1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 #include <linux/sched/sysctl.h> 21 22 #include <trace/events/block.h> 23 #include "blk.h" 24 #include "blk-rq-qos.h" 25 26 /* 27 * Test patch to inline a certain number of bi_io_vec's inside the bio 28 * itself, to shrink a bio data allocation from two mempool calls to one 29 */ 30 #define BIO_INLINE_VECS 4 31 32 /* 33 * if you change this list, also change bvec_alloc or things will 34 * break badly! cannot be bigger than what you can fit into an 35 * unsigned short 36 */ 37 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 38 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 39 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 40 }; 41 #undef BV 42 43 /* 44 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 45 * IO code that does not need private memory pools. 46 */ 47 struct bio_set fs_bio_set; 48 EXPORT_SYMBOL(fs_bio_set); 49 50 /* 51 * Our slab pool management 52 */ 53 struct bio_slab { 54 struct kmem_cache *slab; 55 unsigned int slab_ref; 56 unsigned int slab_size; 57 char name[8]; 58 }; 59 static DEFINE_MUTEX(bio_slab_lock); 60 static struct bio_slab *bio_slabs; 61 static unsigned int bio_slab_nr, bio_slab_max; 62 63 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 64 { 65 unsigned int sz = sizeof(struct bio) + extra_size; 66 struct kmem_cache *slab = NULL; 67 struct bio_slab *bslab, *new_bio_slabs; 68 unsigned int new_bio_slab_max; 69 unsigned int i, entry = -1; 70 71 mutex_lock(&bio_slab_lock); 72 73 i = 0; 74 while (i < bio_slab_nr) { 75 bslab = &bio_slabs[i]; 76 77 if (!bslab->slab && entry == -1) 78 entry = i; 79 else if (bslab->slab_size == sz) { 80 slab = bslab->slab; 81 bslab->slab_ref++; 82 break; 83 } 84 i++; 85 } 86 87 if (slab) 88 goto out_unlock; 89 90 if (bio_slab_nr == bio_slab_max && entry == -1) { 91 new_bio_slab_max = bio_slab_max << 1; 92 new_bio_slabs = krealloc(bio_slabs, 93 new_bio_slab_max * sizeof(struct bio_slab), 94 GFP_KERNEL); 95 if (!new_bio_slabs) 96 goto out_unlock; 97 bio_slab_max = new_bio_slab_max; 98 bio_slabs = new_bio_slabs; 99 } 100 if (entry == -1) 101 entry = bio_slab_nr++; 102 103 bslab = &bio_slabs[entry]; 104 105 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 106 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 107 SLAB_HWCACHE_ALIGN, NULL); 108 if (!slab) 109 goto out_unlock; 110 111 bslab->slab = slab; 112 bslab->slab_ref = 1; 113 bslab->slab_size = sz; 114 out_unlock: 115 mutex_unlock(&bio_slab_lock); 116 return slab; 117 } 118 119 static void bio_put_slab(struct bio_set *bs) 120 { 121 struct bio_slab *bslab = NULL; 122 unsigned int i; 123 124 mutex_lock(&bio_slab_lock); 125 126 for (i = 0; i < bio_slab_nr; i++) { 127 if (bs->bio_slab == bio_slabs[i].slab) { 128 bslab = &bio_slabs[i]; 129 break; 130 } 131 } 132 133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 134 goto out; 135 136 WARN_ON(!bslab->slab_ref); 137 138 if (--bslab->slab_ref) 139 goto out; 140 141 kmem_cache_destroy(bslab->slab); 142 bslab->slab = NULL; 143 144 out: 145 mutex_unlock(&bio_slab_lock); 146 } 147 148 unsigned int bvec_nr_vecs(unsigned short idx) 149 { 150 return bvec_slabs[--idx].nr_vecs; 151 } 152 153 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 154 { 155 if (!idx) 156 return; 157 idx--; 158 159 BIO_BUG_ON(idx >= BVEC_POOL_NR); 160 161 if (idx == BVEC_POOL_MAX) { 162 mempool_free(bv, pool); 163 } else { 164 struct biovec_slab *bvs = bvec_slabs + idx; 165 166 kmem_cache_free(bvs->slab, bv); 167 } 168 } 169 170 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 171 mempool_t *pool) 172 { 173 struct bio_vec *bvl; 174 175 /* 176 * see comment near bvec_array define! 177 */ 178 switch (nr) { 179 case 1: 180 *idx = 0; 181 break; 182 case 2 ... 4: 183 *idx = 1; 184 break; 185 case 5 ... 16: 186 *idx = 2; 187 break; 188 case 17 ... 64: 189 *idx = 3; 190 break; 191 case 65 ... 128: 192 *idx = 4; 193 break; 194 case 129 ... BIO_MAX_PAGES: 195 *idx = 5; 196 break; 197 default: 198 return NULL; 199 } 200 201 /* 202 * idx now points to the pool we want to allocate from. only the 203 * 1-vec entry pool is mempool backed. 204 */ 205 if (*idx == BVEC_POOL_MAX) { 206 fallback: 207 bvl = mempool_alloc(pool, gfp_mask); 208 } else { 209 struct biovec_slab *bvs = bvec_slabs + *idx; 210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 211 212 /* 213 * Make this allocation restricted and don't dump info on 214 * allocation failures, since we'll fallback to the mempool 215 * in case of failure. 216 */ 217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 218 219 /* 220 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 221 * is set, retry with the 1-entry mempool 222 */ 223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 224 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 225 *idx = BVEC_POOL_MAX; 226 goto fallback; 227 } 228 } 229 230 (*idx)++; 231 return bvl; 232 } 233 234 void bio_uninit(struct bio *bio) 235 { 236 bio_disassociate_blkg(bio); 237 238 if (bio_integrity(bio)) 239 bio_integrity_free(bio); 240 } 241 EXPORT_SYMBOL(bio_uninit); 242 243 static void bio_free(struct bio *bio) 244 { 245 struct bio_set *bs = bio->bi_pool; 246 void *p; 247 248 bio_uninit(bio); 249 250 if (bs) { 251 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 252 253 /* 254 * If we have front padding, adjust the bio pointer before freeing 255 */ 256 p = bio; 257 p -= bs->front_pad; 258 259 mempool_free(p, &bs->bio_pool); 260 } else { 261 /* Bio was allocated by bio_kmalloc() */ 262 kfree(bio); 263 } 264 } 265 266 /* 267 * Users of this function have their own bio allocation. Subsequently, 268 * they must remember to pair any call to bio_init() with bio_uninit() 269 * when IO has completed, or when the bio is released. 270 */ 271 void bio_init(struct bio *bio, struct bio_vec *table, 272 unsigned short max_vecs) 273 { 274 memset(bio, 0, sizeof(*bio)); 275 atomic_set(&bio->__bi_remaining, 1); 276 atomic_set(&bio->__bi_cnt, 1); 277 278 bio->bi_io_vec = table; 279 bio->bi_max_vecs = max_vecs; 280 } 281 EXPORT_SYMBOL(bio_init); 282 283 /** 284 * bio_reset - reinitialize a bio 285 * @bio: bio to reset 286 * 287 * Description: 288 * After calling bio_reset(), @bio will be in the same state as a freshly 289 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 290 * preserved are the ones that are initialized by bio_alloc_bioset(). See 291 * comment in struct bio. 292 */ 293 void bio_reset(struct bio *bio) 294 { 295 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 296 297 bio_uninit(bio); 298 299 memset(bio, 0, BIO_RESET_BYTES); 300 bio->bi_flags = flags; 301 atomic_set(&bio->__bi_remaining, 1); 302 } 303 EXPORT_SYMBOL(bio_reset); 304 305 static struct bio *__bio_chain_endio(struct bio *bio) 306 { 307 struct bio *parent = bio->bi_private; 308 309 if (!parent->bi_status) 310 parent->bi_status = bio->bi_status; 311 bio_put(bio); 312 return parent; 313 } 314 315 static void bio_chain_endio(struct bio *bio) 316 { 317 bio_endio(__bio_chain_endio(bio)); 318 } 319 320 /** 321 * bio_chain - chain bio completions 322 * @bio: the target bio 323 * @parent: the @bio's parent bio 324 * 325 * The caller won't have a bi_end_io called when @bio completes - instead, 326 * @parent's bi_end_io won't be called until both @parent and @bio have 327 * completed; the chained bio will also be freed when it completes. 