xref: /linux/block/bio.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164 
165 	if (idx == BIOVEC_MAX_IDX)
166 		mempool_free(bv, pool);
167 	else {
168 		struct biovec_slab *bvs = bvec_slabs + idx;
169 
170 		kmem_cache_free(bvs->slab, bv);
171 	}
172 }
173 
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 			   mempool_t *pool)
176 {
177 	struct bio_vec *bvl;
178 
179 	/*
180 	 * see comment near bvec_array define!
181 	 */
182 	switch (nr) {
183 	case 1:
184 		*idx = 0;
185 		break;
186 	case 2 ... 4:
187 		*idx = 1;
188 		break;
189 	case 5 ... 16:
190 		*idx = 2;
191 		break;
192 	case 17 ... 64:
193 		*idx = 3;
194 		break;
195 	case 65 ... 128:
196 		*idx = 4;
197 		break;
198 	case 129 ... BIO_MAX_PAGES:
199 		*idx = 5;
200 		break;
201 	default:
202 		return NULL;
203 	}
204 
205 	/*
206 	 * idx now points to the pool we want to allocate from. only the
207 	 * 1-vec entry pool is mempool backed.
208 	 */
209 	if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 		bvl = mempool_alloc(pool, gfp_mask);
212 	} else {
213 		struct biovec_slab *bvs = bvec_slabs + *idx;
214 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215 
216 		/*
217 		 * Make this allocation restricted and don't dump info on
218 		 * allocation failures, since we'll fallback to the mempool
219 		 * in case of failure.
220 		 */
221 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222 
223 		/*
224 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 		 * is set, retry with the 1-entry mempool
226 		 */
227 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 			*idx = BIOVEC_MAX_IDX;
230 			goto fallback;
231 		}
232 	}
233 
234 	return bvl;
235 }
236 
237 static void __bio_free(struct bio *bio)
238 {
239 	bio_disassociate_task(bio);
240 
241 	if (bio_integrity(bio))
242 		bio_integrity_free(bio);
243 }
244 
245 static void bio_free(struct bio *bio)
246 {
247 	struct bio_set *bs = bio->bi_pool;
248 	void *p;
249 
250 	__bio_free(bio);
251 
252 	if (bs) {
253 		if (bio_flagged(bio, BIO_OWNS_VEC))
254 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255 
256 		/*
257 		 * If we have front padding, adjust the bio pointer before freeing
258 		 */
259 		p = bio;
260 		p -= bs->front_pad;
261 
262 		mempool_free(p, bs->bio_pool);
263 	} else {
264 		/* Bio was allocated by bio_kmalloc() */
265 		kfree(bio);
266 	}
267 }
268 
269 void bio_init(struct bio *bio)
270 {
271 	memset(bio, 0, sizeof(*bio));
272 	atomic_set(&bio->__bi_remaining, 1);
273 	atomic_set(&bio->__bi_cnt, 1);
274 }
275 EXPORT_SYMBOL(bio_init);
276 
277 /**
278  * bio_reset - reinitialize a bio
279  * @bio:	bio to reset
280  *
281  * Description:
282  *   After calling bio_reset(), @bio will be in the same state as a freshly
283  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
284  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
285  *   comment in struct bio.
286  */
287 void bio_reset(struct bio *bio)
288 {
289 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290 
291 	__bio_free(bio);
292 
293 	memset(bio, 0, BIO_RESET_BYTES);
294 	bio->bi_flags = flags;
295 	atomic_set(&bio->__bi_remaining, 1);
296 }
297 EXPORT_SYMBOL(bio_reset);
298 
299 static struct bio *__bio_chain_endio(struct bio *bio)
300 {
301 	struct bio *parent = bio->bi_private;
302 
303 	if (!parent->bi_error)
304 		parent->bi_error = bio->bi_error;
305 	bio_put(bio);
306 	return parent;
307 }
308 
309 static void bio_chain_endio(struct bio *bio)
310 {
311 	bio_endio(__bio_chain_endio(bio));
312 }
313 
314 /*
315  * Increment chain count for the bio. Make sure the CHAIN flag update
316  * is visible before the raised count.
317  */
318 static inline void bio_inc_remaining(struct bio *bio)
319 {
320 	bio_set_flag(bio, BIO_CHAIN);
321 	smp_mb__before_atomic();
322 	atomic_inc(&bio->__bi_remaining);
323 }
324 
325 /**
326  * bio_chain - chain bio completions
327  * @bio: the target bio
328  * @parent: the @bio's parent bio
329  *
330  * The caller won't have a bi_end_io called when @bio completes - instead,
331  * @parent's bi_end_io won't be called until both @parent and @bio have
332  * completed; the chained bio will also be freed when it completes.
333  *
334  * The caller must not set bi_private or bi_end_io in @bio.
335  */
336 void bio_chain(struct bio *bio, struct bio *parent)
337 {
338 	BUG_ON(bio->bi_private || bio->bi_end_io);
339 
340 	bio->bi_private = parent;
341 	bio->bi_end_io	= bio_chain_endio;
342 	bio_inc_remaining(parent);
343 }
344 EXPORT_SYMBOL(bio_chain);
345 
346 static void bio_alloc_rescue(struct work_struct *work)
347 {
348 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
349 	struct bio *bio;
350 
351 	while (1) {
352 		spin_lock(&bs->rescue_lock);
353 		bio = bio_list_pop(&bs->rescue_list);
354 		spin_unlock(&bs->rescue_lock);
355 
356 		if (!bio)
357 			break;
358 
359 		generic_make_request(bio);
360 	}
361 }
362 
363 static void punt_bios_to_rescuer(struct bio_set *bs)
364 {
365 	struct bio_list punt, nopunt;
366 	struct bio *bio;
367 
368 	/*
369 	 * In order to guarantee forward progress we must punt only bios that
370 	 * were allocated from this bio_set; otherwise, if there was a bio on
371 	 * there for a stacking driver higher up in the stack, processing it
372 	 * could require allocating bios from this bio_set, and doing that from
373 	 * our own rescuer would be bad.
374 	 *
375 	 * Since bio lists are singly linked, pop them all instead of trying to
376 	 * remove from the middle of the list:
377 	 */
378 
379 	bio_list_init(&punt);
380 	bio_list_init(&nopunt);
381 
382 	while ((bio = bio_list_pop(current->bio_list)))
383 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384 
385 	*current->bio_list = nopunt;
386 
387 	spin_lock(&bs->rescue_lock);
388 	bio_list_merge(&bs->rescue_list, &punt);
389 	spin_unlock(&bs->rescue_lock);
390 
391 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
392 }
393 
394 /**
395  * bio_alloc_bioset - allocate a bio for I/O
396  * @gfp_mask:   the GFP_ mask given to the slab allocator
397  * @nr_iovecs:	number of iovecs to pre-allocate
398  * @bs:		the bio_set to allocate from.
399  *
400  * Description:
401  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402  *   backed by the @bs's mempool.
403  *
404  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405  *   always be able to allocate a bio. This is due to the mempool guarantees.
406  *   To make this work, callers must never allocate more than 1 bio at a time
407  *   from this pool. Callers that need to allocate more than 1 bio must always
408  *   submit the previously allocated bio for IO before attempting to allocate
409  *   a new one. Failure to do so can cause deadlocks under memory pressure.
