1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/blk-crypto.h> 21 #include <linux/xarray.h> 22 23 #include <trace/events/block.h> 24 #include "blk.h" 25 #include "blk-rq-qos.h" 26 #include "blk-cgroup.h" 27 28 #define ALLOC_CACHE_THRESHOLD 16 29 #define ALLOC_CACHE_MAX 256 30 31 struct bio_alloc_cache { 32 struct bio *free_list; 33 struct bio *free_list_irq; 34 unsigned int nr; 35 unsigned int nr_irq; 36 }; 37 38 static struct biovec_slab { 39 int nr_vecs; 40 char *name; 41 struct kmem_cache *slab; 42 } bvec_slabs[] __read_mostly = { 43 { .nr_vecs = 16, .name = "biovec-16" }, 44 { .nr_vecs = 64, .name = "biovec-64" }, 45 { .nr_vecs = 128, .name = "biovec-128" }, 46 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 47 }; 48 49 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 50 { 51 switch (nr_vecs) { 52 /* smaller bios use inline vecs */ 53 case 5 ... 16: 54 return &bvec_slabs[0]; 55 case 17 ... 64: 56 return &bvec_slabs[1]; 57 case 65 ... 128: 58 return &bvec_slabs[2]; 59 case 129 ... BIO_MAX_VECS: 60 return &bvec_slabs[3]; 61 default: 62 BUG(); 63 return NULL; 64 } 65 } 66 67 /* 68 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 69 * IO code that does not need private memory pools. 70 */ 71 struct bio_set fs_bio_set; 72 EXPORT_SYMBOL(fs_bio_set); 73 74 /* 75 * Our slab pool management 76 */ 77 struct bio_slab { 78 struct kmem_cache *slab; 79 unsigned int slab_ref; 80 unsigned int slab_size; 81 char name[8]; 82 }; 83 static DEFINE_MUTEX(bio_slab_lock); 84 static DEFINE_XARRAY(bio_slabs); 85 86 static struct bio_slab *create_bio_slab(unsigned int size) 87 { 88 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 89 90 if (!bslab) 91 return NULL; 92 93 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 94 bslab->slab = kmem_cache_create(bslab->name, size, 95 ARCH_KMALLOC_MINALIGN, 96 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 97 if (!bslab->slab) 98 goto fail_alloc_slab; 99 100 bslab->slab_ref = 1; 101 bslab->slab_size = size; 102 103 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 104 return bslab; 105 106 kmem_cache_destroy(bslab->slab); 107 108 fail_alloc_slab: 109 kfree(bslab); 110 return NULL; 111 } 112 113 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 114 { 115 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 116 } 117 118 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 119 { 120 unsigned int size = bs_bio_slab_size(bs); 121 struct bio_slab *bslab; 122 123 mutex_lock(&bio_slab_lock); 124 bslab = xa_load(&bio_slabs, size); 125 if (bslab) 126 bslab->slab_ref++; 127 else 128 bslab = create_bio_slab(size); 129 mutex_unlock(&bio_slab_lock); 130 131 if (bslab) 132 return bslab->slab; 133 return NULL; 134 } 135 136 static void bio_put_slab(struct bio_set *bs) 137 { 138 struct bio_slab *bslab = NULL; 139 unsigned int slab_size = bs_bio_slab_size(bs); 140 141 mutex_lock(&bio_slab_lock); 142 143 bslab = xa_load(&bio_slabs, slab_size); 144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 145 goto out; 146 147 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 148 149 WARN_ON(!bslab->slab_ref); 150 151 if (--bslab->slab_ref) 152 goto out; 153 154 xa_erase(&bio_slabs, slab_size); 155 156 kmem_cache_destroy(bslab->slab); 157 kfree(bslab); 158 159 out: 160 mutex_unlock(&bio_slab_lock); 161 } 162 163 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 164 { 165 BUG_ON(nr_vecs > BIO_MAX_VECS); 166 167 if (nr_vecs == BIO_MAX_VECS) 168 mempool_free(bv, pool); 169 else if (nr_vecs > BIO_INLINE_VECS) 170 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 171 } 172 173 /* 174 * Make the first allocation restricted and don't dump info on allocation 175 * failures, since we'll fall back to the mempool in case of failure. 176 */ 177 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 178 { 179 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 180 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 181 } 182 183 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 184 gfp_t gfp_mask) 185 { 186 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 187 188 if (WARN_ON_ONCE(!bvs)) 189 return NULL; 190 191 /* 192 * Upgrade the nr_vecs request to take full advantage of the allocation. 193 * We also rely on this in the bvec_free path. 194 */ 195 *nr_vecs = bvs->nr_vecs; 196 197 /* 198 * Try a slab allocation first for all smaller allocations. If that 199 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 200 * The mempool is sized to handle up to BIO_MAX_VECS entries. 201 */ 202 if (*nr_vecs < BIO_MAX_VECS) { 203 struct bio_vec *bvl; 204 205 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 206 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 207 return bvl; 208 *nr_vecs = BIO_MAX_VECS; 209 } 210 211 return mempool_alloc(pool, gfp_mask); 212 } 213 214 void bio_uninit(struct bio *bio) 215 { 216 #ifdef CONFIG_BLK_CGROUP 217 if (bio->bi_blkg) { 218 blkg_put(bio->bi_blkg); 219 bio->bi_blkg = NULL; 220 } 221 #endif 222 if (bio_integrity(bio)) 223 bio_integrity_free(bio); 224 225 bio_crypt_free_ctx(bio); 226 } 227 EXPORT_SYMBOL(bio_uninit); 228 229 static void bio_free(struct bio *bio) 230 { 231 struct bio_set *bs = bio->bi_pool; 232 void *p = bio; 233 234 WARN_ON_ONCE(!bs); 235 236 bio_uninit(bio); 237 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 238 mempool_free(p - bs->front_pad, &bs->bio_pool); 239 } 240 241 /* 242 * Users of this function have their own bio allocation. Subsequently, 243 * they must remember to pair any call to bio_init() with bio_uninit() 244 * when IO has completed, or when the bio is released. 245 */ 246 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 247 unsigned short max_vecs, blk_opf_t opf) 248 { 249 bio->bi_next = NULL; 250 bio->bi_bdev = bdev; 251 bio->bi_opf = opf; 252 bio->bi_flags = 0; 253 bio->bi_ioprio = 0; 254 bio->bi_write_hint = 0; 255 bio->bi_status = 0; 256 bio->bi_iter.bi_sector = 0; 257 bio->bi_iter.bi_size = 0; 258 bio->bi_iter.bi_idx = 0; 259 bio->bi_iter.bi_bvec_done = 0; 260 bio->bi_end_io = NULL; 261 bio->bi_private = NULL; 262 #ifdef CONFIG_BLK_CGROUP 263 bio->bi_blkg = NULL; 264 bio->bi_issue.value = 0; 265 if (bdev) 266 bio_associate_blkg(bio); 267 #ifdef CONFIG_BLK_CGROUP_IOCOST 268 bio->bi_iocost_cost = 0; 269 #endif 270 #endif 271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 272 bio->bi_crypt_context = NULL; 273 #endif 274 #ifdef CONFIG_BLK_DEV_INTEGRITY 275 bio->bi_integrity = NULL; 276 #endif 277 bio->bi_vcnt = 0; 278 279 atomic_set(&bio->__bi_remaining, 1); 280 atomic_set(&bio->__bi_cnt, 1); 281 bio->bi_cookie = BLK_QC_T_NONE; 282 283 bio->bi_max_vecs = max_vecs; 284 bio->bi_io_vec = table; 285 bio->bi_pool = NULL; 286 } 287 EXPORT_SYMBOL(bio_init); 288 289 /** 290 * bio_reset - reinitialize a bio 291 * @bio: bio to reset 292 * @bdev: block device to use the bio for 293 * @opf: operation and flags for bio 294 * 295 * Description: 296 * After calling bio_reset(), @bio will be in the same state as a freshly 297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 298 * preserved are the ones that are initialized by bio_alloc_bioset(). See 299 * comment in struct bio. 300 */ 301 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 302 { 303 bio_uninit(bio); 304 memset(bio, 0, BIO_RESET_BYTES); 305 atomic_set(&bio->__bi_remaining, 1); 306 bio->bi_bdev = bdev; 307 if (bio->bi_bdev) 308 bio_associate_blkg(bio); 309 bio->bi_opf = opf; 310 } 311 EXPORT_SYMBOL(bio_reset); 312 313 static struct bio *__bio_chain_endio(struct bio *bio) 314 { 315 struct bio *parent = bio->bi_private; 316 317 if (bio->bi_status && !parent->bi_status) 318 parent->bi_status = bio->bi_status; 319 bio_put(bio); 320 return parent; 321 } 322 323 static void bio_chain_endio(struct bio *bio) 324 { 325 bio_endio(__bio_chain_endio(bio)); 326 } 327 328 /** 329 * bio_chain - chain bio completions 330 * @bio: the target bio 331 * @parent: the parent bio of @bio 332 * 333 * The caller won't have a bi_end_io called when @bio completes - instead, 334 * @parent's bi_end_io won't be called until both @parent and @bio have 335 * completed; the chained bio will also be freed when it completes. 336 * 337 * The caller must not set bi_private or bi_end_io in @bio. 338 */ 339 void bio_chain(struct bio *bio, struct bio *parent) 340 { 341 BUG_ON(bio->bi_private || bio->bi_end_io); 342 343 bio->bi_private = parent; 344 bio->bi_end_io = bio_chain_endio; 345 bio_inc_remaining(parent); 346 } 347 EXPORT_SYMBOL(bio_chain); 348 349 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 350 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 351 { 352 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp); 353 354 if (bio) { 355 bio_chain(bio, new); 356 submit_bio(bio); 357 } 358 359 return new; 360 } 361 EXPORT_SYMBOL_GPL(blk_next_bio); 362 363 static void bio_alloc_rescue(struct work_struct *work) 364 { 365 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 366 struct bio *bio; 367 368 while (1) { 369 spin_lock(&bs->rescue_lock); 370 bio = bio_list_pop(&bs->rescue_list); 371 spin_unlock(&bs->rescue_lock); 372 373 if (!bio) 374 break; 375 376 submit_bio_noacct(bio); 377 } 378 } 379 380 static void punt_bios_to_rescuer(struct bio_set *bs) 381 { 382 struct bio_list punt, nopunt; 383 struct bio *bio; 384 385 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 386 return; 387 /* 388 * In order to guarantee forward progress we must punt only bios that 389 * were allocated from this bio_set; otherwise, if there was a bio on 390 * there for a stacking driver higher up in the stack, processing it 391 * could require allocating bios from this bio_set, and doing that from 392 * our own rescuer would be bad. 393 * 394 * Since bio lists are singly linked, pop them all instead of trying to 395 * remove from the middle of the list: 396 */ 397 398 bio_list_init(&punt); 399 bio_list_init(&nopunt); 400 401 while ((bio = bio_list_pop(¤t->bio_list[0]))) 402 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 403 current->bio_list[0] = nopunt; 404 405 bio_list_init(&nopunt); 406 while ((bio = bio_list_pop(¤t->bio_list[1]))) 407 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 408 current->bio_list[1] = nopunt; 409 410 spin_lock(&bs->rescue_lock); 411 bio_list_merge(&bs->rescue_list, &punt); 412 spin_unlock(&bs->rescue_lock); 413 414 queue_work(bs->rescue_workqueue, &bs->rescue_work); 415 } 416 417 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) 418 { 419 unsigned long flags; 420 421 /* cache->free_list must be empty */ 422 if (WARN_ON_ONCE(cache->free_list)) 423 return; 424 425 local_irq_save(flags); 426 cache->free_list = cache->free_list_irq; 427 cache->free_list_irq = NULL; 428 cache->nr += cache->nr_irq; 429 cache->nr_irq = 0; 430 local_irq_restore(flags); 431 } 432 433 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 434 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 435 struct bio_set *bs) 436 { 437 struct bio_alloc_cache *cache; 438 struct bio *bio; 439 440 cache = per_cpu_ptr(bs->cache, get_cpu()); 441 if (!cache->free_list) { 442 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) 443 bio_alloc_irq_cache_splice(cache); 444 if (!cache->free_list) { 445 put_cpu(); 446 return NULL; 447 } 448 } 449 bio = cache->free_list; 450 cache->free_list = bio->bi_next; 451 cache->nr--; 452 put_cpu(); 453 454 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 455 bio->bi_pool = bs; 456 return bio; 457 } 458 459 /** 460 * bio_alloc_bioset - allocate a bio for I/O 461 * @bdev: block device to allocate the bio for (can be %NULL) 462 * @nr_vecs: number of bvecs to pre-allocate 463 * @opf: operation and flags for bio 464 * @gfp_mask: the GFP_* mask given to the slab allocator 465 * @bs: the bio_set to allocate from. 466 * 467 * Allocate a bio from the mempools in @bs. 468 * 469 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 470 * allocate a bio. This is due to the mempool guarantees. To make this work, 471 * callers must never allocate more than 1 bio at a time from the general pool. 472 * Callers that need to allocate more than 1 bio must always submit the 473 * previously allocated bio for IO before attempting to allocate a new one. 474 * Failure to do so can cause deadlocks under memory pressure. 475 * 476 * Note that when running under submit_bio_noacct() (i.e. any block driver), 477 * bios are not submitted until after you return - see the code in 478 * submit_bio_noacct() that converts recursion into iteration, to prevent 479 * stack overflows. 480 * 481 * This would normally mean allocating multiple bios under submit_bio_noacct() 482 * would be susceptible to deadlocks, but we have 483 * deadlock avoidance code that resubmits any blocked bios from a rescuer 484 * thread. 485 * 486 * However, we do not guarantee forward progress for allocations from other 487 * mempools. Doing multiple allocations from the same mempool under 488 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 489 * for per bio allocations. 490 * 491 * Returns: Pointer to new bio on success, NULL on failure. 