328 * 329 * The caller must not set bi_private or bi_end_io in @bio. 330 */ 331 void bio_chain(struct bio *bio, struct bio *parent) 332 { 333 BUG_ON(bio->bi_private || bio->bi_end_io); 334 335 bio->bi_private = parent; 336 bio->bi_end_io = bio_chain_endio; 337 bio_inc_remaining(parent); 338 } 339 EXPORT_SYMBOL(bio_chain); 340 341 static void bio_alloc_rescue(struct work_struct *work) 342 { 343 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 344 struct bio *bio; 345 346 while (1) { 347 spin_lock(&bs->rescue_lock); 348 bio = bio_list_pop(&bs->rescue_list); 349 spin_unlock(&bs->rescue_lock); 350 351 if (!bio) 352 break; 353 354 generic_make_request(bio); 355 } 356 } 357 358 static void punt_bios_to_rescuer(struct bio_set *bs) 359 { 360 struct bio_list punt, nopunt; 361 struct bio *bio; 362 363 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 364 return; 365 /* 366 * In order to guarantee forward progress we must punt only bios that 367 * were allocated from this bio_set; otherwise, if there was a bio on 368 * there for a stacking driver higher up in the stack, processing it 369 * could require allocating bios from this bio_set, and doing that from 370 * our own rescuer would be bad. 371 * 372 * Since bio lists are singly linked, pop them all instead of trying to 373 * remove from the middle of the list: 374 */ 375 376 bio_list_init(&punt); 377 bio_list_init(&nopunt); 378 379 while ((bio = bio_list_pop(¤t->bio_list[0]))) 380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 381 current->bio_list[0] = nopunt; 382 383 bio_list_init(&nopunt); 384 while ((bio = bio_list_pop(¤t->bio_list[1]))) 385 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 386 current->bio_list[1] = nopunt; 387 388 spin_lock(&bs->rescue_lock); 389 bio_list_merge(&bs->rescue_list, &punt); 390 spin_unlock(&bs->rescue_lock); 391 392 queue_work(bs->rescue_workqueue, &bs->rescue_work); 393 } 394 395 /** 396 * bio_alloc_bioset - allocate a bio for I/O 397 * @gfp_mask: the GFP_* mask given to the slab allocator 398 * @nr_iovecs: number of iovecs to pre-allocate 399 * @bs: the bio_set to allocate from. 400 * 401 * Description: 402 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 403 * backed by the @bs's mempool. 404 * 405 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 406 * always be able to allocate a bio. This is due to the mempool guarantees. 407 * To make this work, callers must never allocate more than 1 bio at a time 408 * from this pool. Callers that need to allocate more than 1 bio must always 409 * submit the previously allocated bio for IO before attempting to allocate 410 * a new one. Failure to do so can cause deadlocks under memory pressure. 411 * 412 * Note that when running under generic_make_request() (i.e. any block 413 * driver), bios are not submitted until after you return - see the code in 414 * generic_make_request() that converts recursion into iteration, to prevent 415 * stack overflows. 416 * 417 * This would normally mean allocating multiple bios under 418 * generic_make_request() would be susceptible to deadlocks, but we have 419 * deadlock avoidance code that resubmits any blocked bios from a rescuer 420 * thread. 421 * 422 * However, we do not guarantee forward progress for allocations from other 423 * mempools. Doing multiple allocations from the same mempool under 424 * generic_make_request() should be avoided - instead, use bio_set's front_pad 425 * for per bio allocations. 426 * 427 * RETURNS: 428 * Pointer to new bio on success, NULL on failure. 429 */ 430 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 431 struct bio_set *bs) 432 { 433 gfp_t saved_gfp = gfp_mask; 434 unsigned front_pad; 435 unsigned inline_vecs; 436 struct bio_vec *bvl = NULL; 437 struct bio *bio; 438 void *p; 439 440 if (!bs) { 441 if (nr_iovecs > UIO_MAXIOV) 442 return NULL; 443 444 p = kmalloc(sizeof(struct bio) + 445 nr_iovecs * sizeof(struct bio_vec), 446 gfp_mask); 447 front_pad = 0; 448 inline_vecs = nr_iovecs; 449 } else { 450 /* should not use nobvec bioset for nr_iovecs > 0 */ 451 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 452 nr_iovecs > 0)) 453 return NULL; 454 /* 455 * generic_make_request() converts recursion to iteration; this 456 * means if we're running beneath it, any bios we allocate and 457 * submit will not be submitted (and thus freed) until after we 458 * return. 459 * 460 * This exposes us to a potential deadlock if we allocate 461 * multiple bios from the same bio_set() while running 462 * underneath generic_make_request(). If we were to allocate 463 * multiple bios (say a stacking block driver that was splitting 464 * bios), we would deadlock if we exhausted the mempool's 465 * reserve. 466 * 467 * We solve this, and guarantee forward progress, with a rescuer 468 * workqueue per bio_set. If we go to allocate and there are 469 * bios on current->bio_list, we first try the allocation 470 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 471 * bios we would be blocking to the rescuer workqueue before 472 * we retry with the original gfp_flags. 