410  *
411  *   Note that when running under generic_make_request() (i.e. any block
412  *   driver), bios are not submitted until after you return - see the code in
413  *   generic_make_request() that converts recursion into iteration, to prevent
414  *   stack overflows.
415  *
416  *   This would normally mean allocating multiple bios under
417  *   generic_make_request() would be susceptible to deadlocks, but we have
418  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
419  *   thread.
420  *
421  *   However, we do not guarantee forward progress for allocations from other
422  *   mempools. Doing multiple allocations from the same mempool under
423  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
424  *   for per bio allocations.
425  *
426  *   RETURNS:
427  *   Pointer to new bio on success, NULL on failure.
428  */
429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
430 {
431 	gfp_t saved_gfp = gfp_mask;
432 	unsigned front_pad;
433 	unsigned inline_vecs;
434 	unsigned long idx = BIO_POOL_NONE;
435 	struct bio_vec *bvl = NULL;
436 	struct bio *bio;
437 	void *p;
438 
439 	if (!bs) {
440 		if (nr_iovecs > UIO_MAXIOV)
441 			return NULL;
442 
443 		p = kmalloc(sizeof(struct bio) +
444 			    nr_iovecs * sizeof(struct bio_vec),
445 			    gfp_mask);
446 		front_pad = 0;
447 		inline_vecs = nr_iovecs;
448 	} else {
449 		/* should not use nobvec bioset for nr_iovecs > 0 */
450 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
451 			return NULL;
452 		/*
453 		 * generic_make_request() converts recursion to iteration; this
454 		 * means if we're running beneath it, any bios we allocate and
455 		 * submit will not be submitted (and thus freed) until after we
456 		 * return.
457 		 *
458 		 * This exposes us to a potential deadlock if we allocate
459 		 * multiple bios from the same bio_set() while running
460 		 * underneath generic_make_request(). If we were to allocate
461 		 * multiple bios (say a stacking block driver that was splitting
462 		 * bios), we would deadlock if we exhausted the mempool's
463 		 * reserve.
464 		 *
465 		 * We solve this, and guarantee forward progress, with a rescuer
466 		 * workqueue per bio_set. If we go to allocate and there are
467 		 * bios on current->bio_list, we first try the allocation
468 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
469 		 * bios we would be blocking to the rescuer workqueue before
470 		 * we retry with the original gfp_flags.
471 		 */
472 
473 		if (current->bio_list && !bio_list_empty(current->bio_list))
474 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475 
476 		p = mempool_alloc(bs->bio_pool, gfp_mask);
477 		if (!p && gfp_mask != saved_gfp) {
478 			punt_bios_to_rescuer(bs);
479 			gfp_mask = saved_gfp;
480 			p = mempool_alloc(bs->bio_pool, gfp_mask);
481 		}
482 
483 		front_pad = bs->front_pad;
484 		inline_vecs = BIO_INLINE_VECS;
485 	}
486 
487 	if (unlikely(!p))
488 		return NULL;
489 
490 	bio = p + front_pad;
491 	bio_init(bio);
492 
493 	if (nr_iovecs > inline_vecs) {
494 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
495 		if (!bvl && gfp_mask != saved_gfp) {
496 			punt_bios_to_rescuer(bs);
497 			gfp_mask = saved_gfp;
498 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 		}
500 
501 		if (unlikely(!bvl))
502 			goto err_free;
503 
504 		bio_set_flag(bio, BIO_OWNS_VEC);
505 	} else if (nr_iovecs) {
506 		bvl = bio->bi_inline_vecs;
507 	}
508 
509 	bio->bi_pool = bs;
510 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
511 	bio->bi_max_vecs = nr_iovecs;
512 	bio->bi_io_vec = bvl;
513 	return bio;
514 
515 err_free:
516 	mempool_free(p, bs->bio_pool);
517 	return NULL;
518 }
519 EXPORT_SYMBOL(bio_alloc_bioset);
520 
521 void zero_fill_bio(struct bio *bio)
522 {
523 	unsigned long flags;
524 	struct bio_vec bv;
525 	struct bvec_iter iter;
526 
527 	bio_for_each_segment(bv, bio, iter) {
528 		char *data = bvec_kmap_irq(&bv, &flags);
529 		memset(data, 0, bv.bv_len);
530 		flush_dcache_page(bv.bv_page);
531 		bvec_kunmap_irq(data, &flags);
532 	}
533 }
534 EXPORT_SYMBOL(zero_fill_bio);
535 
536 /**
537  * bio_put - release a reference to a bio
538  * @bio:   bio to release reference to
539  *
540  * Description:
541  *   Put a reference to a &struct bio, either one you have gotten with
542  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
543  **/
544 void bio_put(struct bio *bio)
545 {
546 	if (!bio_flagged(bio, BIO_REFFED))
547 		bio_free(bio);
548 	else {
549 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
550 
551 		/*
552 		 * last put frees it
553 		 */
554 		if (atomic_dec_and_test(&bio->__bi_cnt))
555 			bio_free(bio);
556 	}
557 }
558 EXPORT_SYMBOL(bio_put);
559 
560 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
561 {
562 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
563 		blk_recount_segments(q, bio);
564 
565 	return bio->bi_phys_segments;
566 }
567 EXPORT_SYMBOL(bio_phys_segments);
568 
569 /**
570  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
571  * 	@bio: destination bio
572  * 	@bio_src: bio to clone
573  *
574  *	Clone a &bio. Caller will own the returned bio, but not
575  *	the actual data it points to. Reference count of returned
576  * 	bio will be one.
577  *
578  * 	Caller must ensure that @bio_src is not freed before @bio.
579  */
580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581 {
582 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
583 
584 	/*
585 	 * most users will be overriding ->bi_bdev with a new target,
586 	 * so we don't set nor calculate new physical/hw segment counts here
587 	 */
588 	bio->bi_bdev = bio_src->bi_bdev;
589 	bio_set_flag(bio, BIO_CLONED);
590 	bio->bi_rw = bio_src->bi_rw;
591 	bio->bi_iter = bio_src->bi_iter;
592 	bio->bi_io_vec = bio_src->bi_io_vec;
593 }
594 EXPORT_SYMBOL(__bio_clone_fast);
595 
596 /**
597  *	bio_clone_fast - clone a bio that shares the original bio's biovec
598  *	@bio: bio to clone
599  *	@gfp_mask: allocation priority
600  *	@bs: bio_set to allocate from
601  *
602  * 	Like __bio_clone_fast, only also allocates the returned bio
603  */
604 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
605 {
606 	struct bio *b;
607 
608 	b = bio_alloc_bioset(gfp_mask, 0, bs);
609 	if (!b)
610 		return NULL;
611 
612 	__bio_clone_fast(b, bio);
613 
614 	if (bio_integrity(bio)) {
615 		int ret;
616 
617 		ret = bio_integrity_clone(b, bio, gfp_mask);
618 
619 		if (ret < 0) {
620 			bio_put(b);
621 			return NULL;
622 		}
623 	}
624 
625 	return b;
626 }
627 EXPORT_SYMBOL(bio_clone_fast);
628 
629 /**
630  * 	bio_clone_bioset - clone a bio
631  * 	@bio_src: bio to clone
632  *	@gfp_mask: allocation priority
633  *	@bs: bio_set to allocate from
634  *
635  *	Clone bio. Caller will own the returned bio, but not the actual data it
636  *	points to. Reference count of returned bio will be one.
