1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 #include "blk.h" 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 116 SLAB_HWCACHE_ALIGN, NULL); 117 if (!slab) 118 goto out_unlock; 119 120 bslab->slab = slab; 121 bslab->slab_ref = 1; 122 bslab->slab_size = sz; 123 out_unlock: 124 mutex_unlock(&bio_slab_lock); 125 return slab; 126 } 127 128 static void bio_put_slab(struct bio_set *bs) 129 { 130 struct bio_slab *bslab = NULL; 131 unsigned int i; 132 133 mutex_lock(&bio_slab_lock); 134 135 for (i = 0; i < bio_slab_nr; i++) { 136 if (bs->bio_slab == bio_slabs[i].slab) { 137 bslab = &bio_slabs[i]; 138 break; 139 } 140 } 141 142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 143 goto out; 144 145 WARN_ON(!bslab->slab_ref); 146 147 if (--bslab->slab_ref) 148 goto out; 149 150 kmem_cache_destroy(bslab->slab); 151 bslab->slab = NULL; 152 153 out: 154 mutex_unlock(&bio_slab_lock); 155 } 156 157 unsigned int bvec_nr_vecs(unsigned short idx) 158 { 159 return bvec_slabs[idx].nr_vecs; 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 163 { 164 if (!idx) 165 return; 166 idx--; 167 168 BIO_BUG_ON(idx >= BVEC_POOL_NR); 169 170 if (idx == BVEC_POOL_MAX) { 171 mempool_free(bv, pool); 172 } else { 173 struct biovec_slab *bvs = bvec_slabs + idx; 174 175 kmem_cache_free(bvs->slab, bv); 176 } 177 } 178 179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 180 mempool_t *pool) 181 { 182 struct bio_vec *bvl; 183 184 /* 185 * see comment near bvec_array define! 186 */ 187 switch (nr) { 188 case 1: 189 *idx = 0; 190 break; 191 case 2 ... 4: 192 *idx = 1; 193 break; 194 case 5 ... 16: 195 *idx = 2; 196 break; 197 case 17 ... 64: 198 *idx = 3; 199 break; 200 case 65 ... 128: 201 *idx = 4; 202 break; 203 case 129 ... BIO_MAX_PAGES: 204 *idx = 5; 205 break; 206 default: 207 return NULL; 208 } 209 210 /* 211 * idx now points to the pool we want to allocate from. only the 212 * 1-vec entry pool is mempool backed. 213 */ 214 if (*idx == BVEC_POOL_MAX) { 215 fallback: 216 bvl = mempool_alloc(pool, gfp_mask); 217 } else { 218 struct biovec_slab *bvs = bvec_slabs + *idx; 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 220 221 /* 222 * Make this allocation restricted and don't dump info on 223 * allocation failures, since we'll fallback to the mempool 224 * in case of failure. 225 */ 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 227 228 /* 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 230 * is set, retry with the 1-entry mempool 231 */ 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 234 *idx = BVEC_POOL_MAX; 235 goto fallback; 236 } 237 } 238 239 (*idx)++; 240 return bvl; 241 } 242 243 void bio_uninit(struct bio *bio) 244 { 245 bio_disassociate_task(bio); 246 247 if (bio_integrity(bio)) 248 bio_integrity_free(bio); 249 } 250 EXPORT_SYMBOL(bio_uninit); 251 252 static void bio_free(struct bio *bio) 253 { 254 struct bio_set *bs = bio->bi_pool; 255 void *p; 256 257 bio_uninit(bio); 258 259 if (bs) { 260 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 261 262 /* 263 * If we have front padding, adjust the bio pointer before freeing 264 */ 265 p = bio; 266 p -= bs->front_pad; 267 268 mempool_free(p, bs->bio_pool); 269 } else { 270 /* Bio was allocated by bio_kmalloc() */ 271 kfree(bio); 272 } 273 } 274 275 /* 276 * Users of this function have their own bio allocation. Subsequently, 277 * they must remember to pair any call to bio_init() with bio_uninit() 278 * when IO has completed, or when the bio is released. 