492 */ 493 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 494 blk_opf_t opf, gfp_t gfp_mask, 495 struct bio_set *bs) 496 { 497 gfp_t saved_gfp = gfp_mask; 498 struct bio *bio; 499 void *p; 500 501 /* should not use nobvec bioset for nr_vecs > 0 */ 502 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 503 return NULL; 504 505 if (opf & REQ_ALLOC_CACHE) { 506 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 507 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 508 gfp_mask, bs); 509 if (bio) 510 return bio; 511 /* 512 * No cached bio available, bio returned below marked with 513 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 514 */ 515 } else { 516 opf &= ~REQ_ALLOC_CACHE; 517 } 518 } 519 520 /* 521 * submit_bio_noacct() converts recursion to iteration; this means if 522 * we're running beneath it, any bios we allocate and submit will not be 523 * submitted (and thus freed) until after we return. 524 * 525 * This exposes us to a potential deadlock if we allocate multiple bios 526 * from the same bio_set() while running underneath submit_bio_noacct(). 527 * If we were to allocate multiple bios (say a stacking block driver 528 * that was splitting bios), we would deadlock if we exhausted the 529 * mempool's reserve. 530 * 531 * We solve this, and guarantee forward progress, with a rescuer 532 * workqueue per bio_set. If we go to allocate and there are bios on 533 * current->bio_list, we first try the allocation without 534 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 535 * blocking to the rescuer workqueue before we retry with the original 536 * gfp_flags. 537 */ 538 if (current->bio_list && 539 (!bio_list_empty(¤t->bio_list[0]) || 540 !bio_list_empty(¤t->bio_list[1])) && 541 bs->rescue_workqueue) 542 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 543 544 p = mempool_alloc(&bs->bio_pool, gfp_mask); 545 if (!p && gfp_mask != saved_gfp) { 546 punt_bios_to_rescuer(bs); 547 gfp_mask = saved_gfp; 548 p = mempool_alloc(&bs->bio_pool, gfp_mask); 549 } 550 if (unlikely(!p)) 551 return NULL; 552 if (!mempool_is_saturated(&bs->bio_pool)) 553 opf &= ~REQ_ALLOC_CACHE; 554 555 bio = p + bs->front_pad; 556 if (nr_vecs > BIO_INLINE_VECS) { 557 struct bio_vec *bvl = NULL; 558 559 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 560 if (!bvl && gfp_mask != saved_gfp) { 561 punt_bios_to_rescuer(bs); 562 gfp_mask = saved_gfp; 563 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 564 } 565 if (unlikely(!bvl)) 566 goto err_free; 567 568 bio_init(bio, bdev, bvl, nr_vecs, opf); 569 } else if (nr_vecs) { 570 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 571 } else { 572 bio_init(bio, bdev, NULL, 0, opf); 573 } 574 575 bio->bi_pool = bs; 576 return bio; 577 578 err_free: 579 mempool_free(p, &bs->bio_pool); 580 return NULL; 581 } 582 EXPORT_SYMBOL(bio_alloc_bioset); 583 584 /** 585 * bio_kmalloc - kmalloc a bio 586 * @nr_vecs: number of bio_vecs to allocate 587 * @gfp_mask: the GFP_* mask given to the slab allocator 588 * 589 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 590 * using bio_init() before use. To free a bio returned from this function use 591 * kfree() after calling bio_uninit(). A bio returned from this function can 592 * be reused by calling bio_uninit() before calling bio_init() again. 593 * 594 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 595 * function are not backed by a mempool can fail. Do not use this function 596 * for allocations in the file system I/O path. 597 * 598 * Returns: Pointer to new bio on success, NULL on failure. 599 */ 600 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 601 { 602 struct bio *bio; 603 604 if (nr_vecs > UIO_MAXIOV) 605 return NULL; 606 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 607 } 608 EXPORT_SYMBOL(bio_kmalloc); 609 610 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 611 { 612 struct bio_vec bv; 613 struct bvec_iter iter; 614 615 __bio_for_each_segment(bv, bio, iter, start) 616 memzero_bvec(&bv); 617 } 618 EXPORT_SYMBOL(zero_fill_bio_iter); 619 620 /** 621 * bio_truncate - truncate the bio to small size of @new_size 622 * @bio: the bio to be truncated 623 * @new_size: new size for truncating the bio 624 * 625 * Description: 626 * Truncate the bio to new size of @new_size. If bio_op(bio) is 627 * REQ_OP_READ, zero the truncated part. This function should only 628 * be used for handling corner cases, such as bio eod. 629 */ 630 static void bio_truncate(struct bio *bio, unsigned new_size) 631 { 632 struct bio_vec bv; 633 struct bvec_iter iter; 634 unsigned int done = 0; 635 bool truncated = false; 636 637 if (new_size >= bio->bi_iter.bi_size) 638 return; 639 640 if (bio_op(bio) != REQ_OP_READ) 641 goto exit; 642 643 bio_for_each_segment(bv, bio, iter) { 644 if (done + bv.bv_len > new_size) { 645 unsigned offset; 646 647 if (!truncated) 648 offset = new_size - done; 649 else 650 offset = 0; 651 zero_user(bv.bv_page, bv.bv_offset + offset, 652 bv.bv_len - offset); 653 truncated = true; 654 } 655 done += bv.bv_len; 656 } 657 658 exit: 659 /* 660 * Don't touch bvec table here and make it really immutable, since 661 * fs bio user has to retrieve all pages via bio_for_each_segment_all 662 * in its .end_bio() callback. 663 * 664 * It is enough to truncate bio by updating .bi_size since we can make 665 * correct bvec with the updated .bi_size for drivers. 666 */ 667 bio->bi_iter.bi_size = new_size; 668 } 669 670 /** 671 * guard_bio_eod - truncate a BIO to fit the block device 672 * @bio: bio to truncate 673 * 674 * This allows us to do IO even on the odd last sectors of a device, even if the 675 * block size is some multiple of the physical sector size. 676 * 677 * We'll just truncate the bio to the size of the device, and clear the end of 678 * the buffer head manually. Truly out-of-range accesses will turn into actual 679 * I/O errors, this only handles the "we need to be able to do I/O at the final 680 * sector" case. 681 */ 682 void guard_bio_eod(struct bio *bio) 683 { 684 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 685 686 if (!maxsector) 687 return; 688 689 /* 690 * If the *whole* IO is past the end of the device, 691 * let it through, and the IO layer will turn it into 692 * an EIO. 693 */ 694 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 695 return; 696 697 maxsector -= bio->bi_iter.bi_sector; 698 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 699 return; 700 701 bio_truncate(bio, maxsector << 9); 702 } 703 704 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, 705 unsigned int nr) 706 { 707 unsigned int i = 0; 708 struct bio *bio; 709 710 while ((bio = cache->free_list) != NULL) { 711 cache->free_list = bio->bi_next; 712 cache->nr--; 713 bio_free(bio); 714 if (++i == nr) 715 break; 716 } 717 return i; 718 } 719 720 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 721 unsigned int nr) 722 { 723 nr -= __bio_alloc_cache_prune(cache, nr); 724 if (!READ_ONCE(cache->free_list)) { 725 