637  */
638 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
639 			     struct bio_set *bs)
640 {
641 	struct bvec_iter iter;
642 	struct bio_vec bv;
643 	struct bio *bio;
644 
645 	/*
646 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
647 	 * bio_src->bi_io_vec to bio->bi_io_vec.
648 	 *
649 	 * We can't do that anymore, because:
650 	 *
651 	 *  - The point of cloning the biovec is to produce a bio with a biovec
652 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
653 	 *
654 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
655 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
656 	 *    But the clone should succeed as long as the number of biovecs we
657 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
658 	 *
659 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
660 	 *    that does not own the bio - reason being drivers don't use it for
661 	 *    iterating over the biovec anymore, so expecting it to be kept up
662 	 *    to date (i.e. for clones that share the parent biovec) is just
663 	 *    asking for trouble and would force extra work on
664 	 *    __bio_clone_fast() anyways.
665 	 */
666 
667 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
668 	if (!bio)
669 		return NULL;
670 
671 	bio->bi_bdev		= bio_src->bi_bdev;
672 	bio->bi_rw		= bio_src->bi_rw;
673 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
674 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
675 
676 	if (bio->bi_rw & REQ_DISCARD)
677 		goto integrity_clone;
678 
679 	if (bio->bi_rw & REQ_WRITE_SAME) {
680 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
681 		goto integrity_clone;
682 	}
683 
684 	bio_for_each_segment(bv, bio_src, iter)
685 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
686 
687 integrity_clone:
688 	if (bio_integrity(bio_src)) {
689 		int ret;
690 
691 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
692 		if (ret < 0) {
693 			bio_put(bio);
694 			return NULL;
695 		}
696 	}
697 
698 	return bio;
699 }
700 EXPORT_SYMBOL(bio_clone_bioset);
701 
702 /**
703  *	bio_add_pc_page	-	attempt to add page to bio
704  *	@q: the target queue
705  *	@bio: destination bio
706  *	@page: page to add
707  *	@len: vec entry length
708  *	@offset: vec entry offset
709  *
710  *	Attempt to add a page to the bio_vec maplist. This can fail for a
711  *	number of reasons, such as the bio being full or target block device
712  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
713  *	so it is always possible to add a single page to an empty bio.
714  *
715  *	This should only be used by REQ_PC bios.
716  */
717 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
718 		    *page, unsigned int len, unsigned int offset)
719 {
720 	int retried_segments = 0;
721 	struct bio_vec *bvec;
722 
723 	/*
724 	 * cloned bio must not modify vec list
725 	 */
726 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
727 		return 0;
728 
729 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
730 		return 0;
731 
732 	/*
733 	 * For filesystems with a blocksize smaller than the pagesize
734 	 * we will often be called with the same page as last time and
735 	 * a consecutive offset.  Optimize this special case.
736 	 */
737 	if (bio->bi_vcnt > 0) {
738 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
739 
740 		if (page == prev->bv_page &&
741 		    offset == prev->bv_offset + prev->bv_len) {
742 			prev->bv_len += len;
743 			bio->bi_iter.bi_size += len;
744 			goto done;
745 		}
746 
747 		/*
748 		 * If the queue doesn't support SG gaps and adding this
749 		 * offset would create a gap, disallow it.
750 		 */
751 		if (bvec_gap_to_prev(q, prev, offset))
752 			return 0;
753 	}
754 
755 	if (bio->bi_vcnt >= bio->bi_max_vecs)
756 		return 0;
757 
758 	/*
759 	 * setup the new entry, we might clear it again later if we
760 	 * cannot add the page
761 	 */
762 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
763 	bvec->bv_page = page;
764 	bvec->bv_len = len;
765 	bvec->bv_offset = offset;
766 	bio->bi_vcnt++;
767 	bio->bi_phys_segments++;
768 	bio->bi_iter.bi_size += len;
769 
770 	/*
771 	 * Perform a recount if the number of segments is greater
772 	 * than queue_max_segments(q).
773 	 */
774 
775 	while (bio->bi_phys_segments > queue_max_segments(q)) {
776 
777 		if (retried_segments)
778 			goto failed;
779 
780 		retried_segments = 1;
781 		blk_recount_segments(q, bio);
782 	}
783 
784 	/* If we may be able to merge these biovecs, force a recount */
785 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
786 		bio_clear_flag(bio, BIO_SEG_VALID);
787 
788  done:
789 	return len;
790 
791  failed:
792 	bvec->bv_page = NULL;
793 	bvec->bv_len = 0;
794 	bvec->bv_offset = 0;
795 	bio->bi_vcnt--;
796 	bio->bi_iter.bi_size -= len;
797 	blk_recount_segments(q, bio);
798 	return 0;
799 }
800 EXPORT_SYMBOL(bio_add_pc_page);
801 
802 /**
803  *	bio_add_page	-	attempt to add page to bio
804  *	@bio: destination bio
805  *	@page: page to add
806  *	@len: vec entry length
807  *	@offset: vec entry offset
808  *
809  *	Attempt to add a page to the bio_vec maplist. This will only fail
810  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
811  */
812 int bio_add_page(struct bio *bio, struct page *page,
813 		 unsigned int len, unsigned int offset)
814 {
815 	struct bio_vec *bv;
816 
817 	/*
818 	 * cloned bio must not modify vec list
819 	 */
820 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
821 		return 0;
822 
823 	/*
824 	 * For filesystems with a blocksize smaller than the pagesize
825 	 * we will often be called with the same page as last time and
826 	 * a consecutive offset.  Optimize this special case.
827 	 */
828 	if (bio->bi_vcnt > 0) {
829 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
830 
831 		if (page == bv->bv_page &&
832 		    offset == bv->bv_offset + bv->bv_len) {
833 			bv->bv_len += len;
834 			goto done;
835 		}
836 	}
837 
838 	if (bio->bi_vcnt >= bio->bi_max_vecs)
839 		return 0;
840 
841 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
842 	bv->bv_page	= page;
843 	bv->bv_len	= len;
844 	bv->bv_offset	= offset;
845 
846 	bio->bi_vcnt++;
847 done:
848 	bio->bi_iter.bi_size += len;
849 	return len;
850 }
851 EXPORT_SYMBOL(bio_add_page);
852 
853 struct submit_bio_ret {
854 	struct completion event;
855 	int error;
856 };
857 
858 static void submit_bio_wait_endio(struct bio *bio)
859 {
860 	struct submit_bio_ret *ret = bio->bi_private;
861 
862 	ret->error = bio->bi_error;
863 	complete(&ret->event);
864 }
865 
866 /**
867  * submit_bio_wait - submit a bio, and wait until it completes
868  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
869  * @bio: The &struct bio which describes the I/O
870  *
871  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
872  * bio_endio() on failure.
873  */
874 int submit_bio_wait(int rw, struct bio *bio)
875 {
876 	struct submit_bio_ret ret;
877 
878 	rw |= REQ_SYNC;
879 	init_completion(&ret.event);
880 	bio->bi_private = &ret;
881 	bio->bi_end_io = submit_bio_wait_endio;
882 	submit_bio(rw, bio);
883 	wait_for_completion_io(&ret.event);
884 
885 	return ret.error;
886 }
887 EXPORT_SYMBOL(submit_bio_wait);
888 
889 /**
890  * bio_advance - increment/complete a bio by some number of bytes
891  * @bio:	bio to advance
892  * @bytes:	number of bytes to complete
893  *
894  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
895  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
896  * be updated on the last bvec as well.
