1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/blk-crypto.h> 21 #include <linux/xarray.h> 22 23 #include <trace/events/block.h> 24 #include "blk.h" 25 #include "blk-rq-qos.h" 26 #include "blk-cgroup.h" 27 28 struct bio_alloc_cache { 29 struct bio *free_list; 30 unsigned int nr; 31 }; 32 33 static struct biovec_slab { 34 int nr_vecs; 35 char *name; 36 struct kmem_cache *slab; 37 } bvec_slabs[] __read_mostly = { 38 { .nr_vecs = 16, .name = "biovec-16" }, 39 { .nr_vecs = 64, .name = "biovec-64" }, 40 { .nr_vecs = 128, .name = "biovec-128" }, 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 42 }; 43 44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 45 { 46 switch (nr_vecs) { 47 /* smaller bios use inline vecs */ 48 case 5 ... 16: 49 return &bvec_slabs[0]; 50 case 17 ... 64: 51 return &bvec_slabs[1]; 52 case 65 ... 128: 53 return &bvec_slabs[2]; 54 case 129 ... BIO_MAX_VECS: 55 return &bvec_slabs[3]; 56 default: 57 BUG(); 58 return NULL; 59 } 60 } 61 62 /* 63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 64 * IO code that does not need private memory pools. 65 */ 66 struct bio_set fs_bio_set; 67 EXPORT_SYMBOL(fs_bio_set); 68 69 /* 70 * Our slab pool management 71 */ 72 struct bio_slab { 73 struct kmem_cache *slab; 74 unsigned int slab_ref; 75 unsigned int slab_size; 76 char name[8]; 77 }; 78 static DEFINE_MUTEX(bio_slab_lock); 79 static DEFINE_XARRAY(bio_slabs); 80 81 static struct bio_slab *create_bio_slab(unsigned int size) 82 { 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 84 85 if (!bslab) 86 return NULL; 87 88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 89 bslab->slab = kmem_cache_create(bslab->name, size, 90 ARCH_KMALLOC_MINALIGN, 91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 92 if (!bslab->slab) 93 goto fail_alloc_slab; 94 95 bslab->slab_ref = 1; 96 bslab->slab_size = size; 97 98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 99 return bslab; 100 101 kmem_cache_destroy(bslab->slab); 102 103 fail_alloc_slab: 104 kfree(bslab); 105 return NULL; 106 } 107 108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 109 { 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 111 } 112 113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 114 { 115 unsigned int size = bs_bio_slab_size(bs); 116 struct bio_slab *bslab; 117 118 mutex_lock(&bio_slab_lock); 119 bslab = xa_load(&bio_slabs, size); 120 if (bslab) 121 bslab->slab_ref++; 122 else 123 bslab = create_bio_slab(size); 124 mutex_unlock(&bio_slab_lock); 125 126 if (bslab) 127 return bslab->slab; 128 return NULL; 129 } 130 131 static void bio_put_slab(struct bio_set *bs) 132 { 133 struct bio_slab *bslab = NULL; 134 unsigned int slab_size = bs_bio_slab_size(bs); 135 136 mutex_lock(&bio_slab_lock); 137 138 bslab = xa_load(&bio_slabs, slab_size); 139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 140 goto out; 141 142 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 xa_erase(&bio_slabs, slab_size); 150 151 kmem_cache_destroy(bslab->slab); 152 kfree(bslab); 153 154 out: 155 mutex_unlock(&bio_slab_lock); 156 } 157 158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 159 { 160 BUG_ON(nr_vecs > BIO_MAX_VECS); 161 162 if (nr_vecs == BIO_MAX_VECS) 163 mempool_free(bv, pool); 164 else if (nr_vecs > BIO_INLINE_VECS) 165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 166 } 167 168 /* 169 * Make the first allocation restricted and don't dump info on allocation 170 * failures, since we'll fall back to the mempool in case of failure. 171 */ 172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 173 { 174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 176 } 177 178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 179 gfp_t gfp_mask) 180 { 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 182 183 if (WARN_ON_ONCE(!bvs)) 184 return NULL; 185 186 /* 187 * Upgrade the nr_vecs request to take full advantage of the allocation. 188 * We also rely on this in the bvec_free path. 189 */ 190 *nr_vecs = bvs->nr_vecs; 191 192 /* 193 * Try a slab allocation first for all smaller allocations. If that 194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 195 * The mempool is sized to handle up to BIO_MAX_VECS entries. 196 */ 197 if (*nr_vecs < BIO_MAX_VECS) { 198 struct bio_vec *bvl; 199 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 202 return bvl; 203 *nr_vecs = BIO_MAX_VECS; 204 } 205 206 return mempool_alloc(pool, gfp_mask); 207 } 208 209 void bio_uninit(struct bio *bio) 210 { 211 #ifdef CONFIG_BLK_CGROUP 212 if (bio->bi_blkg) { 213 blkg_put(bio->bi_blkg); 214 bio->bi_blkg = NULL; 215 } 216 #endif 217 if (bio_integrity(bio)) 218 bio_integrity_free(bio); 219 220 bio_crypt_free_ctx(bio); 221 } 222 EXPORT_SYMBOL(bio_uninit); 223 224 static void bio_free(struct bio *bio) 225 { 226 struct bio_set *bs = bio->bi_pool; 227 void *p; 228 229 bio_uninit(bio); 230 231 if (bs) { 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 233 234 /* 235 * If we have front padding, adjust the bio pointer before freeing 236 */ 237 p = bio; 238 p -= bs->front_pad; 239 240 mempool_free(p, &bs->bio_pool); 241 } else { 242 /* Bio was allocated by bio_kmalloc() */ 243 kfree(bio); 244 } 245 } 246 247 /* 248 * Users of this function have their own bio allocation. Subsequently, 249 * they must remember to pair any call to bio_init() with bio_uninit() 250 * when IO has completed, or when the bio is released. 251 */ 252 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 253 unsigned short max_vecs, unsigned int opf) 254 { 255 bio->bi_next = NULL; 256 bio->bi_bdev = bdev; 257 bio->bi_opf = opf; 258 bio->bi_flags = 0; 259 bio->bi_ioprio = 0; 260 bio->bi_status = 0; 261 bio->bi_iter.bi_sector = 0; 262 bio->bi_iter.bi_size = 0; 263 bio->bi_iter.bi_idx = 0; 264 bio->bi_iter.bi_bvec_done = 0; 265 bio->bi_end_io = NULL; 266 bio->bi_private = NULL; 267 #ifdef CONFIG_BLK_CGROUP 268 bio->bi_blkg = NULL; 269 bio->bi_issue.value = 0; 270 if (bdev) 271 bio_associate_blkg(bio); 272 #ifdef CONFIG_BLK_CGROUP_IOCOST 273 bio->bi_iocost_cost = 0; 274 #endif 275 #endif 276 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 277 bio->bi_crypt_context = NULL; 278 #endif 279 #ifdef CONFIG_BLK_DEV_INTEGRITY 280 bio->bi_integrity = NULL; 281 #endif 282 bio->bi_vcnt = 0; 283 284 atomic_set(&bio->__bi_remaining, 1); 285 atomic_set(&bio->__bi_cnt, 1); 286 bio->bi_cookie = BLK_QC_T_NONE; 287 288 bio->bi_max_vecs = max_vecs; 289 bio->bi_io_vec = table; 290 bio->bi_pool = NULL; 291 } 292 EXPORT_SYMBOL(bio_init); 293 294 /** 295 * bio_reset - reinitialize a bio 296 * @bio: bio to reset 297 * @bdev: block device to use the bio for 298 * @opf: operation and flags for bio 299 * 300 * Description: 301 * After calling