bio_alloc_irq_cache_splice(cache); 726 __bio_alloc_cache_prune(cache, nr); 727 } 728 } 729 730 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 731 { 732 struct bio_set *bs; 733 734 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 735 if (bs->cache) { 736 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 737 738 bio_alloc_cache_prune(cache, -1U); 739 } 740 return 0; 741 } 742 743 static void bio_alloc_cache_destroy(struct bio_set *bs) 744 { 745 int cpu; 746 747 if (!bs->cache) 748 return; 749 750 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 751 for_each_possible_cpu(cpu) { 752 struct bio_alloc_cache *cache; 753 754 cache = per_cpu_ptr(bs->cache, cpu); 755 bio_alloc_cache_prune(cache, -1U); 756 } 757 free_percpu(bs->cache); 758 bs->cache = NULL; 759 } 760 761 static inline void bio_put_percpu_cache(struct bio *bio) 762 { 763 struct bio_alloc_cache *cache; 764 765 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 766 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) { 767 put_cpu(); 768 bio_free(bio); 769 return; 770 } 771 772 bio_uninit(bio); 773 774 if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) { 775 bio->bi_next = cache->free_list; 776 bio->bi_bdev = NULL; 777 cache->free_list = bio; 778 cache->nr++; 779 } else { 780 unsigned long flags; 781 782 local_irq_save(flags); 783 bio->bi_next = cache->free_list_irq; 784 cache->free_list_irq = bio; 785 cache->nr_irq++; 786 local_irq_restore(flags); 787 } 788 put_cpu(); 789 } 790 791 /** 792 * bio_put - release a reference to a bio 793 * @bio: bio to release reference to 794 * 795 * Description: 796 * Put a reference to a &struct bio, either one you have gotten with 797 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 798 **/ 799 void bio_put(struct bio *bio) 800 { 801 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 802 BUG_ON(!atomic_read(&bio->__bi_cnt)); 803 if (!atomic_dec_and_test(&bio->__bi_cnt)) 804 return; 805 } 806 if (bio->bi_opf & REQ_ALLOC_CACHE) 807 bio_put_percpu_cache(bio); 808 else 809 bio_free(bio); 810 } 811 EXPORT_SYMBOL(bio_put); 812 813 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 814 { 815 bio_set_flag(bio, BIO_CLONED); 816 bio->bi_ioprio = bio_src->bi_ioprio; 817 bio->bi_write_hint = bio_src->bi_write_hint; 818 bio->bi_iter = bio_src->bi_iter; 819 820 if (bio->bi_bdev) { 821 if (bio->bi_bdev == bio_src->bi_bdev && 822 bio_flagged(bio_src, BIO_REMAPPED)) 823 bio_set_flag(bio, BIO_REMAPPED); 824 bio_clone_blkg_association(bio, bio_src); 825 } 826 827 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 828 return -ENOMEM; 829 if (bio_integrity(bio_src) && 830 bio_integrity_clone(bio, bio_src, gfp) < 0) 831 return -ENOMEM; 832 return 0; 833 } 834 835 /** 836 * bio_alloc_clone - clone a bio that shares the original bio's biovec 837 * @bdev: block_device to clone onto 838 * @bio_src: bio to clone from 839 * @gfp: allocation priority 840 * @bs: bio_set to allocate from 841 * 842 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 843 * bio, but not the actual data it points to. 844 * 845 * The caller must ensure that the return bio is not freed before @bio_src. 846 */ 847 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 848 gfp_t gfp, struct bio_set *bs) 849 { 850 struct bio *bio; 851 852 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 853 if (!bio) 854 return NULL; 855 856 if (__bio_clone(bio, bio_src, gfp) < 0) { 857 bio_put(bio); 858 return NULL; 859 } 860 bio->bi_io_vec = bio_src->bi_io_vec; 861 862 return bio; 863 } 864 EXPORT_SYMBOL(bio_alloc_clone); 865 866 /** 867 * bio_init_clone - clone a bio that shares the original bio's biovec 868 * @bdev: block_device to clone onto 869 * @bio: bio to clone into 870 * @bio_src: bio to clone from 871 * @gfp: allocation priority 872 * 873 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 874 * The caller owns the returned bio, but not the actual data it points to. 875 * 876 * The caller must ensure that @bio_src is not freed before @bio. 877 */ 878 int bio_init_clone(struct block_device *bdev, struct bio *bio, 879 struct bio *bio_src, gfp_t gfp) 880 { 881 int ret; 882 883 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 884 ret = __bio_clone(bio, bio_src, gfp); 885 if (ret) 886 bio_uninit(bio); 887 return ret; 888 } 889 EXPORT_SYMBOL(bio_init_clone); 890 891 /** 892 * bio_full - check if the bio is full 893 * @bio: bio to check 894 * @len: length of one segment to be added 895 * 896 * Return true if @bio is full and one segment with @len bytes can't be 897 * added to the bio, otherwise return false 898 */ 899 static inline bool bio_full(struct bio *bio, unsigned len) 900 { 901 if (bio->bi_vcnt >= bio->bi_max_vecs) 902 return true; 903 if (bio->bi_iter.bi_size > UINT_MAX - len) 904 return true; 905 return false; 906 } 907 908 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page, 909 unsigned int len, unsigned int off, bool *same_page) 910 { 911 size_t bv_end = bv->bv_offset + bv->bv_len; 912 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 913 phys_addr_t page_addr = page_to_phys(page); 914 915 if (vec_end_addr + 1 != page_addr + off) 916 return false; 917 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 918 return false; 919 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) 920 return false; 921 922 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 923 if (!*same_page) { 924 if (IS_ENABLED(CONFIG_KMSAN)) 925 return false; 926 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE) 927 return false; 928 } 929 930 bv->bv_len += len; 931 return true; 932 } 933 934 /* 935 * Try to merge a page into a segment, while obeying the hardware segment 936 * size limit. This is not for normal read/write bios, but for passthrough 937 * or Zone Append operations that we can't split. 938 */ 939 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 940 struct page *page, unsigned len, unsigned offset, 941 bool *same_page) 942 { 943 unsigned long mask = queue_segment_boundary(q); 944 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 945 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 946 947 if ((addr1 | mask) != (addr2 | mask)) 948 return false; 949 if (len > queue_max_segment_size(q) - bv->bv_len) 950 return false; 951 return bvec_try_merge_page(bv, page, len, offset, same_page); 952 } 953 954 /** 955 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 956 * @q: the target queue 957 * @bio: destination bio 958 * @page: page to add 959 * @len: vec entry length 960 * @offset: vec entry offset 961 * @max_sectors: maximum number of sectors that can be added 962 * @same_page: return if the segment has been merged inside the same page 963 * 964 * Add a page to a bio while respecting the hardware max_sectors, max_segment 965 * and gap limitations. 