897  *
898  * @bio will then represent the remaining, uncompleted portion of the io.
899  */
900 void bio_advance(struct bio *bio, unsigned bytes)
901 {
902 	if (bio_integrity(bio))
903 		bio_integrity_advance(bio, bytes);
904 
905 	bio_advance_iter(bio, &bio->bi_iter, bytes);
906 }
907 EXPORT_SYMBOL(bio_advance);
908 
909 /**
910  * bio_alloc_pages - allocates a single page for each bvec in a bio
911  * @bio: bio to allocate pages for
912  * @gfp_mask: flags for allocation
913  *
914  * Allocates pages up to @bio->bi_vcnt.
915  *
916  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
917  * freed.
918  */
919 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
920 {
921 	int i;
922 	struct bio_vec *bv;
923 
924 	bio_for_each_segment_all(bv, bio, i) {
925 		bv->bv_page = alloc_page(gfp_mask);
926 		if (!bv->bv_page) {
927 			while (--bv >= bio->bi_io_vec)
928 				__free_page(bv->bv_page);
929 			return -ENOMEM;
930 		}
931 	}
932 
933 	return 0;
934 }
935 EXPORT_SYMBOL(bio_alloc_pages);
936 
937 /**
938  * bio_copy_data - copy contents of data buffers from one chain of bios to
939  * another
940  * @src: source bio list
941  * @dst: destination bio list
942  *
943  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
944  * @src and @dst as linked lists of bios.
945  *
946  * Stops when it reaches the end of either @src or @dst - that is, copies
947  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
948  */
949 void bio_copy_data(struct bio *dst, struct bio *src)
950 {
951 	struct bvec_iter src_iter, dst_iter;
952 	struct bio_vec src_bv, dst_bv;
953 	void *src_p, *dst_p;
954 	unsigned bytes;
955 
956 	src_iter = src->bi_iter;
957 	dst_iter = dst->bi_iter;
958 
959 	while (1) {
960 		if (!src_iter.bi_size) {
961 			src = src->bi_next;
962 			if (!src)
963 				break;
964 
965 			src_iter = src->bi_iter;
966 		}
967 
968 		if (!dst_iter.bi_size) {
969 			dst = dst->bi_next;
970 			if (!dst)
971 				break;
972 
973 			dst_iter = dst->bi_iter;
974 		}
975 
976 		src_bv = bio_iter_iovec(src, src_iter);
977 		dst_bv = bio_iter_iovec(dst, dst_iter);
978 
979 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
980 
981 		src_p = kmap_atomic(src_bv.bv_page);
982 		dst_p = kmap_atomic(dst_bv.bv_page);
983 
984 		memcpy(dst_p + dst_bv.bv_offset,
985 		       src_p + src_bv.bv_offset,
986 		       bytes);
987 
988 		kunmap_atomic(dst_p);
989 		kunmap_atomic(src_p);
990 
991 		bio_advance_iter(src, &src_iter, bytes);
992 		bio_advance_iter(dst, &dst_iter, bytes);
993 	}
994 }
995 EXPORT_SYMBOL(bio_copy_data);
996 
997 struct bio_map_data {
998 	int is_our_pages;
999 	struct iov_iter iter;
1000 	struct iovec iov[];
1001 };
1002 
1003 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1004 					       gfp_t gfp_mask)
1005 {
1006 	if (iov_count > UIO_MAXIOV)
1007 		return NULL;
1008 
1009 	return kmalloc(sizeof(struct bio_map_data) +
1010 		       sizeof(struct iovec) * iov_count, gfp_mask);
1011 }
1012 
1013 /**
1014  * bio_copy_from_iter - copy all pages from iov_iter to bio
1015  * @bio: The &struct bio which describes the I/O as destination
1016  * @iter: iov_iter as source
1017  *
1018  * Copy all pages from iov_iter to bio.
1019  * Returns 0 on success, or error on failure.
1020  */
1021 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1022 {
1023 	int i;
1024 	struct bio_vec *bvec;
1025 
1026 	bio_for_each_segment_all(bvec, bio, i) {
1027 		ssize_t ret;
1028 
1029 		ret = copy_page_from_iter(bvec->bv_page,
1030 					  bvec->bv_offset,
1031 					  bvec->bv_len,
1032 					  &iter);
1033 
1034 		if (!iov_iter_count(&iter))
1035 			break;
1036 
1037 		if (ret < bvec->bv_len)
1038 			return -EFAULT;
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 /**
1045  * bio_copy_to_iter - copy all pages from bio to iov_iter
1046  * @bio: The &struct bio which describes the I/O as source
1047  * @iter: iov_iter as destination
1048  *
1049  * Copy all pages from bio to iov_iter.
1050  * Returns 0 on success, or error on failure.
1051  */
1052 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1053 {
1054 	int i;
1055 	struct bio_vec *bvec;
1056 
1057 	bio_for_each_segment_all(bvec, bio, i) {
1058 		ssize_t ret;
1059 
1060 		ret = copy_page_to_iter(bvec->bv_page,
1061 					bvec->bv_offset,
1062 					bvec->bv_len,
1063 					&iter);
1064 
1065 		if (!iov_iter_count(&iter))
1066 			break;
1067 
1068 		if (ret < bvec->bv_len)
1069 			return -EFAULT;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static void bio_free_pages(struct bio *bio)
1076 {
1077 	struct bio_vec *bvec;
1078 	int i;
1079 
1080 	bio_for_each_segment_all(bvec, bio, i)
1081 		__free_page(bvec->bv_page);
1082 }
1083 
1084 /**
1085  *	bio_uncopy_user	-	finish previously mapped bio
1086  *	@bio: bio being terminated
1087  *
1088  *	Free pages allocated from bio_copy_user_iov() and write back data
1089  *	to user space in case of a read.
1090  */
1091 int bio_uncopy_user(struct bio *bio)
1092 {
1093 	struct bio_map_data *bmd = bio->bi_private;
1094 	int ret = 0;
1095 
1096 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1097 		/*
1098 		 * if we're in a workqueue, the request is orphaned, so
1099 		 * don't copy into a random user address space, just free
1100 		 * and return -EINTR so user space doesn't expect any data.
1101 		 */
1102 		if (!current->mm)
1103 			ret = -EINTR;
1104 		else if (bio_data_dir(bio) == READ)
1105 			ret = bio_copy_to_iter(bio, bmd->iter);
1106 		if (bmd->is_our_pages)
1107 			bio_free_pages(bio);
1108 	}
1109 	kfree(bmd);
1110 	bio_put(bio);
1111 	return ret;
1112 }
1113 EXPORT_SYMBOL(bio_uncopy_user);
1114 
1115 /**
1116  *	bio_copy_user_iov	-	copy user data to bio
1117  *	@q:		destination block queue
1118  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1119  *	@iter:		iovec iterator
1120  *	@gfp_mask:	memory allocation flags
1121  *
1122  *	Prepares and returns a bio for indirect user io, bouncing data
1123  *	to/from kernel pages as necessary. Must be paired with
1124  *	call bio_uncopy_user() on io completion.
