list); 327 spin_unlock(&bs->rescue_lock); 328 329 if (!bio) 330 break; 331 332 submit_bio_noacct(bio); 333 } 334 } 335 336 static void punt_bios_to_rescuer(struct bio_set *bs) 337 { 338 struct bio_list punt, nopunt; 339 struct bio *bio; 340 341 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 342 return; 343 /* 344 * In order to guarantee forward progress we must punt only bios that 345 * were allocated from this bio_set; otherwise, if there was a bio on 346 * there for a stacking driver higher up in the stack, processing it 347 * could require allocating bios from this bio_set, and doing that from 348 * our own rescuer would be bad. 349 * 350 * Since bio lists are singly linked, pop them all instead of trying to 351 * remove from the middle of the list: 352 */ 353 354 bio_list_init(&punt); 355 bio_list_init(&nopunt); 356 357 while ((bio = bio_list_pop(¤t->bio_list[0]))) 358 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 359 current->bio_list[0] = nopunt; 360 361 bio_list_init(&nopunt); 362 while ((bio = bio_list_pop(¤t->bio_list[1]))) 363 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 364 current->bio_list[1] = nopunt; 365 366 spin_lock(&bs->rescue_lock); 367 bio_list_merge(&bs->rescue_list, &punt); 368 spin_unlock(&bs->rescue_lock); 369 370 queue_work(bs->rescue_workqueue, &bs->rescue_work); 371 } 372 373 /** 374 * bio_alloc_bioset - allocate a bio for I/O 375 * @gfp_mask: the GFP_* mask given to the slab allocator 376 * @nr_iovecs: number of iovecs to pre-allocate 377 * @bs: the bio_set to allocate from. 378 * 379 * Allocate a bio from the mempools in @bs. 380 * 381 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 382 * allocate a bio. This is due to the mempool guarantees. To make this work, 383 * callers must never allocate more than 1 bio at a time from the general pool. 384 * Callers that need to allocate more than 1 bio must always submit the 385 * previously allocated bio for IO before attempting to allocate a new one. 386 * Failure to do so can cause deadlocks under memory pressure. 387 * 388 * Note that when running under submit_bio_noacct() (i.e. any block driver), 389 * bios are not submitted until after you return - see the code in 390 * submit_bio_noacct() that converts recursion into iteration, to prevent 391 * stack overflows. 392 * 393 * This would normally mean allocating multiple bios under submit_bio_noacct() 394 * would be susceptible to deadlocks, but we have 395 * deadlock avoidance code that resubmits any blocked bios from a rescuer 396 * thread. 397 * 398 * However, we do not guarantee forward progress for allocations from other 399 * mempools. Doing multiple allocations from the same mempool under 400 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 401 * for per bio allocations. 402 * 403 * Returns: Pointer to new bio on success, NULL on failure. 404 */ 405 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs, 406 struct bio_set *bs) 407 { 408 gfp_t saved_gfp = gfp_mask; 409 struct bio *bio; 410 void *p; 411 412 /* should not use nobvec bioset for nr_iovecs > 0 */ 413 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0)) 414 return NULL; 415 416 /* 417 * submit_bio_noacct() converts recursion to iteration; this means if 418 * we're running beneath it, any bios we allocate and submit will not be 419 * submitted (and thus freed) until after we return. 420 * 421 * This exposes us to a potential deadlock if we allocate multiple bios 422 * from the same bio_set() while running underneath submit_bio_noacct(). 423 * If we were to allocate multiple bios (say a stacking block driver 424 * that was splitting bios), we would deadlock if we exhausted the 425 * mempool's reserve. 426 * 427 * We solve this, and guarantee forward progress, with a rescuer 428 * workqueue per bio_set. If we go to allocate and there are bios on 429 * current->bio_list, we first try the allocation without 430 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 431 * blocking to the rescuer workqueue before we retry with the original 432 * gfp_flags. 433 */ 434 if (current->bio_list && 435 (!bio_list_empty(¤t->bio_list[0]) || 436 !bio_list_empty(¤t->bio_list[1])) && 437 bs->rescue_workqueue) 438 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 439 440 p = mempool_alloc(&bs->bio_pool, gfp_mask); 441 if (!p && gfp_mask != saved_gfp) { 442 punt_bios_to_rescuer(bs); 443 gfp_mask = saved_gfp; 444 p = mempool_alloc(&bs->bio_pool, gfp_mask); 445 } 446 if (unlikely(!p)) 447 return NULL; 448 449 bio = p + bs->front_pad; 450 if (nr_iovecs > BIO_INLINE_VECS) { 451 struct bio_vec *bvl = NULL; 452 453 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); 454 if (!bvl && gfp_mask != saved_gfp) { 455 punt_bios_to_rescuer(bs); 456 gfp_mask = saved_gfp; 457 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); 458 } 459 if (unlikely(!bvl)) 460 goto err_free; 461 462 bio_init(bio, bvl, nr_iovecs); 463 } else if (nr_iovecs) { 464 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS); 465 } else { 466 bio_init(bio, NULL, 0); 467 } 468 469 bio->bi_pool = bs; 470 return bio; 471 472 err_free: 473 mempool_free(p, &bs->bio_pool); 474 return NULL; 475 } 476 EXPORT_SYMBOL(bio_alloc_bioset); 477 478 /** 479 * bio_kmalloc - kmalloc a bio for I/O 480 * @gfp_mask: the GFP_* mask given to the slab allocator 481 * @nr_iovecs: number of iovecs to pre-allocate 482 * 483 * Use kmalloc to allocate and initialize a bio. 484 * 485 * Returns: Pointer to new bio on success, NULL on failure. 