473 */ 474 475 if (current->bio_list && 476 (!bio_list_empty(¤t->bio_list[0]) || 477 !bio_list_empty(¤t->bio_list[1])) && 478 bs->rescue_workqueue) 479 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 480 481 p = mempool_alloc(&bs->bio_pool, gfp_mask); 482 if (!p && gfp_mask != saved_gfp) { 483 punt_bios_to_rescuer(bs); 484 gfp_mask = saved_gfp; 485 p = mempool_alloc(&bs->bio_pool, gfp_mask); 486 } 487 488 front_pad = bs->front_pad; 489 inline_vecs = BIO_INLINE_VECS; 490 } 491 492 if (unlikely(!p)) 493 return NULL; 494 495 bio = p + front_pad; 496 bio_init(bio, NULL, 0); 497 498 if (nr_iovecs > inline_vecs) { 499 unsigned long idx = 0; 500 501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 502 if (!bvl && gfp_mask != saved_gfp) { 503 punt_bios_to_rescuer(bs); 504 gfp_mask = saved_gfp; 505 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 506 } 507 508 if (unlikely(!bvl)) 509 goto err_free; 510 511 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 512 } else if (nr_iovecs) { 513 bvl = bio->bi_inline_vecs; 514 } 515 516 bio->bi_pool = bs; 517 bio->bi_max_vecs = nr_iovecs; 518 bio->bi_io_vec = bvl; 519 return bio; 520 521 err_free: 522 mempool_free(p, &bs->bio_pool); 523 return NULL; 524 } 525 EXPORT_SYMBOL(bio_alloc_bioset); 526 527 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 528 { 529 unsigned long flags; 530 struct bio_vec bv; 531 struct bvec_iter iter; 532 533 __bio_for_each_segment(bv, bio, iter, start) { 534 char *data = bvec_kmap_irq(&bv, &flags); 535 memset(data, 0, bv.bv_len); 536 flush_dcache_page(bv.bv_page); 537 bvec_kunmap_irq(data, &flags); 538 } 539 } 540 EXPORT_SYMBOL(zero_fill_bio_iter); 541 542 /** 543 * bio_truncate - truncate the bio to small size of @new_size 544 * @bio: the bio to be truncated 545 * @new_size: new size for truncating the bio 546 * 547 * Description: 548 * Truncate the bio to new size of @new_size. If bio_op(bio) is 549 * REQ_OP_READ, zero the truncated part. This function should only 550 * be used for handling corner cases, such as bio eod. 551 */ 552 void bio_truncate(struct bio *bio, unsigned new_size) 553 { 554 struct bio_vec bv; 555 struct bvec_iter iter; 556 unsigned int done = 0; 557 bool truncated = false; 558 559 if (new_size >= bio->bi_iter.bi_size) 560 return; 561 562 if (bio_op(bio) != REQ_OP_READ) 563 goto exit; 564 565 bio_for_each_segment(bv, bio, iter) { 566 if (done + bv.bv_len > new_size) { 567 unsigned offset; 568 569 if (!truncated) 570 offset = new_size - done; 571 else 572 offset = 0; 573 zero_user(bv.bv_page, offset, bv.bv_len - offset); 574 truncated = true; 575 } 576 done += bv.bv_len; 577 } 578 579 exit: 580 /* 581 * Don't touch bvec table here and make it really immutable, since 582 * fs bio user has to retrieve all pages via bio_for_each_segment_all 583 * in its .end_bio() callback. 584 * 585 * It is enough to truncate bio by updating .bi_size since we can make 586 * correct bvec with the updated .bi_size for drivers. 587 */ 588 bio->bi_iter.bi_size = new_size; 589 } 590 591 /** 592 * guard_bio_eod - truncate a BIO to fit the block device 593 * @bio: bio to truncate 594 * 595 * This allows us to do IO even on the odd last sectors of a device, even if the 596 * block size is some multiple of the physical sector size. 597 * 598 * We'll just truncate the bio to the size of the device, and clear the end of 599 * the buffer head manually. Truly out-of-range accesses will turn into actual 600 * I/O errors, this only handles the "we need to be able to do I/O at the final 601 * sector" case. 602 */ 603 void guard_bio_eod(struct bio *bio) 604 { 605 sector_t maxsector; 606 struct hd_struct *part; 607 608 rcu_read_lock(); 609 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 610 if (part) 611 maxsector = part_nr_sects_read(part); 612 else 613 maxsector = get_capacity(bio->bi_disk); 614 rcu_read_unlock(); 615 616 if (!maxsector) 617 return; 618 619 /* 620 * If the *whole* IO is past the end of the device, 621 * let it through, and the IO layer will turn it into 622 * an EIO. 623 */ 624 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 625 return; 626 627 maxsector -= bio->bi_iter.bi_sector; 628 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 629 return; 630 631 bio_truncate(bio, maxsector << 9); 632 } 633 634 /** 635 * bio_put - release a reference to a bio 636 * @bio: bio to release reference to 637 * 638 * Description: 639 * Put a reference to a &struct bio, either one you have gotten with 640 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 641 **/ 642 void bio_put(struct bio *bio) 643 { 644 if (!bio_flagged(bio, BIO_REFFED)) 645 bio_free(bio); 646 else { 647 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 648 649 /* 650 * last put frees it 651 */ 652 if (atomic_dec_and_test(&bio->__bi_cnt)) 653 bio_free(bio); 654 } 655 } 656 EXPORT_SYMBOL(bio_put); 657 658 /** 659 * __bio_clone_fast - clone a bio that shares the original bio's biovec 660 * @bio: destination bio 661 * @bio_src: bio to clone 662 * 663 * Clone a &bio. Caller will own the returned bio, but not 664 * the actual data it points to. Reference count of returned 665 * bio will be one. 666 * 667 * Caller must ensure that @bio_src is not freed before @bio. 668 */ 669 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 670 { 671 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 672 673 /* 674 * most users will be overriding ->bi_disk with a new target, 675 * so we don't set nor calculate new physical/hw segment counts here 676 */ 677 bio->bi_disk = bio_src->bi_disk; 678 bio->bi_partno = bio_src->bi_partno; 679 bio_set_flag(bio, BIO_CLONED); 680 if (bio_flagged(bio_src, BIO_THROTTLED)) 681 bio_set_flag(bio, BIO_THROTTLED); 682 bio->bi_opf = bio_src->bi_opf; 683 bio->bi_ioprio = bio_src->bi_ioprio; 684 bio->bi_write_hint = bio_src->bi_write_hint; 685 bio->bi_iter = bio_src->bi_iter; 686 bio->bi_io_vec = bio_src->bi_io_vec; 687 688 bio_clone_blkg_association(bio, bio_src); 689 blkcg_bio_issue_init(bio); 690 } 691 EXPORT_SYMBOL(__bio_clone_fast); 692 693 /** 694 * bio_clone_fast - clone a bio that shares the original bio's biovec 695 * @bio: bio to clone 696 * @gfp_mask: allocation priority 697 * @bs: bio_set to allocate from 698 * 699 * Like __bio_clone_fast, only also allocates the returned bio 700 */ 701 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 702 { 703 struct bio *b; 704 705 b = bio_alloc_bioset(gfp_mask, 0, bs); 706 if (!b) 707 return NULL; 708 709 __bio_clone_fast(b, bio); 710 711 if (bio_integrity(bio)) { 712 int ret; 713 714 ret = bio_integrity_clone(b, bio, gfp_mask); 715 716 if (ret < 0) { 717 bio_put(b); 718 return NULL; 719 } 720 } 721 722 return b; 723 } 724 EXPORT_SYMBOL(bio_clone_fast); 725 726 const char *bio_devname(struct bio *bio, char *buf) 727 { 728 return disk_name(bio->bi_disk, bio->bi_partno, buf); 729 } 730 EXPORT_SYMBOL(bio_devname); 731 732 static inline bool page_is_mergeable(const struct bio_vec *bv, 733 struct page *page, unsigned int len, unsigned int off, 734 bool *same_page) 735 { 736 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + 737 bv->bv_offset + bv->bv_len - 1; 738 phys_addr_t page_addr = page_to_phys(page); 739 740 if (vec_end_addr + 1 != page_addr + off) 741 return false; 742 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 743 return false; 744 745 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 746 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) 747 return false; 748 return true; 749 } 750 751 /* 752 * Try to merge a page into a segment, while obeying the hardware segment 753 * size limit. This is not for normal read/write bios, but for passthrough 754 * or Zone Append operations that we can't split. 