bio_reset(), @bio will be in the same state as a freshly 302 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 303 * preserved are the ones that are initialized by bio_alloc_bioset(). See 304 * comment in struct bio. 305 */ 306 void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf) 307 { 308 bio_uninit(bio); 309 memset(bio, 0, BIO_RESET_BYTES); 310 atomic_set(&bio->__bi_remaining, 1); 311 bio->bi_bdev = bdev; 312 if (bio->bi_bdev) 313 bio_associate_blkg(bio); 314 bio->bi_opf = opf; 315 } 316 EXPORT_SYMBOL(bio_reset); 317 318 static struct bio *__bio_chain_endio(struct bio *bio) 319 { 320 struct bio *parent = bio->bi_private; 321 322 if (bio->bi_status && !parent->bi_status) 323 parent->bi_status = bio->bi_status; 324 bio_put(bio); 325 return parent; 326 } 327 328 static void bio_chain_endio(struct bio *bio) 329 { 330 bio_endio(__bio_chain_endio(bio)); 331 } 332 333 /** 334 * bio_chain - chain bio completions 335 * @bio: the target bio 336 * @parent: the parent bio of @bio 337 * 338 * The caller won't have a bi_end_io called when @bio completes - instead, 339 * @parent's bi_end_io won't be called until both @parent and @bio have 340 * completed; the chained bio will also be freed when it completes. 341 * 342 * The caller must not set bi_private or bi_end_io in @bio. 343 */ 344 void bio_chain(struct bio *bio, struct bio *parent) 345 { 346 BUG_ON(bio->bi_private || bio->bi_end_io); 347 348 bio->bi_private = parent; 349 bio->bi_end_io = bio_chain_endio; 350 bio_inc_remaining(parent); 351 } 352 EXPORT_SYMBOL(bio_chain); 353 354 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 355 unsigned int nr_pages, unsigned int opf, gfp_t gfp) 356 { 357 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp); 358 359 if (bio) { 360 bio_chain(bio, new); 361 submit_bio(bio); 362 } 363 364 return new; 365 } 366 EXPORT_SYMBOL_GPL(blk_next_bio); 367 368 static void bio_alloc_rescue(struct work_struct *work) 369 { 370 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 371 struct bio *bio; 372 373 while (1) { 374 spin_lock(&bs->rescue_lock); 375 bio = bio_list_pop(&bs->rescue_list); 376 spin_unlock(&bs->rescue_lock); 377 378 if (!bio) 379 break; 380 381 submit_bio_noacct(bio); 382 } 383 } 384 385 static void punt_bios_to_rescuer(struct bio_set *bs) 386 { 387 struct bio_list punt, nopunt; 388 struct bio *bio; 389 390 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 391 return; 392 /* 393 * In order to guarantee forward progress we must punt only bios that 394 * were allocated from this bio_set; otherwise, if there was a bio on 395 * there for a stacking driver higher up in the stack, processing it 396 * could require allocating bios from this bio_set, and doing that from 397 * our own rescuer would be bad. 398 * 399 * Since bio lists are singly linked, pop them all instead of trying to 400 * remove from the middle of the list: 401 */ 402 403 bio_list_init(&punt); 404 bio_list_init(&nopunt); 405 406 while ((bio = bio_list_pop(¤t->bio_list[0]))) 407 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 408 current->bio_list[0] = nopunt; 409 410 bio_list_init(&nopunt); 411 while ((bio = bio_list_pop(¤t->bio_list[1]))) 412 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 413 current->bio_list[1] = nopunt; 414 415 spin_lock(&bs->rescue_lock); 416 bio_list_merge(&bs->rescue_list, &punt); 417 spin_unlock(&bs->rescue_lock); 418 419 queue_work(bs->rescue_workqueue, &bs->rescue_work); 420 } 421 422 /** 423 * bio_alloc_bioset - allocate a bio for I/O 424 * @bdev: block device to allocate the bio for (can be %NULL) 425 * @nr_vecs: number of bvecs to pre-allocate 426 * @opf: operation and flags for bio 427 * @gfp_mask: the GFP_* mask given to the slab allocator 428 * @bs: the bio_set to allocate from. 429 * 430 * Allocate a bio from the mempools in @bs. 431 * 432 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 433 * allocate a bio. This is due to the mempool guarantees. To make this work, 434 * callers must never allocate more than 1 bio at a time from the general pool. 435 * Callers that need to allocate more than 1 bio must always submit the 436 * previously allocated bio for IO before attempting to allocate a new one. 437 * Failure to do so can cause deadlocks under memory pressure. 438 * 439 * Note that when running under submit_bio_noacct() (i.e. any block driver), 440 * bios are not submitted until after you return - see the code in 441 * submit_bio_noacct() that converts recursion into iteration, to prevent 442 * stack overflows. 443 * 444 * This would normally mean allocating multiple bios under submit_bio_noacct() 445 * would be susceptible to deadlocks, but we have 446 * deadlock avoidance code that resubmits any blocked bios from a rescuer 447 * thread. 448 * 449 * However, we do not guarantee forward progress for allocations from other 450 * mempools. Doing multiple allocations from the same mempool under 451 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 452 * for per bio allocations. 453 * 454 * Returns: Pointer to new bio on success, NULL on failure. 455 */ 456 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 457 unsigned int opf, gfp_t gfp_mask, 458 struct bio_set *bs) 459 { 460 gfp_t saved_gfp = gfp_mask; 461 struct bio *bio; 462 void *p; 463 464 /* should not use nobvec bioset for nr_vecs > 0 */ 465 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 466 return NULL; 467 468 /* 469 * submit_bio_noacct() converts recursion to iteration; this means if 470 * we're running beneath it, any bios we allocate and submit will not be 471 * submitted (and thus freed) until after we return. 472 * 473 * This exposes us to a potential deadlock if we allocate multiple bios 474 * from the same bio_set() while running underneath submit_bio_noacct(). 475 * If we were to allocate multiple bios (say a stacking block driver 476 * that was splitting bios), we would deadlock if we exhausted the 477 * mempool's reserve. 478 * 479 * We solve this, and guarantee forward progress, with a rescuer 480 * workqueue per bio_set. If we go to allocate and there are bios on 481 * current->bio_list, we first try the allocation without 482 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 483 * blocking to the rescuer workqueue before we retry with the original 484 * gfp_flags. 