279 */ 280 void bio_init(struct bio *bio, struct bio_vec *table, 281 unsigned short max_vecs) 282 { 283 memset(bio, 0, sizeof(*bio)); 284 atomic_set(&bio->__bi_remaining, 1); 285 atomic_set(&bio->__bi_cnt, 1); 286 287 bio->bi_io_vec = table; 288 bio->bi_max_vecs = max_vecs; 289 } 290 EXPORT_SYMBOL(bio_init); 291 292 /** 293 * bio_reset - reinitialize a bio 294 * @bio: bio to reset 295 * 296 * Description: 297 * After calling bio_reset(), @bio will be in the same state as a freshly 298 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 299 * preserved are the ones that are initialized by bio_alloc_bioset(). See 300 * comment in struct bio. 301 */ 302 void bio_reset(struct bio *bio) 303 { 304 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 305 306 bio_uninit(bio); 307 308 memset(bio, 0, BIO_RESET_BYTES); 309 bio->bi_flags = flags; 310 atomic_set(&bio->__bi_remaining, 1); 311 } 312 EXPORT_SYMBOL(bio_reset); 313 314 static struct bio *__bio_chain_endio(struct bio *bio) 315 { 316 struct bio *parent = bio->bi_private; 317 318 if (!parent->bi_error) 319 parent->bi_error = bio->bi_error; 320 bio_put(bio); 321 return parent; 322 } 323 324 static void bio_chain_endio(struct bio *bio) 325 { 326 bio_endio(__bio_chain_endio(bio)); 327 } 328 329 /** 330 * bio_chain - chain bio completions 331 * @bio: the target bio 332 * @parent: the @bio's parent bio 333 * 334 * The caller won't have a bi_end_io called when @bio completes - instead, 335 * @parent's bi_end_io won't be called until both @parent and @bio have 336 * completed; the chained bio will also be freed when it completes. 337 * 338 * The caller must not set bi_private or bi_end_io in @bio. 339 */ 340 void bio_chain(struct bio *bio, struct bio *parent) 341 { 342 BUG_ON(bio->bi_private || bio->bi_end_io); 343 344 bio->bi_private = parent; 345 bio->bi_end_io = bio_chain_endio; 346 bio_inc_remaining(parent); 347 } 348 EXPORT_SYMBOL(bio_chain); 349 350 static void bio_alloc_rescue(struct work_struct *work) 351 { 352 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 353 struct bio *bio; 354 355 while (1) { 356 spin_lock(&bs->rescue_lock); 357 bio = bio_list_pop(&bs->rescue_list); 358 spin_unlock(&bs->rescue_lock); 359 360 if (!bio) 361 break; 362 363 generic_make_request(bio); 364 } 365 } 366 367 static void punt_bios_to_rescuer(struct bio_set *bs) 368 { 369 struct bio_list punt, nopunt; 370 struct bio *bio; 371 372 /* 373 * In order to guarantee forward progress we must punt only bios that 374 * were allocated from this bio_set; otherwise, if there was a bio on 375 * there for a stacking driver higher up in the stack, processing it 376 * could require allocating bios from this bio_set, and doing that from 377 * our own rescuer would be bad. 378 * 379 * Since bio lists are singly linked, pop them all instead of trying to 380 * remove from the middle of the list: 381 */ 382 383 bio_list_init(&punt); 384 bio_list_init(&nopunt); 385 386 while ((bio = bio_list_pop(¤t->bio_list[0]))) 387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 388 current->bio_list[0] = nopunt; 389 390 bio_list_init(&nopunt); 391 while ((bio = bio_list_pop(¤t->bio_list[1]))) 392 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 393 current->bio_list[1] = nopunt; 394 395 spin_lock(&bs->rescue_lock); 396 bio_list_merge(&bs->rescue_list, &punt); 397 spin_unlock(&bs->rescue_lock); 398 399 queue_work(bs->rescue_workqueue, &bs->rescue_work); 400 } 401 402 /** 403 * bio_alloc_bioset - allocate a bio for I/O 404 * @gfp_mask: the GFP_ mask given to the slab allocator 405 * @nr_iovecs: number of iovecs to pre-allocate 406 * @bs: the bio_set to allocate from. 407 * 408 * Description: 409 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 410 * backed by the @bs's mempool. 411 * 412 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 413 * always be able to allocate a bio. This is due to the mempool guarantees. 