xref: /linux/block/bio.c (revision 0c750012e8f30d26930ae13e815635258aee92b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/blk-crypto.h>
21 #include <linux/xarray.h>
22 
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26 #include "blk-cgroup.h"
27 
28 #define ALLOC_CACHE_THRESHOLD	16
29 #define ALLOC_CACHE_MAX		256
30 
31 struct bio_alloc_cache {
32 	struct bio		*free_list;
33 	struct bio		*free_list_irq;
34 	unsigned int		nr;
35 	unsigned int		nr_irq;
36 };
37 
38 static struct biovec_slab {
39 	int nr_vecs;
40 	char *name;
41 	struct kmem_cache *slab;
42 } bvec_slabs[] __read_mostly = {
43 	{ .nr_vecs = 16, .name = "biovec-16" },
44 	{ .nr_vecs = 64, .name = "biovec-64" },
45 	{ .nr_vecs = 128, .name = "biovec-128" },
46 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
47 };
48 
49 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
50 {
51 	switch (nr_vecs) {
52 	/* smaller bios use inline vecs */
53 	case 5 ... 16:
54 		return &bvec_slabs[0];
55 	case 17 ... 64:
56 		return &bvec_slabs[1];
57 	case 65 ... 128:
58 		return &bvec_slabs[2];
59 	case 129 ... BIO_MAX_VECS:
60 		return &bvec_slabs[3];
61 	default:
62 		BUG();
63 		return NULL;
64 	}
65 }
66 
67 /*
68  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
69  * IO code that does not need private memory pools.
70  */
71 struct bio_set fs_bio_set;
72 EXPORT_SYMBOL(fs_bio_set);
73 
74 /*
75  * Our slab pool management
76  */
77 struct bio_slab {
78 	struct kmem_cache *slab;
79 	unsigned int slab_ref;
80 	unsigned int slab_size;
81 	char name[8];
82 };
83 static DEFINE_MUTEX(bio_slab_lock);
84 static DEFINE_XARRAY(bio_slabs);
85 
86 static struct bio_slab *create_bio_slab(unsigned int size)
87 {
88 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
89 
90 	if (!bslab)
91 		return NULL;
92 
93 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
94 	bslab->slab = kmem_cache_create(bslab->name, size,
95 			ARCH_KMALLOC_MINALIGN,
96 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
97 	if (!bslab->slab)
98 		goto fail_alloc_slab;
99 
100 	bslab->slab_ref = 1;
101 	bslab->slab_size = size;
102 
103 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
104 		return bslab;
105 
106 	kmem_cache_destroy(bslab->slab);
107 
108 fail_alloc_slab:
109 	kfree(bslab);
110 	return NULL;
111 }
112 
113 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
114 {
115 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
116 }
117 
118 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
119 {
120 	unsigned int size = bs_bio_slab_size(bs);
121 	struct bio_slab *bslab;
122 
123 	mutex_lock(&bio_slab_lock);
124 	bslab = xa_load(&bio_slabs, size);
125 	if (bslab)
126 		bslab->slab_ref++;
127 	else
128 		bslab = create_bio_slab(size);
129 	mutex_unlock(&bio_slab_lock);
130 
131 	if (bslab)
132 		return bslab->slab;
133 	return NULL;
134 }
135 
136 static void bio_put_slab(struct bio_set *bs)
137 {
138 	struct bio_slab *bslab = NULL;
139 	unsigned int slab_size = bs_bio_slab_size(bs);
140 
141 	mutex_lock(&bio_slab_lock);
142 
143 	bslab = xa_load(&bio_slabs, slab_size);
144 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 		goto out;
146 
147 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
148 
149 	WARN_ON(!bslab->slab_ref);
150 
151 	if (--bslab->slab_ref)
152 		goto out;
153 
154 	xa_erase(&bio_slabs, slab_size);
155 
156 	kmem_cache_destroy(bslab->slab);
157 	kfree(bslab);
158 
159 out:
160 	mutex_unlock(&bio_slab_lock);
161 }
162 
163 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
164 {
165 	BUG_ON(nr_vecs > BIO_MAX_VECS);
166 
167 	if (nr_vecs == BIO_MAX_VECS)
168 		mempool_free(bv, pool);
169 	else if (nr_vecs > BIO_INLINE_VECS)
170 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
171 }
172 
173 /*
174  * Make the first allocation restricted and don't dump info on allocation
175  * failures, since we'll fall back to the mempool in case of failure.
176  */
177 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
178 {
179 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
180 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
181 }
182 
183 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
184 		gfp_t gfp_mask)
185 {
186 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
187 
188 	if (WARN_ON_ONCE(!bvs))
189 		return NULL;
190 
191 	/*
192 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
193 	 * We also rely on this in the bvec_free path.
194 	 */
195 	*nr_vecs = bvs->nr_vecs;
196 
197 	/*
198 	 * Try a slab allocation first for all smaller allocations.  If that
199 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
200 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
201 	 */
202 	if (*nr_vecs < BIO_MAX_VECS) {
203 		struct bio_vec *bvl;
204 
205 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
206 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
207 			return bvl;
208 		*nr_vecs = BIO_MAX_VECS;
209 	}
210 
211 	return mempool_alloc(pool, gfp_mask);
212 }
213 
214 void bio_uninit(struct bio *bio)
215 {
216 #ifdef CONFIG_BLK_CGROUP
217 	if (bio->bi_blkg) {
218 		blkg_put(bio->bi_blkg);
219 		bio->bi_blkg = NULL;
220 	}
221 #endif
222 	if (bio_integrity(bio))
223 		bio_integrity_free(bio);
224 
225 	bio_crypt_free_ctx(bio);
226 }
227 EXPORT_SYMBOL(bio_uninit);
228 
229 static void bio_free(struct bio *bio)
230 {
231 	struct bio_set *bs = bio->bi_pool;
232 	void *p = bio;
233 
234 	WARN_ON_ONCE(!bs);
235 
236 	bio_uninit(bio);
237 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
238 	mempool_free(p - bs->front_pad, &bs->bio_pool);
239 }
240 
241 /*
242  * Users of this function have their own bio allocation. Subsequently,
243  * they must remember to pair any call to bio_init() with bio_uninit()
244  * when IO has completed, or when the bio is released.