485 */ 486 if (current->bio_list && 487 (!bio_list_empty(¤t->bio_list[0]) || 488 !bio_list_empty(¤t->bio_list[1])) && 489 bs->rescue_workqueue) 490 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 491 492 p = mempool_alloc(&bs->bio_pool, gfp_mask); 493 if (!p && gfp_mask != saved_gfp) { 494 punt_bios_to_rescuer(bs); 495 gfp_mask = saved_gfp; 496 p = mempool_alloc(&bs->bio_pool, gfp_mask); 497 } 498 if (unlikely(!p)) 499 return NULL; 500 501 bio = p + bs->front_pad; 502 if (nr_vecs > BIO_INLINE_VECS) { 503 struct bio_vec *bvl = NULL; 504 505 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 506 if (!bvl && gfp_mask != saved_gfp) { 507 punt_bios_to_rescuer(bs); 508 gfp_mask = saved_gfp; 509 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 510 } 511 if (unlikely(!bvl)) 512 goto err_free; 513 514 bio_init(bio, bdev, bvl, nr_vecs, opf); 515 } else if (nr_vecs) { 516 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 517 } else { 518 bio_init(bio, bdev, NULL, 0, opf); 519 } 520 521 bio->bi_pool = bs; 522 return bio; 523 524 err_free: 525 mempool_free(p, &bs->bio_pool); 526 return NULL; 527 } 528 EXPORT_SYMBOL(bio_alloc_bioset); 529 530 /** 531 * bio_kmalloc - kmalloc a bio for I/O 532 * @gfp_mask: the GFP_* mask given to the slab allocator 533 * @nr_iovecs: number of iovecs to pre-allocate 534 * 535 * Use kmalloc to allocate and initialize a bio. 536 * 537 * Returns: Pointer to new bio on success, NULL on failure. 538 */ 539 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs) 540 { 541 struct bio *bio; 542 543 if (nr_iovecs > UIO_MAXIOV) 544 return NULL; 545 546 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask); 547 if (unlikely(!bio)) 548 return NULL; 549 bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs, 550 0); 551 bio->bi_pool = NULL; 552 return bio; 553 } 554 EXPORT_SYMBOL(bio_kmalloc); 555 556 void zero_fill_bio(struct bio *bio) 557 { 558 struct bio_vec bv; 559 struct bvec_iter iter; 560 561 bio_for_each_segment(bv, bio, iter) 562 memzero_bvec(&bv); 563 } 564 EXPORT_SYMBOL(zero_fill_bio); 565 566 /** 567 * bio_truncate - truncate the bio to small size of @new_size 568 * @bio: the bio to be truncated 569 * @new_size: new size for truncating the bio 570 * 571 * Description: 572 * Truncate the bio to new size of @new_size. If bio_op(bio) is 573 * REQ_OP_READ, zero the truncated part. This function should only 574 * be used for handling corner cases, such as bio eod. 575 */ 576 static void bio_truncate(struct bio *bio, unsigned new_size) 577 { 578 struct bio_vec bv; 579 struct bvec_iter iter; 580 unsigned int done = 0; 581 bool truncated = false; 582 583 if (new_size >= bio->bi_iter.bi_size) 584 return; 585 586 if (bio_op(bio) != REQ_OP_READ) 587 goto exit; 588 589 bio_for_each_segment(bv, bio, iter) { 590 if (done + bv.bv_len > new_size) { 591 unsigned offset; 592 593 if (!truncated) 594 offset = new_size - done; 595 else 596 offset = 0; 597 zero_user(bv.bv_page, bv.bv_offset + offset, 598 bv.bv_len - offset); 599 truncated = true; 600 } 601 done += bv.bv_len; 602 } 603 604 exit: 605 /* 606 * Don't touch bvec table here and make it really immutable, since 607 * fs bio user has to retrieve all pages via bio_for_each_segment_all 608 * in its .end_bio() callback. 609 * 610 * It is enough to truncate bio by updating .bi_size since we can make 611 * correct bvec with the updated .bi_size for drivers. 612 */ 613 bio->bi_iter.bi_size = new_size; 614 } 615 616 /** 617 * guard_bio_eod - truncate a BIO to fit the block device 618 * @bio: bio to truncate 619 * 620 * This allows us to do IO even on the odd last sectors of a device, even if the 621 * block size is some multiple of the physical sector size. 622 * 623 * We'll just truncate the bio to the size of the device, and clear the end of 624 * the buffer head manually. Truly out-of-range accesses will turn into actual 625 * I/O errors, this only handles the "we need to be able to do I/O at the final 626 * sector" case. 627 */ 628 void guard_bio_eod(struct bio *bio) 629 { 630 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 631 632 if (!maxsector) 633 return; 634 635 /* 636 * If the *whole* IO is past the end of the device, 637 * let it through, and the IO layer will turn it into 638 * an EIO. 639 */ 640 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 641 return; 642 643 maxsector -= bio->bi_iter.bi_sector; 644 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 645 return; 646 647 bio_truncate(bio, maxsector << 9); 648 } 649 650 #define ALLOC_CACHE_MAX 512 651 #define ALLOC_CACHE_SLACK 64 652 653 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 654 unsigned int nr) 655 { 656 unsigned int i = 0; 657 struct bio *bio; 658 659 while ((bio = cache->free_list) != NULL) { 660 cache->free_list = bio->bi_next; 661 cache->nr--; 662 bio_free(bio); 663 if (++i == nr) 664 break; 665 } 666 } 667 668 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 669 { 670 struct bio_set *bs; 671 672 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 673 if (bs->cache) { 674 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 675 676 bio_alloc_cache_prune(cache, -1U); 677 } 678 return 0; 679 } 680 681 static void bio_alloc_cache_destroy(struct bio_set *bs) 682 { 683 int cpu; 684 685 if (!bs->cache) 686 return; 687 688 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 689 for_each_possible_cpu(cpu) { 690 struct bio_alloc_cache *cache; 691 692 cache = per_cpu_ptr(bs->cache, cpu); 693 bio_alloc_cache_prune(cache, -1U); 694 } 695 free_percpu(bs->cache); 696 } 697 698 /** 699 * bio_put - release a reference to a bio 700 * @bio: bio to release reference to 701 * 702 * Description: 703 * Put a reference to a &struct bio, either one you have gotten with 704 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 705 **/ 706 void bio_put(struct bio *bio) 707 { 708 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 709 BUG_ON(!atomic_read(&bio->__bi_cnt)); 710 if (!atomic_dec_and_test(&bio->__bi_cnt)) 711 return; 712 } 713 714 if (bio_flagged(bio, BIO_PERCPU_CACHE)) { 715 struct bio_alloc_cache *cache; 716 717 bio_uninit(bio); 718 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 719 bio->bi_next = cache->free_list; 720 cache->free_list = bio; 721 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK) 722 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK); 723 put_cpu(); 724 } else { 725 bio_free(bio); 726 } 727 } 728 EXPORT_SYMBOL(bio_put); 729 730 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 731 { 732 bio_set_flag(bio, BIO_CLONED); 733 if (bio_flagged(bio_src, BIO_THROTTLED)) 734 bio_set_flag(bio, BIO_THROTTLED); 735 if (bio->bi_bdev == bio_src->bi_bdev && 736 bio_flagged(bio_src, BIO_REMAPPED)) 737 bio_set_flag(bio, BIO_REMAPPED); 738 bio->bi_ioprio = bio_src->bi_ioprio; 739 bio->bi_iter = bio_src->bi_iter; 740 741 bio_clone_blkg_association(bio, bio_src); 742 blkcg_bio_issue_init(bio); 743 744 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 745 return -ENOMEM; 746 if (bio_integrity(bio_src) && 747 bio_integrity_clone(bio, bio_src, gfp) < 0) 748 return -ENOMEM; 749 return 0; 750 } 751 752 /** 753 * bio_alloc_clone - clone a bio that shares the original bio's biovec 754 * @bdev: block_device to clone onto 755 * @bio_src: bio to clone from 756 * @gfp: allocation priority 757 * @bs: bio_set to allocate from 758 * 759 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 760 * bio, but not the actual data it points to. 761 * 762 * The caller must ensure that the return bio is not freed before @bio_src. 763 */ 764 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 765 gfp_t gfp, struct bio_set *bs) 766 { 767 struct bio *bio; 768 769 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 770 if (!bio) 771 return NULL; 772 773 if (__bio_clone(bio, bio_src, gfp) < 0) { 774 bio_put(bio); 775 return NULL; 776 } 777 bio->bi_io_vec = bio_src->bi_io_vec; 778 779 return bio; 780 } 781 EXPORT_SYMBOL(bio_alloc_clone); 782 783 /** 784 * bio_init_clone - clone a bio that shares the original bio's biovec 785 * @bdev: block_device to clone onto 786 * @bio: bio to clone into 787 * @bio_src: bio to clone from 788 * @gfp: allocation priority 789 * 790 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 791 * The caller owns the returned bio, but not the actual data it points to. 792 * 793 * The caller must ensure that @bio_src is not freed before @bio. 794 */ 795 int bio_init_clone(struct block_device *bdev, struct bio *bio, 796 struct bio *bio_src, gfp_t gfp) 797 { 798 int ret; 799 800 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 801 ret = __bio_clone(bio, bio_src, gfp); 802 if (ret) 803 bio_uninit(bio); 804 return ret; 805 } 806 EXPORT_SYMBOL(bio_init_clone); 807 808 /** 809 * bio_full - check if the bio is full 810 * @bio: bio to check 811 * @len: length of one segment to be added 812 * 813 * Return true if @bio is full and one segment with @len bytes can't be 814 * added to the bio, otherwise return false 815 */ 816 static inline bool bio_full(struct bio *bio, unsigned len) 817 { 818 if (bio->bi_vcnt >= bio->bi_max_vecs) 819 return true; 820 if (bio->bi_iter.bi_size > UINT_MAX - len) 821 return true; 822 return false; 823 } 824 825 static inline bool page_is_mergeable(const struct bio_vec *bv, 826 struct page *page, unsigned int len, unsigned int off, 827 bool *same_page) 828 { 829 size_t bv_end = bv->bv_offset + bv->bv_len; 830 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 831 phys_addr_t page_addr = page_to_phys(page); 832 833 if (vec_end_addr + 1 != page_addr + off) 834 return false; 835 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 836 return false; 837 838 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 839 if (*same_page) 840 return true; 841 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); 842 } 843 844 /** 845 * __bio_try_merge_page - try appending data to an existing bvec. 846 * @bio: destination bio 847 * @page: start page to add 848 * @len: length of the data to add 849 * @off: offset of the data relative to @page 850 * @same_page: return if the segment has been merged inside the same page 851 * 852 * Try to add the data at @page + @off to the last bvec of @bio. This is a 853 * useful optimisation for file systems with a block size smaller than the 854 * page size. 855 * 856 * Warn if (@len, @off) crosses pages in case that @same_page is true. 857 * 858 * Return %true on success or %false on failure. 859 */ 860 static bool __bio_try_merge_page(struct bio *bio, struct page *page, 861 unsigned int len, unsigned int off, bool *same_page) 862 { 863 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 864 return false; 865 866 if (bio->bi_vcnt > 0) { 867 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 868 869 if (page_is_mergeable(bv, page, len, off, same_page)) { 870 if (bio->bi_iter.bi_size > UINT_MAX - len) { 871 *same_page = false; 872 return false; 873 } 874 bv->bv_len += len; 875 bio->bi_iter.bi_size += len; 876 return true; 877 } 878 } 879 return false; 880 } 881 882 /* 883 * Try to merge a page into a segment, while obeying the hardware segment 884 * size limit. This is not for normal read/write bios, but for passthrough 885 * or Zone Append operations that we can't split. 886 */ 887 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 888 struct page *page, unsigned len, 889 unsigned offset, bool *same_page) 890 { 891 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 892 unsigned long mask = queue_segment_boundary(q); 893 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 894 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 895 896 if ((addr1 | mask) != (addr2 | mask)) 897 return false; 898 if (bv->bv_len + len > queue_max_segment_size(q)) 899 return false; 900 return __bio_try_merge_page(bio, page, len, offset, same_page); 901 } 902 903 /** 904 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 905 * @q: the target queue 906 * @bio: destination bio 907 * @page: page to add 908 * @len: vec entry length 909 * @offset: vec entry offset 910 * @max_sectors: maximum number of sectors that can be added 911 * @same_page: return if the segment has been merged inside the same page 912 * 913 * Add a page to a bio while respecting the hardware max_sectors, max_segment 914 * and gap limitations. 915 */ 916 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 917 struct page *page, unsigned int len, unsigned int offset, 918 unsigned int max_sectors, bool *same_page) 919 { 920 struct bio_vec *bvec; 921 922 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 923 return 0; 924 925 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 926 return 0; 927 928 if (bio->bi_vcnt > 0) { 929 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 930 return len; 931 932 /* 933 * If the queue doesn't support SG gaps and adding this segment 934 * would create a gap, disallow it. 935 */ 936 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 937 if (bvec_gap_to_prev(q, bvec, offset)) 938 return 0; 939 } 940 941 if (bio_full(bio, len)) 942 return 0; 943 944 if (bio->bi_vcnt >= queue_max_segments(q)) 945 return 0; 946 947 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 948 bvec->bv_page = page; 949 bvec->bv_len = len; 950 bvec->bv_offset = offset; 951 bio->bi_vcnt++; 952 bio->bi_iter.bi_size += len; 953 return len; 954 } 955 956 /** 957 * bio_add_pc_page - attempt to add page to passthrough bio 958 * @q: the target queue 959 * @bio: destination bio 960 * @page: page to add 961 * @len: vec entry length 962 * @offset: vec entry offset 963 * 964 * Attempt to add a page to the bio_vec maplist. This can fail for a 965 * number of reasons, such as the bio being full or target block device 966 * limitations. The target block device must allow bio's up to PAGE_SIZE, 967 * so it is always possible to add a single page to an empty bio. 968 * 