486 */ 487 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs) 488 { 489 struct bio *bio; 490 491 if (nr_iovecs > UIO_MAXIOV) 492 return NULL; 493 494 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask); 495 if (unlikely(!bio)) 496 return NULL; 497 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs); 498 bio->bi_pool = NULL; 499 return bio; 500 } 501 EXPORT_SYMBOL(bio_kmalloc); 502 503 void zero_fill_bio(struct bio *bio) 504 { 505 unsigned long flags; 506 struct bio_vec bv; 507 struct bvec_iter iter; 508 509 bio_for_each_segment(bv, bio, iter) { 510 char *data = bvec_kmap_irq(&bv, &flags); 511 memset(data, 0, bv.bv_len); 512 flush_dcache_page(bv.bv_page); 513 bvec_kunmap_irq(data, &flags); 514 } 515 } 516 EXPORT_SYMBOL(zero_fill_bio); 517 518 /** 519 * bio_truncate - truncate the bio to small size of @new_size 520 * @bio: the bio to be truncated 521 * @new_size: new size for truncating the bio 522 * 523 * Description: 524 * Truncate the bio to new size of @new_size. If bio_op(bio) is 525 * REQ_OP_READ, zero the truncated part. This function should only 526 * be used for handling corner cases, such as bio eod. 527 */ 528 void bio_truncate(struct bio *bio, unsigned new_size) 529 { 530 struct bio_vec bv; 531 struct bvec_iter iter; 532 unsigned int done = 0; 533 bool truncated = false; 534 535 if (new_size >= bio->bi_iter.bi_size) 536 return; 537 538 if (bio_op(bio) != REQ_OP_READ) 539 goto exit; 540 541 bio_for_each_segment(bv, bio, iter) { 542 if (done + bv.bv_len > new_size) { 543 unsigned offset; 544 545 if (!truncated) 546 offset = new_size - done; 547 else 548 offset = 0; 549 zero_user(bv.bv_page, offset, bv.bv_len - offset); 550 truncated = true; 551 } 552 done += bv.bv_len; 553 } 554 555 exit: 556 /* 557 * Don't touch bvec table here and make it really immutable, since 558 * fs bio user has to retrieve all pages via bio_for_each_segment_all 559 * in its .end_bio() callback. 560 * 561 * It is enough to truncate bio by updating .bi_size since we can make 562 * correct bvec with the updated .bi_size for drivers. 563 */ 564 bio->bi_iter.bi_size = new_size; 565 } 566 567 /** 568 * guard_bio_eod - truncate a BIO to fit the block device 569 * @bio: bio to truncate 570 * 571 * This allows us to do IO even on the odd last sectors of a device, even if the 572 * block size is some multiple of the physical sector size. 573 * 574 * We'll just truncate the bio to the size of the device, and clear the end of 575 * the buffer head manually. Truly out-of-range accesses will turn into actual 576 * I/O errors, this only handles the "we need to be able to do I/O at the final 577 * sector" case. 578 */ 579 void guard_bio_eod(struct bio *bio) 580 { 581 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 582 583 if (!maxsector) 584 return; 585 586 /* 587 * If the *whole* IO is past the end of the device, 588 * let it through, and the IO layer will turn it into 589 * an EIO. 590 */ 591 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 592 return; 593 594 maxsector -= bio->bi_iter.bi_sector; 595 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 596 return; 597 598 bio_truncate(bio, maxsector << 9); 599 } 600 601 /** 602 * bio_put - release a reference to a bio 603 * @bio: bio to release reference to 604 * 605 * Description: 606 * Put a reference to a &struct bio, either one you have gotten with 607 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 608 **/ 609 void bio_put(struct bio *bio) 610 { 611 if (!bio_flagged(bio, BIO_REFFED)) 612 bio_free(bio); 613 else { 614 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 615 616 /* 617 * last put frees it 618 */ 619 if (atomic_dec_and_test(&bio->__bi_cnt)) 620 bio_free(bio); 621 } 622 } 623 EXPORT_SYMBOL(bio_put); 624 625 /** 626 * __bio_clone_fast - clone a bio that shares the original bio's biovec 627 * @bio: destination bio 628 * @bio_src: bio to clone 629 * 630 * Clone a &bio. Caller will own the returned bio, but not 631 * the actual data it points to. Reference count of returned 632 * bio will be one. 633 * 634 * Caller must ensure that @bio_src is not freed before @bio. 635 */ 636 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 637 { 638 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs); 639 640 /* 641 * most users will be overriding ->bi_bdev with a new target, 642 * so we don't set nor calculate new physical/hw segment counts here 643 */ 644 bio->bi_bdev = bio_src->bi_bdev; 645 bio_set_flag(bio, BIO_CLONED); 646 if (bio_flagged(bio_src, BIO_THROTTLED)) 647 bio_set_flag(bio, BIO_THROTTLED); 648 if (bio_flagged(bio_src, BIO_REMAPPED)) 649 bio_set_flag(bio, BIO_REMAPPED); 650 bio->bi_opf = bio_src->bi_opf; 651 bio->bi_ioprio = bio_src->bi_ioprio; 652 