755 */ 756 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 757 struct page *page, unsigned len, 758 unsigned offset, bool *same_page) 759 { 760 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 761 unsigned long mask = queue_segment_boundary(q); 762 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 763 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 764 765 if ((addr1 | mask) != (addr2 | mask)) 766 return false; 767 if (bv->bv_len + len > queue_max_segment_size(q)) 768 return false; 769 return __bio_try_merge_page(bio, page, len, offset, same_page); 770 } 771 772 /** 773 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 774 * @q: the target queue 775 * @bio: destination bio 776 * @page: page to add 777 * @len: vec entry length 778 * @offset: vec entry offset 779 * @max_sectors: maximum number of sectors that can be added 780 * @same_page: return if the segment has been merged inside the same page 781 * 782 * Add a page to a bio while respecting the hardware max_sectors, max_segment 783 * and gap limitations. 784 */ 785 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 786 struct page *page, unsigned int len, unsigned int offset, 787 unsigned int max_sectors, bool *same_page) 788 { 789 struct bio_vec *bvec; 790 791 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 792 return 0; 793 794 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 795 return 0; 796 797 if (bio->bi_vcnt > 0) { 798 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 799 return len; 800 801 /* 802 * If the queue doesn't support SG gaps and adding this segment 803 * would create a gap, disallow it. 804 */ 805 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 806 if (bvec_gap_to_prev(q, bvec, offset)) 807 return 0; 808 } 809 810 if (bio_full(bio, len)) 811 return 0; 812 813 if (bio->bi_vcnt >= queue_max_segments(q)) 814 return 0; 815 816 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 817 bvec->bv_page = page; 818 bvec->bv_len = len; 819 bvec->bv_offset = offset; 820 bio->bi_vcnt++; 821 bio->bi_iter.bi_size += len; 822 return len; 823 } 824 825 /** 826 * bio_add_pc_page - attempt to add page to passthrough bio 827 * @q: the target queue 828 * @bio: destination bio 829 * @page: page to add 830 * @len: vec entry length 831 * @offset: vec entry offset 832 * 833 * Attempt to add a page to the bio_vec maplist. This can fail for a 834 * number of reasons, such as the bio being full or target block device 835 * limitations. The target block device must allow bio's up to PAGE_SIZE, 836 * so it is always possible to add a single page to an empty bio. 837 * 838 * This should only be used by passthrough bios. 839 */ 840 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 841 struct page *page, unsigned int len, unsigned int offset) 842 { 843 bool same_page = false; 844 return bio_add_hw_page(q, bio, page, len, offset, 845 queue_max_hw_sectors(q), &same_page); 846 } 847 EXPORT_SYMBOL(bio_add_pc_page); 848 849 /** 850 * __bio_try_merge_page - try appending data to an existing bvec. 851 * @bio: destination bio 852 * @page: start page to add 853 * @len: length of the data to add 854 * @off: offset of the data relative to @page 855 * @same_page: return if the segment has been merged inside the same page 856 * 857 * Try to add the data at @page + @off to the last bvec of @bio. This is a 858 * a useful optimisation for file systems with a block size smaller than the 859 * page size. 860 * 861 * Warn if (@len, @off) crosses pages in case that @same_page is true. 862 * 863 * Return %true on success or %false on failure. 864 */ 865 bool __bio_try_merge_page(struct bio *bio, struct page *page, 866 unsigned int len, unsigned int off, bool *same_page) 867 { 868 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 869 return false; 870 871 if (bio->bi_vcnt > 0) { 872 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 873 874 if (page_is_mergeable(bv, page, len, off, same_page)) { 875 if (bio->bi_iter.bi_size > UINT_MAX - len) 876 return false; 877 bv->bv_len += len; 878 bio->bi_iter.bi_size += len; 879 return true; 880 } 881 } 882 return false; 883 } 884 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 885 886 /** 887 * __bio_add_page - add page(s) to a bio in a new segment 888 * @bio: destination bio 889 * @page: start page to add 890 * @len: length of the data to add, may cross pages 891 * @off: offset of the data relative to @page, may cross pages 892 * 893 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 894 * that @bio has space for another bvec. 895 */ 896 void __bio_add_page(struct bio *bio, struct page *page, 897 unsigned int len, unsigned int off) 898 { 899 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 900 901 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 902 WARN_ON_ONCE(bio_full(bio, len)); 903 904 bv->bv_page = page; 905 bv->bv_offset = off; 906 bv->bv_len = len; 907 908 bio->bi_iter.bi_size += len; 909 bio->bi_vcnt++; 910 911 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 912 bio_set_flag(bio, BIO_WORKINGSET); 913 } 914 EXPORT_SYMBOL_GPL(__bio_add_page); 915 916 /** 917 * bio_add_page - attempt to add page(s) to bio 918 * @bio: destination bio 919 * @page: start page to add 920 * @len: vec entry length, may cross pages 921 * @offset: vec entry offset relative to @page, may cross pages 922 * 923 * Attempt to add page(s) to the bio_vec maplist. This will only fail 924 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 925 */ 926 int bio_add_page(struct bio *bio, struct page *page, 927 unsigned int len, unsigned int offset) 928 { 929 bool same_page = false; 930 931 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 932 if (bio_full(bio, len)) 933 return 0; 934 __bio_add_page(bio, page, len, offset); 935 } 936 return len; 937 } 938 EXPORT_SYMBOL(bio_add_page); 939 940 void bio_release_pages(struct bio *bio, bool mark_dirty) 941 { 942 struct bvec_iter_all iter_all; 943 struct bio_vec *bvec; 944 945 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 946 return; 947 948 bio_for_each_segment_all(bvec, bio, iter_all) { 949 if (mark_dirty && !PageCompound(bvec->bv_page)) 950 set_page_dirty_lock(bvec->bv_page); 951 put_page(bvec->bv_page); 952 } 953 } 954 EXPORT_SYMBOL_GPL(bio_release_pages); 955 956 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) 957 { 958 const struct bio_vec *bv = iter->bvec; 959 unsigned int len; 960 size_t size; 961 962 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) 963 return -EINVAL; 964 965 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); 966 size = bio_add_page(bio, bv->bv_page, len, 967 bv->bv_offset + iter->iov_offset); 968 if (unlikely(size != len)) 969 return -EINVAL; 970 iov_iter_advance(iter, size); 971 return 0; 972 } 973 974 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 975 976 /** 977 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 978 * @bio: bio to add pages to 979 * @iter: iov iterator describing the region to be mapped 980 * 981 * Pins pages from *iter and appends them to @bio's bvec array. The 982 * pages will have to be released using put_page() when done. 983 * For multi-segment *iter, this function only adds pages from the 984 * the next non-empty segment of the iov iterator. 