1125  */
1126 struct bio *bio_copy_user_iov(struct request_queue *q,
1127 			      struct rq_map_data *map_data,
1128 			      const struct iov_iter *iter,
1129 			      gfp_t gfp_mask)
1130 {
1131 	struct bio_map_data *bmd;
1132 	struct page *page;
1133 	struct bio *bio;
1134 	int i, ret;
1135 	int nr_pages = 0;
1136 	unsigned int len = iter->count;
1137 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1138 
1139 	for (i = 0; i < iter->nr_segs; i++) {
1140 		unsigned long uaddr;
1141 		unsigned long end;
1142 		unsigned long start;
1143 
1144 		uaddr = (unsigned long) iter->iov[i].iov_base;
1145 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1146 			>> PAGE_SHIFT;
1147 		start = uaddr >> PAGE_SHIFT;
1148 
1149 		/*
1150 		 * Overflow, abort
1151 		 */
1152 		if (end < start)
1153 			return ERR_PTR(-EINVAL);
1154 
1155 		nr_pages += end - start;
1156 	}
1157 
1158 	if (offset)
1159 		nr_pages++;
1160 
1161 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1162 	if (!bmd)
1163 		return ERR_PTR(-ENOMEM);
1164 
1165 	/*
1166 	 * We need to do a deep copy of the iov_iter including the iovecs.
1167 	 * The caller provided iov might point to an on-stack or otherwise
1168 	 * shortlived one.
1169 	 */
1170 	bmd->is_our_pages = map_data ? 0 : 1;
1171 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1172 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1173 			iter->nr_segs, iter->count);
1174 
1175 	ret = -ENOMEM;
1176 	bio = bio_kmalloc(gfp_mask, nr_pages);
1177 	if (!bio)
1178 		goto out_bmd;
1179 
1180 	if (iter->type & WRITE)
1181 		bio->bi_rw |= REQ_WRITE;
1182 
1183 	ret = 0;
1184 
1185 	if (map_data) {
1186 		nr_pages = 1 << map_data->page_order;
1187 		i = map_data->offset / PAGE_SIZE;
1188 	}
1189 	while (len) {
1190 		unsigned int bytes = PAGE_SIZE;
1191 
1192 		bytes -= offset;
1193 
1194 		if (bytes > len)
1195 			bytes = len;
1196 
1197 		if (map_data) {
1198 			if (i == map_data->nr_entries * nr_pages) {
1199 				ret = -ENOMEM;
1200 				break;
1201 			}
1202 
1203 			page = map_data->pages[i / nr_pages];
1204 			page += (i % nr_pages);
1205 
1206 			i++;
1207 		} else {
1208 			page = alloc_page(q->bounce_gfp | gfp_mask);
1209 			if (!page) {
1210 				ret = -ENOMEM;
1211 				break;
1212 			}
1213 		}
1214 
1215 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1216 			break;
1217 
1218 		len -= bytes;
1219 		offset = 0;
1220 	}
1221 
1222 	if (ret)
1223 		goto cleanup;
1224 
1225 	/*
1226 	 * success
1227 	 */
1228 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1229 	    (map_data && map_data->from_user)) {
1230 		ret = bio_copy_from_iter(bio, *iter);
1231 		if (ret)
1232 			goto cleanup;
1233 	}
1234 
1235 	bio->bi_private = bmd;
1236 	return bio;
1237 cleanup:
1238 	if (!map_data)
1239 		bio_free_pages(bio);
1240 	bio_put(bio);
1241 out_bmd:
1242 	kfree(bmd);
1243 	return ERR_PTR(ret);
1244 }
1245 
1246 /**
1247  *	bio_map_user_iov - map user iovec into bio
1248  *	@q:		the struct request_queue for the bio
1249  *	@iter:		iovec iterator
1250  *	@gfp_mask:	memory allocation flags
1251  *
1252  *	Map the user space address into a bio suitable for io to a block
1253  *	device. Returns an error pointer in case of error.
1254  */
1255 struct bio *bio_map_user_iov(struct request_queue *q,
1256 			     const struct iov_iter *iter,
1257 			     gfp_t gfp_mask)
1258 {
1259 	int j;
1260 	int nr_pages = 0;
1261 	struct page **pages;
1262 	struct bio *bio;
1263 	int cur_page = 0;
1264 	int ret, offset;
1265 	struct iov_iter i;
1266 	struct iovec iov;
1267 
1268 	iov_for_each(iov, i, *iter) {
1269 		unsigned long uaddr = (unsigned long) iov.iov_base;
1270 		unsigned long len = iov.iov_len;
1271 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272 		unsigned long start = uaddr >> PAGE_SHIFT;
1273 
1274 		/*
1275 		 * Overflow, abort
1276 		 */
1277 		if (end < start)
1278 			return ERR_PTR(-EINVAL);
1279 
1280 		nr_pages += end - start;
1281 		/*
1282 		 * buffer must be aligned to at least hardsector size for now
1283 		 */
1284 		if (uaddr & queue_dma_alignment(q))
1285 			return ERR_PTR(-EINVAL);
1286 	}
1287 
1288 	if (!nr_pages)
1289 		return ERR_PTR(-EINVAL);
1290 
1291 	bio = bio_kmalloc(gfp_mask, nr_pages);
1292 	if (!bio)
1293 		return ERR_PTR(-ENOMEM);
1294 
1295 	ret = -ENOMEM;
1296 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1297 	if (!pages)
1298 		goto out;
1299 
1300 	iov_for_each(iov, i, *iter) {
1301 		unsigned long uaddr = (unsigned long) iov.iov_base;
1302 		unsigned long len = iov.iov_len;
1303 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304 		unsigned long start = uaddr >> PAGE_SHIFT;
1305 		const int local_nr_pages = end - start;
1306 		const int page_limit = cur_page + local_nr_pages;
1307 
1308 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1309 				(iter->type & WRITE) != WRITE,
1310 				&pages[cur_page]);
1311 		if (ret < local_nr_pages) {
1312 			ret = -EFAULT;
1313 			goto out_unmap;
1314 		}
1315 
1316 		offset = offset_in_page(uaddr);
1317 		for (j = cur_page; j < page_limit; j++) {
1318 			unsigned int bytes = PAGE_SIZE - offset;
1319 
1320 			if (len <= 0)
1321 				break;
1322 
1323 			if (bytes > len)
1324 				bytes = len;
1325 
1326 			/*
1327 			 * sorry...
1328 			 */
1329 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1330 					    bytes)
1331 				break;
1332 
1333 			len -= bytes;
1334 			offset = 0;
1335 		}
1336 
1337 		cur_page = j;
1338 		/*
1339 		 * release the pages we didn't map into the bio, if any
1340 		 */
1341 		while (j < page_limit)
1342 			put_page(pages[j++]);
1343 	}
1344 
1345 	kfree(pages);
1346 
1347 	/*
1348 	 * set data direction, and check if mapped pages need bouncing
1349 	 */
1350 	if (iter->type & WRITE)
1351 		bio->bi_rw |= REQ_WRITE;
1352 
1353 	bio_set_flag(bio, BIO_USER_MAPPED);
1354 
1355 	/*
1356 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1357 	 * it would normally disappear when its bi_end_io is run.