969 * This should only be used by passthrough bios. 970 */ 971 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 972 struct page *page, unsigned int len, unsigned int offset) 973 { 974 bool same_page = false; 975 return bio_add_hw_page(q, bio, page, len, offset, 976 queue_max_hw_sectors(q), &same_page); 977 } 978 EXPORT_SYMBOL(bio_add_pc_page); 979 980 /** 981 * bio_add_zone_append_page - attempt to add page to zone-append bio 982 * @bio: destination bio 983 * @page: page to add 984 * @len: vec entry length 985 * @offset: vec entry offset 986 * 987 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 988 * for a zone-append request. This can fail for a number of reasons, such as the 989 * bio being full or the target block device is not a zoned block device or 990 * other limitations of the target block device. The target block device must 991 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 992 * to an empty bio. 993 * 994 * Returns: number of bytes added to the bio, or 0 in case of a failure. 995 */ 996 int bio_add_zone_append_page(struct bio *bio, struct page *page, 997 unsigned int len, unsigned int offset) 998 { 999 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1000 bool same_page = false; 1001 1002 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 1003 return 0; 1004 1005 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 1006 return 0; 1007 1008 return bio_add_hw_page(q, bio, page, len, offset, 1009 queue_max_zone_append_sectors(q), &same_page); 1010 } 1011 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 1012 1013 /** 1014 * __bio_add_page - add page(s) to a bio in a new segment 1015 * @bio: destination bio 1016 * @page: start page to add 1017 * @len: length of the data to add, may cross pages 1018 * @off: offset of the data relative to @page, may cross pages 1019 * 1020 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 1021 * that @bio has space for another bvec. 1022 */ 1023 void __bio_add_page(struct bio *bio, struct page *page, 1024 unsigned int len, unsigned int off) 1025 { 1026 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 1027 1028 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 1029 WARN_ON_ONCE(bio_full(bio, len)); 1030 1031 bv->bv_page = page; 1032 bv->bv_offset = off; 1033 bv->bv_len = len; 1034 1035 bio->bi_iter.bi_size += len; 1036 bio->bi_vcnt++; 1037 1038 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 1039 bio_set_flag(bio, BIO_WORKINGSET); 1040 } 1041 EXPORT_SYMBOL_GPL(__bio_add_page); 1042 1043 /** 1044 * bio_add_page - attempt to add page(s) to bio 1045 * @bio: destination bio 1046 * @page: start page to add 1047 * @len: vec entry length, may cross pages 1048 * @offset: vec entry offset relative to @page, may cross pages 1049 * 1050 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1051 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1052 */ 1053 int bio_add_page(struct bio *bio, struct page *page, 1054 unsigned int len, unsigned int offset) 1055 { 1056 bool same_page = false; 1057 1058 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1059 if (bio_full(bio, len)) 1060 return 0; 1061 __bio_add_page(bio, page, len, offset); 1062 } 1063 return len; 1064 } 1065 EXPORT_SYMBOL(bio_add_page); 1066 1067 /** 1068 * bio_add_folio - Attempt to add part of a folio to a bio. 1069 * @bio: BIO to add to. 1070 * @folio: Folio to add. 1071 * @len: How many bytes from the folio to add. 1072 * @off: First byte in this folio to add. 1073 * 1074 * Filesystems that use folios can call this function instead of calling 1075 * bio_add_page() for each page in the folio. If @off is bigger than 1076 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1077 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1078 * 1079 * Return: Whether the addition was successful. 1080 */ 1081 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1082 size_t off) 1083 { 1084 if (len > UINT_MAX || off > UINT_MAX) 1085 return false; 1086 return bio_add_page(bio, &folio->page, len, off) > 0; 1087 } 1088 1089 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1090 { 1091 struct bvec_iter_all iter_all; 1092 struct bio_vec *bvec; 1093 1094 bio_for_each_segment_all(bvec, bio, iter_all) { 1095 if (mark_dirty && !PageCompound(bvec->bv_page)) 1096 set_page_dirty_lock(bvec->bv_page); 1097 put_page(bvec->bv_page); 1098 } 1099 } 1100 EXPORT_SYMBOL_GPL(__bio_release_pages); 1101 1102 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 1103 { 1104 size_t size = iov_iter_count(iter); 1105 1106 WARN_ON_ONCE(bio->bi_max_vecs); 1107 1108 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1109 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1110 size_t max_sectors = queue_max_zone_append_sectors(q); 1111 1112 size = min(size, max_sectors << SECTOR_SHIFT); 1113 } 1114 1115 bio->bi_vcnt = iter->nr_segs; 1116 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1117 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1118 bio->bi_iter.bi_size = size; 1119 bio_set_flag(bio, BIO_NO_PAGE_REF); 1120 bio_set_flag(bio, BIO_CLONED); 1121 } 1122 1123 static void bio_put_pages(struct page **pages, size_t size, size_t off) 1124 { 1125 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE); 1126 1127 for (i = 0; i < nr; i++) 1128 put_page(pages[i]); 1129 } 1130 1131 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1132 1133 /** 1134 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1135 * @bio: bio to add pages to 1136 * @iter: iov iterator describing the region to be mapped 1137 * 1138 * Pins pages from *iter and appends them to @bio's bvec array. The 1139 * pages will have to be released using put_page() when done. 1140 * For multi-segment *iter, this function only adds pages from the 1141 * next non-empty segment of the iov iterator. 1142 */ 1143 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1144 { 1145 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1146 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1147 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1148 struct page **pages = (struct page **)bv; 1149 bool same_page = false; 1150 ssize_t size, left; 1151 unsigned len, i; 1152 size_t offset; 1153 1154 /* 1155 * Move page array up in the allocated memory for the bio vecs as far as 1156 * possible so that we can start filling biovecs from the beginning 1157 * without overwriting the temporary page array. 