245  */
246 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
247 	      unsigned short max_vecs, blk_opf_t opf)
248 {
249 	bio->bi_next = NULL;
250 	bio->bi_bdev = bdev;
251 	bio->bi_opf = opf;
252 	bio->bi_flags = 0;
253 	bio->bi_ioprio = 0;
254 	bio->bi_write_hint = 0;
255 	bio->bi_status = 0;
256 	bio->bi_iter.bi_sector = 0;
257 	bio->bi_iter.bi_size = 0;
258 	bio->bi_iter.bi_idx = 0;
259 	bio->bi_iter.bi_bvec_done = 0;
260 	bio->bi_end_io = NULL;
261 	bio->bi_private = NULL;
262 #ifdef CONFIG_BLK_CGROUP
263 	bio->bi_blkg = NULL;
264 	bio->bi_issue.value = 0;
265 	if (bdev)
266 		bio_associate_blkg(bio);
267 #ifdef CONFIG_BLK_CGROUP_IOCOST
268 	bio->bi_iocost_cost = 0;
269 #endif
270 #endif
271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
272 	bio->bi_crypt_context = NULL;
273 #endif
274 #ifdef CONFIG_BLK_DEV_INTEGRITY
275 	bio->bi_integrity = NULL;
276 #endif
277 	bio->bi_vcnt = 0;
278 
279 	atomic_set(&bio->__bi_remaining, 1);
280 	atomic_set(&bio->__bi_cnt, 1);
281 	bio->bi_cookie = BLK_QC_T_NONE;
282 
283 	bio->bi_max_vecs = max_vecs;
284 	bio->bi_io_vec = table;
285 	bio->bi_pool = NULL;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  * @bdev:	block device to use the bio for
293  * @opf:	operation and flags for bio
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
301 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
302 {
303 	bio_uninit(bio);
304 	memset(bio, 0, BIO_RESET_BYTES);
305 	atomic_set(&bio->__bi_remaining, 1);
306 	bio->bi_bdev = bdev;
307 	if (bio->bi_bdev)
308 		bio_associate_blkg(bio);
309 	bio->bi_opf = opf;
310 }
311 EXPORT_SYMBOL(bio_reset);
312 
313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 	struct bio *parent = bio->bi_private;
316 
317 	if (bio->bi_status && !parent->bi_status)
318 		parent->bi_status = bio->bi_status;
319 	bio_put(bio);
320 	return parent;
321 }
322 
323 static void bio_chain_endio(struct bio *bio)
324 {
325 	bio_endio(__bio_chain_endio(bio));
326 }
327 
328 /**
329  * bio_chain - chain bio completions
330  * @bio: the target bio
331  * @parent: the parent bio of @bio
332  *
333  * The caller won't have a bi_end_io called when @bio completes - instead,
334  * @parent's bi_end_io won't be called until both @parent and @bio have
335  * completed; the chained bio will also be freed when it completes.
336  *
337  * The caller must not set bi_private or bi_end_io in @bio.
338  */
339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 	BUG_ON(bio->bi_private || bio->bi_end_io);
342 
343 	bio->bi_private = parent;
344 	bio->bi_end_io	= bio_chain_endio;
345 	bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348 
349 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
350 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
351 {
352 	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
353 
354 	if (bio) {
355 		bio_chain(bio, new);
356 		submit_bio(bio);
357 	}
358 
359 	return new;
360 }
361 EXPORT_SYMBOL_GPL(blk_next_bio);
362 
363 static void bio_alloc_rescue(struct work_struct *work)
364 {
365 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
366 	struct bio *bio;
367 
368 	while (1) {
369 		spin_lock(&bs->rescue_lock);
370 		bio = bio_list_pop(&bs->rescue_list);
371 		spin_unlock(&bs->rescue_lock);
372 
373 		if (!bio)
374 			break;
375 
376 		submit_bio_noacct(bio);
377 	}
378 }
379 
380 static void punt_bios_to_rescuer(struct bio_set *bs)
381 {
382 	struct bio_list punt, nopunt;
383 	struct bio *bio;
384 
385 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
386 		return;
387 	/*
388 	 * In order to guarantee forward progress we must punt only bios that
389 	 * were allocated from this bio_set; otherwise, if there was a bio on
390 	 * there for a stacking driver higher up in the stack, processing it
391 	 * could require allocating bios from this bio_set, and doing that from
392 	 * our own rescuer would be bad.
393 	 *
394 	 * Since bio lists are singly linked, pop them all instead of trying to
395 	 * remove from the middle of the list:
396 	 */
397 
398 	bio_list_init(&punt);
399 	bio_list_init(&nopunt);
400 
401 	while ((bio = bio_list_pop(&current->bio_list[0])))
402 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
403 	current->bio_list[0] = nopunt;
404 
405 	bio_list_init(&nopunt);
406 	while ((bio = bio_list_pop(&current->bio_list[1])))
407 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
408 	current->bio_list[1] = nopunt;
409 
410 	spin_lock(&bs->rescue_lock);
411 	bio_list_merge(&bs->rescue_list, &punt);
412 	spin_unlock(&bs->rescue_lock);
413 
414 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
415 }
416 
417 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
418 {
419 	unsigned long flags;
420 
421 	/* cache->free_list must be empty */
422 	if (WARN_ON_ONCE(cache->free_list))
423 		return;
424 
425 	local_irq_save(flags);
426 	cache->free_list = cache->free_list_irq;
427 	cache->free_list_irq = NULL;
428 	cache->nr += cache->nr_irq;
429 	cache->nr_irq = 0;
430 	local_irq_restore(flags);
431 }
432 
433 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
434 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
435 		struct bio_set *bs)
436 {
437 	struct bio_alloc_cache *cache;
438 	struct bio *bio;
439 
440 	cache = per_cpu_ptr(bs->cache, get_cpu());
441 	if (!cache->free_list) {
442 		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
443 			bio_alloc_irq_cache_splice(cache);
444 		if (!cache->free_list) {
445 			put_cpu();
446 			return NULL;
447 		}
448 	}
449 	bio = cache->free_list;
450 	cache->free_list = bio->bi_next;
451 	cache->nr--;
452 	put_cpu();
453 
454 	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
455 	bio->bi_pool = bs;
456 	return bio;
457 }
458 
459 /**
460  * bio_alloc_bioset - allocate a bio for I/O
461  * @bdev:	block device to allocate the bio for (can be %NULL)
462  * @nr_vecs:	number of bvecs to pre-allocate
463  * @opf:	operation and flags for bio
464  * @gfp_mask:   the GFP_* mask given to the slab allocator
465  * @bs:		the bio_set to allocate from.
466  *
467  * Allocate a bio from the mempools in @bs.
468  *
469  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
470  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
471  * callers must never allocate more than 1 bio at a time from the general pool.
472  * Callers that need to allocate more than 1 bio must always submit the
473  * previously allocated bio for IO before attempting to allocate a new one.
474  * Failure to do so can cause deadlocks under memory pressure.
475  *
476  * Note that when running under submit_bio_noacct() (i.e. any block driver),
477  * bios are not submitted until after you return - see the code in
478  * submit_bio_noacct() that converts recursion into iteration, to prevent
479  * stack overflows.
480  *
481  * This would normally mean allocating multiple bios under submit_bio_noacct()
482  * would be susceptible to deadlocks, but we have
483  * deadlock avoidance code that resubmits any blocked bios from a rescuer
484  * thread.