bio->bi_write_hint = bio_src->bi_write_hint; 653 bio->bi_iter = bio_src->bi_iter; 654 bio->bi_io_vec = bio_src->bi_io_vec; 655 656 bio_clone_blkg_association(bio, bio_src); 657 blkcg_bio_issue_init(bio); 658 } 659 EXPORT_SYMBOL(__bio_clone_fast); 660 661 /** 662 * bio_clone_fast - clone a bio that shares the original bio's biovec 663 * @bio: bio to clone 664 * @gfp_mask: allocation priority 665 * @bs: bio_set to allocate from 666 * 667 * Like __bio_clone_fast, only also allocates the returned bio 668 */ 669 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 670 { 671 struct bio *b; 672 673 b = bio_alloc_bioset(gfp_mask, 0, bs); 674 if (!b) 675 return NULL; 676 677 __bio_clone_fast(b, bio); 678 679 if (bio_crypt_clone(b, bio, gfp_mask) < 0) 680 goto err_put; 681 682 if (bio_integrity(bio) && 683 bio_integrity_clone(b, bio, gfp_mask) < 0) 684 goto err_put; 685 686 return b; 687 688 err_put: 689 bio_put(b); 690 return NULL; 691 } 692 EXPORT_SYMBOL(bio_clone_fast); 693 694 const char *bio_devname(struct bio *bio, char *buf) 695 { 696 return bdevname(bio->bi_bdev, buf); 697 } 698 EXPORT_SYMBOL(bio_devname); 699 700 static inline bool page_is_mergeable(const struct bio_vec *bv, 701 struct page *page, unsigned int len, unsigned int off, 702 bool *same_page) 703 { 704 size_t bv_end = bv->bv_offset + bv->bv_len; 705 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 706 phys_addr_t page_addr = page_to_phys(page); 707 708 if (vec_end_addr + 1 != page_addr + off) 709 return false; 710 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 711 return false; 712 713 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 714 if (*same_page) 715 return true; 716 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); 717 } 718 719 /* 720 * Try to merge a page into a segment, while obeying the hardware segment 721 * size limit. This is not for normal read/write bios, but for passthrough 722 * or Zone Append operations that we can't split. 723 */ 724 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 725 struct page *page, unsigned len, 726 unsigned offset, bool *same_page) 727 { 728 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 729 unsigned long mask = queue_segment_boundary(q); 730 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 731 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 732 733 if ((addr1 | mask) != (addr2 | mask)) 734 return false; 735 if (bv->bv_len + len > queue_max_segment_size(q)) 736 return false; 737 return __bio_try_merge_page(bio, page, len, offset, same_page); 738 } 739 740 /** 741 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 742 * @q: the target queue 743 * @bio: destination bio 744 * @page: page to add 745 * @len: vec entry length 746 * @offset: vec entry offset 747 * @max_sectors: maximum number of sectors that can be added 748 * @same_page: return if the segment has been merged inside the same page 749 * 750 * Add a page to a bio while respecting the hardware max_sectors, max_segment 751 * and gap limitations. 752 */ 753 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 754 struct page *page, unsigned int len, unsigned int offset, 755 unsigned int max_sectors, bool *same_page) 756 { 757 struct bio_vec *bvec; 758 759 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 760 return 0; 761 762 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 763 return 0; 764 765 if (bio->bi_vcnt > 0) { 766 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 767 return len; 768 769 /* 770 * If the queue doesn't support SG gaps and adding this segment 771 * would create a gap, disallow it. 772 */ 773 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 774 if (bvec_gap_to_prev(q, bvec, offset)) 775 return 0; 776 } 777 778 if (bio_full(bio, len)) 779 return 0; 780 781 if (bio->bi_vcnt >= queue_max_segments(q)) 782 return 0; 783 784 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 785 bvec->bv_page = page; 786 bvec->bv_len = len; 787 bvec->bv_offset = offset; 788 bio->bi_vcnt++; 789 bio->bi_iter.bi_size += len; 790 return len; 791 } 792 793 /** 794 * bio_add_pc_page - attempt to add page to passthrough bio 795 * @q: the target queue 796 * @bio: destination bio 797 * @page: page to add 798 * @len: vec entry length 799 * @offset: vec entry offset 800 * 801 * Attempt to add a page to the bio_vec maplist. This can fail for a 802 * number of reasons, such as the bio being full or target block device 803 * limitations. The target block device must allow bio's up to PAGE_SIZE, 804 * so it is always possible to add a single page to an empty bio. 805 * 806 * This should only be used by passthrough bios. 807 */ 808 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 809 struct page *page, unsigned int len, unsigned int offset) 810 { 811 bool same_page = false; 812 return bio_add_hw_page(q, bio, page, len, offset, 813 queue_max_hw_sectors(q), &same_page); 814 } 815 EXPORT_SYMBOL(bio_add_pc_page); 816 817 /** 818 * bio_add_zone_append_page - attempt to add page to zone-append bio 819 * @bio: destination bio 820 * @page: page to add 821 * @len: vec entry length 822 * @offset: vec entry offset 823 * 824 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 825 * for a zone-append request. This can fail for a number of reasons, such as the 826 * bio being full or the target block device is not a zoned block device or 827 * other limitations of the target block device. The target block device must 828 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 829 * to an empty bio. 830 * 831 * Returns: number of bytes added to the bio, or 0 in case of a failure. 