1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 34 /* 35 * Test patch to inline a certain number of bi_io_vec's inside the bio 36 * itself, to shrink a bio data allocation from two mempool calls to one 37 */ 38 #define BIO_INLINE_VECS 4 39 40 /* 41 * if you change this list, also change bvec_alloc or things will 42 * break badly! cannot be bigger than what you can fit into an 43 * unsigned short 44 */ 45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { 47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 48 }; 49 #undef BV 50 51 /* 52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 53 * IO code that does not need private memory pools. 54 */ 55 struct bio_set *fs_bio_set; 56 EXPORT_SYMBOL(fs_bio_set); 57 58 /* 59 * Our slab pool management 60 */ 61 struct bio_slab { 62 struct kmem_cache *slab; 63 unsigned int slab_ref; 64 unsigned int slab_size; 65 char name[8]; 66 }; 67 static DEFINE_MUTEX(bio_slab_lock); 68 static struct bio_slab *bio_slabs; 69 static unsigned int bio_slab_nr, bio_slab_max; 70 71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 72 { 73 unsigned int sz = sizeof(struct bio) + extra_size; 74 struct kmem_cache *slab = NULL; 75 struct bio_slab *bslab, *new_bio_slabs; 76 unsigned int new_bio_slab_max; 77 unsigned int i, entry = -1; 78 79 mutex_lock(&bio_slab_lock); 80 81 i = 0; 82 while (i < bio_slab_nr) { 83 bslab = &bio_slabs[i]; 84 85 if (!bslab->slab && entry == -1) 86 entry = i; 87 else if (bslab->slab_size == sz) { 88 slab = bslab->slab; 89 bslab->slab_ref++; 90 break; 91 } 92 i++; 93 } 94 95 if (slab) 96 goto out_unlock; 97 98 if (bio_slab_nr == bio_slab_max && entry == -1) { 99 new_bio_slab_max = bio_slab_max << 1; 100 new_bio_slabs = krealloc(bio_slabs, 101 new_bio_slab_max * sizeof(struct bio_slab), 102 GFP_KERNEL); 103 if (!new_bio_slabs) 104 goto out_unlock; 105 bio_slab_max = new_bio_slab_max; 106 bio_slabs = new_bio_slabs; 107 } 108 if (entry == -1) 109 entry = bio_slab_nr++; 110 111 bslab = &bio_slabs[entry]; 112 113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 115 SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); 164 165 if (idx == BIOVEC_MAX_IDX) 166 mempool_free(bv, pool); 167 else { 168 struct biovec_slab *bvs = bvec_slabs + idx; 169 170 kmem_cache_free(bvs->slab, bv); 171 } 172 } 173 174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 175 mempool_t *pool) 176 { 177 struct bio_vec *bvl; 178 179 /* 180 * see comment near bvec_array define! 181 */ 182 switch (nr) { 183 case 1: 184 *idx = 0; 185 break; 186 case 2 ... 4: 187 *idx = 1; 188 break; 189 case 5 ... 16: 190 *idx = 2; 191 break; 192 case 17 ... 64: 193 *idx = 3; 194 break; 195 case 65 ... 128: 196 *idx = 4; 197 break; 198 case 129 ... BIO_MAX_PAGES: 199 *idx = 5; 200 break; 201 default: 202 return NULL; 203 } 204 205 /* 206 * idx now points to the pool we want to allocate from. only the 207 * 1-vec entry pool is mempool backed. 208 */ 209 if (*idx == BIOVEC_MAX_IDX) { 210 fallback: 211 bvl = mempool_alloc(pool, gfp_mask); 212 } else { 213 struct biovec_slab *bvs = bvec_slabs + *idx; 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 215 216 /* 217 * Make this allocation restricted and don't dump info on 218 * allocation failures, since we'll fallback to the mempool 219 * in case of failure. 220 */ 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 222 223 /* 224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 225 * is set, retry with the 1-entry mempool 226 */ 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 229 *idx = BIOVEC_MAX_IDX; 230 goto fallback; 231 } 232 } 233 234 return bvl; 235 } 236 237 static void __bio_free(struct bio *bio) 238 { 239 bio_disassociate_task(bio); 240 241 if (bio_integrity(bio)) 242 bio_integrity_free(bio); 243 } 244 245 static void bio_free(struct bio *bio) 246 { 247 struct bio_set *bs = bio->bi_pool; 248 void *p; 249 250 __bio_free(bio); 251 252 if (bs) { 253 if (bio_flagged(bio, BIO_OWNS_VEC)) 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); 255 256 /* 257 * If we have front padding, adjust the bio pointer before freeing 258 */ 259 p = bio; 260 p -= bs->front_pad; 261 262 mempool_free(p, bs->bio_pool); 263 } else { 264 /* Bio was allocated by bio_kmalloc() */ 265 kfree(bio); 266 } 267 } 268 269 void bio_init(struct bio *bio) 270 { 271 memset(bio, 0, sizeof(*bio)); 272 atomic_set(&bio->__bi_remaining, 1); 273 atomic_set(&bio->__bi_cnt, 1); 274 } 275 EXPORT_SYMBOL(bio_init); 276 277 /** 278 * bio_reset - reinitialize a bio 279 * @bio: bio to reset 280 * 281 * Description: 282 * After calling bio_reset(), @bio will be in the same state as a freshly 283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 284 * preserved are the ones that are initialized by bio_alloc_bioset(). See 285 * comment in struct bio. 286 */ 287 void bio_reset(struct bio *bio) 288 { 289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 290 291 __bio_free(bio); 292 293 memset(bio, 0, BIO_RESET_BYTES); 294 bio->bi_flags = flags; 295 atomic_set(&bio->__bi_remaining, 1); 296 } 297 EXPORT_SYMBOL(bio_reset); 298 299 static struct bio *__bio_chain_endio(struct bio *bio) 300 { 301 struct bio *parent = bio->bi_private; 302 303 if (!parent->bi_error) 304 parent->bi_error = bio->bi_error; 305 bio_put(bio); 306 return parent; 307 } 308 309 static void bio_chain_endio(struct bio *bio) 310 { 311 bio_endio(__bio_chain_endio(bio)); 312 } 313 314 /* 315 * Increment chain count for the bio. Make sure the CHAIN flag update 316 * is visible before the raised count. 317 */ 318 static inline void bio_inc_remaining(struct bio *bio) 319 { 320 bio_set_flag(bio, BIO_CHAIN); 321 smp_mb__before_atomic(); 322 atomic_inc(&bio->__bi_remaining); 323 } 324 325 /** 326 * bio_chain - chain bio completions 327 * @bio: the target bio 328 * @parent: the @bio's parent bio 329 * 330 * The caller won't have a bi_end_io called when @bio completes - instead, 331 * @parent's bi_end_io won't be called until both @parent and @bio have 332 * completed; the chained bio will also be freed when it completes. 