1358 	 * however, we need it for the unmap, so grab an extra
1359 	 * reference to it
1360 	 */
1361 	bio_get(bio);
1362 	return bio;
1363 
1364  out_unmap:
1365 	for (j = 0; j < nr_pages; j++) {
1366 		if (!pages[j])
1367 			break;
1368 		put_page(pages[j]);
1369 	}
1370  out:
1371 	kfree(pages);
1372 	bio_put(bio);
1373 	return ERR_PTR(ret);
1374 }
1375 
1376 static void __bio_unmap_user(struct bio *bio)
1377 {
1378 	struct bio_vec *bvec;
1379 	int i;
1380 
1381 	/*
1382 	 * make sure we dirty pages we wrote to
1383 	 */
1384 	bio_for_each_segment_all(bvec, bio, i) {
1385 		if (bio_data_dir(bio) == READ)
1386 			set_page_dirty_lock(bvec->bv_page);
1387 
1388 		put_page(bvec->bv_page);
1389 	}
1390 
1391 	bio_put(bio);
1392 }
1393 
1394 /**
1395  *	bio_unmap_user	-	unmap a bio
1396  *	@bio:		the bio being unmapped
1397  *
1398  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1399  *	a process context.
1400  *
1401  *	bio_unmap_user() may sleep.
1402  */
1403 void bio_unmap_user(struct bio *bio)
1404 {
1405 	__bio_unmap_user(bio);
1406 	bio_put(bio);
1407 }
1408 EXPORT_SYMBOL(bio_unmap_user);
1409 
1410 static void bio_map_kern_endio(struct bio *bio)
1411 {
1412 	bio_put(bio);
1413 }
1414 
1415 /**
1416  *	bio_map_kern	-	map kernel address into bio
1417  *	@q: the struct request_queue for the bio
1418  *	@data: pointer to buffer to map
1419  *	@len: length in bytes
1420  *	@gfp_mask: allocation flags for bio allocation
1421  *
1422  *	Map the kernel address into a bio suitable for io to a block
1423  *	device. Returns an error pointer in case of error.
1424  */
1425 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1426 			 gfp_t gfp_mask)
1427 {
1428 	unsigned long kaddr = (unsigned long)data;
1429 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1430 	unsigned long start = kaddr >> PAGE_SHIFT;
1431 	const int nr_pages = end - start;
1432 	int offset, i;
1433 	struct bio *bio;
1434 
1435 	bio = bio_kmalloc(gfp_mask, nr_pages);
1436 	if (!bio)
1437 		return ERR_PTR(-ENOMEM);
1438 
1439 	offset = offset_in_page(kaddr);
1440 	for (i = 0; i < nr_pages; i++) {
1441 		unsigned int bytes = PAGE_SIZE - offset;
1442 
1443 		if (len <= 0)
1444 			break;
1445 
1446 		if (bytes > len)
1447 			bytes = len;
1448 
1449 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1450 				    offset) < bytes) {
1451 			/* we don't support partial mappings */
1452 			bio_put(bio);
1453 			return ERR_PTR(-EINVAL);
1454 		}
1455 
1456 		data += bytes;
1457 		len -= bytes;
1458 		offset = 0;
1459 	}
1460 
1461 	bio->bi_end_io = bio_map_kern_endio;
1462 	return bio;
1463 }
1464 EXPORT_SYMBOL(bio_map_kern);
1465 
1466 static void bio_copy_kern_endio(struct bio *bio)
1467 {
1468 	bio_free_pages(bio);
1469 	bio_put(bio);
1470 }
1471 
1472 static void bio_copy_kern_endio_read(struct bio *bio)
1473 {
1474 	char *p = bio->bi_private;
1475 	struct bio_vec *bvec;
1476 	int i;
1477 
1478 	bio_for_each_segment_all(bvec, bio, i) {
1479 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1480 		p += bvec->bv_len;
1481 	}
1482 
1483 	bio_copy_kern_endio(bio);
1484 }
1485 
1486 /**
1487  *	bio_copy_kern	-	copy kernel address into bio
1488  *	@q: the struct request_queue for the bio
1489  *	@data: pointer to buffer to copy
1490  *	@len: length in bytes
1491  *	@gfp_mask: allocation flags for bio and page allocation
1492  *	@reading: data direction is READ
1493  *
1494  *	copy the kernel address into a bio suitable for io to a block
1495  *	device. Returns an error pointer in case of error.
1496  */
1497 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1498 			  gfp_t gfp_mask, int reading)
1499 {
1500 	unsigned long kaddr = (unsigned long)data;
1501 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 	unsigned long start = kaddr >> PAGE_SHIFT;
1503 	struct bio *bio;
1504 	void *p = data;
1505 	int nr_pages = 0;
1506 
1507 	/*
1508 	 * Overflow, abort
1509 	 */
1510 	if (end < start)
1511 		return ERR_PTR(-EINVAL);
1512 
1513 	nr_pages = end - start;
1514 	bio = bio_kmalloc(gfp_mask, nr_pages);
1515 	if (!bio)
1516 		return ERR_PTR(-ENOMEM);
1517 
1518 	while (len) {
1519 		struct page *page;
1520 		unsigned int bytes = PAGE_SIZE;
1521 
1522 		if (bytes > len)
1523 			bytes = len;
1524 
1525 		page = alloc_page(q->bounce_gfp | gfp_mask);
1526 		if (!page)
1527 			goto cleanup;
1528 
1529 		if (!reading)
1530 			memcpy(page_address(page), p, bytes);
1531 
1532 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1533 			break;
1534 
1535 		len -= bytes;
1536 		p += bytes;
1537 	}
1538 
1539 	if (reading) {
1540 		bio->bi_end_io = bio_copy_kern_endio_read;
1541 		bio->bi_private = data;
1542 	} else {
1543 		bio->bi_end_io = bio_copy_kern_endio;
1544 		bio->bi_rw |= REQ_WRITE;
1545 	}
1546 
1547 	return bio;
1548 
1549 cleanup:
1550 	bio_free_pages(bio);
1551 	bio_put(bio);
1552 	return ERR_PTR(-ENOMEM);
1553 }
1554 EXPORT_SYMBOL(bio_copy_kern);
1555 
1556 /*
1557  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1558  * for performing direct-IO in BIOs.
1559  *
1560  * The problem is that we cannot run set_page_dirty() from interrupt context
1561  * because the required locks are not interrupt-safe.  So what we can do is to
1562  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1563  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1564  * in process context.
1565  *
1566  * We special-case compound pages here: normally this means reads into hugetlb
1567  * pages.  The logic in here doesn't really work right for compound pages
1568  * because the VM does not uniformly chase down the head page in all cases.
1569  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1570  * handle them at all.  So we skip compound pages here at an early stage.
1571  *
1572  * Note that this code is very hard to test under normal circumstances because
1573  * direct-io pins the pages with get_user_pages().  This makes
1574  * is_page_cache_freeable return false, and the VM will not clean the pages.
1575  * But other code (eg, flusher threads) could clean the pages if they are mapped
1576  * pagecache.
1577  *
1578  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1579  * deferred bio dirtying paths.