966 */ 967 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 968 struct page *page, unsigned int len, unsigned int offset, 969 unsigned int max_sectors, bool *same_page) 970 { 971 unsigned int max_size = max_sectors << SECTOR_SHIFT; 972 973 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 974 return 0; 975 976 len = min3(len, max_size, queue_max_segment_size(q)); 977 if (len > max_size - bio->bi_iter.bi_size) 978 return 0; 979 980 if (bio->bi_vcnt > 0) { 981 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 982 983 if (bvec_try_merge_hw_page(q, bv, page, len, offset, 984 same_page)) { 985 bio->bi_iter.bi_size += len; 986 return len; 987 } 988 989 if (bio->bi_vcnt >= 990 min(bio->bi_max_vecs, queue_max_segments(q))) 991 return 0; 992 993 /* 994 * If the queue doesn't support SG gaps and adding this segment 995 * would create a gap, disallow it. 996 */ 997 if (bvec_gap_to_prev(&q->limits, bv, offset)) 998 return 0; 999 } 1000 1001 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset); 1002 bio->bi_vcnt++; 1003 bio->bi_iter.bi_size += len; 1004 return len; 1005 } 1006 1007 /** 1008 * bio_add_pc_page - attempt to add page to passthrough bio 1009 * @q: the target queue 1010 * @bio: destination bio 1011 * @page: page to add 1012 * @len: vec entry length 1013 * @offset: vec entry offset 1014 * 1015 * Attempt to add a page to the bio_vec maplist. This can fail for a 1016 * number of reasons, such as the bio being full or target block device 1017 * limitations. The target block device must allow bio's up to PAGE_SIZE, 1018 * so it is always possible to add a single page to an empty bio. 1019 * 1020 * This should only be used by passthrough bios. 1021 */ 1022 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 1023 struct page *page, unsigned int len, unsigned int offset) 1024 { 1025 bool same_page = false; 1026 return bio_add_hw_page(q, bio, page, len, offset, 1027 queue_max_hw_sectors(q), &same_page); 1028 } 1029 EXPORT_SYMBOL(bio_add_pc_page); 1030 1031 /** 1032 * bio_add_zone_append_page - attempt to add page to zone-append bio 1033 * @bio: destination bio 1034 * @page: page to add 1035 * @len: vec entry length 1036 * @offset: vec entry offset 1037 * 1038 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 1039 * for a zone-append request. This can fail for a number of reasons, such as the 1040 * bio being full or the target block device is not a zoned block device or 1041 * other limitations of the target block device. The target block device must 1042 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 1043 * to an empty bio. 1044 * 1045 * Returns: number of bytes added to the bio, or 0 in case of a failure. 1046 */ 1047 int bio_add_zone_append_page(struct bio *bio, struct page *page, 1048 unsigned int len, unsigned int offset) 1049 { 1050 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1051 bool same_page = false; 1052 1053 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 1054 return 0; 1055 1056 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev))) 1057 return 0; 1058 1059 return bio_add_hw_page(q, bio, page, len, offset, 1060 queue_max_zone_append_sectors(q), &same_page); 1061 } 1062 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 1063 1064 /** 1065 * __bio_add_page - add page(s) to a bio in a new segment 1066 * @bio: destination bio 1067 * @page: start page to add 1068 * @len: length of the data to add, may cross pages 1069 * @off: offset of the data relative to @page, may cross pages 1070 * 1071 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 1072 * that @bio has space for another bvec. 1073 */ 1074 void __bio_add_page(struct bio *bio, struct page *page, 1075 unsigned int len, unsigned int off) 1076 { 1077 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 1078 WARN_ON_ONCE(bio_full(bio, len)); 1079 1080 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off); 1081 bio->bi_iter.bi_size += len; 1082 bio->bi_vcnt++; 1083 } 1084 EXPORT_SYMBOL_GPL(__bio_add_page); 1085 1086 /** 1087 * bio_add_page - attempt to add page(s) to bio 1088 * @bio: destination bio 1089 * @page: start page to add 1090 * @len: vec entry length, may cross pages 1091 * @offset: vec entry offset relative to @page, may cross pages 1092 * 1093 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1094 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1095 */ 1096 int bio_add_page(struct bio *bio, struct page *page, 1097 unsigned int len, unsigned int offset) 1098 { 1099 bool same_page = false; 1100 1101 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1102 return 0; 1103 if (bio->bi_iter.bi_size > UINT_MAX - len) 1104 return 0; 1105 1106 if (bio->bi_vcnt > 0 && 1107 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 1108 page, len, offset, &same_page)) { 1109 bio->bi_iter.bi_size += len; 1110 return len; 1111 } 1112 1113 if (bio->bi_vcnt >= bio->bi_max_vecs) 1114 return 0; 1115 __bio_add_page(bio, page, len, offset); 1116 return len; 1117 } 1118 EXPORT_SYMBOL(bio_add_page); 1119 1120 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 1121 size_t off) 1122 { 1123 WARN_ON_ONCE(len > UINT_MAX); 1124 WARN_ON_ONCE(off > UINT_MAX); 1125 __bio_add_page(bio, &folio->page, len, off); 1126 } 1127 1128 /** 1129 * bio_add_folio - Attempt to add part of a folio to a bio. 1130 * @bio: BIO to add to. 1131 * @folio: Folio to add. 1132 * @len: How many bytes from the folio to add. 1133 * @off: First byte in this folio to add. 1134 * 1135 * Filesystems that use folios can call this function instead of calling 1136 * bio_add_page() for each page in the folio. If @off is bigger than 1137 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1138 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1139 * 1140 * Return: Whether the addition was successful. 