333 * 334 * The caller must not set bi_private or bi_end_io in @bio. 335 */ 336 void bio_chain(struct bio *bio, struct bio *parent) 337 { 338 BUG_ON(bio->bi_private || bio->bi_end_io); 339 340 bio->bi_private = parent; 341 bio->bi_end_io = bio_chain_endio; 342 bio_inc_remaining(parent); 343 } 344 EXPORT_SYMBOL(bio_chain); 345 346 static void bio_alloc_rescue(struct work_struct *work) 347 { 348 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 349 struct bio *bio; 350 351 while (1) { 352 spin_lock(&bs->rescue_lock); 353 bio = bio_list_pop(&bs->rescue_list); 354 spin_unlock(&bs->rescue_lock); 355 356 if (!bio) 357 break; 358 359 generic_make_request(bio); 360 } 361 } 362 363 static void punt_bios_to_rescuer(struct bio_set *bs) 364 { 365 struct bio_list punt, nopunt; 366 struct bio *bio; 367 368 /* 369 * In order to guarantee forward progress we must punt only bios that 370 * were allocated from this bio_set; otherwise, if there was a bio on 371 * there for a stacking driver higher up in the stack, processing it 372 * could require allocating bios from this bio_set, and doing that from 373 * our own rescuer would be bad. 374 * 375 * Since bio lists are singly linked, pop them all instead of trying to 376 * remove from the middle of the list: 377 */ 378 379 bio_list_init(&punt); 380 bio_list_init(&nopunt); 381 382 while ((bio = bio_list_pop(current->bio_list))) 383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 384 385 *current->bio_list = nopunt; 386 387 spin_lock(&bs->rescue_lock); 388 bio_list_merge(&bs->rescue_list, &punt); 389 spin_unlock(&bs->rescue_lock); 390 391 queue_work(bs->rescue_workqueue, &bs->rescue_work); 392 } 393 394 /** 395 * bio_alloc_bioset - allocate a bio for I/O 396 * @gfp_mask: the GFP_ mask given to the slab allocator 397 * @nr_iovecs: number of iovecs to pre-allocate 398 * @bs: the bio_set to allocate from. 399 * 400 * Description: 401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 402 * backed by the @bs's mempool. 403 * 404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 405 * always be able to allocate a bio. This is due to the mempool guarantees. 406 * To make this work, callers must never allocate more than 1 bio at a time 407 * from this pool. Callers that need to allocate more than 1 bio must always 408 * submit the previously allocated bio for IO before attempting to allocate 409 * a new one. Failure to do so can cause deadlocks under memory pressure. 410 * 411 * Note that when running under generic_make_request() (i.e. any block 412 * driver), bios are not submitted until after you return - see the code in 413 * generic_make_request() that converts recursion into iteration, to prevent 414 * stack overflows. 415 * 416 * This would normally mean allocating multiple bios under 417 * generic_make_request() would be susceptible to deadlocks, but we have 418 * deadlock avoidance code that resubmits any blocked bios from a rescuer 419 * thread. 420 * 421 * However, we do not guarantee forward progress for allocations from other 422 * mempools. Doing multiple allocations from the same mempool under 423 * generic_make_request() should be avoided - instead, use bio_set's front_pad 424 * for per bio allocations. 425 * 426 * RETURNS: 427 * Pointer to new bio on success, NULL on failure. 428 */ 429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 430 { 431 gfp_t saved_gfp = gfp_mask; 432 unsigned front_pad; 433 unsigned inline_vecs; 434 unsigned long idx = BIO_POOL_NONE; 435 struct bio_vec *bvl = NULL; 436 struct bio *bio; 437 void *p; 438 439 if (!bs) { 440 if (nr_iovecs > UIO_MAXIOV) 441 return NULL; 442 443 p = kmalloc(sizeof(struct bio) + 444 nr_iovecs * sizeof(struct bio_vec), 445 gfp_mask); 446 front_pad = 0; 447 inline_vecs = nr_iovecs; 448 } else { 449 /* should not use nobvec bioset for nr_iovecs > 0 */ 450 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 451 return NULL; 452 /* 453 * generic_make_request() converts recursion to iteration; this 454 * means if we're running beneath it, any bios we allocate and 455 * submit will not be submitted (and thus freed) until after we 456 * return. 457 * 458 * This exposes us to a potential deadlock if we allocate 459 * multiple bios from the same bio_set() while running 460 * underneath generic_make_request(). If we were to allocate 461 * multiple bios (say a stacking block driver that was splitting 462 * bios), we would deadlock if we exhausted the mempool's 463 * reserve. 464 * 465 * We solve this, and guarantee forward progress, with a rescuer 466 * workqueue per bio_set. If we go to allocate and there are 467 * bios on current->bio_list, we first try the allocation 468 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 469 * bios we would be blocking to the rescuer workqueue before 470 * we retry with the original gfp_flags. 471 */ 472 473 if (current->bio_list && !bio_list_empty(current->bio_list)) 474 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 475 476 p = mempool_alloc(bs->bio_pool, gfp_mask); 477 if (!p && gfp_mask != saved_gfp) { 478 punt_bios_to_rescuer(bs); 479 gfp_mask = saved_gfp; 480 p = mempool_alloc(bs->bio_pool, gfp_mask); 481 } 482 483 front_pad = bs->front_pad; 484 inline_vecs = BIO_INLINE_VECS; 485 } 486 487 if (unlikely(!p)) 488 return NULL; 489 490 bio = p + front_pad; 491 bio_init(bio); 492 493 if (nr_iovecs > inline_vecs) { 494 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 495 if (!bvl && gfp_mask != saved_gfp) { 496 punt_bios_to_rescuer(bs); 497 gfp_mask = saved_gfp; 498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 499 } 500 501 if (unlikely(!bvl)) 502 goto err_free; 503 504 bio_set_flag(bio, BIO_OWNS_VEC); 505 } else if (nr_iovecs) { 506 bvl = bio->bi_inline_vecs; 507 } 508 509 bio->bi_pool = bs; 510 bio->bi_flags |= idx << BIO_POOL_OFFSET; 511 bio->bi_max_vecs = nr_iovecs; 512 bio->bi_io_vec = bvl; 513 return bio; 514 515 err_free: 516 mempool_free(p, bs->bio_pool); 517 return NULL; 518 } 519 EXPORT_SYMBOL(bio_alloc_bioset); 520 521 void zero_fill_bio(struct bio *bio) 522 { 523 unsigned long flags; 524 struct bio_vec bv; 525 struct bvec_iter iter; 526 527 bio_for_each_segment(bv, bio, iter) { 528 char *data = bvec_kmap_irq(&bv, &flags); 529 memset(data, 0, bv.bv_len); 530 flush_dcache_page(bv.bv_page); 531 bvec_kunmap_irq(data, &flags); 532 } 533 } 534 EXPORT_SYMBOL(zero_fill_bio); 535 536 /** 537 * bio_put - release a reference to a bio 538 * @bio: bio to release reference to 539 * 540 * Description: 541 * Put a reference to a &struct bio, either one you have gotten with 542 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 543 **/ 544 void bio_put(struct bio *bio) 545 { 546 if (!bio_flagged(bio, BIO_REFFED)) 547 bio_free(bio); 548 else { 549 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 550 551 /* 552 * last put frees it 553 */ 554 if (atomic_dec_and_test(&bio->__bi_cnt)) 555 bio_free(bio); 556 } 557 } 558 EXPORT_SYMBOL(bio_put); 559 560 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 561 { 562 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 563 blk_recount_segments(q, bio); 564 565 return bio->bi_phys_segments; 566 } 567 