832 */ 833 int bio_add_zone_append_page(struct bio *bio, struct page *page, 834 unsigned int len, unsigned int offset) 835 { 836 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 837 bool same_page = false; 838 839 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 840 return 0; 841 842 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 843 return 0; 844 845 return bio_add_hw_page(q, bio, page, len, offset, 846 queue_max_zone_append_sectors(q), &same_page); 847 } 848 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 849 850 /** 851 * __bio_try_merge_page - try appending data to an existing bvec. 852 * @bio: destination bio 853 * @page: start page to add 854 * @len: length of the data to add 855 * @off: offset of the data relative to @page 856 * @same_page: return if the segment has been merged inside the same page 857 * 858 * Try to add the data at @page + @off to the last bvec of @bio. This is a 859 * useful optimisation for file systems with a block size smaller than the 860 * page size. 861 * 862 * Warn if (@len, @off) crosses pages in case that @same_page is true. 863 * 864 * Return %true on success or %false on failure. 865 */ 866 bool __bio_try_merge_page(struct bio *bio, struct page *page, 867 unsigned int len, unsigned int off, bool *same_page) 868 { 869 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 870 return false; 871 872 if (bio->bi_vcnt > 0) { 873 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 874 875 if (page_is_mergeable(bv, page, len, off, same_page)) { 876 if (bio->bi_iter.bi_size > bio_max_size(bio) - len) { 877 *same_page = false; 878 return false; 879 } 880 bv->bv_len += len; 881 bio->bi_iter.bi_size += len; 882 return true; 883 } 884 } 885 return false; 886 } 887 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 888 889 /** 890 * __bio_add_page - add page(s) to a bio in a new segment 891 * @bio: destination bio 892 * @page: start page to add 893 * @len: length of the data to add, may cross pages 894 * @off: offset of the data relative to @page, may cross pages 895 * 896 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 897 * that @bio has space for another bvec. 898 */ 899 void __bio_add_page(struct bio *bio, struct page *page, 900 unsigned int len, unsigned int off) 901 { 902 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 903 904 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 905 WARN_ON_ONCE(bio_full(bio, len)); 906 907 bv->bv_page = page; 908 bv->bv_offset = off; 909 bv->bv_len = len; 910 911 bio->bi_iter.bi_size += len; 912 bio->bi_vcnt++; 913 914 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 915 bio_set_flag(bio, BIO_WORKINGSET); 916 } 917 EXPORT_SYMBOL_GPL(__bio_add_page); 918 919 /** 920 * bio_add_page - attempt to add page(s) to bio 921 * @bio: destination bio 922 * @page: start page to add 923 * @len: vec entry length, may cross pages 924 * @offset: vec entry offset relative to @page, may cross pages 925 * 926 * Attempt to add page(s) to the bio_vec maplist. This will only fail 927 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 928 */ 929 int bio_add_page(struct bio *bio, struct page *page, 930 unsigned int len, unsigned int offset) 931 { 932 bool same_page = false; 933 934 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 935 if (bio_full(bio, len)) 936 return 0; 937 __bio_add_page(bio, page, len, offset); 938 } 939 return len; 940 } 941 EXPORT_SYMBOL(bio_add_page); 942 943 void bio_release_pages(struct bio *bio, bool mark_dirty) 944 { 945 struct bvec_iter_all iter_all; 946 struct bio_vec *bvec; 947 948 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 949 return; 950 951 bio_for_each_segment_all(bvec, bio, iter_all) { 952 if (mark_dirty && !PageCompound(bvec->bv_page)) 953 set_page_dirty_lock(bvec->bv_page); 954 put_page(bvec->bv_page); 955 } 956 } 957 EXPORT_SYMBOL_GPL(bio_release_pages); 958 959 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 960 { 961 WARN_ON_ONCE(bio->bi_max_vecs); 962 963 bio->bi_vcnt = iter->nr_segs; 964 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 965 bio->bi_iter.bi_bvec_done = iter->iov_offset; 966 bio->bi_iter.bi_size = iter->count; 967 bio_set_flag(bio, BIO_NO_PAGE_REF); 968 bio_set_flag(bio, BIO_CLONED); 969 } 970 971 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 972 { 973 __bio_iov_bvec_set(bio, iter); 974 iov_iter_advance(iter, iter->count); 975 return 0; 976 } 977 978 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter) 979 { 980 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 981 struct iov_iter i = *iter; 982 983 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9); 984 __bio_iov_bvec_set(bio, &i); 985 iov_iter_advance(iter, i.count); 986 return 0; 987 } 988 989 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 990 991 /** 992 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 993 * @bio: bio to add pages to 994 * @iter: iov iterator describing the region to be mapped 995 * 996 * Pins pages from *iter and appends them to @bio's bvec array. The 997 * pages will have to be released using put_page() when done. 998 * For multi-segment *iter, this function only adds pages from the 999 * next non-empty segment of the iov iterator. 