1580  */
1581 
1582 /*
1583  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1584  */
1585 void bio_set_pages_dirty(struct bio *bio)
1586 {
1587 	struct bio_vec *bvec;
1588 	int i;
1589 
1590 	bio_for_each_segment_all(bvec, bio, i) {
1591 		struct page *page = bvec->bv_page;
1592 
1593 		if (page && !PageCompound(page))
1594 			set_page_dirty_lock(page);
1595 	}
1596 }
1597 
1598 static void bio_release_pages(struct bio *bio)
1599 {
1600 	struct bio_vec *bvec;
1601 	int i;
1602 
1603 	bio_for_each_segment_all(bvec, bio, i) {
1604 		struct page *page = bvec->bv_page;
1605 
1606 		if (page)
1607 			put_page(page);
1608 	}
1609 }
1610 
1611 /*
1612  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1613  * If they are, then fine.  If, however, some pages are clean then they must
1614  * have been written out during the direct-IO read.  So we take another ref on
1615  * the BIO and the offending pages and re-dirty the pages in process context.
1616  *
1617  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1618  * here on.  It will run one put_page() against each page and will run one
1619  * bio_put() against the BIO.
1620  */
1621 
1622 static void bio_dirty_fn(struct work_struct *work);
1623 
1624 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1625 static DEFINE_SPINLOCK(bio_dirty_lock);
1626 static struct bio *bio_dirty_list;
1627 
1628 /*
1629  * This runs in process context
1630  */
1631 static void bio_dirty_fn(struct work_struct *work)
1632 {
1633 	unsigned long flags;
1634 	struct bio *bio;
1635 
1636 	spin_lock_irqsave(&bio_dirty_lock, flags);
1637 	bio = bio_dirty_list;
1638 	bio_dirty_list = NULL;
1639 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1640 
1641 	while (bio) {
1642 		struct bio *next = bio->bi_private;
1643 
1644 		bio_set_pages_dirty(bio);
1645 		bio_release_pages(bio);
1646 		bio_put(bio);
1647 		bio = next;
1648 	}
1649 }
1650 
1651 void bio_check_pages_dirty(struct bio *bio)
1652 {
1653 	struct bio_vec *bvec;
1654 	int nr_clean_pages = 0;
1655 	int i;
1656 
1657 	bio_for_each_segment_all(bvec, bio, i) {
1658 		struct page *page = bvec->bv_page;
1659 
1660 		if (PageDirty(page) || PageCompound(page)) {
1661 			put_page(page);
1662 			bvec->bv_page = NULL;
1663 		} else {
1664 			nr_clean_pages++;
1665 		}
1666 	}
1667 
1668 	if (nr_clean_pages) {
1669 		unsigned long flags;
1670 
1671 		spin_lock_irqsave(&bio_dirty_lock, flags);
1672 		bio->bi_private = bio_dirty_list;
1673 		bio_dirty_list = bio;
1674 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1675 		schedule_work(&bio_dirty_work);
1676 	} else {
1677 		bio_put(bio);
1678 	}
1679 }
1680 
1681 void generic_start_io_acct(int rw, unsigned long sectors,
1682 			   struct hd_struct *part)
1683 {
1684 	int cpu = part_stat_lock();
1685 
1686 	part_round_stats(cpu, part);
1687 	part_stat_inc(cpu, part, ios[rw]);
1688 	part_stat_add(cpu, part, sectors[rw], sectors);
1689 	part_inc_in_flight(part, rw);
1690 
1691 	part_stat_unlock();
1692 }
1693 EXPORT_SYMBOL(generic_start_io_acct);
1694 
1695 void generic_end_io_acct(int rw, struct hd_struct *part,
1696 			 unsigned long start_time)
1697 {
1698 	unsigned long duration = jiffies - start_time;
1699 	int cpu = part_stat_lock();
1700 
1701 	part_stat_add(cpu, part, ticks[rw], duration);
1702 	part_round_stats(cpu, part);
1703 	part_dec_in_flight(part, rw);
1704 
1705 	part_stat_unlock();
1706 }
1707 EXPORT_SYMBOL(generic_end_io_acct);
1708 
1709 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1710 void bio_flush_dcache_pages(struct bio *bi)
1711 {
1712 	struct bio_vec bvec;
1713 	struct bvec_iter iter;
1714 
1715 	bio_for_each_segment(bvec, bi, iter)
1716 		flush_dcache_page(bvec.bv_page);
1717 }
1718 EXPORT_SYMBOL(bio_flush_dcache_pages);
1719 #endif
1720 
1721 static inline bool bio_remaining_done(struct bio *bio)
1722 {
1723 	/*
1724 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1725 	 * we always end io on the first invocation.
1726 	 */
1727 	if (!bio_flagged(bio, BIO_CHAIN))
1728 		return true;
1729 
1730 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1731 
1732 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1733 		bio_clear_flag(bio, BIO_CHAIN);
1734 		return true;
1735 	}
1736 
1737 	return false;
1738 }
1739 
1740 /**
1741  * bio_endio - end I/O on a bio
1742  * @bio:	bio
1743  *
1744  * Description:
1745  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1746  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1747  *   bio unless they own it and thus know that it has an end_io function.
1748  **/
1749 void bio_endio(struct bio *bio)
1750 {
1751 again:
1752 	if (!bio_remaining_done(bio))
1753 		return;
1754 
1755 	/*
1756 	 * Need to have a real endio function for chained bios, otherwise
1757 	 * various corner cases will break (like stacking block devices that
1758 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1759 	 * recursion and blowing the stack. Tail call optimization would
1760 	 * handle this, but compiling with frame pointers also disables
1761 	 * gcc's sibling call optimization.
1762 	 */
1763 	if (bio->bi_end_io == bio_chain_endio) {
1764 		bio = __bio_chain_endio(bio);
1765 		goto again;
1766 	}
1767 
1768 	if (bio->bi_end_io)
1769 		bio->bi_end_io(bio);
1770 }
1771 EXPORT_SYMBOL(bio_endio);
1772 
1773 /**
1774  * bio_split - split a bio
1775  * @bio:	bio to split
1776  * @sectors:	number of sectors to split from the front of @bio
1777  * @gfp:	gfp mask
1778  * @bs:		bio set to allocate from
1779  *
1780  * Allocates and returns a new bio which represents @sectors from the start of
1781  * @bio, and updates @bio to represent the remaining sectors.
1782  *
1783  * Unless this is a discard request the newly allocated bio will point
1784  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1785  * @bio is not freed before the split.
1786  */
1787 struct bio *bio_split(struct bio *bio, int sectors,
1788 		      gfp_t gfp, struct bio_set *bs)
1789 {
1790 	struct bio *split = NULL;
1791 
1792 	BUG_ON(sectors <= 0);
1793 	BUG_ON(sectors >= bio_sectors(bio));
1794 
1795 	/*
1796 	 * Discards need a mutable bio_vec to accommodate the payload
1797 	 * required by the DSM TRIM and UNMAP commands.
1798 	 */
1799 	if (bio->bi_rw & REQ_DISCARD)
1800 		split = bio_clone_bioset(bio, gfp, bs);
1801 	else
1802 		split = bio_clone_fast(bio, gfp, bs);
1803 
1804 	if (!split)
1805 		return NULL;
1806 
1807 	split->bi_iter.bi_size = sectors << 9;
1808 
1809 	if (bio_integrity(split))
1810 		bio_integrity_trim(split, 0, sectors);
1811 
1812 	bio_advance(bio, split->bi_iter.bi_size);
1813 
1814 	return split;
1815 }
1816 EXPORT_SYMBOL(bio_split);
1817 
1818 /**
1819  * bio_trim - trim a bio
1820  * @bio:	bio to trim
1821  * @offset:	number of sectors to trim from the front of @bio
1822  * @size:	size we want to trim @bio to, in sectors
1823  */
1824 void bio_trim(struct bio *bio, int offset, int size)
1825 {
1826 	/* 'bio' is a cloned bio which we need to trim to match
1827 	 * the given offset and size.