414 * To make this work, callers must never allocate more than 1 bio at a time 415 * from this pool. Callers that need to allocate more than 1 bio must always 416 * submit the previously allocated bio for IO before attempting to allocate 417 * a new one. Failure to do so can cause deadlocks under memory pressure. 418 * 419 * Note that when running under generic_make_request() (i.e. any block 420 * driver), bios are not submitted until after you return - see the code in 421 * generic_make_request() that converts recursion into iteration, to prevent 422 * stack overflows. 423 * 424 * This would normally mean allocating multiple bios under 425 * generic_make_request() would be susceptible to deadlocks, but we have 426 * deadlock avoidance code that resubmits any blocked bios from a rescuer 427 * thread. 428 * 429 * However, we do not guarantee forward progress for allocations from other 430 * mempools. Doing multiple allocations from the same mempool under 431 * generic_make_request() should be avoided - instead, use bio_set's front_pad 432 * for per bio allocations. 433 * 434 * RETURNS: 435 * Pointer to new bio on success, NULL on failure. 436 */ 437 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 438 struct bio_set *bs) 439 { 440 gfp_t saved_gfp = gfp_mask; 441 unsigned front_pad; 442 unsigned inline_vecs; 443 struct bio_vec *bvl = NULL; 444 struct bio *bio; 445 void *p; 446 447 if (!bs) { 448 if (nr_iovecs > UIO_MAXIOV) 449 return NULL; 450 451 p = kmalloc(sizeof(struct bio) + 452 nr_iovecs * sizeof(struct bio_vec), 453 gfp_mask); 454 front_pad = 0; 455 inline_vecs = nr_iovecs; 456 } else { 457 /* should not use nobvec bioset for nr_iovecs > 0 */ 458 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 459 return NULL; 460 /* 461 * generic_make_request() converts recursion to iteration; this 462 * means if we're running beneath it, any bios we allocate and 463 * submit will not be submitted (and thus freed) until after we 464 * return. 465 * 466 * This exposes us to a potential deadlock if we allocate 467 * multiple bios from the same bio_set() while running 468 * underneath generic_make_request(). If we were to allocate 469 * multiple bios (say a stacking block driver that was splitting 470 * bios), we would deadlock if we exhausted the mempool's 471 * reserve. 472 * 473 * We solve this, and guarantee forward progress, with a rescuer 474 * workqueue per bio_set. If we go to allocate and there are 475 * bios on current->bio_list, we first try the allocation 476 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 477 * bios we would be blocking to the rescuer workqueue before 478 * we retry with the original gfp_flags. 479 */ 480 481 if (current->bio_list && 482 (!bio_list_empty(¤t->bio_list[0]) || 483 !bio_list_empty(¤t->bio_list[1]))) 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 485 486 p = mempool_alloc(bs->bio_pool, gfp_mask); 487 if (!p && gfp_mask != saved_gfp) { 488 punt_bios_to_rescuer(bs); 489 gfp_mask = saved_gfp; 490 p = mempool_alloc(bs->bio_pool, gfp_mask); 491 } 492 493 front_pad = bs->front_pad; 494 inline_vecs = BIO_INLINE_VECS; 495 } 496 497 if (unlikely(!p)) 498 return NULL; 499 500 bio = p + front_pad; 501 bio_init(bio, NULL, 0); 502 503 if (nr_iovecs > inline_vecs) { 504 unsigned long idx = 0; 505 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 507 if (!bvl && gfp_mask != saved_gfp) { 508 punt_bios_to_rescuer(bs); 509 gfp_mask = saved_gfp; 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 511 } 512 513 if (unlikely(!bvl)) 514 goto err_free; 515 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 517 } else if (nr_iovecs) { 518 bvl = bio->bi_inline_vecs; 519 } 520 521 bio->bi_pool = bs; 522 bio->bi_max_vecs = nr_iovecs; 523 bio->bi_io_vec = bvl; 524 return bio; 