1000 */ 1001 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1002 { 1003 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1004 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1005 unsigned int bytes_left = bio_max_size(bio) - bio->bi_iter.bi_size; 1006 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1007 struct page **pages = (struct page **)bv; 1008 bool same_page = false; 1009 ssize_t size, left; 1010 unsigned len, i; 1011 size_t offset; 1012 1013 /* 1014 * Move page array up in the allocated memory for the bio vecs as far as 1015 * possible so that we can start filling biovecs from the beginning 1016 * without overwriting the temporary page array. 1017 */ 1018 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1019 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1020 1021 size = iov_iter_get_pages(iter, pages, bytes_left, nr_pages, 1022 &offset); 1023 if (unlikely(size <= 0)) 1024 return size ? size : -EFAULT; 1025 1026 for (left = size, i = 0; left > 0; left -= len, i++) { 1027 struct page *page = pages[i]; 1028 1029 len = min_t(size_t, PAGE_SIZE - offset, left); 1030 1031 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1032 if (same_page) 1033 put_page(page); 1034 } else { 1035 if (WARN_ON_ONCE(bio_full(bio, len))) 1036 return -EINVAL; 1037 __bio_add_page(bio, page, len, offset); 1038 } 1039 offset = 0; 1040 } 1041 1042 iov_iter_advance(iter, size); 1043 return 0; 1044 } 1045 1046 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) 1047 { 1048 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1049 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1050 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 1051 unsigned int max_append_sectors = queue_max_zone_append_sectors(q); 1052 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1053 struct page **pages = (struct page **)bv; 1054 ssize_t size, left; 1055 unsigned len, i; 1056 size_t offset; 1057 int ret = 0; 1058 1059 if (WARN_ON_ONCE(!max_append_sectors)) 1060 return 0; 1061 1062 /* 1063 * Move page array up in the allocated memory for the bio vecs as far as 1064 * possible so that we can start filling biovecs from the beginning 1065 * without overwriting the temporary page array. 1066 */ 1067 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1068 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1069 1070 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1071 if (unlikely(size <= 0)) 1072 return size ? size : -EFAULT; 1073 1074 for (left = size, i = 0; left > 0; left -= len, i++) { 1075 struct page *page = pages[i]; 1076 bool same_page = false; 1077 1078 len = min_t(size_t, PAGE_SIZE - offset, left); 1079 if (bio_add_hw_page(q, bio, page, len, offset, 1080 max_append_sectors, &same_page) != len) { 1081 ret = -EINVAL; 1082 break; 1083 } 1084 if (same_page) 1085 put_page(page); 1086 offset = 0; 1087 } 1088 1089 iov_iter_advance(iter, size - left); 1090 return ret; 1091 } 1092 1093 /** 1094 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1095 * @bio: bio to add pages to 1096 * @iter: iov iterator describing the region to be added 1097 * 1098 * This takes either an iterator pointing to user memory, or one pointing to 1099 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1100 * map them into the kernel. On IO completion, the caller should put those 1101 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1102 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1103 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1104 * completed by a call to ->ki_complete() or returns with an error other than 1105 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1106 * on IO completion. If it isn't, then pages should be released. 1107 * 1108 * The function tries, but does not guarantee, to pin as many pages as 1109 * fit into the bio, or are requested in @iter, whatever is smaller. If 1110 * MM encounters an error pinning the requested pages, it stops. Error 1111 * is returned only if 0 pages could be pinned. 1112 * 1113 * It's intended for direct IO, so doesn't do PSI tracking, the caller is 1114 * responsible for setting BIO_WORKINGSET if necessary. 1115 */ 1116 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1117 { 1118 int ret = 0; 1119 1120 if (iov_iter_is_bvec(iter)) { 1121 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1122 return bio_iov_bvec_set_append(bio, iter); 1123 return bio_iov_bvec_set(bio, iter); 1124 } 1125 1126 do { 1127 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1128 ret = __bio_iov_append_get_pages(bio, iter); 1129 else 1130 ret = __bio_iov_iter_get_pages(bio, iter); 1131 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1132 1133 /* don't account direct I/O as memory stall */ 1134 bio_clear_flag(bio, BIO_WORKINGSET); 1135 return bio->bi_vcnt ? 