485  *
486  * However, we do not guarantee forward progress for allocations from other
487  * mempools. Doing multiple allocations from the same mempool under
488  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
489  * for per bio allocations.
490  *
491  * Returns: Pointer to new bio on success, NULL on failure.
492  */
493 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
494 			     blk_opf_t opf, gfp_t gfp_mask,
495 			     struct bio_set *bs)
496 {
497 	gfp_t saved_gfp = gfp_mask;
498 	struct bio *bio;
499 	void *p;
500 
501 	/* should not use nobvec bioset for nr_vecs > 0 */
502 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
503 		return NULL;
504 
505 	if (opf & REQ_ALLOC_CACHE) {
506 		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
507 			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
508 						     gfp_mask, bs);
509 			if (bio)
510 				return bio;
511 			/*
512 			 * No cached bio available, bio returned below marked with
513 			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
514 			 */
515 		} else {
516 			opf &= ~REQ_ALLOC_CACHE;
517 		}
518 	}
519 
520 	/*
521 	 * submit_bio_noacct() converts recursion to iteration; this means if
522 	 * we're running beneath it, any bios we allocate and submit will not be
523 	 * submitted (and thus freed) until after we return.
524 	 *
525 	 * This exposes us to a potential deadlock if we allocate multiple bios
526 	 * from the same bio_set() while running underneath submit_bio_noacct().
527 	 * If we were to allocate multiple bios (say a stacking block driver
528 	 * that was splitting bios), we would deadlock if we exhausted the
529 	 * mempool's reserve.
530 	 *
531 	 * We solve this, and guarantee forward progress, with a rescuer
532 	 * workqueue per bio_set. If we go to allocate and there are bios on
533 	 * current->bio_list, we first try the allocation without
534 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
535 	 * blocking to the rescuer workqueue before we retry with the original
536 	 * gfp_flags.
537 	 */
538 	if (current->bio_list &&
539 	    (!bio_list_empty(&current->bio_list[0]) ||
540 	     !bio_list_empty(&current->bio_list[1])) &&
541 	    bs->rescue_workqueue)
542 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
543 
544 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
545 	if (!p && gfp_mask != saved_gfp) {
546 		punt_bios_to_rescuer(bs);
547 		gfp_mask = saved_gfp;
548 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
549 	}
550 	if (unlikely(!p))
551 		return NULL;
552 	if (!mempool_is_saturated(&bs->bio_pool))
553 		opf &= ~REQ_ALLOC_CACHE;
554 
555 	bio = p + bs->front_pad;
556 	if (nr_vecs > BIO_INLINE_VECS) {
557 		struct bio_vec *bvl = NULL;
558 
559 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
560 		if (!bvl && gfp_mask != saved_gfp) {
561 			punt_bios_to_rescuer(bs);
562 			gfp_mask = saved_gfp;
563 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
564 		}
565 		if (unlikely(!bvl))
566 			goto err_free;
567 
568 		bio_init(bio, bdev, bvl, nr_vecs, opf);
569 	} else if (nr_vecs) {
570 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
571 	} else {
572 		bio_init(bio, bdev, NULL, 0, opf);
573 	}
574 
575 	bio->bi_pool = bs;
576 	return bio;
577 
578 err_free:
579 	mempool_free(p, &bs->bio_pool);
580 	return NULL;
581 }
582 EXPORT_SYMBOL(bio_alloc_bioset);
583 
584 /**
585  * bio_kmalloc - kmalloc a bio
586  * @nr_vecs:	number of bio_vecs to allocate
587  * @gfp_mask:   the GFP_* mask given to the slab allocator
588  *
589  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
590  * using bio_init() before use.  To free a bio returned from this function use
591  * kfree() after calling bio_uninit().  A bio returned from this function can
592  * be reused by calling bio_uninit() before calling bio_init() again.
593  *
594  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
595  * function are not backed by a mempool can fail.  Do not use this function
596  * for allocations in the file system I/O path.
597  *
598  * Returns: Pointer to new bio on success, NULL on failure.
599  */
600 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
601 {
602 	struct bio *bio;
603 
604 	if (nr_vecs > UIO_MAXIOV)
605 		return NULL;
606 	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
607 }
608 EXPORT_SYMBOL(bio_kmalloc);
609 
610 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
611 {
612 	struct bio_vec bv;
613 	struct bvec_iter iter;
614 
615 	__bio_for_each_segment(bv, bio, iter, start)
616 		memzero_bvec(&bv);
617 }
618 EXPORT_SYMBOL(zero_fill_bio_iter);
619 
620 /**
621  * bio_truncate - truncate the bio to small size of @new_size
622  * @bio:	the bio to be truncated
623  * @new_size:	new size for truncating the bio
624  *
625  * Description:
626  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
627  *   REQ_OP_READ, zero the truncated part. This function should only
628  *   be used for handling corner cases, such as bio eod.
629  */
630 static void bio_truncate(struct bio *bio, unsigned new_size)
631 {
632 	struct bio_vec bv;
633 	struct bvec_iter iter;
634 	unsigned int done = 0;
635 	bool truncated = false;
636 
637 	if (new_size >= bio->bi_iter.bi_size)
638 		return;
639 
640 	if (bio_op(bio) != REQ_OP_READ)
641 		goto exit;
642 
643 	bio_for_each_segment(bv, bio, iter) {
644 		if (done + bv.bv_len > new_size) {
645 			unsigned offset;
646 
647 			if (!truncated)
648 				offset = new_size - done;
649 			else
650 				offset = 0;
651 			zero_user(bv.bv_page, bv.bv_offset + offset,
652 				  bv.bv_len - offset);
653 			truncated = true;
654 		}
655 		done += bv.bv_len;
656 	}
657 
658  exit:
659 	/*
660 	 * Don't touch bvec table here and make it really immutable, since
661 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
662 	 * in its .end_bio() callback.
663 	 *
664 	 * It is enough to truncate bio by updating .bi_size since we can make
665 	 * correct bvec with the updated .bi_size for drivers.
666 	 */
667 	bio->bi_iter.bi_size = new_size;
668 }
669 
670 /**
671  * guard_bio_eod - truncate a BIO to fit the block device
672  * @bio:	bio to truncate
673  *
674  * This allows us to do IO even on the odd last sectors of a device, even if the
675  * block size is some multiple of the physical sector size.
676  *
677  * We'll just truncate the bio to the size of the device, and clear the end of
678  * the buffer head manually.  Truly out-of-range accesses will turn into actual
679  * I/O errors, this only handles the "we need to be able to do I/O at the final
680  * sector" case.
681  */
682 void guard_bio_eod(struct bio *bio)
683 {
684 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
685 
686 	if (!maxsector)
687 		return;
688 
689 	/*
690 	 * If the *whole* IO is past the end of the device,
691 	 * let it through, and the IO layer will turn it into
692 	 * an EIO.