525 526 err_free: 527 mempool_free(p, bs->bio_pool); 528 return NULL; 529 } 530 EXPORT_SYMBOL(bio_alloc_bioset); 531 532 void zero_fill_bio(struct bio *bio) 533 { 534 unsigned long flags; 535 struct bio_vec bv; 536 struct bvec_iter iter; 537 538 bio_for_each_segment(bv, bio, iter) { 539 char *data = bvec_kmap_irq(&bv, &flags); 540 memset(data, 0, bv.bv_len); 541 flush_dcache_page(bv.bv_page); 542 bvec_kunmap_irq(data, &flags); 543 } 544 } 545 EXPORT_SYMBOL(zero_fill_bio); 546 547 /** 548 * bio_put - release a reference to a bio 549 * @bio: bio to release reference to 550 * 551 * Description: 552 * Put a reference to a &struct bio, either one you have gotten with 553 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 554 **/ 555 void bio_put(struct bio *bio) 556 { 557 if (!bio_flagged(bio, BIO_REFFED)) 558 bio_free(bio); 559 else { 560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 561 562 /* 563 * last put frees it 564 */ 565 if (atomic_dec_and_test(&bio->__bi_cnt)) 566 bio_free(bio); 567 } 568 } 569 EXPORT_SYMBOL(bio_put); 570 571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 572 { 573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 574 blk_recount_segments(q, bio); 575 576 return bio->bi_phys_segments; 577 } 578 EXPORT_SYMBOL(bio_phys_segments); 579 580 /** 581 * __bio_clone_fast - clone a bio that shares the original bio's biovec 582 * @bio: destination bio 583 * @bio_src: bio to clone 584 * 585 * Clone a &bio. Caller will own the returned bio, but not 586 * the actual data it points to. Reference count of returned 587 * bio will be one. 588 * 589 * Caller must ensure that @bio_src is not freed before @bio. 590 */ 591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 592 { 593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 594 595 /* 596 * most users will be overriding ->bi_bdev with a new target, 597 * so we don't set nor calculate new physical/hw segment counts here 598 */ 599 bio->bi_bdev = bio_src->bi_bdev; 600 bio_set_flag(bio, BIO_CLONED); 601 bio->bi_opf = bio_src->bi_opf; 602 bio->bi_iter = bio_src->bi_iter; 603 bio->bi_io_vec = bio_src->bi_io_vec; 604 605 bio_clone_blkcg_association(bio, bio_src); 606 } 607 EXPORT_SYMBOL(__bio_clone_fast); 608 609 /** 610 * bio_clone_fast - clone a bio that shares the original bio's biovec 611 * @bio: bio to clone 612 * @gfp_mask: allocation priority 613 * @bs: bio_set to allocate from 614 * 615 * Like __bio_clone_fast, only also allocates the returned bio 616 */ 617 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 618 { 619 struct bio *b; 620 621 b = bio_alloc_bioset(gfp_mask, 0, bs); 622 if (!b) 623 return NULL; 624 625 __bio_clone_fast(b, bio); 626 627 if (bio_integrity(bio)) { 628 int ret; 629 630 ret = bio_integrity_clone(b, bio, gfp_mask); 631 632 if (ret < 0) { 633 bio_put(b); 634 return NULL; 635 } 636 } 637 638 return b; 639 } 640 EXPORT_SYMBOL(bio_clone_fast); 641 642 /** 643 * bio_clone_bioset - clone a bio 644 * @bio_src: bio to clone 645 * @gfp_mask: allocation priority 646 * @bs: bio_set to allocate from 647 * 648 * Clone bio. Caller will own the returned bio, but not the actual data it 649 * points to. Reference count of returned bio will be one. 650 */ 651 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 652 struct bio_set *bs) 653 { 654 struct bvec_iter iter; 655 struct bio_vec bv; 656 struct bio *bio; 657 658 /* 659 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 660 * bio_src->bi_io_vec to bio->bi_io_vec. 661 * 662 * We can't do that anymore, because: 663 * 664 * - The point of cloning the biovec is to produce a bio with a biovec 665 * the caller can modify: bi_idx and bi_bvec_done should be 0. 