0 : ret; 1136 } 1137 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1138 1139 static void submit_bio_wait_endio(struct bio *bio) 1140 { 1141 complete(bio->bi_private); 1142 } 1143 1144 /** 1145 * submit_bio_wait - submit a bio, and wait until it completes 1146 * @bio: The &struct bio which describes the I/O 1147 * 1148 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1149 * bio_endio() on failure. 1150 * 1151 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1152 * result in bio reference to be consumed. The caller must drop the reference 1153 * on his own. 1154 */ 1155 int submit_bio_wait(struct bio *bio) 1156 { 1157 DECLARE_COMPLETION_ONSTACK_MAP(done, 1158 bio->bi_bdev->bd_disk->lockdep_map); 1159 unsigned long hang_check; 1160 1161 bio->bi_private = &done; 1162 bio->bi_end_io = submit_bio_wait_endio; 1163 bio->bi_opf |= REQ_SYNC; 1164 submit_bio(bio); 1165 1166 /* Prevent hang_check timer from firing at us during very long I/O */ 1167 hang_check = sysctl_hung_task_timeout_secs; 1168 if (hang_check) 1169 while (!wait_for_completion_io_timeout(&done, 1170 hang_check * (HZ/2))) 1171 ; 1172 else 1173 wait_for_completion_io(&done); 1174 1175 return blk_status_to_errno(bio->bi_status); 1176 } 1177 EXPORT_SYMBOL(submit_bio_wait); 1178 1179 /** 1180 * bio_advance - increment/complete a bio by some number of bytes 1181 * @bio: bio to advance 1182 * @bytes: number of bytes to complete 1183 * 1184 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 1185 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 1186 * be updated on the last bvec as well. 1187 * 1188 * @bio will then represent the remaining, uncompleted portion of the io. 1189 */ 1190 void bio_advance(struct bio *bio, unsigned bytes) 1191 { 1192 if (bio_integrity(bio)) 1193 bio_integrity_advance(bio, bytes); 1194 1195 bio_crypt_advance(bio, bytes); 1196 bio_advance_iter(bio, &bio->bi_iter, bytes); 1197 } 1198 EXPORT_SYMBOL(bio_advance); 1199 1200 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1201 struct bio *src, struct bvec_iter *src_iter) 1202 { 1203 struct bio_vec src_bv, dst_bv; 1204 void *src_p, *dst_p; 1205 unsigned bytes; 1206 1207 while (src_iter->bi_size && dst_iter->bi_size) { 1208 src_bv = bio_iter_iovec(src, *src_iter); 1209 dst_bv = bio_iter_iovec(dst, *dst_iter); 1210 1211 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1212 1213 src_p = kmap_atomic(src_bv.bv_page); 1214 dst_p = kmap_atomic(dst_bv.bv_page); 1215 1216 memcpy(dst_p + dst_bv.bv_offset, 1217 src_p + src_bv.bv_offset, 1218 bytes); 1219 1220 kunmap_atomic(dst_p); 1221 kunmap_atomic(src_p); 1222 1223 flush_dcache_page(dst_bv.bv_page); 1224 1225 bio_advance_iter_single(src, src_iter, bytes); 1226 bio_advance_iter_single(dst, dst_iter, bytes); 1227 } 1228 } 1229 EXPORT_SYMBOL(bio_copy_data_iter); 1230 1231 /** 1232 * bio_copy_data - copy contents of data buffers from one bio to another 1233 * @src: source bio 1234 * @dst: destination bio 1235 * 1236 * Stops when it reaches the end of either @src or @dst - that is, copies 1237 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1238 */ 1239 void bio_copy_data(struct bio *dst, struct bio *src) 1240 { 1241 struct bvec_iter src_iter = src->bi_iter; 1242 struct bvec_iter dst_iter = dst->bi_iter; 1243 1244 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1245 } 1246 EXPORT_SYMBOL(bio_copy_data); 1247 1248 void bio_free_pages(struct bio *bio) 1249 { 1250 struct bio_vec *bvec; 1251 struct bvec_iter_all iter_all; 1252 1253 bio_for_each_segment_all(bvec, bio, iter_all) 1254 __free_page(bvec->bv_page); 1255 } 1256 EXPORT_SYMBOL(bio_free_pages); 1257 1258 /* 1259 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1260 * for performing direct-IO in BIOs. 1261 * 1262 * The problem is that we cannot run set_page_dirty() from interrupt context 1263 * because the required locks are not interrupt-safe. So what we can do is to 1264 * mark the pages dirty _before_ performing IO. And in interrupt context, 1265 * check that the pages are still dirty. If so, fine. If not, redirty them 1266 * in process context. 1267 * 1268 * We special-case compound pages here: normally this means reads into hugetlb 1269 * pages. The logic in here doesn't really work right for compound pages 1270 * because the VM does not uniformly chase down the head page in all cases. 1271 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1272 * handle them at all. So we skip compound pages here at an early stage. 1273 * 1274 * Note that this code is very hard to test under normal circumstances because 1275 * direct-io pins the pages with get_user_pages(). This makes 1276 * is_page_cache_freeable return false, and the VM will not clean the pages. 1277 * But other code (eg, flusher threads) could clean the pages if they are mapped 1278 * pagecache. 1279 * 1280 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1281 * deferred bio dirtying paths. 