985 */ 986 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 987 { 988 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 989 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 990 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 991 struct page **pages = (struct page **)bv; 992 bool same_page = false; 993 ssize_t size, left; 994 unsigned len, i; 995 size_t offset; 996 997 /* 998 * Move page array up in the allocated memory for the bio vecs as far as 999 * possible so that we can start filling biovecs from the beginning 1000 * without overwriting the temporary page array. 1001 */ 1002 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1003 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1004 1005 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1006 if (unlikely(size <= 0)) 1007 return size ? size : -EFAULT; 1008 1009 for (left = size, i = 0; left > 0; left -= len, i++) { 1010 struct page *page = pages[i]; 1011 1012 len = min_t(size_t, PAGE_SIZE - offset, left); 1013 1014 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1015 if (same_page) 1016 put_page(page); 1017 } else { 1018 if (WARN_ON_ONCE(bio_full(bio, len))) 1019 return -EINVAL; 1020 __bio_add_page(bio, page, len, offset); 1021 } 1022 offset = 0; 1023 } 1024 1025 iov_iter_advance(iter, size); 1026 return 0; 1027 } 1028 1029 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) 1030 { 1031 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1032 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1033 struct request_queue *q = bio->bi_disk->queue; 1034 unsigned int max_append_sectors = queue_max_zone_append_sectors(q); 1035 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1036 struct page **pages = (struct page **)bv; 1037 ssize_t size, left; 1038 unsigned len, i; 1039 size_t offset; 1040 1041 if (WARN_ON_ONCE(!max_append_sectors)) 1042 return 0; 1043 1044 /* 1045 * Move page array up in the allocated memory for the bio vecs as far as 1046 * possible so that we can start filling biovecs from the beginning 1047 * without overwriting the temporary page array. 1048 */ 1049 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1050 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1051 1052 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1053 if (unlikely(size <= 0)) 1054 return size ? size : -EFAULT; 1055 1056 for (left = size, i = 0; left > 0; left -= len, i++) { 1057 struct page *page = pages[i]; 1058 bool same_page = false; 1059 1060 len = min_t(size_t, PAGE_SIZE - offset, left); 1061 if (bio_add_hw_page(q, bio, page, len, offset, 1062 max_append_sectors, &same_page) != len) 1063 return -EINVAL; 1064 if (same_page) 1065 put_page(page); 1066 offset = 0; 1067 } 1068 1069 iov_iter_advance(iter, size); 1070 return 0; 1071 } 1072 1073 /** 1074 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1075 * @bio: bio to add pages to 1076 * @iter: iov iterator describing the region to be added 1077 * 1078 * This takes either an iterator pointing to user memory, or one pointing to 1079 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1080 * map them into the kernel. On IO completion, the caller should put those 1081 * pages. If we're adding kernel pages, and the caller told us it's safe to 1082 * do so, we just have to add the pages to the bio directly. We don't grab an 1083 * extra reference to those pages (the user should already have that), and we 1084 * don't put the page on IO completion. The caller needs to check if the bio is 1085 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be 1086 * released. 1087 * 1088 * The function tries, but does not guarantee, to pin as many pages as 1089 * fit into the bio, or are requested in *iter, whatever is smaller. If 1090 * MM encounters an error pinning the requested pages, it stops. Error 1091 * is returned only if 0 pages could be pinned. 1092 */ 1093 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1094 { 1095 const bool is_bvec = iov_iter_is_bvec(iter); 1096 int ret; 1097 1098 if (WARN_ON_ONCE(bio->bi_vcnt)) 1099 return -EINVAL; 1100 1101 do { 1102 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1103 if (WARN_ON_ONCE(is_bvec)) 1104 return -EINVAL; 1105 ret = __bio_iov_append_get_pages(bio, iter); 1106 } else { 1107 if (is_bvec) 1108 ret = __bio_iov_bvec_add_pages(bio, iter); 1109 else 1110 ret = __bio_iov_iter_get_pages(bio, iter); 1111 } 1112 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1113 1114 if (is_bvec) 1115 bio_set_flag(bio, BIO_NO_PAGE_REF); 1116 return bio->bi_vcnt ? 0 : ret; 1117 } 1118 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1119 1120 static void submit_bio_wait_endio(struct bio *bio) 1121 { 1122 complete(bio->bi_private); 1123 } 1124 1125 /** 1126 * submit_bio_wait - submit a bio, and wait until it completes 1127 * @bio: The &struct bio which describes the I/O 1128 * 1129 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1130 * bio_endio() on failure. 1131 * 1132 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1133 * result in bio reference to be consumed. The caller must drop the reference 1134 * on his own. 1135 */ 1136 int submit_bio_wait(struct bio *bio) 1137 { 1138 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 1139 unsigned long hang_check; 1140 1141 bio->bi_private = &done; 1142 bio->bi_end_io = submit_bio_wait_endio; 1143 bio->bi_opf |= REQ_SYNC; 1144 submit_bio(bio); 1145 1146 /* Prevent hang_check timer from firing at us during very long I/O */ 1147 hang_check = sysctl_hung_task_timeout_secs; 1148 if (hang_check) 1149 while (!wait_for_completion_io_timeout(&done, 1150 hang_check * (HZ/2))) 1151 ; 1152 else 1153 wait_for_completion_io(&done); 1154 1155 return blk_status_to_errno(bio->bi_status); 1156 } 1157 EXPORT_SYMBOL(submit_bio_wait); 1158 1159 /** 1160 * bio_advance - increment/complete a bio by some number of bytes 1161 * @bio: bio to advance 1162 * @bytes: number of bytes to complete 1163 * 1164 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 1165 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 1166 * be updated on the last bvec as well. 