666 * 667 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 668 * we tried to clone the whole thing bio_alloc_bioset() would fail. 669 * But the clone should succeed as long as the number of biovecs we 670 * actually need to allocate is fewer than BIO_MAX_PAGES. 671 * 672 * - Lastly, bi_vcnt should not be looked at or relied upon by code 673 * that does not own the bio - reason being drivers don't use it for 674 * iterating over the biovec anymore, so expecting it to be kept up 675 * to date (i.e. for clones that share the parent biovec) is just 676 * asking for trouble and would force extra work on 677 * __bio_clone_fast() anyways. 678 */ 679 680 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 681 if (!bio) 682 return NULL; 683 bio->bi_bdev = bio_src->bi_bdev; 684 bio->bi_opf = bio_src->bi_opf; 685 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 686 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 687 688 switch (bio_op(bio)) { 689 case REQ_OP_DISCARD: 690 case REQ_OP_SECURE_ERASE: 691 case REQ_OP_WRITE_ZEROES: 692 break; 693 case REQ_OP_WRITE_SAME: 694 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 695 break; 696 default: 697 bio_for_each_segment(bv, bio_src, iter) 698 bio->bi_io_vec[bio->bi_vcnt++] = bv; 699 break; 700 } 701 702 if (bio_integrity(bio_src)) { 703 int ret; 704 705 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 706 if (ret < 0) { 707 bio_put(bio); 708 return NULL; 709 } 710 } 711 712 bio_clone_blkcg_association(bio, bio_src); 713 714 return bio; 715 } 716 EXPORT_SYMBOL(bio_clone_bioset); 717 718 /** 719 * bio_add_pc_page - attempt to add page to bio 720 * @q: the target queue 721 * @bio: destination bio 722 * @page: page to add 723 * @len: vec entry length 724 * @offset: vec entry offset 725 * 726 * Attempt to add a page to the bio_vec maplist. This can fail for a 727 * number of reasons, such as the bio being full or target block device 728 * limitations. The target block device must allow bio's up to PAGE_SIZE, 729 * so it is always possible to add a single page to an empty bio. 730 * 731 * This should only be used by REQ_PC bios. 732 */ 733 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 734 *page, unsigned int len, unsigned int offset) 735 { 736 int retried_segments = 0; 737 struct bio_vec *bvec; 738 739 /* 740 * cloned bio must not modify vec list 741 */ 742 if (unlikely(bio_flagged(bio, BIO_CLONED))) 743 return 0; 744 745 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 746 return 0; 747 748 /* 749 * For filesystems with a blocksize smaller than the pagesize 750 * we will often be called with the same page as last time and 751 * a consecutive offset. Optimize this special case. 752 */ 753 if (bio->bi_vcnt > 0) { 754 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 755 756 if (page == prev->bv_page && 757 offset == prev->bv_offset + prev->bv_len) { 758 prev->bv_len += len; 759 bio->bi_iter.bi_size += len; 760 goto done; 761 } 762 763 /* 764 * If the queue doesn't support SG gaps and adding this 765 * offset would create a gap, disallow it. 766 */ 767 if (bvec_gap_to_prev(q, prev, offset)) 768 return 0; 769 } 770 771 if (bio->bi_vcnt >= bio->bi_max_vecs) 772 return 0; 773 774 /* 775 * setup the new entry, we might clear it again later if we 776 * cannot add the page 777 */ 778 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 779 bvec->bv_page = page; 780 bvec->bv_len = len; 781 bvec->bv_offset = offset; 782 bio->bi_vcnt++; 783 bio->bi_phys_segments++; 784 bio->bi_iter.bi_size += len; 785 786 /* 787 * Perform a recount if the number of segments is greater 788 * than queue_max_segments(q). 