1282 */ 1283 1284 /* 1285 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1286 */ 1287 void bio_set_pages_dirty(struct bio *bio) 1288 { 1289 struct bio_vec *bvec; 1290 struct bvec_iter_all iter_all; 1291 1292 bio_for_each_segment_all(bvec, bio, iter_all) { 1293 if (!PageCompound(bvec->bv_page)) 1294 set_page_dirty_lock(bvec->bv_page); 1295 } 1296 } 1297 1298 /* 1299 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1300 * If they are, then fine. If, however, some pages are clean then they must 1301 * have been written out during the direct-IO read. So we take another ref on 1302 * the BIO and re-dirty the pages in process context. 1303 * 1304 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1305 * here on. It will run one put_page() against each page and will run one 1306 * bio_put() against the BIO. 1307 */ 1308 1309 static void bio_dirty_fn(struct work_struct *work); 1310 1311 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1312 static DEFINE_SPINLOCK(bio_dirty_lock); 1313 static struct bio *bio_dirty_list; 1314 1315 /* 1316 * This runs in process context 1317 */ 1318 static void bio_dirty_fn(struct work_struct *work) 1319 { 1320 struct bio *bio, *next; 1321 1322 spin_lock_irq(&bio_dirty_lock); 1323 next = bio_dirty_list; 1324 bio_dirty_list = NULL; 1325 spin_unlock_irq(&bio_dirty_lock); 1326 1327 while ((bio = next) != NULL) { 1328 next = bio->bi_private; 1329 1330 bio_release_pages(bio, true); 1331 bio_put(bio); 1332 } 1333 } 1334 1335 void bio_check_pages_dirty(struct bio *bio) 1336 { 1337 struct bio_vec *bvec; 1338 unsigned long flags; 1339 struct bvec_iter_all iter_all; 1340 1341 bio_for_each_segment_all(bvec, bio, iter_all) { 1342 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1343 goto defer; 1344 } 1345 1346 bio_release_pages(bio, false); 1347 bio_put(bio); 1348 return; 1349 defer: 1350 spin_lock_irqsave(&bio_dirty_lock, flags); 1351 bio->bi_private = bio_dirty_list; 1352 bio_dirty_list = bio; 1353 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1354 schedule_work(&bio_dirty_work); 1355 } 1356 1357 static inline bool bio_remaining_done(struct bio *bio) 1358 { 1359 /* 1360 * If we're not chaining, then ->__bi_remaining is always 1 and 1361 * we always end io on the first invocation. 1362 */ 1363 if (!bio_flagged(bio, BIO_CHAIN)) 1364 return true; 1365 1366 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1367 1368 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1369 bio_clear_flag(bio, BIO_CHAIN); 1370 return true; 1371 } 1372 1373 return false; 1374 } 1375 1376 /** 1377 * bio_endio - end I/O on a bio 1378 * @bio: bio 1379 * 1380 * Description: 1381 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1382 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1383 * bio unless they own it and thus know that it has an end_io function. 1384 * 1385 * bio_endio() can be called several times on a bio that has been chained 1386 * using bio_chain(). The ->bi_end_io() function will only be called the 1387 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1388 * generated if BIO_TRACE_COMPLETION is set. 1389 **/ 1390 void bio_endio(struct bio *bio) 1391 { 1392 again: 1393 if (!bio_remaining_done(bio)) 1394 return; 1395 if (!bio_integrity_endio(bio)) 1396 return; 1397 1398 if (bio->bi_bdev) 1399 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio); 1400 1401 /* 1402 * Need to have a real endio function for chained bios, otherwise 1403 * various corner cases will break (like stacking block devices that 1404 * save/restore bi_end_io) - however, we want to avoid unbounded 1405 * recursion and blowing the stack. Tail call optimization would 1406 * handle this, but compiling with frame pointers also disables 1407 * gcc's sibling call optimization. 1408 */ 1409 if (bio->bi_end_io == bio_chain_endio) { 1410 bio = __bio_chain_endio(bio); 1411 goto again; 1412 } 1413 1414 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1415 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio); 1416 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1417 } 1418 1419 blk_throtl_bio_endio(bio); 1420 /* release cgroup info */ 1421 bio_uninit(bio); 1422 if (bio->bi_end_io) 1423 bio->bi_end_io(bio); 1424 } 1425 EXPORT_SYMBOL(bio_endio); 1426 1427 /** 1428 * bio_split - split a bio 1429 * @bio: bio to split 1430 * @sectors: number of sectors to split from the front of @bio 1431 * @gfp: gfp mask 1432 * @bs: bio set to allocate from 1433 * 1434 * Allocates and returns a new bio which represents @sectors from the start of 1435 * @bio, and updates @bio to represent the remaining sectors. 