1167 * 1168 * @bio will then represent the remaining, uncompleted portion of the io. 1169 */ 1170 void bio_advance(struct bio *bio, unsigned bytes) 1171 { 1172 if (bio_integrity(bio)) 1173 bio_integrity_advance(bio, bytes); 1174 1175 bio_advance_iter(bio, &bio->bi_iter, bytes); 1176 } 1177 EXPORT_SYMBOL(bio_advance); 1178 1179 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1180 struct bio *src, struct bvec_iter *src_iter) 1181 { 1182 struct bio_vec src_bv, dst_bv; 1183 void *src_p, *dst_p; 1184 unsigned bytes; 1185 1186 while (src_iter->bi_size && dst_iter->bi_size) { 1187 src_bv = bio_iter_iovec(src, *src_iter); 1188 dst_bv = bio_iter_iovec(dst, *dst_iter); 1189 1190 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1191 1192 src_p = kmap_atomic(src_bv.bv_page); 1193 dst_p = kmap_atomic(dst_bv.bv_page); 1194 1195 memcpy(dst_p + dst_bv.bv_offset, 1196 src_p + src_bv.bv_offset, 1197 bytes); 1198 1199 kunmap_atomic(dst_p); 1200 kunmap_atomic(src_p); 1201 1202 flush_dcache_page(dst_bv.bv_page); 1203 1204 bio_advance_iter(src, src_iter, bytes); 1205 bio_advance_iter(dst, dst_iter, bytes); 1206 } 1207 } 1208 EXPORT_SYMBOL(bio_copy_data_iter); 1209 1210 /** 1211 * bio_copy_data - copy contents of data buffers from one bio to another 1212 * @src: source bio 1213 * @dst: destination bio 1214 * 1215 * Stops when it reaches the end of either @src or @dst - that is, copies 1216 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1217 */ 1218 void bio_copy_data(struct bio *dst, struct bio *src) 1219 { 1220 struct bvec_iter src_iter = src->bi_iter; 1221 struct bvec_iter dst_iter = dst->bi_iter; 1222 1223 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1224 } 1225 EXPORT_SYMBOL(bio_copy_data); 1226 1227 /** 1228 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1229 * another 1230 * @src: source bio list 1231 * @dst: destination bio list 1232 * 1233 * Stops when it reaches the end of either the @src list or @dst list - that is, 1234 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1235 * bios). 1236 */ 1237 void bio_list_copy_data(struct bio *dst, struct bio *src) 1238 { 1239 struct bvec_iter src_iter = src->bi_iter; 1240 struct bvec_iter dst_iter = dst->bi_iter; 1241 1242 while (1) { 1243 if (!src_iter.bi_size) { 1244 src = src->bi_next; 1245 if (!src) 1246 break; 1247 1248 src_iter = src->bi_iter; 1249 } 1250 1251 if (!dst_iter.bi_size) { 1252 dst = dst->bi_next; 1253 if (!dst) 1254 break; 1255 1256 dst_iter = dst->bi_iter; 1257 } 1258 1259 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1260 } 1261 } 1262 EXPORT_SYMBOL(bio_list_copy_data); 1263 1264 void bio_free_pages(struct bio *bio) 1265 { 1266 struct bio_vec *bvec; 1267 struct bvec_iter_all iter_all; 1268 1269 bio_for_each_segment_all(bvec, bio, iter_all) 1270 __free_page(bvec->bv_page); 1271 } 1272 EXPORT_SYMBOL(bio_free_pages); 1273 1274 /* 1275 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1276 * for performing direct-IO in BIOs. 1277 * 1278 * The problem is that we cannot run set_page_dirty() from interrupt context 1279 * because the required locks are not interrupt-safe. So what we can do is to 1280 * mark the pages dirty _before_ performing IO. And in interrupt context, 1281 * check that the pages are still dirty. If so, fine. If not, redirty them 1282 * in process context. 1283 * 1284 * We special-case compound pages here: normally this means reads into hugetlb 1285 * pages. The logic in here doesn't really work right for compound pages 1286 * because the VM does not uniformly chase down the head page in all cases. 1287 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1288 * handle them at all. So we skip compound pages here at an early stage. 1289 * 1290 * Note that this code is very hard to test under normal circumstances because 1291 * direct-io pins the pages with get_user_pages(). This makes 1292 * is_page_cache_freeable return false, and the VM will not clean the pages. 1293 * But other code (eg, flusher threads) could clean the pages if they are mapped 1294 * pagecache. 1295 * 1296 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1297 * deferred bio dirtying paths. 1298 */ 1299 1300 /* 1301 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1302 */ 1303 void bio_set_pages_dirty(struct bio *bio) 1304 { 1305 struct bio_vec *bvec; 1306 struct bvec_iter_all iter_all; 1307 1308 bio_for_each_segment_all(bvec, bio, iter_all) { 1309 if (!PageCompound(bvec->bv_page)) 1310 set_page_dirty_lock(bvec->bv_page); 1311 } 1312 } 1313 1314 /* 1315 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1316 * If they are, then fine. If, however, some pages are clean then they must 1317 * have been written out during the direct-IO read. So we take another ref on 1318 * the BIO and re-dirty the pages in process context. 1319 * 1320 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1321 * here on. It will run one put_page() against each page and will run one 1322 * bio_put() against the BIO. 1323 */ 1324 1325 static void bio_dirty_fn(struct work_struct *work); 1326 1327 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1328 static DEFINE_SPINLOCK(bio_dirty_lock); 1329 static struct bio *bio_dirty_list; 1330 1331 /* 1332 * This runs in process context 1333 */ 1334 static void bio_dirty_fn(struct work_struct *work) 1335 { 1336 struct bio *bio, *next; 1337 1338 spin_lock_irq(&bio_dirty_lock); 1339 next = bio_dirty_list; 1340 bio_dirty_list = NULL; 1341 spin_unlock_irq(&bio_dirty_lock); 1342 1343 while ((bio = next) != NULL) { 1344 next = bio->bi_private; 1345 1346 bio_release_pages(bio, true); 1347 bio_put(bio); 1348 } 1349 } 1350 1351 void bio_check_pages_dirty(struct bio *bio) 1352 { 1353 struct bio_vec *bvec; 1354 unsigned long flags; 1355 struct bvec_iter_all iter_all; 1356 1357 bio_for_each_segment_all(bvec, bio, iter_all) { 1358 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1359 goto defer; 1360 } 1361 1362 bio_release_pages(bio, false); 1363 bio_put(bio); 1364 return; 1365 defer: 1366 spin_lock_irqsave(&bio_dirty_lock, flags); 1367 bio->bi_private = bio_dirty_list; 1368 bio_dirty_list = bio; 1369 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1370 schedule_work(&bio_dirty_work); 1371 } 1372 1373 void update_io_ticks(struct hd_struct *part, unsigned long now, bool end) 1374 { 1375 unsigned long stamp; 1376 again: 1377 stamp = READ_ONCE(part->stamp); 1378 if (unlikely(stamp != now)) { 1379 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { 1380 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1381 } 1382 } 1383 if (part->partno) { 1384 part = &part_to_disk(part)->part0; 1385 goto again; 1386 } 1387 } 1388 1389 void generic_start_io_acct(struct