EXPORT_SYMBOL(bio_phys_segments); 568 569 /** 570 * __bio_clone_fast - clone a bio that shares the original bio's biovec 571 * @bio: destination bio 572 * @bio_src: bio to clone 573 * 574 * Clone a &bio. Caller will own the returned bio, but not 575 * the actual data it points to. Reference count of returned 576 * bio will be one. 577 * 578 * Caller must ensure that @bio_src is not freed before @bio. 579 */ 580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 581 { 582 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); 583 584 /* 585 * most users will be overriding ->bi_bdev with a new target, 586 * so we don't set nor calculate new physical/hw segment counts here 587 */ 588 bio->bi_bdev = bio_src->bi_bdev; 589 bio_set_flag(bio, BIO_CLONED); 590 bio->bi_rw = bio_src->bi_rw; 591 bio->bi_iter = bio_src->bi_iter; 592 bio->bi_io_vec = bio_src->bi_io_vec; 593 } 594 EXPORT_SYMBOL(__bio_clone_fast); 595 596 /** 597 * bio_clone_fast - clone a bio that shares the original bio's biovec 598 * @bio: bio to clone 599 * @gfp_mask: allocation priority 600 * @bs: bio_set to allocate from 601 * 602 * Like __bio_clone_fast, only also allocates the returned bio 603 */ 604 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 605 { 606 struct bio *b; 607 608 b = bio_alloc_bioset(gfp_mask, 0, bs); 609 if (!b) 610 return NULL; 611 612 __bio_clone_fast(b, bio); 613 614 if (bio_integrity(bio)) { 615 int ret; 616 617 ret = bio_integrity_clone(b, bio, gfp_mask); 618 619 if (ret < 0) { 620 bio_put(b); 621 return NULL; 622 } 623 } 624 625 return b; 626 } 627 EXPORT_SYMBOL(bio_clone_fast); 628 629 /** 630 * bio_clone_bioset - clone a bio 631 * @bio_src: bio to clone 632 * @gfp_mask: allocation priority 633 * @bs: bio_set to allocate from 634 * 635 * Clone bio. Caller will own the returned bio, but not the actual data it 636 * points to. Reference count of returned bio will be one. 637 */ 638 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 639 struct bio_set *bs) 640 { 641 struct bvec_iter iter; 642 struct bio_vec bv; 643 struct bio *bio; 644 645 /* 646 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 647 * bio_src->bi_io_vec to bio->bi_io_vec. 648 * 649 * We can't do that anymore, because: 650 * 651 * - The point of cloning the biovec is to produce a bio with a biovec 652 * the caller can modify: bi_idx and bi_bvec_done should be 0. 653 * 654 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 655 * we tried to clone the whole thing bio_alloc_bioset() would fail. 656 * But the clone should succeed as long as the number of biovecs we 657 * actually need to allocate is fewer than BIO_MAX_PAGES. 658 * 659 * - Lastly, bi_vcnt should not be looked at or relied upon by code 660 * that does not own the bio - reason being drivers don't use it for 661 * iterating over the biovec anymore, so expecting it to be kept up 662 * to date (i.e. for clones that share the parent biovec) is just 663 * asking for trouble and would force extra work on 664 * __bio_clone_fast() anyways. 665 */ 666 667 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 668 if (!bio) 669 return NULL; 670 671 bio->bi_bdev = bio_src->bi_bdev; 672 bio->bi_rw = bio_src->bi_rw; 673 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 674 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 675 676 if (bio->bi_rw & REQ_DISCARD) 677 goto integrity_clone; 678 679 if (bio->bi_rw & REQ_WRITE_SAME) { 680 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 681 goto integrity_clone; 682 } 683 684 bio_for_each_segment(bv, bio_src, iter) 685 bio->bi_io_vec[bio->bi_vcnt++] = bv; 686 687 integrity_clone: 688 if (bio_integrity(bio_src)) { 689 int ret; 690 691 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 692 if (ret < 0) { 693 bio_put(bio); 694 return NULL; 695 } 696 } 697 698 return bio; 699 } 700 EXPORT_SYMBOL(bio_clone_bioset); 701 702 /** 703 * bio_add_pc_page - attempt to add page to bio 704 * @q: the target queue 705 * @bio: destination bio 706 * @page: page to add 707 * @len: vec entry length 708 * @offset: vec entry offset 709 * 710 * Attempt to add a page to the bio_vec maplist. This can fail for a 711 * number of reasons, such as the bio being full or target block device 712 * limitations. The target block device must allow bio's up to PAGE_SIZE, 713 * so it is always possible to add a single page to an empty bio. 714 * 715 * This should only be used by REQ_PC bios. 716 */ 717 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 718 *page, unsigned int len, unsigned int offset) 719 { 720 int retried_segments = 0; 721 struct bio_vec *bvec; 722 723 /* 724 * cloned bio must not modify vec list 725 */ 726 if (unlikely(bio_flagged(bio, BIO_CLONED))) 727 return 0; 728 729 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 730 return 0; 731 732 /* 733 * For filesystems with a blocksize smaller than the pagesize 734 * we will often be called with the same page as last time and 735 * a consecutive offset. Optimize this special case. 736 */ 737 if (bio->bi_vcnt > 0) { 738 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 739 740 if (page == prev->bv_page && 741 offset == prev->bv_offset + prev->bv_len) { 742 prev->bv_len += len; 743 bio->bi_iter.bi_size += len; 744 goto done; 745 } 746 747 /* 748 * If the queue doesn't support SG gaps and adding this 749 * offset would create a gap, disallow it. 750 */ 751 if (bvec_gap_to_prev(q, prev, offset)) 752 return 0; 753 } 754 755 if (bio->bi_vcnt >= bio->bi_max_vecs) 756 return 0; 757 758 /* 759 * setup the new entry, we might clear it again later if we 760 * cannot add the page 761 */ 762 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 763 bvec->bv_page = page; 764 bvec->bv_len = len; 765 bvec->bv_offset = offset; 766 bio->bi_vcnt++; 767 bio->bi_phys_segments++; 768 bio->bi_iter.bi_size += len; 769 770 /* 771 * Perform a recount if the number of segments is greater 772 * than queue_max_segments(q). 