789 */ 790 791 while (bio->bi_phys_segments > queue_max_segments(q)) { 792 793 if (retried_segments) 794 goto failed; 795 796 retried_segments = 1; 797 blk_recount_segments(q, bio); 798 } 799 800 /* If we may be able to merge these biovecs, force a recount */ 801 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 802 bio_clear_flag(bio, BIO_SEG_VALID); 803 804 done: 805 return len; 806 807 failed: 808 bvec->bv_page = NULL; 809 bvec->bv_len = 0; 810 bvec->bv_offset = 0; 811 bio->bi_vcnt--; 812 bio->bi_iter.bi_size -= len; 813 blk_recount_segments(q, bio); 814 return 0; 815 } 816 EXPORT_SYMBOL(bio_add_pc_page); 817 818 /** 819 * bio_add_page - attempt to add page to bio 820 * @bio: destination bio 821 * @page: page to add 822 * @len: vec entry length 823 * @offset: vec entry offset 824 * 825 * Attempt to add a page to the bio_vec maplist. This will only fail 826 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 827 */ 828 int bio_add_page(struct bio *bio, struct page *page, 829 unsigned int len, unsigned int offset) 830 { 831 struct bio_vec *bv; 832 833 /* 834 * cloned bio must not modify vec list 835 */ 836 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 837 return 0; 838 839 /* 840 * For filesystems with a blocksize smaller than the pagesize 841 * we will often be called with the same page as last time and 842 * a consecutive offset. Optimize this special case. 843 */ 844 if (bio->bi_vcnt > 0) { 845 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 846 847 if (page == bv->bv_page && 848 offset == bv->bv_offset + bv->bv_len) { 849 bv->bv_len += len; 850 goto done; 851 } 852 } 853 854 if (bio->bi_vcnt >= bio->bi_max_vecs) 855 return 0; 856 857 bv = &bio->bi_io_vec[bio->bi_vcnt]; 858 bv->bv_page = page; 859 bv->bv_len = len; 860 bv->bv_offset = offset; 861 862 bio->bi_vcnt++; 863 done: 864 bio->bi_iter.bi_size += len; 865 return len; 866 } 867 EXPORT_SYMBOL(bio_add_page); 868 869 /** 870 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 871 * @bio: bio to add pages to 872 * @iter: iov iterator describing the region to be mapped 873 * 874 * Pins as many pages from *iter and appends them to @bio's bvec array. The 875 * pages will have to be released using put_page() when done. 876 */ 877 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 878 { 879 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 880 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 881 struct page **pages = (struct page **)bv; 882 size_t offset, diff; 883 ssize_t size; 884 885 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 886 if (unlikely(size <= 0)) 887 return size ? size : -EFAULT; 888 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; 889 890 /* 891 * Deep magic below: We need to walk the pinned pages backwards 892 * because we are abusing the space allocated for the bio_vecs 893 * for the page array. Because the bio_vecs are larger than the 894 * page pointers by definition this will always work. But it also 895 * means we can't use bio_add_page, so any changes to it's semantics 896 * need to be reflected here as well. 897 */ 898 bio->bi_iter.bi_size += size; 899 bio->bi_vcnt += nr_pages; 900 901 diff = (nr_pages * PAGE_SIZE - offset) - size; 902 while (nr_pages--) { 903 bv[nr_pages].bv_page = pages[nr_pages]; 904 bv[nr_pages].bv_len = PAGE_SIZE; 905 bv[nr_pages].bv_offset = 0; 906 } 907 908 bv[0].bv_offset += offset; 909 bv[0].bv_len -= offset; 910 if (diff) 911 bv[bio->bi_vcnt - 1].bv_len -= diff; 912 913 iov_iter_advance(iter, size); 914 return 0; 915 } 916 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 917 918 struct submit_bio_ret { 919 struct completion event; 920 int error; 921 }; 922 923 static void submit_bio_wait_endio(struct bio *bio) 924 { 925 struct submit_bio_ret *ret = bio->bi_private; 926 927 ret->error = bio->bi_error; 928 complete(&ret->event); 929 } 930 931 /** 932 * submit_bio_wait - submit a bio, and wait until it completes 933 * @bio: The &struct bio which describes the I/O 934 * 935 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 936 * bio_endio() on failure. 