1158 */ 1159 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1160 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1161 1162 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1163 if (unlikely(size <= 0)) 1164 return size ? size : -EFAULT; 1165 1166 for (left = size, i = 0; left > 0; left -= len, i++) { 1167 struct page *page = pages[i]; 1168 1169 len = min_t(size_t, PAGE_SIZE - offset, left); 1170 1171 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1172 if (same_page) 1173 put_page(page); 1174 } else { 1175 if (WARN_ON_ONCE(bio_full(bio, len))) { 1176 bio_put_pages(pages + i, left, offset); 1177 return -EINVAL; 1178 } 1179 __bio_add_page(bio, page, len, offset); 1180 } 1181 offset = 0; 1182 } 1183 1184 iov_iter_advance(iter, size); 1185 return 0; 1186 } 1187 1188 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) 1189 { 1190 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1191 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1192 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1193 unsigned int max_append_sectors = queue_max_zone_append_sectors(q); 1194 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1195 struct page **pages = (struct page **)bv; 1196 ssize_t size, left; 1197 unsigned len, i; 1198 size_t offset; 1199 int ret = 0; 1200 1201 if (WARN_ON_ONCE(!max_append_sectors)) 1202 return 0; 1203 1204 /* 1205 * Move page array up in the allocated memory for the bio vecs as far as 1206 * possible so that we can start filling biovecs from the beginning 1207 * without overwriting the temporary page array. 1208 */ 1209 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1210 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1211 1212 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1213 if (unlikely(size <= 0)) 1214 return size ? size : -EFAULT; 1215 1216 for (left = size, i = 0; left > 0; left -= len, i++) { 1217 struct page *page = pages[i]; 1218 bool same_page = false; 1219 1220 len = min_t(size_t, PAGE_SIZE - offset, left); 1221 if (bio_add_hw_page(q, bio, page, len, offset, 1222 max_append_sectors, &same_page) != len) { 1223 bio_put_pages(pages + i, left, offset); 1224 ret = -EINVAL; 1225 break; 1226 } 1227 if (same_page) 1228 put_page(page); 1229 offset = 0; 1230 } 1231 1232 iov_iter_advance(iter, size - left); 1233 return ret; 1234 } 1235 1236 /** 1237 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1238 * @bio: bio to add pages to 1239 * @iter: iov iterator describing the region to be added 1240 * 1241 * This takes either an iterator pointing to user memory, or one pointing to 1242 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1243 * map them into the kernel. On IO completion, the caller should put those 1244 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1245 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1246 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1247 * completed by a call to ->ki_complete() or returns with an error other than 1248 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1249 * on IO completion. If it isn't, then pages should be released. 1250 * 1251 * The function tries, but does not guarantee, to pin as many pages as 1252 * fit into the bio, or are requested in @iter, whatever is smaller. If 1253 * MM encounters an error pinning the requested pages, it stops. Error 1254 * is returned only if 0 pages could be pinned. 1255 * 1256 * It's intended for direct IO, so doesn't do PSI tracking, the caller is 1257 * responsible for setting BIO_WORKINGSET if necessary. 1258 */ 1259 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1260 { 1261 int ret = 0; 1262 1263 if (iov_iter_is_bvec(iter)) { 1264 bio_iov_bvec_set(bio, iter); 1265 iov_iter_advance(iter, bio->bi_iter.bi_size); 1266 return 0; 1267 } 1268 1269 do { 1270 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1271 ret = __bio_iov_append_get_pages(bio, iter); 1272 else 1273 ret = __bio_iov_iter_get_pages(bio, iter); 1274 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1275 1276 /* don't account direct I/O as memory stall */ 1277 bio_clear_flag(bio, BIO_WORKINGSET); 1278 return bio->bi_vcnt ? 0 : ret; 1279 } 1280 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1281 1282 static void submit_bio_wait_endio(struct bio *bio) 1283 { 1284 complete(bio->bi_private); 1285 } 1286 1287 /** 1288 * submit_bio_wait - submit a bio, and wait until it completes 1289 * @bio: The &struct bio which describes the I/O 1290 * 1291 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1292 * bio_endio() on failure. 1293 * 1294 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1295 * result in bio reference to be consumed. The caller must drop the reference 1296 * on his own. 1297 */ 1298 int submit_bio_wait(struct bio *bio) 1299 { 1300 DECLARE_COMPLETION_ONSTACK_MAP(done, 1301 bio->bi_bdev->bd_disk->lockdep_map); 1302 unsigned long hang_check; 1303 1304 bio->bi_private = &done; 1305 bio->bi_end_io = submit_bio_wait_endio; 1306 bio->bi_opf |= REQ_SYNC; 1307 submit_bio(bio); 1308 1309 /* Prevent hang_check timer from firing at us during very long I/O */ 1310 hang_check = sysctl_hung_task_timeout_secs; 1311 if (hang_check) 1312 while (!wait_for_completion_io_timeout(&done, 1313 hang_check * (HZ/2))) 1314 ; 1315 else 1316 wait_for_completion_io(&done); 1317 1318 return blk_status_to_errno(bio->bi_status); 1319 } 1320 EXPORT_SYMBOL(submit_bio_wait); 1321 1322 void __bio_advance(struct bio *bio, unsigned bytes) 1323 { 1324 if (bio_integrity(bio)) 1325 bio_integrity_advance(bio, bytes); 1326 1327 bio_crypt_advance(bio, bytes); 1328 bio_advance_iter(bio, &bio->bi_iter, bytes); 1329 } 1330 EXPORT_SYMBOL(__bio_advance); 1331 1332 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1333 struct bio *src, struct bvec_iter *src_iter) 1334 { 1335 while (src_iter->bi_size && dst_iter->bi_size) { 1336 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1337 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1338 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1339 void *src_buf; 1340 1341 src_buf = bvec_kmap_local(&src_bv); 1342 memcpy_to_bvec(&dst_bv, src_buf); 1343 kunmap_local(src_buf); 1344 1345 bio_advance_iter_single(src, src_iter, bytes); 1346 bio_advance_iter_single(dst, dst_iter, bytes); 1347 } 1348 } 1349 EXPORT_SYMBOL(bio_copy_data_iter); 1350 1351 /** 1352 * bio_copy_data - copy contents of data buffers from one bio to another 1353 * @src: source bio 1354 * @dst: destination bio 1355 * 1356 * Stops when it reaches the end of either @src or @dst - that is, copies 1357 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1358 */ 1359 void bio_copy_data(struct bio *dst, struct bio *src) 1360 { 1361 struct bvec_iter src_iter = src->bi_iter; 1362 struct bvec_iter dst_iter = dst->bi_iter; 1363 1364 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1365 } 1366 EXPORT_SYMBOL(bio_copy_data); 1367 1368 void bio_free_pages(struct bio *bio) 1369 { 1370 struct bio_vec *bvec; 1371 struct bvec_iter_all iter_all; 1372 1373 bio_for_each_segment_all(bvec, bio, iter_all) 1374 __free_page(bvec->bv_page); 1375 } 1376 EXPORT_SYMBOL(bio_free_pages); 1377 1378 /* 1379 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1380 * for performing direct-IO in BIOs. 1381 * 1382 * The problem is that we cannot run set_page_dirty() from interrupt context 1383 * because the required locks are not interrupt-safe. So what we can do is to 1384 * mark the pages dirty _before_ performing IO. And in interrupt context, 1385 * check that the pages are still dirty. If so, fine. If not, redirty them 1386 * in process context. 