773 */ 774 775 while (bio->bi_phys_segments > queue_max_segments(q)) { 776 777 if (retried_segments) 778 goto failed; 779 780 retried_segments = 1; 781 blk_recount_segments(q, bio); 782 } 783 784 /* If we may be able to merge these biovecs, force a recount */ 785 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 786 bio_clear_flag(bio, BIO_SEG_VALID); 787 788 done: 789 return len; 790 791 failed: 792 bvec->bv_page = NULL; 793 bvec->bv_len = 0; 794 bvec->bv_offset = 0; 795 bio->bi_vcnt--; 796 bio->bi_iter.bi_size -= len; 797 blk_recount_segments(q, bio); 798 return 0; 799 } 800 EXPORT_SYMBOL(bio_add_pc_page); 801 802 /** 803 * bio_add_page - attempt to add page to bio 804 * @bio: destination bio 805 * @page: page to add 806 * @len: vec entry length 807 * @offset: vec entry offset 808 * 809 * Attempt to add a page to the bio_vec maplist. This will only fail 810 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 811 */ 812 int bio_add_page(struct bio *bio, struct page *page, 813 unsigned int len, unsigned int offset) 814 { 815 struct bio_vec *bv; 816 817 /* 818 * cloned bio must not modify vec list 819 */ 820 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 821 return 0; 822 823 /* 824 * For filesystems with a blocksize smaller than the pagesize 825 * we will often be called with the same page as last time and 826 * a consecutive offset. Optimize this special case. 827 */ 828 if (bio->bi_vcnt > 0) { 829 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 830 831 if (page == bv->bv_page && 832 offset == bv->bv_offset + bv->bv_len) { 833 bv->bv_len += len; 834 goto done; 835 } 836 } 837 838 if (bio->bi_vcnt >= bio->bi_max_vecs) 839 return 0; 840 841 bv = &bio->bi_io_vec[bio->bi_vcnt]; 842 bv->bv_page = page; 843 bv->bv_len = len; 844 bv->bv_offset = offset; 845 846 bio->bi_vcnt++; 847 done: 848 bio->bi_iter.bi_size += len; 849 return len; 850 } 851 EXPORT_SYMBOL(bio_add_page); 852 853 struct submit_bio_ret { 854 struct completion event; 855 int error; 856 }; 857 858 static void submit_bio_wait_endio(struct bio *bio) 859 { 860 struct submit_bio_ret *ret = bio->bi_private; 861 862 ret->error = bio->bi_error; 863 complete(&ret->event); 864 } 865 866 /** 867 * submit_bio_wait - submit a bio, and wait until it completes 868 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 869 * @bio: The &struct bio which describes the I/O 870 * 871 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 872 * bio_endio() on failure. 873 */ 874 int submit_bio_wait(int rw, struct bio *bio) 875 { 876 struct submit_bio_ret ret; 877 878 rw |= REQ_SYNC; 879 init_completion(&ret.event); 880 bio->bi_private = &ret; 881 bio->bi_end_io = submit_bio_wait_endio; 882 submit_bio(rw, bio); 883 wait_for_completion_io(&ret.event); 884 885 return ret.error; 886 } 887 EXPORT_SYMBOL(submit_bio_wait); 888 889 /** 890 * bio_advance - increment/complete a bio by some number of bytes 891 * @bio: bio to advance 892 * @bytes: number of bytes to complete 893 * 894 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 895 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 896 * be updated on the last bvec as well. 897 * 898 * @bio will then represent the remaining, uncompleted portion of the io. 899 */ 900 void bio_advance(struct bio *bio, unsigned bytes) 901 { 902 if (bio_integrity(bio)) 903 bio_integrity_advance(bio, bytes); 904 905 bio_advance_iter(bio, &bio->bi_iter, bytes); 906 } 907 EXPORT_SYMBOL(bio_advance); 908 909 /** 910 * bio_alloc_pages - allocates a single page for each bvec in a bio 911 * @bio: bio to allocate pages for 912 * @gfp_mask: flags for allocation 913 * 914 * Allocates pages up to @bio->bi_vcnt. 915 * 916 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 917 * freed. 918 */ 919 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 920 { 921 int i; 922 struct bio_vec *bv; 923 924 bio_for_each_segment_all(bv, bio, i) { 925 bv->bv_page = alloc_page(gfp_mask); 926 if (!bv->bv_page) { 927 while (--bv >= bio->bi_io_vec) 928 __free_page(bv->bv_page); 929 return -ENOMEM; 930 } 931 } 932 933 return 0; 934 } 935 EXPORT_SYMBOL(bio_alloc_pages); 936 937 /** 938 * bio_copy_data - copy contents of data buffers from one chain of bios to 939 * another 940 * @src: source bio list 941 * @dst: destination bio list 942 * 943 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 944 * @src and @dst as linked lists of bios. 945 * 946 * Stops when it reaches the end of either @src or @dst - that is, copies 947 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 948 */ 949 void bio_copy_data(struct bio *dst, struct bio *src) 950 { 951 struct bvec_iter src_iter, dst_iter; 952 struct bio_vec src_bv, dst_bv; 953 void *src_p, *dst_p; 954 unsigned bytes; 955 956 src_iter = src->bi_iter; 957 dst_iter = dst->bi_iter; 958 959 while (1) { 960 if (!src_iter.bi_size) { 961 src = src->bi_next; 962 if (!src) 963 break; 964 965 src_iter = src->bi_iter; 966 } 967 968 if (!dst_iter.bi_size) { 969 dst = dst->bi_next; 970 if (!dst) 971 break; 972 973 dst_iter = dst->bi_iter; 974 } 975 976 src_bv = bio_iter_iovec(src, src_iter); 977 dst_bv = bio_iter_iovec(dst, dst_iter); 978 979 bytes = min(src_bv.bv_len, dst_bv.bv_len); 980 981 src_p = kmap_atomic(src_bv.bv_page); 982 dst_p = kmap_atomic(dst_bv.bv_page); 983 984 memcpy(dst_p + dst_bv.bv_offset, 985 src_p + src_bv.bv_offset, 986 bytes); 987 988 kunmap_atomic(dst_p); 989 kunmap_atomic(src_p); 990 991 bio_advance_iter(src, &src_iter, bytes); 992 bio_advance_iter(dst, &dst_iter, bytes); 993 } 994 } 995 EXPORT_SYMBOL(bio_copy_data); 996 997 struct bio_map_data { 998 int is_our_pages; 999 struct iov_iter iter; 1000 struct iovec iov[]; 1001 }; 1002 1003 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1004 gfp_t gfp_mask) 1005 { 1006 if (iov_count > UIO_MAXIOV) 1007 return NULL; 1008 1009 return kmalloc(sizeof(struct bio_map_data) + 1010 sizeof(struct iovec) * iov_count, gfp_mask); 1011 } 1012 1013 /** 1014 * bio_copy_from_iter - copy all pages from iov_iter to bio 1015 * @bio: The &struct bio which describes the I/O as destination 1016 * @iter: iov_iter as source 1017 * 1018 * Copy all pages from iov_iter to bio. 1019 * Returns 0 on success, or error on failure. 1020 */ 1021 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1022 { 1023 int i; 1024 struct bio_vec *bvec; 1025 1026 bio_for_each_segment_all(bvec, bio, i) { 1027 ssize_t ret; 1028 1029 ret = copy_page_from_iter(bvec->bv_page, 1030 bvec->bv_offset, 1031 bvec->bv_len, 1032 &iter); 1033 1034 if (!iov_iter_count(&iter)) 1035 break; 1036 1037 if (ret < bvec->bv_len) 1038 return -EFAULT; 1039 } 1040 1041 return 0; 1042 } 1043 1044 /** 1045 * bio_copy_to_iter - copy all pages from bio to iov_iter 1046 * @bio: The &struct bio which describes the I/O as source 1047 * @iter: iov_iter as destination 1048 * 1049 * Copy all pages from bio to iov_iter. 1050 * Returns 0 on success, or error on failure. 