693 	 */
694 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
695 		return;
696 
697 	maxsector -= bio->bi_iter.bi_sector;
698 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
699 		return;
700 
701 	bio_truncate(bio, maxsector << 9);
702 }
703 
704 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
705 				   unsigned int nr)
706 {
707 	unsigned int i = 0;
708 	struct bio *bio;
709 
710 	while ((bio = cache->free_list) != NULL) {
711 		cache->free_list = bio->bi_next;
712 		cache->nr--;
713 		bio_free(bio);
714 		if (++i == nr)
715 			break;
716 	}
717 	return i;
718 }
719 
720 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
721 				  unsigned int nr)
722 {
723 	nr -= __bio_alloc_cache_prune(cache, nr);
724 	if (!READ_ONCE(cache->free_list)) {
725 		bio_alloc_irq_cache_splice(cache);
726 		__bio_alloc_cache_prune(cache, nr);
727 	}
728 }
729 
730 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
731 {
732 	struct bio_set *bs;
733 
734 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
735 	if (bs->cache) {
736 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
737 
738 		bio_alloc_cache_prune(cache, -1U);
739 	}
740 	return 0;
741 }
742 
743 static void bio_alloc_cache_destroy(struct bio_set *bs)
744 {
745 	int cpu;
746 
747 	if (!bs->cache)
748 		return;
749 
750 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
751 	for_each_possible_cpu(cpu) {
752 		struct bio_alloc_cache *cache;
753 
754 		cache = per_cpu_ptr(bs->cache, cpu);
755 		bio_alloc_cache_prune(cache, -1U);
756 	}
757 	free_percpu(bs->cache);
758 	bs->cache = NULL;
759 }
760 
761 static inline void bio_put_percpu_cache(struct bio *bio)
762 {
763 	struct bio_alloc_cache *cache;
764 
765 	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
766 	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
767 		put_cpu();
768 		bio_free(bio);
769 		return;
770 	}
771 
772 	bio_uninit(bio);
773 
774 	if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
775 		bio->bi_next = cache->free_list;
776 		bio->bi_bdev = NULL;
777 		cache->free_list = bio;
778 		cache->nr++;
779 	} else {
780 		unsigned long flags;
781 
782 		local_irq_save(flags);
783 		bio->bi_next = cache->free_list_irq;
784 		cache->free_list_irq = bio;
785 		cache->nr_irq++;
786 		local_irq_restore(flags);
787 	}
788 	put_cpu();
789 }
790 
791 /**
792  * bio_put - release a reference to a bio
793  * @bio:   bio to release reference to
794  *
795  * Description:
796  *   Put a reference to a &struct bio, either one you have gotten with
797  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
798  **/
799 void bio_put(struct bio *bio)
800 {
801 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
802 		BUG_ON(!atomic_read(&bio->__bi_cnt));
803 		if (!atomic_dec_and_test(&bio->__bi_cnt))
804 			return;
805 	}
806 	if (bio->bi_opf & REQ_ALLOC_CACHE)
807 		bio_put_percpu_cache(bio);
808 	else
809 		bio_free(bio);
810 }
811 EXPORT_SYMBOL(bio_put);
812 
813 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
814 {
815 	bio_set_flag(bio, BIO_CLONED);
816 	bio->bi_ioprio = bio_src->bi_ioprio;
817 	bio->bi_write_hint = bio_src->bi_write_hint;
818 	bio->bi_iter = bio_src->bi_iter;
819 
820 	if (bio->bi_bdev) {
821 		if (bio->bi_bdev == bio_src->bi_bdev &&
822 		    bio_flagged(bio_src, BIO_REMAPPED))
823 			bio_set_flag(bio, BIO_REMAPPED);
824 		bio_clone_blkg_association(bio, bio_src);
825 	}
826 
827 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
828 		return -ENOMEM;
829 	if (bio_integrity(bio_src) &&
830 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
831 		return -ENOMEM;
832 	return 0;
833 }
834 
835 /**
836  * bio_alloc_clone - clone a bio that shares the original bio's biovec
837  * @bdev: block_device to clone onto
838  * @bio_src: bio to clone from
839  * @gfp: allocation priority
840  * @bs: bio_set to allocate from
841  *
842  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
843  * bio, but not the actual data it points to.
844  *
845  * The caller must ensure that the return bio is not freed before @bio_src.
846  */
847 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
848 		gfp_t gfp, struct bio_set *bs)
849 {
850 	struct bio *bio;
851 
852 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
853 	if (!bio)
854 		return NULL;
855 
856 	if (__bio_clone(bio, bio_src, gfp) < 0) {
857 		bio_put(bio);
858 		return NULL;
859 	}
860 	bio->bi_io_vec = bio_src->bi_io_vec;
861 
862 	return bio;
863 }
864 EXPORT_SYMBOL(bio_alloc_clone);
865 
866 /**
867  * bio_init_clone - clone a bio that shares the original bio's biovec
868  * @bdev: block_device to clone onto
869  * @bio: bio to clone into
870  * @bio_src: bio to clone from
871  * @gfp: allocation priority
872  *
873  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
874  * The caller owns the returned bio, but not the actual data it points to.
875  *
876  * The caller must ensure that @bio_src is not freed before @bio.
877  */
878 int bio_init_clone(struct block_device *bdev, struct bio *bio,
879 		struct bio *bio_src, gfp_t gfp)
880 {
881 	int ret;
882 
883 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
884 	ret = __bio_clone(bio, bio_src, gfp);
885 	if (ret)
886 		bio_uninit(bio);
887 	return ret;
888 }
889 EXPORT_SYMBOL(bio_init_clone);
890 
891 /**
892  * bio_full - check if the bio is full
893  * @bio:	bio to check
894  * @len:	length of one segment to be added
895  *
896  * Return true if @bio is full and one segment with @len bytes can't be
897  * added to the bio, otherwise return false
898  */
899 static inline bool bio_full(struct bio *bio, unsigned len)
900 {
901 	if (bio->bi_vcnt >= bio->bi_max_vecs)
902 		return true;
903 	if (bio->bi_iter.bi_size > UINT_MAX - len)
904 		return true;
905 	return false;
906 }
907 
908 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
909 		unsigned int len, unsigned int off, bool *same_page)
910 {
911 	size_t bv_end = bv->bv_offset + bv->bv_len;
912 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
913 	phys_addr_t page_addr = page_to_phys(page);
914 
915 	if (vec_end_addr + 1 != page_addr + off)
916 		return false;
917 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
918 		return false;
919 	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
920 		return false;
921 
922 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
923 	if (!*same_page) {
924 		if (IS_ENABLED(CONFIG_KMSAN))
925 			return false;
926 		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
927 			return false;
928 	}
929 
930 	bv->bv_len += len;
931 	return true;
932 }
933 
934 /*
935  * Try to merge a page into a segment, while obeying the hardware segment
936  * size limit.  This is not for normal read/write bios, but for passthrough
937  * or Zone Append operations that we can't split.