1436 * 1437 * Unless this is a discard request the newly allocated bio will point 1438 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1439 * neither @bio nor @bs are freed before the split bio. 1440 */ 1441 struct bio *bio_split(struct bio *bio, int sectors, 1442 gfp_t gfp, struct bio_set *bs) 1443 { 1444 struct bio *split; 1445 1446 BUG_ON(sectors <= 0); 1447 BUG_ON(sectors >= bio_sectors(bio)); 1448 1449 /* Zone append commands cannot be split */ 1450 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1451 return NULL; 1452 1453 split = bio_clone_fast(bio, gfp, bs); 1454 if (!split) 1455 return NULL; 1456 1457 split->bi_iter.bi_size = sectors << 9; 1458 1459 if (bio_integrity(split)) 1460 bio_integrity_trim(split); 1461 1462 bio_advance(bio, split->bi_iter.bi_size); 1463 1464 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1465 bio_set_flag(split, BIO_TRACE_COMPLETION); 1466 1467 return split; 1468 } 1469 EXPORT_SYMBOL(bio_split); 1470 1471 /** 1472 * bio_trim - trim a bio 1473 * @bio: bio to trim 1474 * @offset: number of sectors to trim from the front of @bio 1475 * @size: size we want to trim @bio to, in sectors 1476 */ 1477 void bio_trim(struct bio *bio, int offset, int size) 1478 { 1479 /* 'bio' is a cloned bio which we need to trim to match 1480 * the given offset and size. 1481 */ 1482 1483 size <<= 9; 1484 if (offset == 0 && size == bio->bi_iter.bi_size) 1485 return; 1486 1487 bio_advance(bio, offset << 9); 1488 bio->bi_iter.bi_size = size; 1489 1490 if (bio_integrity(bio)) 1491 bio_integrity_trim(bio); 1492 1493 } 1494 EXPORT_SYMBOL_GPL(bio_trim); 1495 1496 /* 1497 * create memory pools for biovec's in a bio_set. 1498 * use the global biovec slabs created for general use. 1499 */ 1500 int biovec_init_pool(mempool_t *pool, int pool_entries) 1501 { 1502 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1503 1504 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1505 } 1506 1507 /* 1508 * bioset_exit - exit a bioset initialized with bioset_init() 1509 * 1510 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1511 * kzalloc()). 1512 */ 1513 void bioset_exit(struct bio_set *bs) 1514 { 1515 if (bs->rescue_workqueue) 1516 destroy_workqueue(bs->rescue_workqueue); 1517 bs->rescue_workqueue = NULL; 1518 1519 mempool_exit(&bs->bio_pool); 1520 mempool_exit(&bs->bvec_pool); 1521 1522 bioset_integrity_free(bs); 1523 if (bs->bio_slab) 1524 bio_put_slab(bs); 1525 bs->bio_slab = NULL; 1526 } 1527 EXPORT_SYMBOL(bioset_exit); 1528 1529 /** 1530 * bioset_init - Initialize a bio_set 1531 * @bs: pool to initialize 1532 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1533 * @front_pad: Number of bytes to allocate in front of the returned bio 1534 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1535 * and %BIOSET_NEED_RESCUER 1536 * 1537 * Description: 1538 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1539 * to ask for a number of bytes to be allocated in front of the bio. 1540 * Front pad allocation is useful for embedding the bio inside 1541 * another structure, to avoid allocating extra data to go with the bio. 1542 * Note that the bio must be embedded at the END of that structure always, 1543 * or things will break badly. 1544 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1545 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1546 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1547 * dispatch queued requests when the mempool runs out of space. 1548 * 1549 */ 1550 int bioset_init(struct bio_set *bs, 1551 unsigned int pool_size, 1552 unsigned int front_pad, 1553 int flags) 1554 { 1555 bs->front_pad = front_pad; 1556 if (flags & BIOSET_NEED_BVECS) 1557 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1558 else 1559 bs->back_pad = 0; 1560 1561 spin_lock_init(&bs->rescue_lock); 1562 bio_list_init(&bs->rescue_list); 1563 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1564 1565 bs->bio_slab = bio_find_or_create_slab(bs); 1566 if (!bs->bio_slab) 1567 return -ENOMEM; 1568 1569 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1570 goto bad; 1571 1572 if ((flags & BIOSET_NEED_BVECS) && 1573 biovec_init_pool(&bs->bvec_pool, pool_size)) 1574 goto bad; 1575 1576 if (!(flags & BIOSET_NEED_RESCUER)) 1577 return 0; 1578 1579 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1580 if (!bs->rescue_workqueue) 1581 goto bad; 1582 1583 return 0; 1584 bad: 1585 bioset_exit(bs); 1586 return -ENOMEM; 1587 } 1588 EXPORT_SYMBOL(bioset_init); 1589 1590 /* 1591 * Initialize and setup a new bio_set, based on the settings from 1592 * another bio_set. 1593 */ 1594 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1595 { 1596 int flags; 1597 1598 flags = 0; 1599 if (src->bvec_pool.min_nr) 1600 flags |= BIOSET_NEED_BVECS; 1601 if (src->rescue_workqueue) 1602 flags |= BIOSET_NEED_RESCUER; 1603 1604 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1605 } 1606 EXPORT_SYMBOL(bioset_init_from_src); 1607 1608 static int __init init_bio(void) 1609 { 1610 int i; 1611 1612 bio_integrity_init(); 1613 1614 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1615 struct biovec_slab *bvs = bvec_slabs + i; 1616 1617 bvs->slab = kmem_cache_create(bvs->name, 1618 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1619 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1620 } 1621 1622 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 1623 panic("bio: can't allocate bios\n"); 1624 1625 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1626 panic("bio: can't create integrity pool\n"); 1627 1628 return 0; 1629 } 1630 subsys_initcall(init_bio); 1631