1051 */ 1052 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1053 { 1054 int i; 1055 struct bio_vec *bvec; 1056 1057 bio_for_each_segment_all(bvec, bio, i) { 1058 ssize_t ret; 1059 1060 ret = copy_page_to_iter(bvec->bv_page, 1061 bvec->bv_offset, 1062 bvec->bv_len, 1063 &iter); 1064 1065 if (!iov_iter_count(&iter)) 1066 break; 1067 1068 if (ret < bvec->bv_len) 1069 return -EFAULT; 1070 } 1071 1072 return 0; 1073 } 1074 1075 static void bio_free_pages(struct bio *bio) 1076 { 1077 struct bio_vec *bvec; 1078 int i; 1079 1080 bio_for_each_segment_all(bvec, bio, i) 1081 __free_page(bvec->bv_page); 1082 } 1083 1084 /** 1085 * bio_uncopy_user - finish previously mapped bio 1086 * @bio: bio being terminated 1087 * 1088 * Free pages allocated from bio_copy_user_iov() and write back data 1089 * to user space in case of a read. 1090 */ 1091 int bio_uncopy_user(struct bio *bio) 1092 { 1093 struct bio_map_data *bmd = bio->bi_private; 1094 int ret = 0; 1095 1096 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1097 /* 1098 * if we're in a workqueue, the request is orphaned, so 1099 * don't copy into a random user address space, just free 1100 * and return -EINTR so user space doesn't expect any data. 1101 */ 1102 if (!current->mm) 1103 ret = -EINTR; 1104 else if (bio_data_dir(bio) == READ) 1105 ret = bio_copy_to_iter(bio, bmd->iter); 1106 if (bmd->is_our_pages) 1107 bio_free_pages(bio); 1108 } 1109 kfree(bmd); 1110 bio_put(bio); 1111 return ret; 1112 } 1113 EXPORT_SYMBOL(bio_uncopy_user); 1114 1115 /** 1116 * bio_copy_user_iov - copy user data to bio 1117 * @q: destination block queue 1118 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1119 * @iter: iovec iterator 1120 * @gfp_mask: memory allocation flags 1121 * 1122 * Prepares and returns a bio for indirect user io, bouncing data 1123 * to/from kernel pages as necessary. Must be paired with 1124 * call bio_uncopy_user() on io completion. 1125 */ 1126 struct bio *bio_copy_user_iov(struct request_queue *q, 1127 struct rq_map_data *map_data, 1128 const struct iov_iter *iter, 1129 gfp_t gfp_mask) 1130 { 1131 struct bio_map_data *bmd; 1132 struct page *page; 1133 struct bio *bio; 1134 int i, ret; 1135 int nr_pages = 0; 1136 unsigned int len = iter->count; 1137 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1138 1139 for (i = 0; i < iter->nr_segs; i++) { 1140 unsigned long uaddr; 1141 unsigned long end; 1142 unsigned long start; 1143 1144 uaddr = (unsigned long) iter->iov[i].iov_base; 1145 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1146 >> PAGE_SHIFT; 1147 start = uaddr >> PAGE_SHIFT; 1148 1149 /* 1150 * Overflow, abort 1151 */ 1152 if (end < start) 1153 return ERR_PTR(-EINVAL); 1154 1155 nr_pages += end - start; 1156 } 1157 1158 if (offset) 1159 nr_pages++; 1160 1161 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1162 if (!bmd) 1163 return ERR_PTR(-ENOMEM); 1164 1165 /* 1166 * We need to do a deep copy of the iov_iter including the iovecs. 1167 * The caller provided iov might point to an on-stack or otherwise 1168 * shortlived one. 1169 */ 1170 bmd->is_our_pages = map_data ? 0 : 1; 1171 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1172 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1173 iter->nr_segs, iter->count); 1174 1175 ret = -ENOMEM; 1176 bio = bio_kmalloc(gfp_mask, nr_pages); 1177 if (!bio) 1178 goto out_bmd; 1179 1180 if (iter->type & WRITE) 1181 bio->bi_rw |= REQ_WRITE; 1182 1183 ret = 0; 1184 1185 if (map_data) { 1186 nr_pages = 1 << map_data->page_order; 1187 i = map_data->offset / PAGE_SIZE; 1188 } 1189 while (len) { 1190 unsigned int bytes = PAGE_SIZE; 1191 1192 bytes -= offset; 1193 1194 if (bytes > len) 1195 bytes = len; 1196 1197 if (map_data) { 1198 if (i == map_data->nr_entries * nr_pages) { 1199 ret = -ENOMEM; 1200 break; 1201 } 1202 1203 page = map_data->pages[i / nr_pages]; 1204 page += (i % nr_pages); 1205 1206 i++; 1207 } else { 1208 page = alloc_page(q->bounce_gfp | gfp_mask); 1209 if (!page) { 1210 ret = -ENOMEM; 1211 break; 1212 } 1213 } 1214 1215 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1216 break; 1217 1218 len -= bytes; 1219 offset = 0; 1220 } 1221 1222 if (ret) 1223 goto cleanup; 1224 1225 /* 1226 * success 1227 */ 1228 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1229 (map_data && map_data->from_user)) { 1230 ret = bio_copy_from_iter(bio, *iter); 1231 if (ret) 1232 goto cleanup; 1233 } 1234 1235 bio->bi_private = bmd; 1236 return bio; 1237 cleanup: 1238 if (!map_data) 1239 bio_free_pages(bio); 1240 bio_put(bio); 1241 out_bmd: 1242 kfree(bmd); 1243 return ERR_PTR(ret); 1244 } 1245 1246 /** 1247 * bio_map_user_iov - map user iovec into bio 1248 * @q: the struct request_queue for the bio 1249 * @iter: iovec iterator 1250 * @gfp_mask: memory allocation flags 1251 * 1252 * Map the user space address into a bio suitable for io to a block 1253 * device. Returns an error pointer in case of error. 1254 */ 1255 struct bio *bio_map_user_iov(struct request_queue *q, 1256 const struct iov_iter *iter, 1257 gfp_t gfp_mask) 1258 { 1259 int j; 1260 int nr_pages = 0; 1261 struct page **pages; 1262 struct bio *bio; 1263 int cur_page = 0; 1264 int ret, offset; 1265 struct iov_iter i; 1266 struct iovec iov; 1267 1268 iov_for_each(iov, i, *iter) { 1269 unsigned long uaddr = (unsigned long) iov.iov_base; 1270 unsigned long len = iov.iov_len; 1271 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1272 unsigned long start = uaddr >> PAGE_SHIFT; 1273 1274 /* 1275 * Overflow, abort 1276 */ 1277 if (end < start) 1278 return ERR_PTR(-EINVAL); 1279 1280 nr_pages += end - start; 1281 /* 1282 * buffer must be aligned to at least hardsector size for now 1283 */ 1284 if (uaddr & queue_dma_alignment(q)) 1285 return ERR_PTR(-EINVAL); 1286 } 1287 1288 if (!nr_pages) 1289 return ERR_PTR(-EINVAL); 1290 1291 bio = bio_kmalloc(gfp_mask, nr_pages); 1292 if (!bio) 1293 return ERR_PTR(-ENOMEM); 1294 1295 ret = -ENOMEM; 1296 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1297 if (!pages) 1298 goto out; 1299 1300 iov_for_each(iov, i, *iter) { 1301 unsigned long uaddr = (unsigned long) iov.iov_base; 1302 unsigned long len = iov.iov_len; 1303 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1304 unsigned long start = uaddr >> PAGE_SHIFT; 1305 const int local_nr_pages = end - start; 1306 const int page_limit = cur_page + local_nr_pages; 1307 1308 ret = get_user_pages_fast(uaddr, local_nr_pages, 1309 (iter->type & WRITE) != WRITE, 1310 &pages[cur_page]); 1311 if (ret < local_nr_pages) { 1312 ret = -EFAULT; 1313 goto out_unmap; 1314 } 1315 1316 offset = offset_in_page(uaddr); 1317 for (j = cur_page; j < page_limit; j++) { 1318 unsigned int bytes = PAGE_SIZE - offset; 1319 1320 if (len <= 0) 1321 break; 1322 1323 if (bytes > len) 1324 bytes = len; 1325 1326 /* 1327 * sorry... 