1141 */ 1142 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1143 size_t off) 1144 { 1145 if (len > UINT_MAX || off > UINT_MAX) 1146 return false; 1147 return bio_add_page(bio, &folio->page, len, off) > 0; 1148 } 1149 EXPORT_SYMBOL(bio_add_folio); 1150 1151 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1152 { 1153 struct folio_iter fi; 1154 1155 bio_for_each_folio_all(fi, bio) { 1156 struct page *page; 1157 size_t done = 0; 1158 1159 if (mark_dirty) { 1160 folio_lock(fi.folio); 1161 folio_mark_dirty(fi.folio); 1162 folio_unlock(fi.folio); 1163 } 1164 page = folio_page(fi.folio, fi.offset / PAGE_SIZE); 1165 do { 1166 bio_release_page(bio, page++); 1167 done += PAGE_SIZE; 1168 } while (done < fi.length); 1169 } 1170 } 1171 EXPORT_SYMBOL_GPL(__bio_release_pages); 1172 1173 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 1174 { 1175 size_t size = iov_iter_count(iter); 1176 1177 WARN_ON_ONCE(bio->bi_max_vecs); 1178 1179 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1180 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1181 size_t max_sectors = queue_max_zone_append_sectors(q); 1182 1183 size = min(size, max_sectors << SECTOR_SHIFT); 1184 } 1185 1186 bio->bi_vcnt = iter->nr_segs; 1187 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1188 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1189 bio->bi_iter.bi_size = size; 1190 bio_set_flag(bio, BIO_CLONED); 1191 } 1192 1193 static int bio_iov_add_page(struct bio *bio, struct page *page, 1194 unsigned int len, unsigned int offset) 1195 { 1196 bool same_page = false; 1197 1198 if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len)) 1199 return -EIO; 1200 1201 if (bio->bi_vcnt > 0 && 1202 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 1203 page, len, offset, &same_page)) { 1204 bio->bi_iter.bi_size += len; 1205 if (same_page) 1206 bio_release_page(bio, page); 1207 return 0; 1208 } 1209 __bio_add_page(bio, page, len, offset); 1210 return 0; 1211 } 1212 1213 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page, 1214 unsigned int len, unsigned int offset) 1215 { 1216 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1217 bool same_page = false; 1218 1219 if (bio_add_hw_page(q, bio, page, len, offset, 1220 queue_max_zone_append_sectors(q), &same_page) != len) 1221 return -EINVAL; 1222 if (same_page) 1223 bio_release_page(bio, page); 1224 return 0; 1225 } 1226 1227 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1228 1229 /** 1230 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1231 * @bio: bio to add pages to 1232 * @iter: iov iterator describing the region to be mapped 1233 * 1234 * Extracts pages from *iter and appends them to @bio's bvec array. The pages 1235 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag. 1236 * For a multi-segment *iter, this function only adds pages from the next 1237 * non-empty segment of the iov iterator. 1238 */ 1239 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1240 { 1241 iov_iter_extraction_t extraction_flags = 0; 1242 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1243 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1244 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1245 struct page **pages = (struct page **)bv; 1246 ssize_t size, left; 1247 unsigned len, i = 0; 1248 size_t offset; 1249 int ret = 0; 1250 1251 /* 1252 * Move page array up in the allocated memory for the bio vecs as far as 1253 * possible so that we can start filling biovecs from the beginning 1254 * without overwriting the temporary page array. 1255 */ 1256 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1257 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1258 1259 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) 1260 extraction_flags |= ITER_ALLOW_P2PDMA; 1261 1262 /* 1263 * Each segment in the iov is required to be a block size multiple. 1264 * However, we may not be able to get the entire segment if it spans 1265 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 1266 * result to ensure the bio's total size is correct. The remainder of 1267 * the iov data will be picked up in the next bio iteration. 1268 */ 1269 size = iov_iter_extract_pages(iter, &pages, 1270 UINT_MAX - bio->bi_iter.bi_size, 1271 nr_pages, extraction_flags, &offset); 1272 if (unlikely(size <= 0)) 1273 return size ? size : -EFAULT; 1274 1275 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 1276 1277 if (bio->bi_bdev) { 1278 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); 1279 iov_iter_revert(iter, trim); 1280 size -= trim; 1281 } 1282 1283 if (unlikely(!size)) { 1284 ret = -EFAULT; 1285 goto out; 1286 } 1287 1288 for (left = size, i = 0; left > 0; left -= len, i++) { 1289 struct page *page = pages[i]; 1290 1291 len = min_t(size_t, PAGE_SIZE - offset, left); 1292 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1293 ret = bio_iov_add_zone_append_page(bio, page, len, 1294 offset); 1295 if (ret) 1296 break; 1297 } else 1298 bio_iov_add_page(bio, page, len, offset); 1299 1300 offset = 0; 1301 } 1302 1303 iov_iter_revert(iter, left); 1304 out: 1305 while (i < nr_pages) 1306 bio_release_page(bio, pages[i++]); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1313 * @bio: bio to add pages to 1314 * @iter: iov iterator describing the region to be added 1315 * 1316 * This takes either an iterator pointing to user memory, or one pointing to 1317 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1318 * map them into the kernel. On IO completion, the caller should put those 1319 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1320 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1321 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1322 * completed by a call to ->ki_complete() or returns with an error other than 1323 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1324 * on IO completion. If it isn't, then pages should be released. 1325 * 1326 * The function tries, but does not guarantee, to pin as many pages as 1327 * fit into the bio, or are requested in @iter, whatever is smaller. If 1328 * MM encounters an error pinning the requested pages, it stops. Error 1329 * is returned only if 0 pages could be pinned. 1330 */ 1331 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1332 { 1333 int ret = 0; 1334 1335 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1336 return -EIO; 1337 1338 if (iov_iter_is_bvec(iter)) { 1339 bio_iov_bvec_set(bio, iter); 1340 iov_iter_advance(iter, bio->bi_iter.bi_size); 1341 return 0; 1342 } 1343 1344 if (iov_iter_extract_will_pin(iter)) 1345 bio_set_flag(bio, BIO_PAGE_PINNED); 1346 do { 1347 ret = __bio_iov_iter_get_pages(bio, iter); 1348 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1349 1350 return bio->bi_vcnt ? 0 : ret; 1351 } 1352 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1353 1354 static void submit_bio_wait_endio(struct bio *bio) 1355 { 1356 complete(bio->bi_private); 1357 } 1358 1359 /** 1360 * submit_bio_wait - submit a bio, and wait until it completes 1361 * @bio: The &struct bio which describes the I/O 1362 * 1363 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1364 * bio_endio() on failure. 