938  */
939 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
940 		struct page *page, unsigned len, unsigned offset,
941 		bool *same_page)
942 {
943 	unsigned long mask = queue_segment_boundary(q);
944 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
945 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
946 
947 	if ((addr1 | mask) != (addr2 | mask))
948 		return false;
949 	if (len > queue_max_segment_size(q) - bv->bv_len)
950 		return false;
951 	return bvec_try_merge_page(bv, page, len, offset, same_page);
952 }
953 
954 /**
955  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
956  * @q: the target queue
957  * @bio: destination bio
958  * @page: page to add
959  * @len: vec entry length
960  * @offset: vec entry offset
961  * @max_sectors: maximum number of sectors that can be added
962  * @same_page: return if the segment has been merged inside the same page
963  *
964  * Add a page to a bio while respecting the hardware max_sectors, max_segment
965  * and gap limitations.
966  */
967 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
968 		struct page *page, unsigned int len, unsigned int offset,
969 		unsigned int max_sectors, bool *same_page)
970 {
971 	unsigned int max_size = max_sectors << SECTOR_SHIFT;
972 
973 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
974 		return 0;
975 
976 	len = min3(len, max_size, queue_max_segment_size(q));
977 	if (len > max_size - bio->bi_iter.bi_size)
978 		return 0;
979 
980 	if (bio->bi_vcnt > 0) {
981 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
982 
983 		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
984 				same_page)) {
985 			bio->bi_iter.bi_size += len;
986 			return len;
987 		}
988 
989 		if (bio->bi_vcnt >=
990 		    min(bio->bi_max_vecs, queue_max_segments(q)))
991 			return 0;
992 
993 		/*
994 		 * If the queue doesn't support SG gaps and adding this segment
995 		 * would create a gap, disallow it.
996 		 */
997 		if (bvec_gap_to_prev(&q->limits, bv, offset))
998 			return 0;
999 	}
1000 
1001 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
1002 	bio->bi_vcnt++;
1003 	bio->bi_iter.bi_size += len;
1004 	return len;
1005 }
1006 
1007 /**
1008  * bio_add_pc_page	- attempt to add page to passthrough bio
1009  * @q: the target queue
1010  * @bio: destination bio
1011  * @page: page to add
1012  * @len: vec entry length
1013  * @offset: vec entry offset
1014  *
1015  * Attempt to add a page to the bio_vec maplist. This can fail for a
1016  * number of reasons, such as the bio being full or target block device
1017  * limitations. The target block device must allow bio's up to PAGE_SIZE,
1018  * so it is always possible to add a single page to an empty bio.
1019  *
1020  * This should only be used by passthrough bios.
1021  */
1022 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1023 		struct page *page, unsigned int len, unsigned int offset)
1024 {
1025 	bool same_page = false;
1026 	return bio_add_hw_page(q, bio, page, len, offset,
1027 			queue_max_hw_sectors(q), &same_page);
1028 }
1029 EXPORT_SYMBOL(bio_add_pc_page);
1030 
1031 /**
1032  * bio_add_zone_append_page - attempt to add page to zone-append bio
1033  * @bio: destination bio
1034  * @page: page to add
1035  * @len: vec entry length
1036  * @offset: vec entry offset
1037  *
1038  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1039  * for a zone-append request. This can fail for a number of reasons, such as the
1040  * bio being full or the target block device is not a zoned block device or
1041  * other limitations of the target block device. The target block device must
1042  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1043  * to an empty bio.
1044  *
1045  * Returns: number of bytes added to the bio, or 0 in case of a failure.
1046  */
1047 int bio_add_zone_append_page(struct bio *bio, struct page *page,
1048 			     unsigned int len, unsigned int offset)
1049 {
1050 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1051 	bool same_page = false;
1052 
1053 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1054 		return 0;
1055 
1056 	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1057 		return 0;
1058 
1059 	return bio_add_hw_page(q, bio, page, len, offset,
1060 			       queue_max_zone_append_sectors(q), &same_page);
1061 }
1062 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1063 
1064 /**
1065  * __bio_add_page - add page(s) to a bio in a new segment
1066  * @bio: destination bio
1067  * @page: start page to add
1068  * @len: length of the data to add, may cross pages
1069  * @off: offset of the data relative to @page, may cross pages
1070  *
1071  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1072  * that @bio has space for another bvec.
1073  */
1074 void __bio_add_page(struct bio *bio, struct page *page,
1075 		unsigned int len, unsigned int off)
1076 {
1077 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1078 	WARN_ON_ONCE(bio_full(bio, len));
1079 
1080 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1081 	bio->bi_iter.bi_size += len;
1082 	bio->bi_vcnt++;
1083 }
1084 EXPORT_SYMBOL_GPL(__bio_add_page);
1085 
1086 /**
1087  *	bio_add_page	-	attempt to add page(s) to bio
1088  *	@bio: destination bio
1089  *	@page: start page to add
1090  *	@len: vec entry length, may cross pages
1091  *	@offset: vec entry offset relative to @page, may cross pages
1092  *
1093  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1094  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1095  */
1096 int bio_add_page(struct bio *bio, struct page *page,
1097 		 unsigned int len, unsigned int offset)
1098 {
1099 	bool same_page = false;
1100 
1101 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1102 		return 0;
1103 	if (bio->bi_iter.bi_size > UINT_MAX - len)
1104 		return 0;
1105 
1106 	if (bio->bi_vcnt > 0 &&
1107 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1108 				page, len, offset, &same_page)) {
1109 		bio->bi_iter.bi_size += len;
1110 		return len;
1111 	}
1112 
1113 	if (bio->bi_vcnt >= bio->bi_max_vecs)
1114 		return 0;
1115 	__bio_add_page(bio, page, len, offset);
1116 	return len;
1117 }
1118 EXPORT_SYMBOL(bio_add_page);
1119 
1120 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1121 			  size_t off)
1122 {
1123 	WARN_ON_ONCE(len > UINT_MAX);
1124 	WARN_ON_ONCE(off > UINT_MAX);
1125 	__bio_add_page(bio, &folio->page, len, off);
1126 }
1127 
1128 /**
1129  * bio_add_folio - Attempt to add part of a folio to a bio.
1130  * @bio: BIO to add to.
1131  * @folio: Folio to add.
1132  * @len: How many bytes from the folio to add.
1133  * @off: First byte in this folio to add.
1134  *
1135  * Filesystems that use folios can call this function instead of calling
1136  * bio_add_page() for each page in the folio.  If @off is bigger than
1137  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1138  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1139  *
1140  * Return: Whether the addition was successful.