1328 */ 1329 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1330 bytes) 1331 break; 1332 1333 len -= bytes; 1334 offset = 0; 1335 } 1336 1337 cur_page = j; 1338 /* 1339 * release the pages we didn't map into the bio, if any 1340 */ 1341 while (j < page_limit) 1342 put_page(pages[j++]); 1343 } 1344 1345 kfree(pages); 1346 1347 /* 1348 * set data direction, and check if mapped pages need bouncing 1349 */ 1350 if (iter->type & WRITE) 1351 bio->bi_rw |= REQ_WRITE; 1352 1353 bio_set_flag(bio, BIO_USER_MAPPED); 1354 1355 /* 1356 * subtle -- if __bio_map_user() ended up bouncing a bio, 1357 * it would normally disappear when its bi_end_io is run. 1358 * however, we need it for the unmap, so grab an extra 1359 * reference to it 1360 */ 1361 bio_get(bio); 1362 return bio; 1363 1364 out_unmap: 1365 for (j = 0; j < nr_pages; j++) { 1366 if (!pages[j]) 1367 break; 1368 put_page(pages[j]); 1369 } 1370 out: 1371 kfree(pages); 1372 bio_put(bio); 1373 return ERR_PTR(ret); 1374 } 1375 1376 static void __bio_unmap_user(struct bio *bio) 1377 { 1378 struct bio_vec *bvec; 1379 int i; 1380 1381 /* 1382 * make sure we dirty pages we wrote to 1383 */ 1384 bio_for_each_segment_all(bvec, bio, i) { 1385 if (bio_data_dir(bio) == READ) 1386 set_page_dirty_lock(bvec->bv_page); 1387 1388 put_page(bvec->bv_page); 1389 } 1390 1391 bio_put(bio); 1392 } 1393 1394 /** 1395 * bio_unmap_user - unmap a bio 1396 * @bio: the bio being unmapped 1397 * 1398 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1399 * a process context. 1400 * 1401 * bio_unmap_user() may sleep. 1402 */ 1403 void bio_unmap_user(struct bio *bio) 1404 { 1405 __bio_unmap_user(bio); 1406 bio_put(bio); 1407 } 1408 EXPORT_SYMBOL(bio_unmap_user); 1409 1410 static void bio_map_kern_endio(struct bio *bio) 1411 { 1412 bio_put(bio); 1413 } 1414 1415 /** 1416 * bio_map_kern - map kernel address into bio 1417 * @q: the struct request_queue for the bio 1418 * @data: pointer to buffer to map 1419 * @len: length in bytes 1420 * @gfp_mask: allocation flags for bio allocation 1421 * 1422 * Map the kernel address into a bio suitable for io to a block 1423 * device. Returns an error pointer in case of error. 1424 */ 1425 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1426 gfp_t gfp_mask) 1427 { 1428 unsigned long kaddr = (unsigned long)data; 1429 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1430 unsigned long start = kaddr >> PAGE_SHIFT; 1431 const int nr_pages = end - start; 1432 int offset, i; 1433 struct bio *bio; 1434 1435 bio = bio_kmalloc(gfp_mask, nr_pages); 1436 if (!bio) 1437 return ERR_PTR(-ENOMEM); 1438 1439 offset = offset_in_page(kaddr); 1440 for (i = 0; i < nr_pages; i++) { 1441 unsigned int bytes = PAGE_SIZE - offset; 1442 1443 if (len <= 0) 1444 break; 1445 1446 if (bytes > len) 1447 bytes = len; 1448 1449 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1450 offset) < bytes) { 1451 /* we don't support partial mappings */ 1452 bio_put(bio); 1453 return ERR_PTR(-EINVAL); 1454 } 1455 1456 data += bytes; 1457 len -= bytes; 1458 offset = 0; 1459 } 1460 1461 bio->bi_end_io = bio_map_kern_endio; 1462 return bio; 1463 } 1464 EXPORT_SYMBOL(bio_map_kern); 1465 1466 static void bio_copy_kern_endio(struct bio *bio) 1467 { 1468 bio_free_pages(bio); 1469 bio_put(bio); 1470 } 1471 1472 static void bio_copy_kern_endio_read(struct bio *bio) 1473 { 1474 char *p = bio->bi_private; 1475 struct bio_vec *bvec; 1476 int i; 1477 1478 bio_for_each_segment_all(bvec, bio, i) { 1479 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1480 p += bvec->bv_len; 1481 } 1482 1483 bio_copy_kern_endio(bio); 1484 } 1485 1486 /** 1487 * bio_copy_kern - copy kernel address into bio 1488 * @q: the struct request_queue for the bio 1489 * @data: pointer to buffer to copy 1490 * @len: length in bytes 1491 * @gfp_mask: allocation flags for bio and page allocation 1492 * @reading: data direction is READ 1493 * 1494 * copy the kernel address into a bio suitable for io to a block 1495 * device. Returns an error pointer in case of error. 1496 */ 1497 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1498 gfp_t gfp_mask, int reading) 1499 { 1500 unsigned long kaddr = (unsigned long)data; 1501 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1502 unsigned long start = kaddr >> PAGE_SHIFT; 1503 struct bio *bio; 1504 void *p = data; 1505 int nr_pages = 0; 1506 1507 /* 1508 * Overflow, abort 1509 */ 1510 if (end < start) 1511 return ERR_PTR(-EINVAL); 1512 1513 nr_pages = end - start; 1514 bio = bio_kmalloc(gfp_mask, nr_pages); 1515 if (!bio) 1516 return ERR_PTR(-ENOMEM); 1517 1518 while (len) { 1519 struct page *page; 1520 unsigned int bytes = PAGE_SIZE; 1521 1522 if (bytes > len) 1523 bytes = len; 1524 1525 page = alloc_page(q->bounce_gfp | gfp_mask); 1526 if (!page) 1527 goto cleanup; 1528 1529 if (!reading) 1530 memcpy(page_address(page), p, bytes); 1531 1532 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1533 break; 1534 1535 len -= bytes; 1536 p += bytes; 1537 } 1538 1539 if (reading) { 1540 bio->bi_end_io = bio_copy_kern_endio_read; 1541 bio->bi_private = data; 1542 } else { 1543 bio->bi_end_io = bio_copy_kern_endio; 1544 bio->bi_rw |= REQ_WRITE; 1545 } 1546 1547 return bio; 1548 1549 cleanup: 1550 bio_free_pages(bio); 1551 bio_put(bio); 1552 return ERR_PTR(-ENOMEM); 1553 } 1554 EXPORT_SYMBOL(bio_copy_kern); 1555 1556 /* 1557 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1558 * for performing direct-IO in BIOs. 1559 * 1560 * The problem is that we cannot run set_page_dirty() from interrupt context 1561 * because the required locks are not interrupt-safe. So what we can do is to 1562 * mark the pages dirty _before_ performing IO. And in interrupt context, 1563 * check that the pages are still dirty. If so, fine. If not, redirty them 1564 * in process context. 1565 * 1566 * We special-case compound pages here: normally this means reads into hugetlb 1567 * pages. The logic in here doesn't really work right for compound pages 1568 * because the VM does not uniformly chase down the head page in all cases. 1569 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1570 * handle them at all. So we skip compound pages here at an early stage. 1571 * 1572 * Note that this code is very hard to test under normal circumstances because 1573 * direct-io pins the pages with get_user_pages(). This makes 1574 * is_page_cache_freeable return false, and the VM will not clean the pages. 1575 * But other code (eg, flusher threads) could clean the pages if they are mapped 1576 * pagecache. 1577 * 1578 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1579 * deferred bio dirtying paths. 