request_queue *q, int op, 1390 unsigned long sectors, struct hd_struct *part) 1391 { 1392 const int sgrp = op_stat_group(op); 1393 1394 part_stat_lock(); 1395 1396 update_io_ticks(part, jiffies, false); 1397 part_stat_inc(part, ios[sgrp]); 1398 part_stat_add(part, sectors[sgrp], sectors); 1399 part_inc_in_flight(q, part, op_is_write(op)); 1400 1401 part_stat_unlock(); 1402 } 1403 EXPORT_SYMBOL(generic_start_io_acct); 1404 1405 void generic_end_io_acct(struct request_queue *q, int req_op, 1406 struct hd_struct *part, unsigned long start_time) 1407 { 1408 unsigned long now = jiffies; 1409 unsigned long duration = now - start_time; 1410 const int sgrp = op_stat_group(req_op); 1411 1412 part_stat_lock(); 1413 1414 update_io_ticks(part, now, true); 1415 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1416 part_dec_in_flight(q, part, op_is_write(req_op)); 1417 1418 part_stat_unlock(); 1419 } 1420 EXPORT_SYMBOL(generic_end_io_acct); 1421 1422 static inline bool bio_remaining_done(struct bio *bio) 1423 { 1424 /* 1425 * If we're not chaining, then ->__bi_remaining is always 1 and 1426 * we always end io on the first invocation. 1427 */ 1428 if (!bio_flagged(bio, BIO_CHAIN)) 1429 return true; 1430 1431 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1432 1433 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1434 bio_clear_flag(bio, BIO_CHAIN); 1435 return true; 1436 } 1437 1438 return false; 1439 } 1440 1441 /** 1442 * bio_endio - end I/O on a bio 1443 * @bio: bio 1444 * 1445 * Description: 1446 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1447 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1448 * bio unless they own it and thus know that it has an end_io function. 1449 * 1450 * bio_endio() can be called several times on a bio that has been chained 1451 * using bio_chain(). The ->bi_end_io() function will only be called the 1452 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1453 * generated if BIO_TRACE_COMPLETION is set. 1454 **/ 1455 void bio_endio(struct bio *bio) 1456 { 1457 again: 1458 if (!bio_remaining_done(bio)) 1459 return; 1460 if (!bio_integrity_endio(bio)) 1461 return; 1462 1463 if (bio->bi_disk) 1464 rq_qos_done_bio(bio->bi_disk->queue, bio); 1465 1466 /* 1467 * Need to have a real endio function for chained bios, otherwise 1468 * various corner cases will break (like stacking block devices that 1469 * save/restore bi_end_io) - however, we want to avoid unbounded 1470 * recursion and blowing the stack. Tail call optimization would 1471 * handle this, but compiling with frame pointers also disables 1472 * gcc's sibling call optimization. 1473 */ 1474 if (bio->bi_end_io == bio_chain_endio) { 1475 bio = __bio_chain_endio(bio); 1476 goto again; 1477 } 1478 1479 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1480 trace_block_bio_complete(bio->bi_disk->queue, bio, 1481 blk_status_to_errno(bio->bi_status)); 1482 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1483 } 1484 1485 blk_throtl_bio_endio(bio); 1486 /* release cgroup info */ 1487 bio_uninit(bio); 1488 if (bio->bi_end_io) 1489 bio->bi_end_io(bio); 1490 } 1491 EXPORT_SYMBOL(bio_endio); 1492 1493 /** 1494 * bio_split - split a bio 1495 * @bio: bio to split 1496 * @sectors: number of sectors to split from the front of @bio 1497 * @gfp: gfp mask 1498 * @bs: bio set to allocate from 1499 * 1500 * Allocates and returns a new bio which represents @sectors from the start of 1501 * @bio, and updates @bio to represent the remaining sectors. 1502 * 1503 * Unless this is a discard request the newly allocated bio will point 1504 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1505 * neither @bio nor @bs are freed before the split bio. 1506 */ 1507 struct bio *bio_split(struct bio *bio, int sectors, 1508 gfp_t gfp, struct bio_set *bs) 1509 { 1510 struct bio *split; 1511 1512 BUG_ON(sectors <= 0); 1513 BUG_ON(sectors >= bio_sectors(bio)); 1514 1515 /* Zone append commands cannot be split */ 1516 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1517 return NULL; 1518 1519 split = bio_clone_fast(bio, gfp, bs); 1520 if (!split) 1521 return NULL; 1522 1523 split->bi_iter.bi_size = sectors << 9; 1524 1525 if (bio_integrity(split)) 1526 bio_integrity_trim(split); 1527 1528 bio_advance(bio, split->bi_iter.bi_size); 1529 1530 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1531 bio_set_flag(split, BIO_TRACE_COMPLETION); 1532 1533 return split; 1534 } 1535 EXPORT_SYMBOL(bio_split); 1536 1537 /** 1538 * bio_trim - trim a bio 1539 * @bio: bio to trim 1540 * @offset: number of sectors to trim from the front of @bio 1541 * @size: size we want to trim @bio to, in sectors 1542 */ 1543 void bio_trim(struct bio *bio, int offset, int size) 1544 { 1545 /* 'bio' is a cloned bio which we need to trim to match 1546 * the given offset and size. 1547 */ 1548 1549 size <<= 9; 1550 if (offset == 0 && size == bio->bi_iter.bi_size) 1551 return; 1552 1553 bio_advance(bio, offset << 9); 1554 bio->bi_iter.bi_size = size; 1555 1556 if (bio_integrity(bio)) 1557 bio_integrity_trim(bio); 1558 1559 } 1560 EXPORT_SYMBOL_GPL(bio_trim); 1561 1562 /* 1563 * create memory pools for biovec's in a bio_set. 1564 * use the global biovec slabs created for general use. 1565 */ 1566 int biovec_init_pool(mempool_t *pool, int pool_entries) 1567 { 1568 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1569 1570 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1571 } 1572 1573 /* 1574 * bioset_exit - exit a bioset initialized with bioset_init() 1575 * 1576 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1577 * kzalloc()). 1578 */ 1579 void bioset_exit(struct bio_set *bs) 1580 { 1581 if (bs->rescue_workqueue) 1582 destroy_workqueue(bs->rescue_workqueue); 1583 bs->rescue_workqueue = NULL; 1584 1585 mempool_exit(&bs->bio_pool); 1586 mempool_exit(&bs->bvec_pool); 1587 1588 bioset_integrity_free(bs); 1589 if (bs->bio_slab) 1590 bio_put_slab(bs); 1591 bs->bio_slab = NULL; 1592 } 1593 EXPORT_SYMBOL(bioset_exit); 1594 1595 /** 1596 * bioset_init - Initialize a bio_set 1597 * @bs: pool to initialize 1598 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1599 * @front_pad: Number of bytes to allocate in front of the returned bio 1600 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1601 * and %BIOSET_NEED_RESCUER 1602 * 1603 * Description: 1604 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1605 * to ask for a number of bytes to be allocated in front of the bio. 1606 * Front pad allocation is useful for embedding the bio inside 1607 * another structure, to avoid allocating extra data to go with the bio. 1608 * Note that the bio must be embedded at the END of that structure always, 1609 * or things will break badly. 