1828 	 */
1829 
1830 	size <<= 9;
1831 	if (offset == 0 && size == bio->bi_iter.bi_size)
1832 		return;
1833 
1834 	bio_clear_flag(bio, BIO_SEG_VALID);
1835 
1836 	bio_advance(bio, offset << 9);
1837 
1838 	bio->bi_iter.bi_size = size;
1839 }
1840 EXPORT_SYMBOL_GPL(bio_trim);
1841 
1842 /*
1843  * create memory pools for biovec's in a bio_set.
1844  * use the global biovec slabs created for general use.
1845  */
1846 mempool_t *biovec_create_pool(int pool_entries)
1847 {
1848 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1849 
1850 	return mempool_create_slab_pool(pool_entries, bp->slab);
1851 }
1852 
1853 void bioset_free(struct bio_set *bs)
1854 {
1855 	if (bs->rescue_workqueue)
1856 		destroy_workqueue(bs->rescue_workqueue);
1857 
1858 	if (bs->bio_pool)
1859 		mempool_destroy(bs->bio_pool);
1860 
1861 	if (bs->bvec_pool)
1862 		mempool_destroy(bs->bvec_pool);
1863 
1864 	bioset_integrity_free(bs);
1865 	bio_put_slab(bs);
1866 
1867 	kfree(bs);
1868 }
1869 EXPORT_SYMBOL(bioset_free);
1870 
1871 static struct bio_set *__bioset_create(unsigned int pool_size,
1872 				       unsigned int front_pad,
1873 				       bool create_bvec_pool)
1874 {
1875 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1876 	struct bio_set *bs;
1877 
1878 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1879 	if (!bs)
1880 		return NULL;
1881 
1882 	bs->front_pad = front_pad;
1883 
1884 	spin_lock_init(&bs->rescue_lock);
1885 	bio_list_init(&bs->rescue_list);
1886 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1887 
1888 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1889 	if (!bs->bio_slab) {
1890 		kfree(bs);
1891 		return NULL;
1892 	}
1893 
1894 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1895 	if (!bs->bio_pool)
1896 		goto bad;
1897 
1898 	if (create_bvec_pool) {
1899 		bs->bvec_pool = biovec_create_pool(pool_size);
1900 		if (!bs->bvec_pool)
1901 			goto bad;
1902 	}
1903 
1904 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1905 	if (!bs->rescue_workqueue)
1906 		goto bad;
1907 
1908 	return bs;
1909 bad:
1910 	bioset_free(bs);
1911 	return NULL;
1912 }
1913 
1914 /**
1915  * bioset_create  - Create a bio_set
1916  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1917  * @front_pad:	Number of bytes to allocate in front of the returned bio
1918  *
1919  * Description:
1920  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1921  *    to ask for a number of bytes to be allocated in front of the bio.
1922  *    Front pad allocation is useful for embedding the bio inside
1923  *    another structure, to avoid allocating extra data to go with the bio.
1924  *    Note that the bio must be embedded at the END of that structure always,
1925  *    or things will break badly.
1926  */
1927 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1928 {
1929 	return __bioset_create(pool_size, front_pad, true);
1930 }
1931 EXPORT_SYMBOL(bioset_create);
1932 
1933 /**
1934  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1935  * @pool_size:	Number of bio to cache in the mempool
1936  * @front_pad:	Number of bytes to allocate in front of the returned bio
1937  *
1938  * Description:
1939  *    Same functionality as bioset_create() except that mempool is not
1940  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1941  */
1942 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1943 {
1944 	return __bioset_create(pool_size, front_pad, false);
1945 }
1946 EXPORT_SYMBOL(bioset_create_nobvec);
1947 
1948 #ifdef CONFIG_BLK_CGROUP
1949 
1950 /**
1951  * bio_associate_blkcg - associate a bio with the specified blkcg
1952  * @bio: target bio
1953  * @blkcg_css: css of the blkcg to associate
1954  *
1955  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1956  * treat @bio as if it were issued by a task which belongs to the blkcg.
1957  *
1958  * This function takes an extra reference of @blkcg_css which will be put
1959  * when @bio is released.  The caller must own @bio and is responsible for
1960  * synchronizing calls to this function.
1961  */
1962 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1963 {
1964 	if (unlikely(bio->bi_css))
1965 		return -EBUSY;
1966 	css_get(blkcg_css);
1967 	bio->bi_css = blkcg_css;
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1971 
1972 /**
1973  * bio_associate_current - associate a bio with %current
1974  * @bio: target bio
1975  *
1976  * Associate @bio with %current if it hasn't been associated yet.  Block
1977  * layer will treat @bio as if it were issued by %current no matter which
1978  * task actually issues it.
1979  *
1980  * This function takes an extra reference of @task's io_context and blkcg
1981  * which will be put when @bio is released.  The caller must own @bio,
1982  * ensure %current->io_context exists, and is responsible for synchronizing
1983  * calls to this function.
1984  */
1985 int bio_associate_current(struct bio *bio)
1986 {
1987 	struct io_context *ioc;
1988 
1989 	if (bio->bi_css)
1990 		return -EBUSY;
1991 
1992 	ioc = current->io_context;
1993 	if (!ioc)
1994 		return -ENOENT;
1995 
1996 	get_io_context_active(ioc);
1997 	bio->bi_ioc = ioc;
1998 	bio->bi_css = task_get_css(current, io_cgrp_id);
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(bio_associate_current);
2002 
2003 /**
2004  * bio_disassociate_task - undo bio_associate_current()
2005  * @bio: target bio
2006  */
2007 void bio_disassociate_task(struct bio *bio)
2008 {
2009 	if (bio->bi_ioc) {
2010 		put_io_context(bio->bi_ioc);
2011 		bio->bi_ioc = NULL;
2012 	}
2013 	if (bio->bi_css) {
2014 		css_put(bio->bi_css);
2015 		bio->bi_css = NULL;
2016 	}
2017 }
2018 
2019 #endif /* CONFIG_BLK_CGROUP */
2020 
2021 static void __init biovec_init_slabs(void)
2022 {
2023 	int i;
2024 
2025 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2026 		int size;
2027 		struct biovec_slab *bvs = bvec_slabs + i;
2028 
2029 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2030 			bvs->slab = NULL;
2031 			continue;
2032 		}
2033 
2034 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2035 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2036                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2037 	}
2038 }
2039 
2040 static int __init init_bio(void)
2041 {
2042 	bio_slab_max = 2;
2043 	bio_slab_nr = 0;
2044 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2045 	if (!bio_slabs)
2046 		panic("bio: can't allocate bios\n");
2047 
2048 	bio_integrity_init();
2049 	biovec_init_slabs();
2050 
2051 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2052 	if (!fs_bio_set)
2053 		panic("bio: can't allocate bios\n");
2054 
2055 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2056 		panic("bio: can't create integrity pool\n");
2057 
2058 	return 0;
2059 }
2060 subsys_initcall(init_bio);
2061