1580 */ 1581 1582 /* 1583 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1584 */ 1585 void bio_set_pages_dirty(struct bio *bio) 1586 { 1587 struct bio_vec *bvec; 1588 int i; 1589 1590 bio_for_each_segment_all(bvec, bio, i) { 1591 struct page *page = bvec->bv_page; 1592 1593 if (page && !PageCompound(page)) 1594 set_page_dirty_lock(page); 1595 } 1596 } 1597 1598 static void bio_release_pages(struct bio *bio) 1599 { 1600 struct bio_vec *bvec; 1601 int i; 1602 1603 bio_for_each_segment_all(bvec, bio, i) { 1604 struct page *page = bvec->bv_page; 1605 1606 if (page) 1607 put_page(page); 1608 } 1609 } 1610 1611 /* 1612 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1613 * If they are, then fine. If, however, some pages are clean then they must 1614 * have been written out during the direct-IO read. So we take another ref on 1615 * the BIO and the offending pages and re-dirty the pages in process context. 1616 * 1617 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1618 * here on. It will run one put_page() against each page and will run one 1619 * bio_put() against the BIO. 1620 */ 1621 1622 static void bio_dirty_fn(struct work_struct *work); 1623 1624 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1625 static DEFINE_SPINLOCK(bio_dirty_lock); 1626 static struct bio *bio_dirty_list; 1627 1628 /* 1629 * This runs in process context 1630 */ 1631 static void bio_dirty_fn(struct work_struct *work) 1632 { 1633 unsigned long flags; 1634 struct bio *bio; 1635 1636 spin_lock_irqsave(&bio_dirty_lock, flags); 1637 bio = bio_dirty_list; 1638 bio_dirty_list = NULL; 1639 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1640 1641 while (bio) { 1642 struct bio *next = bio->bi_private; 1643 1644 bio_set_pages_dirty(bio); 1645 bio_release_pages(bio); 1646 bio_put(bio); 1647 bio = next; 1648 } 1649 } 1650 1651 void bio_check_pages_dirty(struct bio *bio) 1652 { 1653 struct bio_vec *bvec; 1654 int nr_clean_pages = 0; 1655 int i; 1656 1657 bio_for_each_segment_all(bvec, bio, i) { 1658 struct page *page = bvec->bv_page; 1659 1660 if (PageDirty(page) || PageCompound(page)) { 1661 put_page(page); 1662 bvec->bv_page = NULL; 1663 } else { 1664 nr_clean_pages++; 1665 } 1666 } 1667 1668 if (nr_clean_pages) { 1669 unsigned long flags; 1670 1671 spin_lock_irqsave(&bio_dirty_lock, flags); 1672 bio->bi_private = bio_dirty_list; 1673 bio_dirty_list = bio; 1674 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1675 schedule_work(&bio_dirty_work); 1676 } else { 1677 bio_put(bio); 1678 } 1679 } 1680 1681 void generic_start_io_acct(int rw, unsigned long sectors, 1682 struct hd_struct *part) 1683 { 1684 int cpu = part_stat_lock(); 1685 1686 part_round_stats(cpu, part); 1687 part_stat_inc(cpu, part, ios[rw]); 1688 part_stat_add(cpu, part, sectors[rw], sectors); 1689 part_inc_in_flight(part, rw); 1690 1691 part_stat_unlock(); 1692 } 1693 EXPORT_SYMBOL(generic_start_io_acct); 1694 1695 void generic_end_io_acct(int rw, struct hd_struct *part, 1696 unsigned long start_time) 1697 { 1698 unsigned long duration = jiffies - start_time; 1699 int cpu = part_stat_lock(); 1700 1701 part_stat_add(cpu, part, ticks[rw], duration); 1702 part_round_stats(cpu, part); 1703 part_dec_in_flight(part, rw); 1704 1705 part_stat_unlock(); 1706 } 1707 EXPORT_SYMBOL(generic_end_io_acct); 1708 1709 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1710 void bio_flush_dcache_pages(struct bio *bi) 1711 { 1712 struct bio_vec bvec; 1713 struct bvec_iter iter; 1714 1715 bio_for_each_segment(bvec, bi, iter) 1716 flush_dcache_page(bvec.bv_page); 1717 } 1718 EXPORT_SYMBOL(bio_flush_dcache_pages); 1719 #endif 1720 1721 static inline bool bio_remaining_done(struct bio *bio) 1722 { 1723 /* 1724 * If we're not chaining, then ->__bi_remaining is always 1 and 1725 * we always end io on the first invocation. 1726 */ 1727 if (!bio_flagged(bio, BIO_CHAIN)) 1728 return true; 1729 1730 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1731 1732 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1733 bio_clear_flag(bio, BIO_CHAIN); 1734 return true; 1735 } 1736 1737 return false; 1738 } 1739 1740 /** 1741 * bio_endio - end I/O on a bio 1742 * @bio: bio 1743 * 1744 * Description: 1745 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1746 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1747 * bio unless they own it and thus know that it has an end_io function. 1748 **/ 1749 void bio_endio(struct bio *bio) 1750 { 1751 again: 1752 if (!bio_remaining_done(bio)) 1753 return; 1754 1755 /* 1756 * Need to have a real endio function for chained bios, otherwise 1757 * various corner cases will break (like stacking block devices that 1758 * save/restore bi_end_io) - however, we want to avoid unbounded 1759 * recursion and blowing the stack. Tail call optimization would 1760 * handle this, but compiling with frame pointers also disables 1761 * gcc's sibling call optimization. 1762 */ 1763 if (bio->bi_end_io == bio_chain_endio) { 1764 bio = __bio_chain_endio(bio); 1765 goto again; 1766 } 1767 1768 if (bio->bi_end_io) 1769 bio->bi_end_io(bio); 1770 } 1771 EXPORT_SYMBOL(bio_endio); 1772 1773 /** 1774 * bio_split - split a bio 1775 * @bio: bio to split 1776 * @sectors: number of sectors to split from the front of @bio 1777 * @gfp: gfp mask 1778 * @bs: bio set to allocate from 1779 * 1780 * Allocates and returns a new bio which represents @sectors from the start of 1781 * @bio, and updates @bio to represent the remaining sectors. 1782 * 1783 * Unless this is a discard request the newly allocated bio will point 1784 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1785 * @bio is not freed before the split. 1786 */ 1787 struct bio *bio_split(struct bio *bio, int sectors, 1788 gfp_t gfp, struct bio_set *bs) 1789 { 1790 struct bio *split = NULL; 1791 1792 BUG_ON(sectors <= 0); 1793 BUG_ON(sectors >= bio_sectors(bio)); 1794 1795 /* 1796 * Discards need a mutable bio_vec to accommodate the payload 1797 * required by the DSM TRIM and UNMAP commands. 