1387 * 1388 * We special-case compound pages here: normally this means reads into hugetlb 1389 * pages. The logic in here doesn't really work right for compound pages 1390 * because the VM does not uniformly chase down the head page in all cases. 1391 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1392 * handle them at all. So we skip compound pages here at an early stage. 1393 * 1394 * Note that this code is very hard to test under normal circumstances because 1395 * direct-io pins the pages with get_user_pages(). This makes 1396 * is_page_cache_freeable return false, and the VM will not clean the pages. 1397 * But other code (eg, flusher threads) could clean the pages if they are mapped 1398 * pagecache. 1399 * 1400 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1401 * deferred bio dirtying paths. 1402 */ 1403 1404 /* 1405 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1406 */ 1407 void bio_set_pages_dirty(struct bio *bio) 1408 { 1409 struct bio_vec *bvec; 1410 struct bvec_iter_all iter_all; 1411 1412 bio_for_each_segment_all(bvec, bio, iter_all) { 1413 if (!PageCompound(bvec->bv_page)) 1414 set_page_dirty_lock(bvec->bv_page); 1415 } 1416 } 1417 1418 /* 1419 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1420 * If they are, then fine. If, however, some pages are clean then they must 1421 * have been written out during the direct-IO read. So we take another ref on 1422 * the BIO and re-dirty the pages in process context. 1423 * 1424 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1425 * here on. It will run one put_page() against each page and will run one 1426 * bio_put() against the BIO. 1427 */ 1428 1429 static void bio_dirty_fn(struct work_struct *work); 1430 1431 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1432 static DEFINE_SPINLOCK(bio_dirty_lock); 1433 static struct bio *bio_dirty_list; 1434 1435 /* 1436 * This runs in process context 1437 */ 1438 static void bio_dirty_fn(struct work_struct *work) 1439 { 1440 struct bio *bio, *next; 1441 1442 spin_lock_irq(&bio_dirty_lock); 1443 next = bio_dirty_list; 1444 bio_dirty_list = NULL; 1445 spin_unlock_irq(&bio_dirty_lock); 1446 1447 while ((bio = next) != NULL) { 1448 next = bio->bi_private; 1449 1450 bio_release_pages(bio, true); 1451 bio_put(bio); 1452 } 1453 } 1454 1455 void bio_check_pages_dirty(struct bio *bio) 1456 { 1457 struct bio_vec *bvec; 1458 unsigned long flags; 1459 struct bvec_iter_all iter_all; 1460 1461 bio_for_each_segment_all(bvec, bio, iter_all) { 1462 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1463 goto defer; 1464 } 1465 1466 bio_release_pages(bio, false); 1467 bio_put(bio); 1468 return; 1469 defer: 1470 spin_lock_irqsave(&bio_dirty_lock, flags); 1471 bio->bi_private = bio_dirty_list; 1472 bio_dirty_list = bio; 1473 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1474 schedule_work(&bio_dirty_work); 1475 } 1476 1477 static inline bool bio_remaining_done(struct bio *bio) 1478 { 1479 /* 1480 * If we're not chaining, then ->__bi_remaining is always 1 and 1481 * we always end io on the first invocation. 1482 */ 1483 if (!bio_flagged(bio, BIO_CHAIN)) 1484 return true; 1485 1486 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1487 1488 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1489 bio_clear_flag(bio, BIO_CHAIN); 1490 return true; 1491 } 1492 1493 return false; 1494 } 1495 1496 /** 1497 * bio_endio - end I/O on a bio 1498 * @bio: bio 1499 * 1500 * Description: 1501 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1502 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1503 * bio unless they own it and thus know that it has an end_io function. 1504 * 1505 * bio_endio() can be called several times on a bio that has been chained 1506 * using bio_chain(). The ->bi_end_io() function will only be called the 1507 * last time. 1508 **/ 1509 void bio_endio(struct bio *bio) 1510 { 1511 again: 1512 if (!bio_remaining_done(bio)) 1513 return; 1514 if (!bio_integrity_endio(bio)) 1515 return; 1516 1517 rq_qos_done_bio(bio); 1518 1519 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1520 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1521 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1522 } 1523 1524 /* 1525 * Need to have a real endio function for chained bios, otherwise 1526 * various corner cases will break (like stacking block devices that 1527 * save/restore bi_end_io) - however, we want to avoid unbounded 1528 * recursion and blowing the stack. Tail call optimization would 1529 * handle this, but compiling with frame pointers also disables 1530 * gcc's sibling call optimization. 1531 */ 1532 if (bio->bi_end_io == bio_chain_endio) { 1533 bio = __bio_chain_endio(bio); 1534 goto again; 1535 } 1536 1537 blk_throtl_bio_endio(bio); 1538 /* release cgroup info */ 1539 bio_uninit(bio); 1540 if (bio->bi_end_io) 1541 bio->bi_end_io(bio); 1542 } 1543 EXPORT_SYMBOL(bio_endio); 1544 1545 /** 1546 * bio_split - split a bio 1547 * @bio: bio to split 1548 * @sectors: number of sectors to split from the front of @bio 1549 * @gfp: gfp mask 1550 * @bs: bio set to allocate from 1551 * 1552 * Allocates and returns a new bio which represents @sectors from the start of 1553 * @bio, and updates @bio to represent the remaining sectors. 1554 * 1555 * Unless this is a discard request the newly allocated bio will point 1556 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1557 * neither @bio nor @bs are freed before the split bio. 1558 */ 1559 struct bio *bio_split(struct bio *bio, int sectors, 1560 gfp_t gfp, struct bio_set *bs) 1561 { 1562 struct bio *split; 1563 1564 BUG_ON(sectors <= 0); 1565 BUG_ON(sectors >= bio_sectors(bio)); 1566 1567 /* Zone append commands cannot be split */ 1568 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1569 return NULL; 1570 1571 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1572 if (!split) 1573 return NULL; 1574 1575 split->bi_iter.bi_size = sectors << 9; 1576 1577 if (bio_integrity(split)) 1578 bio_integrity_trim(split); 1579 1580 bio_advance(bio, split->bi_iter.bi_size); 1581 1582 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1583 bio_set_flag(split, BIO_TRACE_COMPLETION); 1584 1585 return split; 1586 } 1587 EXPORT_SYMBOL(bio_split); 1588 1589 /** 1590 * bio_trim - trim a bio 1591 * @bio: bio to trim 1592 * @offset: number of sectors to trim from the front of @bio 1593 * @size: size we want to trim @bio to, in sectors 1594 * 1595 * This function is typically used for bios that are cloned and submitted 1596 * to the underlying device in parts. 