1141  */
1142 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1143 		   size_t off)
1144 {
1145 	if (len > UINT_MAX || off > UINT_MAX)
1146 		return false;
1147 	return bio_add_page(bio, &folio->page, len, off) > 0;
1148 }
1149 EXPORT_SYMBOL(bio_add_folio);
1150 
1151 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1152 {
1153 	struct folio_iter fi;
1154 
1155 	bio_for_each_folio_all(fi, bio) {
1156 		struct page *page;
1157 		size_t done = 0;
1158 
1159 		if (mark_dirty) {
1160 			folio_lock(fi.folio);
1161 			folio_mark_dirty(fi.folio);
1162 			folio_unlock(fi.folio);
1163 		}
1164 		page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
1165 		do {
1166 			bio_release_page(bio, page++);
1167 			done += PAGE_SIZE;
1168 		} while (done < fi.length);
1169 	}
1170 }
1171 EXPORT_SYMBOL_GPL(__bio_release_pages);
1172 
1173 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1174 {
1175 	size_t size = iov_iter_count(iter);
1176 
1177 	WARN_ON_ONCE(bio->bi_max_vecs);
1178 
1179 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1180 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1181 		size_t max_sectors = queue_max_zone_append_sectors(q);
1182 
1183 		size = min(size, max_sectors << SECTOR_SHIFT);
1184 	}
1185 
1186 	bio->bi_vcnt = iter->nr_segs;
1187 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1188 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1189 	bio->bi_iter.bi_size = size;
1190 	bio_set_flag(bio, BIO_CLONED);
1191 }
1192 
1193 static int bio_iov_add_page(struct bio *bio, struct page *page,
1194 		unsigned int len, unsigned int offset)
1195 {
1196 	bool same_page = false;
1197 
1198 	if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1199 		return -EIO;
1200 
1201 	if (bio->bi_vcnt > 0 &&
1202 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1203 				page, len, offset, &same_page)) {
1204 		bio->bi_iter.bi_size += len;
1205 		if (same_page)
1206 			bio_release_page(bio, page);
1207 		return 0;
1208 	}
1209 	__bio_add_page(bio, page, len, offset);
1210 	return 0;
1211 }
1212 
1213 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1214 		unsigned int len, unsigned int offset)
1215 {
1216 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1217 	bool same_page = false;
1218 
1219 	if (bio_add_hw_page(q, bio, page, len, offset,
1220 			queue_max_zone_append_sectors(q), &same_page) != len)
1221 		return -EINVAL;
1222 	if (same_page)
1223 		bio_release_page(bio, page);
1224 	return 0;
1225 }
1226 
1227 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1228 
1229 /**
1230  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1231  * @bio: bio to add pages to
1232  * @iter: iov iterator describing the region to be mapped
1233  *
1234  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1235  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1236  * For a multi-segment *iter, this function only adds pages from the next
1237  * non-empty segment of the iov iterator.
1238  */
1239 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1240 {
1241 	iov_iter_extraction_t extraction_flags = 0;
1242 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1243 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1244 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1245 	struct page **pages = (struct page **)bv;
1246 	ssize_t size, left;
1247 	unsigned len, i = 0;
1248 	size_t offset;
1249 	int ret = 0;
1250 
1251 	/*
1252 	 * Move page array up in the allocated memory for the bio vecs as far as
1253 	 * possible so that we can start filling biovecs from the beginning
1254 	 * without overwriting the temporary page array.
1255 	 */
1256 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1257 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1258 
1259 	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1260 		extraction_flags |= ITER_ALLOW_P2PDMA;
1261 
1262 	/*
1263 	 * Each segment in the iov is required to be a block size multiple.
1264 	 * However, we may not be able to get the entire segment if it spans
1265 	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1266 	 * result to ensure the bio's total size is correct. The remainder of
1267 	 * the iov data will be picked up in the next bio iteration.
1268 	 */
1269 	size = iov_iter_extract_pages(iter, &pages,
1270 				      UINT_MAX - bio->bi_iter.bi_size,
1271 				      nr_pages, extraction_flags, &offset);
1272 	if (unlikely(size <= 0))
1273 		return size ? size : -EFAULT;
1274 
1275 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1276 
1277 	if (bio->bi_bdev) {
1278 		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1279 		iov_iter_revert(iter, trim);
1280 		size -= trim;
1281 	}
1282 
1283 	if (unlikely(!size)) {
1284 		ret = -EFAULT;
1285 		goto out;
1286 	}
1287 
1288 	for (left = size, i = 0; left > 0; left -= len, i++) {
1289 		struct page *page = pages[i];
1290 
1291 		len = min_t(size_t, PAGE_SIZE - offset, left);
1292 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1293 			ret = bio_iov_add_zone_append_page(bio, page, len,
1294 					offset);
1295 			if (ret)
1296 				break;
1297 		} else
1298 			bio_iov_add_page(bio, page, len, offset);
1299 
1300 		offset = 0;
1301 	}
1302 
1303 	iov_iter_revert(iter, left);
1304 out:
1305 	while (i < nr_pages)
1306 		bio_release_page(bio, pages[i++]);
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1313  * @bio: bio to add pages to
1314  * @iter: iov iterator describing the region to be added
1315  *
1316  * This takes either an iterator pointing to user memory, or one pointing to
1317  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1318  * map them into the kernel. On IO completion, the caller should put those
1319  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1320  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1321  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1322  * completed by a call to ->ki_complete() or returns with an error other than
1323  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1324  * on IO completion. If it isn't, then pages should be released.
1325  *
1326  * The function tries, but does not guarantee, to pin as many pages as
1327  * fit into the bio, or are requested in @iter, whatever is smaller. If
1328  * MM encounters an error pinning the requested pages, it stops. Error
1329  * is returned only if 0 pages could be pinned.
1330  */
1331 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1332 {
1333 	int ret = 0;
1334 
1335 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1336 		return -EIO;
1337 
1338 	if (iov_iter_is_bvec(iter)) {
1339 		bio_iov_bvec_set(bio, iter);
1340 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1341 		return 0;
1342 	}
1343 
1344 	if (iov_iter_extract_will_pin(iter))
1345 		bio_set_flag(bio, BIO_PAGE_PINNED);
1346 	do {
1347 		ret = __bio_iov_iter_get_pages(bio, iter);
1348 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1349 
1350 	return bio->bi_vcnt ? 0 : ret;
1351 }
1352 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1353 
1354 static void submit_bio_wait_endio(struct bio *bio)
1355 {
1356 	complete(bio->bi_private);
1357 }
1358 
1359 /**
1360  * submit_bio_wait - submit a bio, and wait until it completes
1361  * @bio: The &struct bio which describes the I/O
1362  *
1363  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1364  * bio_endio() on failure.
1365  *
1366  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1367  * result in bio reference to be consumed. The caller must drop the reference
1368  * on his own.