1798 */ 1799 if (bio->bi_rw & REQ_DISCARD) 1800 split = bio_clone_bioset(bio, gfp, bs); 1801 else 1802 split = bio_clone_fast(bio, gfp, bs); 1803 1804 if (!split) 1805 return NULL; 1806 1807 split->bi_iter.bi_size = sectors << 9; 1808 1809 if (bio_integrity(split)) 1810 bio_integrity_trim(split, 0, sectors); 1811 1812 bio_advance(bio, split->bi_iter.bi_size); 1813 1814 return split; 1815 } 1816 EXPORT_SYMBOL(bio_split); 1817 1818 /** 1819 * bio_trim - trim a bio 1820 * @bio: bio to trim 1821 * @offset: number of sectors to trim from the front of @bio 1822 * @size: size we want to trim @bio to, in sectors 1823 */ 1824 void bio_trim(struct bio *bio, int offset, int size) 1825 { 1826 /* 'bio' is a cloned bio which we need to trim to match 1827 * the given offset and size. 1828 */ 1829 1830 size <<= 9; 1831 if (offset == 0 && size == bio->bi_iter.bi_size) 1832 return; 1833 1834 bio_clear_flag(bio, BIO_SEG_VALID); 1835 1836 bio_advance(bio, offset << 9); 1837 1838 bio->bi_iter.bi_size = size; 1839 } 1840 EXPORT_SYMBOL_GPL(bio_trim); 1841 1842 /* 1843 * create memory pools for biovec's in a bio_set. 1844 * use the global biovec slabs created for general use. 1845 */ 1846 mempool_t *biovec_create_pool(int pool_entries) 1847 { 1848 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; 1849 1850 return mempool_create_slab_pool(pool_entries, bp->slab); 1851 } 1852 1853 void bioset_free(struct bio_set *bs) 1854 { 1855 if (bs->rescue_workqueue) 1856 destroy_workqueue(bs->rescue_workqueue); 1857 1858 if (bs->bio_pool) 1859 mempool_destroy(bs->bio_pool); 1860 1861 if (bs->bvec_pool) 1862 mempool_destroy(bs->bvec_pool); 1863 1864 bioset_integrity_free(bs); 1865 bio_put_slab(bs); 1866 1867 kfree(bs); 1868 } 1869 EXPORT_SYMBOL(bioset_free); 1870 1871 static struct bio_set *__bioset_create(unsigned int pool_size, 1872 unsigned int front_pad, 1873 bool create_bvec_pool) 1874 { 1875 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1876 struct bio_set *bs; 1877 1878 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1879 if (!bs) 1880 return NULL; 1881 1882 bs->front_pad = front_pad; 1883 1884 spin_lock_init(&bs->rescue_lock); 1885 bio_list_init(&bs->rescue_list); 1886 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1887 1888 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1889 if (!bs->bio_slab) { 1890 kfree(bs); 1891 return NULL; 1892 } 1893 1894 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1895 if (!bs->bio_pool) 1896 goto bad; 1897 1898 if (create_bvec_pool) { 1899 bs->bvec_pool = biovec_create_pool(pool_size); 1900 if (!bs->bvec_pool) 1901 goto bad; 1902 } 1903 1904 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1905 if (!bs->rescue_workqueue) 1906 goto bad; 1907 1908 return bs; 1909 bad: 1910 bioset_free(bs); 1911 return NULL; 1912 } 1913 1914 /** 1915 * bioset_create - Create a bio_set 1916 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1917 * @front_pad: Number of bytes to allocate in front of the returned bio 1918 * 1919 * Description: 1920 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1921 * to ask for a number of bytes to be allocated in front of the bio. 1922 * Front pad allocation is useful for embedding the bio inside 1923 * another structure, to avoid allocating extra data to go with the bio. 1924 * Note that the bio must be embedded at the END of that structure always, 1925 * or things will break badly. 1926 */ 1927 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1928 { 1929 return __bioset_create(pool_size, front_pad, true); 1930 } 1931 EXPORT_SYMBOL(bioset_create); 1932 1933 /** 1934 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 1935 * @pool_size: Number of bio to cache in the mempool 1936 * @front_pad: Number of bytes to allocate in front of the returned bio 1937 * 1938 * Description: 1939 * Same functionality as bioset_create() except that mempool is not 1940 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 1941 */ 1942 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 1943 { 1944 return __bioset_create(pool_size, front_pad, false); 1945 } 1946 EXPORT_SYMBOL(bioset_create_nobvec); 1947 1948 #ifdef CONFIG_BLK_CGROUP 1949 1950 /** 1951 * bio_associate_blkcg - associate a bio with the specified blkcg 1952 * @bio: target bio 1953 * @blkcg_css: css of the blkcg to associate 1954 * 1955 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 1956 * treat @bio as if it were issued by a task which belongs to the blkcg. 1957 * 1958 * This function takes an extra reference of @blkcg_css which will be put 1959 * when @bio is released. The caller must own @bio and is responsible for 1960 * synchronizing calls to this function. 1961 */ 1962 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 1963 { 1964 if (unlikely(bio->bi_css)) 1965 return -EBUSY; 1966 css_get(blkcg_css); 1967 bio->bi_css = blkcg_css; 1968 return 0; 1969 } 1970 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 1971 1972 /** 1973 * bio_associate_current - associate a bio with %current 1974 * @bio: target bio 1975 * 1976 * Associate @bio with %current if it hasn't been associated yet. Block 1977 * layer will treat @bio as if it were issued by %current no matter which 1978 * task actually issues it. 1979 * 1980 * This function takes an extra reference of @task's io_context and blkcg 1981 * which will be put when @bio is released. The caller must own @bio, 1982 * ensure %current->io_context exists, and is responsible for synchronizing 1983 * calls to this function. 1984 */ 1985 int bio_associate_current(struct bio *bio) 1986 { 1987 struct io_context *ioc; 1988 1989 if (bio->bi_css) 1990 return -EBUSY; 1991 1992 ioc = current->io_context; 1993 if (!ioc) 1994 return -ENOENT; 1995 1996 get_io_context_active(ioc); 1997 bio->bi_ioc = ioc; 1998 bio->bi_css = task_get_css(current, io_cgrp_id); 1999 return 0; 2000 } 2001 EXPORT_SYMBOL_GPL(bio_associate_current); 2002 2003 /** 2004 * bio_disassociate_task - undo bio_associate_current() 2005 * @bio: target bio 2006 */ 2007 void bio_disassociate_task(struct bio *bio) 2008 { 2009 if (bio->bi_ioc) { 2010 put_io_context(bio->bi_ioc); 2011 bio->bi_ioc = NULL; 2012 } 2013 if (bio->bi_css) { 2014 css_put(bio->bi_css); 2015 bio->bi_css = NULL; 2016 } 2017 } 2018 2019 #endif /* CONFIG_BLK_CGROUP */ 2020 2021 static void __init biovec_init_slabs(void) 2022 { 2023 int i; 2024 2025 for (i = 0; i < BIOVEC_NR_POOLS; i++) { 2026 int size; 2027 struct biovec_slab *bvs = bvec_slabs + i; 2028 2029 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2030 bvs->slab = NULL; 2031 continue; 2032 } 2033 2034 size = bvs->nr_vecs * sizeof(struct bio_vec); 2035 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2036 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2037 } 2038 } 2039 2040 static int __init init_bio(void) 2041 { 2042 bio_slab_max = 2; 2043 bio_slab_nr = 0; 2044 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2045 if (!bio_slabs) 2046 panic("bio: can't allocate bios\n"); 2047 2048 bio_integrity_init(); 2049 biovec_init_slabs(); 2050 2051 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2052 if (!fs_bio_set) 2053 panic("bio: can't allocate bios\n"); 2054 2055 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2056 panic("bio: can't create integrity pool\n"); 2057 2058 return 0; 2059 } 2060 subsys_initcall(init_bio); 2061