1597 */ 1598 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1599 { 1600 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1601 offset + size > bio->bi_iter.bi_size)) 1602 return; 1603 1604 size <<= 9; 1605 if (offset == 0 && size == bio->bi_iter.bi_size) 1606 return; 1607 1608 bio_advance(bio, offset << 9); 1609 bio->bi_iter.bi_size = size; 1610 1611 if (bio_integrity(bio)) 1612 bio_integrity_trim(bio); 1613 } 1614 EXPORT_SYMBOL_GPL(bio_trim); 1615 1616 /* 1617 * create memory pools for biovec's in a bio_set. 1618 * use the global biovec slabs created for general use. 1619 */ 1620 int biovec_init_pool(mempool_t *pool, int pool_entries) 1621 { 1622 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1623 1624 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1625 } 1626 1627 /* 1628 * bioset_exit - exit a bioset initialized with bioset_init() 1629 * 1630 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1631 * kzalloc()). 1632 */ 1633 void bioset_exit(struct bio_set *bs) 1634 { 1635 bio_alloc_cache_destroy(bs); 1636 if (bs->rescue_workqueue) 1637 destroy_workqueue(bs->rescue_workqueue); 1638 bs->rescue_workqueue = NULL; 1639 1640 mempool_exit(&bs->bio_pool); 1641 mempool_exit(&bs->bvec_pool); 1642 1643 bioset_integrity_free(bs); 1644 if (bs->bio_slab) 1645 bio_put_slab(bs); 1646 bs->bio_slab = NULL; 1647 } 1648 EXPORT_SYMBOL(bioset_exit); 1649 1650 /** 1651 * bioset_init - Initialize a bio_set 1652 * @bs: pool to initialize 1653 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1654 * @front_pad: Number of bytes to allocate in front of the returned bio 1655 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1656 * and %BIOSET_NEED_RESCUER 1657 * 1658 * Description: 1659 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1660 * to ask for a number of bytes to be allocated in front of the bio. 1661 * Front pad allocation is useful for embedding the bio inside 1662 * another structure, to avoid allocating extra data to go with the bio. 1663 * Note that the bio must be embedded at the END of that structure always, 1664 * or things will break badly. 1665 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1666 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1667 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1668 * to dispatch queued requests when the mempool runs out of space. 1669 * 1670 */ 1671 int bioset_init(struct bio_set *bs, 1672 unsigned int pool_size, 1673 unsigned int front_pad, 1674 int flags) 1675 { 1676 bs->front_pad = front_pad; 1677 if (flags & BIOSET_NEED_BVECS) 1678 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1679 else 1680 bs->back_pad = 0; 1681 1682 spin_lock_init(&bs->rescue_lock); 1683 bio_list_init(&bs->rescue_list); 1684 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1685 1686 bs->bio_slab = bio_find_or_create_slab(bs); 1687 if (!bs->bio_slab) 1688 return -ENOMEM; 1689 1690 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1691 goto bad; 1692 1693 if ((flags & BIOSET_NEED_BVECS) && 1694 biovec_init_pool(&bs->bvec_pool, pool_size)) 1695 goto bad; 1696 1697 if (flags & BIOSET_NEED_RESCUER) { 1698 bs->rescue_workqueue = alloc_workqueue("bioset", 1699 WQ_MEM_RECLAIM, 0); 1700 if (!bs->rescue_workqueue) 1701 goto bad; 1702 } 1703 if (flags & BIOSET_PERCPU_CACHE) { 1704 bs->cache = alloc_percpu(struct bio_alloc_cache); 1705 if (!bs->cache) 1706 goto bad; 1707 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1708 } 1709 1710 return 0; 1711 bad: 1712 bioset_exit(bs); 1713 return -ENOMEM; 1714 } 1715 EXPORT_SYMBOL(bioset_init); 1716 1717 /* 1718 * Initialize and setup a new bio_set, based on the settings from 1719 * another bio_set. 1720 */ 1721 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1722 { 1723 int flags; 1724 1725 flags = 0; 1726 if (src->bvec_pool.min_nr) 1727 flags |= BIOSET_NEED_BVECS; 1728 if (src->rescue_workqueue) 1729 flags |= BIOSET_NEED_RESCUER; 1730 1731 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1732 } 1733 EXPORT_SYMBOL(bioset_init_from_src); 1734 1735 /** 1736 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb 1737 * @kiocb: kiocb describing the IO 1738 * @bdev: block device to allocate the bio for (can be %NULL) 1739 * @nr_vecs: number of iovecs to pre-allocate 1740 * @opf: operation and flags for bio 1741 * @bs: bio_set to allocate from 1742 * 1743 * Description: 1744 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only 1745 * used to check if we should dip into the per-cpu bio_set allocation 1746 * cache. The allocation uses GFP_KERNEL internally. On return, the 1747 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio 1748 * MUST be done from process context, not hard/soft IRQ. 1749 * 1750 */ 1751 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev, 1752 unsigned short nr_vecs, unsigned int opf, struct bio_set *bs) 1753 { 1754 struct bio_alloc_cache *cache; 1755 struct bio *bio; 1756 1757 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS) 1758 return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs); 1759 1760 cache = per_cpu_ptr(bs->cache, get_cpu()); 1761 if (cache->free_list) { 1762 bio = cache->free_list; 1763 cache->free_list = bio->bi_next; 1764 cache->nr--; 1765 put_cpu(); 1766 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, 1767 nr_vecs, opf); 1768 bio->bi_pool = bs; 1769 bio_set_flag(bio, BIO_PERCPU_CACHE); 1770 return bio; 1771 } 1772 put_cpu(); 1773 bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs); 1774 bio_set_flag(bio, BIO_PERCPU_CACHE); 1775 return bio; 1776 } 1777 EXPORT_SYMBOL_GPL(bio_alloc_kiocb); 1778 1779 static int __init init_bio(void) 1780 { 1781 int i; 1782 1783 bio_integrity_init(); 1784 1785 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1786 struct biovec_slab *bvs = bvec_slabs + i; 1787 1788 bvs->slab = kmem_cache_create(bvs->name, 1789 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1790 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1791 } 1792 1793 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1794 bio_cpu_dead); 1795 1796 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 1797 panic("bio: can't allocate bios\n"); 1798 1799 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1800 panic("bio: can't create integrity pool\n"); 1801 1802 return 0; 1803 } 1804 subsys_initcall(init_bio); 1805