1369  */
1370 int submit_bio_wait(struct bio *bio)
1371 {
1372 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1373 			bio->bi_bdev->bd_disk->lockdep_map);
1374 	unsigned long hang_check;
1375 
1376 	bio->bi_private = &done;
1377 	bio->bi_end_io = submit_bio_wait_endio;
1378 	bio->bi_opf |= REQ_SYNC;
1379 	submit_bio(bio);
1380 
1381 	/* Prevent hang_check timer from firing at us during very long I/O */
1382 	hang_check = sysctl_hung_task_timeout_secs;
1383 	if (hang_check)
1384 		while (!wait_for_completion_io_timeout(&done,
1385 					hang_check * (HZ/2)))
1386 			;
1387 	else
1388 		wait_for_completion_io(&done);
1389 
1390 	return blk_status_to_errno(bio->bi_status);
1391 }
1392 EXPORT_SYMBOL(submit_bio_wait);
1393 
1394 void __bio_advance(struct bio *bio, unsigned bytes)
1395 {
1396 	if (bio_integrity(bio))
1397 		bio_integrity_advance(bio, bytes);
1398 
1399 	bio_crypt_advance(bio, bytes);
1400 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1401 }
1402 EXPORT_SYMBOL(__bio_advance);
1403 
1404 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1405 			struct bio *src, struct bvec_iter *src_iter)
1406 {
1407 	while (src_iter->bi_size && dst_iter->bi_size) {
1408 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1409 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1410 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1411 		void *src_buf = bvec_kmap_local(&src_bv);
1412 		void *dst_buf = bvec_kmap_local(&dst_bv);
1413 
1414 		memcpy(dst_buf, src_buf, bytes);
1415 
1416 		kunmap_local(dst_buf);
1417 		kunmap_local(src_buf);
1418 
1419 		bio_advance_iter_single(src, src_iter, bytes);
1420 		bio_advance_iter_single(dst, dst_iter, bytes);
1421 	}
1422 }
1423 EXPORT_SYMBOL(bio_copy_data_iter);
1424 
1425 /**
1426  * bio_copy_data - copy contents of data buffers from one bio to another
1427  * @src: source bio
1428  * @dst: destination bio
1429  *
1430  * Stops when it reaches the end of either @src or @dst - that is, copies
1431  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1432  */
1433 void bio_copy_data(struct bio *dst, struct bio *src)
1434 {
1435 	struct bvec_iter src_iter = src->bi_iter;
1436 	struct bvec_iter dst_iter = dst->bi_iter;
1437 
1438 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1439 }
1440 EXPORT_SYMBOL(bio_copy_data);
1441 
1442 void bio_free_pages(struct bio *bio)
1443 {
1444 	struct bio_vec *bvec;
1445 	struct bvec_iter_all iter_all;
1446 
1447 	bio_for_each_segment_all(bvec, bio, iter_all)
1448 		__free_page(bvec->bv_page);
1449 }
1450 EXPORT_SYMBOL(bio_free_pages);
1451 
1452 /*
1453  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1454  * for performing direct-IO in BIOs.
1455  *
1456  * The problem is that we cannot run folio_mark_dirty() from interrupt context
1457  * because the required locks are not interrupt-safe.  So what we can do is to
1458  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1459  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1460  * in process context.
1461  *
1462  * Note that this code is very hard to test under normal circumstances because
1463  * direct-io pins the pages with get_user_pages().  This makes
1464  * is_page_cache_freeable return false, and the VM will not clean the pages.
1465  * But other code (eg, flusher threads) could clean the pages if they are mapped
1466  * pagecache.
1467  *
1468  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1469  * deferred bio dirtying paths.
1470  */
1471 
1472 /*
1473  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1474  */
1475 void bio_set_pages_dirty(struct bio *bio)
1476 {
1477 	struct folio_iter fi;
1478 
1479 	bio_for_each_folio_all(fi, bio) {
1480 		folio_lock(fi.folio);
1481 		folio_mark_dirty(fi.folio);
1482 		folio_unlock(fi.folio);
1483 	}
1484 }
1485 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1486 
1487 /*
1488  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1489  * If they are, then fine.  If, however, some pages are clean then they must
1490  * have been written out during the direct-IO read.  So we take another ref on
1491  * the BIO and re-dirty the pages in process context.
1492  *
1493  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1494  * here on.  It will unpin each page and will run one bio_put() against the
1495  * BIO.
1496  */
1497 
1498 static void bio_dirty_fn(struct work_struct *work);
1499 
1500 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1501 static DEFINE_SPINLOCK(bio_dirty_lock);
1502 static struct bio *bio_dirty_list;
1503 
1504 /*
1505  * This runs in process context
1506  */
1507 static void bio_dirty_fn(struct work_struct *work)
1508 {
1509 	struct bio *bio, *next;
1510 
1511 	spin_lock_irq(&bio_dirty_lock);
1512 	next = bio_dirty_list;
1513 	bio_dirty_list = NULL;
1514 	spin_unlock_irq(&bio_dirty_lock);
1515 
1516 	while ((bio = next) != NULL) {
1517 		next = bio->bi_private;
1518 
1519 		bio_release_pages(bio, true);
1520 		bio_put(bio);
1521 	}
1522 }
1523 
1524 void bio_check_pages_dirty(struct bio *bio)
1525 {
1526 	struct folio_iter fi;
1527 	unsigned long flags;
1528 
1529 	bio_for_each_folio_all(fi, bio) {
1530 		if (!folio_test_dirty(fi.folio))
1531 			goto defer;
1532 	}
1533 
1534 	bio_release_pages(bio, false);
1535 	bio_put(bio);
1536 	return;
1537 defer:
1538 	spin_lock_irqsave(&bio_dirty_lock, flags);
1539 	bio->bi_private = bio_dirty_list;
1540 	bio_dirty_list = bio;
1541 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1542 	schedule_work(&bio_dirty_work);
1543 }
1544 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1545 
1546 static inline bool bio_remaining_done(struct bio *bio)
1547 {
1548 	/*
1549 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1550 	 * we always end io on the first invocation.
1551 	 */
1552 	if (!bio_flagged(bio, BIO_CHAIN))
1553 		return true;
1554 
1555 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1556 
1557 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1558 		bio_clear_flag(bio, BIO_CHAIN);
1559 		return true;
1560 	}
1561 
1562 	return false;
1563 }
1564 
1565 /**
1566  * bio_endio - end I/O on a bio
1567  * @bio:	bio
1568  *
1569  * Description:
1570  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1571  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1572  *   bio unless they own it and thus know that it has an end_io function.
1573  *
1574  *   bio_endio() can be called several times on a bio that has been chained
1575  *   using bio_chain().  The ->bi_end_io() function will only be called the
1576  *   last time.
1577  **/
1578 void bio_endio(struct bio *bio)
1579 {
1580 again:
1581 	if (!bio_remaining_done(bio))
1582 		return;
1583 	if (!bio_integrity_endio(bio))
1584 		return;
1585 
1586 	rq_qos_done_bio(bio);
1587 
1588 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1589 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1590 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1591 	}
1592 
1593 	/*
1594 	 * Need to have a real endio function for chained bios, otherwise
1595 	 * various corner cases will break (like stacking block devices that
1596 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1597 	 * recursion and blowing the stack. Tail call optimization would
1598 	 * handle this, but compiling with frame pointers also disables
1599 	 * gcc's sibling call optimization.