1610 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1611 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1612 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1613 * dispatch queued requests when the mempool runs out of space. 1614 * 1615 */ 1616 int bioset_init(struct bio_set *bs, 1617 unsigned int pool_size, 1618 unsigned int front_pad, 1619 int flags) 1620 { 1621 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1622 1623 bs->front_pad = front_pad; 1624 1625 spin_lock_init(&bs->rescue_lock); 1626 bio_list_init(&bs->rescue_list); 1627 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1628 1629 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1630 if (!bs->bio_slab) 1631 return -ENOMEM; 1632 1633 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1634 goto bad; 1635 1636 if ((flags & BIOSET_NEED_BVECS) && 1637 biovec_init_pool(&bs->bvec_pool, pool_size)) 1638 goto bad; 1639 1640 if (!(flags & BIOSET_NEED_RESCUER)) 1641 return 0; 1642 1643 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1644 if (!bs->rescue_workqueue) 1645 goto bad; 1646 1647 return 0; 1648 bad: 1649 bioset_exit(bs); 1650 return -ENOMEM; 1651 } 1652 EXPORT_SYMBOL(bioset_init); 1653 1654 /* 1655 * Initialize and setup a new bio_set, based on the settings from 1656 * another bio_set. 1657 */ 1658 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1659 { 1660 int flags; 1661 1662 flags = 0; 1663 if (src->bvec_pool.min_nr) 1664 flags |= BIOSET_NEED_BVECS; 1665 if (src->rescue_workqueue) 1666 flags |= BIOSET_NEED_RESCUER; 1667 1668 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1669 } 1670 EXPORT_SYMBOL(bioset_init_from_src); 1671 1672 #ifdef CONFIG_BLK_CGROUP 1673 1674 /** 1675 * bio_disassociate_blkg - puts back the blkg reference if associated 1676 * @bio: target bio 1677 * 1678 * Helper to disassociate the blkg from @bio if a blkg is associated. 1679 */ 1680 void bio_disassociate_blkg(struct bio *bio) 1681 { 1682 if (bio->bi_blkg) { 1683 blkg_put(bio->bi_blkg); 1684 bio->bi_blkg = NULL; 1685 } 1686 } 1687 EXPORT_SYMBOL_GPL(bio_disassociate_blkg); 1688 1689 /** 1690 * __bio_associate_blkg - associate a bio with the a blkg 1691 * @bio: target bio 1692 * @blkg: the blkg to associate 1693 * 1694 * This tries to associate @bio with the specified @blkg. Association failure 1695 * is handled by walking up the blkg tree. Therefore, the blkg associated can 1696 * be anything between @blkg and the root_blkg. This situation only happens 1697 * when a cgroup is dying and then the remaining bios will spill to the closest 1698 * alive blkg. 1699 * 1700 * A reference will be taken on the @blkg and will be released when @bio is 1701 * freed. 1702 */ 1703 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 1704 { 1705 bio_disassociate_blkg(bio); 1706 1707 bio->bi_blkg = blkg_tryget_closest(blkg); 1708 } 1709 1710 /** 1711 * bio_associate_blkg_from_css - associate a bio with a specified css 1712 * @bio: target bio 1713 * @css: target css 1714 * 1715 * Associate @bio with the blkg found by combining the css's blkg and the 1716 * request_queue of the @bio. This falls back to the queue's root_blkg if 1717 * the association fails with the css. 1718 */ 1719 void bio_associate_blkg_from_css(struct bio *bio, 1720 struct cgroup_subsys_state *css) 1721 { 1722 struct request_queue *q = bio->bi_disk->queue; 1723 struct blkcg_gq *blkg; 1724 1725 rcu_read_lock(); 1726 1727 if (!css || !css->parent) 1728 blkg = q->root_blkg; 1729 else 1730 blkg = blkg_lookup_create(css_to_blkcg(css), q); 1731 1732 __bio_associate_blkg(bio, blkg); 1733 1734 rcu_read_unlock(); 1735 } 1736 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1737 1738 #ifdef CONFIG_MEMCG 1739 /** 1740 * bio_associate_blkg_from_page - associate a bio with the page's blkg 1741 * @bio: target bio 1742 * @page: the page to lookup the blkcg from 1743 * 1744 * Associate @bio with the blkg from @page's owning memcg and the respective 1745 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's 1746 * root_blkg. 1747 */ 1748 void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 1749 { 1750 struct cgroup_subsys_state *css; 1751 1752 if (!page->mem_cgroup) 1753 return; 1754 1755 rcu_read_lock(); 1756 1757 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 1758 bio_associate_blkg_from_css(bio, css); 1759 1760 rcu_read_unlock(); 1761 } 1762 #endif /* CONFIG_MEMCG */ 1763 1764 /** 1765 * bio_associate_blkg - associate a bio with a blkg 1766 * @bio: target bio 1767 * 1768 * Associate @bio with the blkg found from the bio's css and request_queue. 1769 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1770 * already associated, the css is reused and association redone as the 1771 * request_queue may have changed. 1772 */ 1773 void bio_associate_blkg(struct bio *bio) 1774 { 1775 struct cgroup_subsys_state *css; 1776 1777 rcu_read_lock(); 1778 1779 if (bio->bi_blkg) 1780 css = &bio_blkcg(bio)->css; 1781 else 1782 css = blkcg_css(); 1783 1784 bio_associate_blkg_from_css(bio, css); 1785 1786 rcu_read_unlock(); 1787 } 1788 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1789 1790 /** 1791 * bio_clone_blkg_association - clone blkg association from src to dst bio 1792 * @dst: destination bio 1793 * @src: source bio 1794 */ 1795 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1796 { 1797 rcu_read_lock(); 1798 1799 if (src->bi_blkg) 1800 __bio_associate_blkg(dst, src->bi_blkg); 1801 1802 rcu_read_unlock(); 1803 } 1804 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1805 #endif /* CONFIG_BLK_CGROUP */ 1806 1807 static void __init biovec_init_slabs(void) 1808 { 1809 int i; 1810 1811 for (i = 0; i < BVEC_POOL_NR; i++) { 1812 int size; 1813 struct biovec_slab *bvs = bvec_slabs + i; 1814 1815 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 1816 bvs->slab = NULL; 1817 continue; 1818 } 1819 1820 size = bvs->nr_vecs * sizeof(struct bio_vec); 1821 bvs->slab = kmem_cache_create(bvs->name, size, 0, 1822 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1823 } 1824 } 1825 1826 static int __init init_bio(void) 1827 { 1828 bio_slab_max = 2; 1829 bio_slab_nr = 0; 1830 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 1831 GFP_KERNEL); 1832 1833 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); 1834 1835 if (!bio_slabs) 1836 panic("bio: can't allocate bios\n"); 1837 1838 bio_integrity_init(); 1839 biovec_init_slabs(); 1840 1841 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 1842 panic("bio: can't allocate bios\n"); 1843 1844 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1845 panic("bio: can't create integrity pool\n"); 1846 1847 return 0; 1848 } 1849 subsys_initcall(init_bio); 1850