1365 * 1366 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1367 * result in bio reference to be consumed. The caller must drop the reference 1368 * on his own. 1369 */ 1370 int submit_bio_wait(struct bio *bio) 1371 { 1372 DECLARE_COMPLETION_ONSTACK_MAP(done, 1373 bio->bi_bdev->bd_disk->lockdep_map); 1374 unsigned long hang_check; 1375 1376 bio->bi_private = &done; 1377 bio->bi_end_io = submit_bio_wait_endio; 1378 bio->bi_opf |= REQ_SYNC; 1379 submit_bio(bio); 1380 1381 /* Prevent hang_check timer from firing at us during very long I/O */ 1382 hang_check = sysctl_hung_task_timeout_secs; 1383 if (hang_check) 1384 while (!wait_for_completion_io_timeout(&done, 1385 hang_check * (HZ/2))) 1386 ; 1387 else 1388 wait_for_completion_io(&done); 1389 1390 return blk_status_to_errno(bio->bi_status); 1391 } 1392 EXPORT_SYMBOL(submit_bio_wait); 1393 1394 void __bio_advance(struct bio *bio, unsigned bytes) 1395 { 1396 if (bio_integrity(bio)) 1397 bio_integrity_advance(bio, bytes); 1398 1399 bio_crypt_advance(bio, bytes); 1400 bio_advance_iter(bio, &bio->bi_iter, bytes); 1401 } 1402 EXPORT_SYMBOL(__bio_advance); 1403 1404 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1405 struct bio *src, struct bvec_iter *src_iter) 1406 { 1407 while (src_iter->bi_size && dst_iter->bi_size) { 1408 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1409 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1410 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1411 void *src_buf = bvec_kmap_local(&src_bv); 1412 void *dst_buf = bvec_kmap_local(&dst_bv); 1413 1414 memcpy(dst_buf, src_buf, bytes); 1415 1416 kunmap_local(dst_buf); 1417 kunmap_local(src_buf); 1418 1419 bio_advance_iter_single(src, src_iter, bytes); 1420 bio_advance_iter_single(dst, dst_iter, bytes); 1421 } 1422 } 1423 EXPORT_SYMBOL(bio_copy_data_iter); 1424 1425 /** 1426 * bio_copy_data - copy contents of data buffers from one bio to another 1427 * @src: source bio 1428 * @dst: destination bio 1429 * 1430 * Stops when it reaches the end of either @src or @dst - that is, copies 1431 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1432 */ 1433 void bio_copy_data(struct bio *dst, struct bio *src) 1434 { 1435 struct bvec_iter src_iter = src->bi_iter; 1436 struct bvec_iter dst_iter = dst->bi_iter; 1437 1438 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1439 } 1440 EXPORT_SYMBOL(bio_copy_data); 1441 1442 void bio_free_pages(struct bio *bio) 1443 { 1444 struct bio_vec *bvec; 1445 struct bvec_iter_all iter_all; 1446 1447 bio_for_each_segment_all(bvec, bio, iter_all) 1448 __free_page(bvec->bv_page); 1449 } 1450 EXPORT_SYMBOL(bio_free_pages); 1451 1452 /* 1453 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1454 * for performing direct-IO in BIOs. 1455 * 1456 * The problem is that we cannot run folio_mark_dirty() from interrupt context 1457 * because the required locks are not interrupt-safe. So what we can do is to 1458 * mark the pages dirty _before_ performing IO. And in interrupt context, 1459 * check that the pages are still dirty. If so, fine. If not, redirty them 1460 * in process context. 1461 * 1462 * Note that this code is very hard to test under normal circumstances because 1463 * direct-io pins the pages with get_user_pages(). This makes 1464 * is_page_cache_freeable return false, and the VM will not clean the pages. 1465 * But other code (eg, flusher threads) could clean the pages if they are mapped 1466 * pagecache. 1467 * 1468 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1469 * deferred bio dirtying paths. 1470 */ 1471 1472 /* 1473 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1474 */ 1475 void bio_set_pages_dirty(struct bio *bio) 1476 { 1477 struct folio_iter fi; 1478 1479 bio_for_each_folio_all(fi, bio) { 1480 folio_lock(fi.folio); 1481 folio_mark_dirty(fi.folio); 1482 folio_unlock(fi.folio); 1483 } 1484 } 1485 EXPORT_SYMBOL_GPL(bio_set_pages_dirty); 1486 1487 /* 1488 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1489 * If they are, then fine. If, however, some pages are clean then they must 1490 * have been written out during the direct-IO read. So we take another ref on 1491 * the BIO and re-dirty the pages in process context. 1492 * 1493 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1494 * here on. It will unpin each page and will run one bio_put() against the 1495 * BIO. 1496 */ 1497 1498 static void bio_dirty_fn(struct work_struct *work); 1499 1500 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1501 static DEFINE_SPINLOCK(bio_dirty_lock); 1502 static struct bio *bio_dirty_list; 1503 1504 /* 1505 * This runs in process context 1506 */ 1507 static void bio_dirty_fn(struct work_struct *work) 1508 { 1509 struct bio *bio, *next; 1510 1511 spin_lock_irq(&bio_dirty_lock); 1512 next = bio_dirty_list; 1513 bio_dirty_list = NULL; 1514 spin_unlock_irq(&bio_dirty_lock); 1515 1516 while ((bio = next) != NULL) { 1517 next = bio->bi_private; 1518 1519 bio_release_pages(bio, true); 1520 bio_put(bio); 1521 } 1522 } 1523 1524 void bio_check_pages_dirty(struct bio *bio) 1525 { 1526 struct folio_iter fi; 1527 unsigned long flags; 1528 1529 bio_for_each_folio_all(fi, bio) { 1530 if (!folio_test_dirty(fi.folio)) 1531 goto defer; 1532 } 1533 1534 bio_release_pages(bio, false); 1535 bio_put(bio); 1536 return; 1537 defer: 1538 spin_lock_irqsave(&bio_dirty_lock, flags); 1539 bio->bi_private = bio_dirty_list; 1540 bio_dirty_list = bio; 1541 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1542 schedule_work(&bio_dirty_work); 1543 } 1544 EXPORT_SYMBOL_GPL(bio_check_pages_dirty); 1545 1546 static inline bool bio_remaining_done(struct bio *bio) 1547 { 1548 /* 1549 * If we're not chaining, then ->__bi_remaining is always 1 and 1550 * we always end io on the first invocation. 1551 */ 1552 if (!bio_flagged(bio, BIO_CHAIN)) 1553 return true; 1554 1555 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1556 1557 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1558 bio_clear_flag(bio, BIO_CHAIN); 1559 return true; 1560 } 1561 1562 return false; 1563 } 1564 1565 /** 1566 * bio_endio - end I/O on a bio 1567 * @bio: bio 1568 * 1569 * Description: 1570 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1571 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1572 * bio unless they own it and thus know that it has an end_io function. 1573 * 1574 * bio_endio() can be called several times on a bio that has been chained 1575 * using bio_chain(). The ->bi_end_io() function will only be called the 1576 * last time. 1577 **/ 1578 void bio_endio(struct bio *bio) 1579 { 1580 again: 1581 if (!bio_remaining_done(bio)) 1582 return; 1583 if (!bio_integrity_endio(bio)) 1584 return; 1585 1586 rq_qos_done_bio(bio); 1587 1588 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1589 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1590 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1591 } 1592 1593 /* 1594 * Need to have a real endio function for chained bios, otherwise 1595 * various corner cases will break (like stacking block devices that 1596 * save/restore bi_end_io) - however, we want to avoid unbounded 1597 * recursion and blowing the stack. Tail call optimization would 1598 * handle this, but compiling with frame pointers also disables 1599 * gcc's sibling call optimization. 