1600 	 */
1601 	if (bio->bi_end_io == bio_chain_endio) {
1602 		bio = __bio_chain_endio(bio);
1603 		goto again;
1604 	}
1605 
1606 	blk_throtl_bio_endio(bio);
1607 	/* release cgroup info */
1608 	bio_uninit(bio);
1609 	if (bio->bi_end_io)
1610 		bio->bi_end_io(bio);
1611 }
1612 EXPORT_SYMBOL(bio_endio);
1613 
1614 /**
1615  * bio_split - split a bio
1616  * @bio:	bio to split
1617  * @sectors:	number of sectors to split from the front of @bio
1618  * @gfp:	gfp mask
1619  * @bs:		bio set to allocate from
1620  *
1621  * Allocates and returns a new bio which represents @sectors from the start of
1622  * @bio, and updates @bio to represent the remaining sectors.
1623  *
1624  * Unless this is a discard request the newly allocated bio will point
1625  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1626  * neither @bio nor @bs are freed before the split bio.
1627  */
1628 struct bio *bio_split(struct bio *bio, int sectors,
1629 		      gfp_t gfp, struct bio_set *bs)
1630 {
1631 	struct bio *split;
1632 
1633 	BUG_ON(sectors <= 0);
1634 	BUG_ON(sectors >= bio_sectors(bio));
1635 
1636 	/* Zone append commands cannot be split */
1637 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1638 		return NULL;
1639 
1640 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1641 	if (!split)
1642 		return NULL;
1643 
1644 	split->bi_iter.bi_size = sectors << 9;
1645 
1646 	if (bio_integrity(split))
1647 		bio_integrity_trim(split);
1648 
1649 	bio_advance(bio, split->bi_iter.bi_size);
1650 
1651 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1652 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1653 
1654 	return split;
1655 }
1656 EXPORT_SYMBOL(bio_split);
1657 
1658 /**
1659  * bio_trim - trim a bio
1660  * @bio:	bio to trim
1661  * @offset:	number of sectors to trim from the front of @bio
1662  * @size:	size we want to trim @bio to, in sectors
1663  *
1664  * This function is typically used for bios that are cloned and submitted
1665  * to the underlying device in parts.
1666  */
1667 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1668 {
1669 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1670 			 offset + size > bio_sectors(bio)))
1671 		return;
1672 
1673 	size <<= 9;
1674 	if (offset == 0 && size == bio->bi_iter.bi_size)
1675 		return;
1676 
1677 	bio_advance(bio, offset << 9);
1678 	bio->bi_iter.bi_size = size;
1679 
1680 	if (bio_integrity(bio))
1681 		bio_integrity_trim(bio);
1682 }
1683 EXPORT_SYMBOL_GPL(bio_trim);
1684 
1685 /*
1686  * create memory pools for biovec's in a bio_set.
1687  * use the global biovec slabs created for general use.
1688  */
1689 int biovec_init_pool(mempool_t *pool, int pool_entries)
1690 {
1691 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1692 
1693 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1694 }
1695 
1696 /*
1697  * bioset_exit - exit a bioset initialized with bioset_init()
1698  *
1699  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1700  * kzalloc()).
1701  */
1702 void bioset_exit(struct bio_set *bs)
1703 {
1704 	bio_alloc_cache_destroy(bs);
1705 	if (bs->rescue_workqueue)
1706 		destroy_workqueue(bs->rescue_workqueue);
1707 	bs->rescue_workqueue = NULL;
1708 
1709 	mempool_exit(&bs->bio_pool);
1710 	mempool_exit(&bs->bvec_pool);
1711 
1712 	bioset_integrity_free(bs);
1713 	if (bs->bio_slab)
1714 		bio_put_slab(bs);
1715 	bs->bio_slab = NULL;
1716 }
1717 EXPORT_SYMBOL(bioset_exit);
1718 
1719 /**
1720  * bioset_init - Initialize a bio_set
1721  * @bs:		pool to initialize
1722  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1723  * @front_pad:	Number of bytes to allocate in front of the returned bio
1724  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1725  *              and %BIOSET_NEED_RESCUER
1726  *
1727  * Description:
1728  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1729  *    to ask for a number of bytes to be allocated in front of the bio.
1730  *    Front pad allocation is useful for embedding the bio inside
1731  *    another structure, to avoid allocating extra data to go with the bio.
1732  *    Note that the bio must be embedded at the END of that structure always,
1733  *    or things will break badly.
1734  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1735  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1736  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1737  *    to dispatch queued requests when the mempool runs out of space.
1738  *
1739  */
1740 int bioset_init(struct bio_set *bs,
1741 		unsigned int pool_size,
1742 		unsigned int front_pad,
1743 		int flags)
1744 {
1745 	bs->front_pad = front_pad;
1746 	if (flags & BIOSET_NEED_BVECS)
1747 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1748 	else
1749 		bs->back_pad = 0;
1750 
1751 	spin_lock_init(&bs->rescue_lock);
1752 	bio_list_init(&bs->rescue_list);
1753 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1754 
1755 	bs->bio_slab = bio_find_or_create_slab(bs);
1756 	if (!bs->bio_slab)
1757 		return -ENOMEM;
1758 
1759 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1760 		goto bad;
1761 
1762 	if ((flags & BIOSET_NEED_BVECS) &&
1763 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1764 		goto bad;
1765 
1766 	if (flags & BIOSET_NEED_RESCUER) {
1767 		bs->rescue_workqueue = alloc_workqueue("bioset",
1768 							WQ_MEM_RECLAIM, 0);
1769 		if (!bs->rescue_workqueue)
1770 			goto bad;
1771 	}
1772 	if (flags & BIOSET_PERCPU_CACHE) {
1773 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1774 		if (!bs->cache)
1775 			goto bad;
1776 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1777 	}
1778 
1779 	return 0;
1780 bad:
1781 	bioset_exit(bs);
1782 	return -ENOMEM;
1783 }
1784 EXPORT_SYMBOL(bioset_init);
1785 
1786 static int __init init_bio(void)
1787 {
1788 	int i;
1789 
1790 	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1791 
1792 	bio_integrity_init();
1793 
1794 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1795 		struct biovec_slab *bvs = bvec_slabs + i;
1796 
1797 		bvs->slab = kmem_cache_create(bvs->name,
1798 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1799 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1800 	}
1801 
1802 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1803 					bio_cpu_dead);
1804 
1805 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1806 			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1807 		panic("bio: can't allocate bios\n");
1808 
1809 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1810 		panic("bio: can't create integrity pool\n");
1811 
1812 	return 0;
1813 }
1814 subsys_initcall(init_bio);
1815