1600 */ 1601 if (bio->bi_end_io == bio_chain_endio) { 1602 bio = __bio_chain_endio(bio); 1603 goto again; 1604 } 1605 1606 blk_throtl_bio_endio(bio); 1607 /* release cgroup info */ 1608 bio_uninit(bio); 1609 if (bio->bi_end_io) 1610 bio->bi_end_io(bio); 1611 } 1612 EXPORT_SYMBOL(bio_endio); 1613 1614 /** 1615 * bio_split - split a bio 1616 * @bio: bio to split 1617 * @sectors: number of sectors to split from the front of @bio 1618 * @gfp: gfp mask 1619 * @bs: bio set to allocate from 1620 * 1621 * Allocates and returns a new bio which represents @sectors from the start of 1622 * @bio, and updates @bio to represent the remaining sectors. 1623 * 1624 * Unless this is a discard request the newly allocated bio will point 1625 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1626 * neither @bio nor @bs are freed before the split bio. 1627 */ 1628 struct bio *bio_split(struct bio *bio, int sectors, 1629 gfp_t gfp, struct bio_set *bs) 1630 { 1631 struct bio *split; 1632 1633 BUG_ON(sectors <= 0); 1634 BUG_ON(sectors >= bio_sectors(bio)); 1635 1636 /* Zone append commands cannot be split */ 1637 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1638 return NULL; 1639 1640 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1641 if (!split) 1642 return NULL; 1643 1644 split->bi_iter.bi_size = sectors << 9; 1645 1646 if (bio_integrity(split)) 1647 bio_integrity_trim(split); 1648 1649 bio_advance(bio, split->bi_iter.bi_size); 1650 1651 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1652 bio_set_flag(split, BIO_TRACE_COMPLETION); 1653 1654 return split; 1655 } 1656 EXPORT_SYMBOL(bio_split); 1657 1658 /** 1659 * bio_trim - trim a bio 1660 * @bio: bio to trim 1661 * @offset: number of sectors to trim from the front of @bio 1662 * @size: size we want to trim @bio to, in sectors 1663 * 1664 * This function is typically used for bios that are cloned and submitted 1665 * to the underlying device in parts. 1666 */ 1667 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1668 { 1669 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1670 offset + size > bio_sectors(bio))) 1671 return; 1672 1673 size <<= 9; 1674 if (offset == 0 && size == bio->bi_iter.bi_size) 1675 return; 1676 1677 bio_advance(bio, offset << 9); 1678 bio->bi_iter.bi_size = size; 1679 1680 if (bio_integrity(bio)) 1681 bio_integrity_trim(bio); 1682 } 1683 EXPORT_SYMBOL_GPL(bio_trim); 1684 1685 /* 1686 * create memory pools for biovec's in a bio_set. 1687 * use the global biovec slabs created for general use. 1688 */ 1689 int biovec_init_pool(mempool_t *pool, int pool_entries) 1690 { 1691 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1692 1693 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1694 } 1695 1696 /* 1697 * bioset_exit - exit a bioset initialized with bioset_init() 1698 * 1699 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1700 * kzalloc()). 1701 */ 1702 void bioset_exit(struct bio_set *bs) 1703 { 1704 bio_alloc_cache_destroy(bs); 1705 if (bs->rescue_workqueue) 1706 destroy_workqueue(bs->rescue_workqueue); 1707 bs->rescue_workqueue = NULL; 1708 1709 mempool_exit(&bs->bio_pool); 1710 mempool_exit(&bs->bvec_pool); 1711 1712 bioset_integrity_free(bs); 1713 if (bs->bio_slab) 1714 bio_put_slab(bs); 1715 bs->bio_slab = NULL; 1716 } 1717 EXPORT_SYMBOL(bioset_exit); 1718 1719 /** 1720 * bioset_init - Initialize a bio_set 1721 * @bs: pool to initialize 1722 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1723 * @front_pad: Number of bytes to allocate in front of the returned bio 1724 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1725 * and %BIOSET_NEED_RESCUER 1726 * 1727 * Description: 1728 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1729 * to ask for a number of bytes to be allocated in front of the bio. 1730 * Front pad allocation is useful for embedding the bio inside 1731 * another structure, to avoid allocating extra data to go with the bio. 1732 * Note that the bio must be embedded at the END of that structure always, 1733 * or things will break badly. 1734 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1735 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1736 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1737 * to dispatch queued requests when the mempool runs out of space. 1738 * 1739 */ 1740 int bioset_init(struct bio_set *bs, 1741 unsigned int pool_size, 1742 unsigned int front_pad, 1743 int flags) 1744 { 1745 bs->front_pad = front_pad; 1746 if (flags & BIOSET_NEED_BVECS) 1747 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1748 else 1749 bs->back_pad = 0; 1750 1751 spin_lock_init(&bs->rescue_lock); 1752 bio_list_init(&bs->rescue_list); 1753 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1754 1755 bs->bio_slab = bio_find_or_create_slab(bs); 1756 if (!bs->bio_slab) 1757 return -ENOMEM; 1758 1759 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1760 goto bad; 1761 1762 if ((flags & BIOSET_NEED_BVECS) && 1763 biovec_init_pool(&bs->bvec_pool, pool_size)) 1764 goto bad; 1765 1766 if (flags & BIOSET_NEED_RESCUER) { 1767 bs->rescue_workqueue = alloc_workqueue("bioset", 1768 WQ_MEM_RECLAIM, 0); 1769 if (!bs->rescue_workqueue) 1770 goto bad; 1771 } 1772 if (flags & BIOSET_PERCPU_CACHE) { 1773 bs->cache = alloc_percpu(struct bio_alloc_cache); 1774 if (!bs->cache) 1775 goto bad; 1776 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1777 } 1778 1779 return 0; 1780 bad: 1781 bioset_exit(bs); 1782 return -ENOMEM; 1783 } 1784 EXPORT_SYMBOL(bioset_init); 1785 1786 static int __init init_bio(void) 1787 { 1788 int i; 1789 1790 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags)); 1791 1792 bio_integrity_init(); 1793 1794 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1795 struct biovec_slab *bvs = bvec_slabs + i; 1796 1797 bvs->slab = kmem_cache_create(bvs->name, 1798 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1799 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1800 } 1801 1802 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1803 bio_cpu_dead); 1804 1805 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 1806 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 1807 panic("bio: can't allocate bios\n"); 1808 1809 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1810 panic("bio: can't create integrity pool\n"); 1811 1812 return 0; 1813 } 1814 subsys_initcall(init_bio); 1815