937 */ 938 int submit_bio_wait(struct bio *bio) 939 { 940 struct submit_bio_ret ret; 941 942 init_completion(&ret.event); 943 bio->bi_private = &ret; 944 bio->bi_end_io = submit_bio_wait_endio; 945 bio->bi_opf |= REQ_SYNC; 946 submit_bio(bio); 947 wait_for_completion_io(&ret.event); 948 949 return ret.error; 950 } 951 EXPORT_SYMBOL(submit_bio_wait); 952 953 /** 954 * bio_advance - increment/complete a bio by some number of bytes 955 * @bio: bio to advance 956 * @bytes: number of bytes to complete 957 * 958 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 959 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 960 * be updated on the last bvec as well. 961 * 962 * @bio will then represent the remaining, uncompleted portion of the io. 963 */ 964 void bio_advance(struct bio *bio, unsigned bytes) 965 { 966 if (bio_integrity(bio)) 967 bio_integrity_advance(bio, bytes); 968 969 bio_advance_iter(bio, &bio->bi_iter, bytes); 970 } 971 EXPORT_SYMBOL(bio_advance); 972 973 /** 974 * bio_alloc_pages - allocates a single page for each bvec in a bio 975 * @bio: bio to allocate pages for 976 * @gfp_mask: flags for allocation 977 * 978 * Allocates pages up to @bio->bi_vcnt. 979 * 980 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 981 * freed. 982 */ 983 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 984 { 985 int i; 986 struct bio_vec *bv; 987 988 bio_for_each_segment_all(bv, bio, i) { 989 bv->bv_page = alloc_page(gfp_mask); 990 if (!bv->bv_page) { 991 while (--bv >= bio->bi_io_vec) 992 __free_page(bv->bv_page); 993 return -ENOMEM; 994 } 995 } 996 997 return 0; 998 } 999 EXPORT_SYMBOL(bio_alloc_pages); 1000 1001 /** 1002 * bio_copy_data - copy contents of data buffers from one chain of bios to 1003 * another 1004 * @src: source bio list 1005 * @dst: destination bio list 1006 * 1007 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 1008 * @src and @dst as linked lists of bios. 1009 * 1010 * Stops when it reaches the end of either @src or @dst - that is, copies 1011 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1012 */ 1013 void bio_copy_data(struct bio *dst, struct bio *src) 1014 { 1015 struct bvec_iter src_iter, dst_iter; 1016 struct bio_vec src_bv, dst_bv; 1017 void *src_p, *dst_p; 1018 unsigned bytes; 1019 1020 src_iter = src->bi_iter; 1021 dst_iter = dst->bi_iter; 1022 1023 while (1) { 1024 if (!src_iter.bi_size) { 1025 src = src->bi_next; 1026 if (!src) 1027 break; 1028 1029 src_iter = src->bi_iter; 1030 } 1031 1032 if (!dst_iter.bi_size) { 1033 dst = dst->bi_next; 1034 if (!dst) 1035 break; 1036 1037 dst_iter = dst->bi_iter; 1038 } 1039 1040 src_bv = bio_iter_iovec(src, src_iter); 1041 dst_bv = bio_iter_iovec(dst, dst_iter); 1042 1043 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1044 1045 src_p = kmap_atomic(src_bv.bv_page); 1046 dst_p = kmap_atomic(dst_bv.bv_page); 1047 1048 memcpy(dst_p + dst_bv.bv_offset, 1049 src_p + src_bv.bv_offset, 1050 bytes); 1051 1052 kunmap_atomic(dst_p); 1053 kunmap_atomic(src_p); 1054 1055 bio_advance_iter(src, &src_iter, bytes); 1056 bio_advance_iter(dst, &dst_iter, bytes); 1057 } 1058 } 1059 EXPORT_SYMBOL(bio_copy_data); 1060 1061 struct bio_map_data { 1062 int is_our_pages; 1063 struct iov_iter iter; 1064 struct iovec iov[]; 1065 }; 1066 1067 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1068 gfp_t gfp_mask) 1069 { 1070 if (iov_count > UIO_MAXIOV) 1071 return NULL; 1072 1073 return kmalloc(sizeof(struct bio_map_data) + 1074 sizeof(struct iovec) * iov_count, gfp_mask); 1075 } 1076 1077 /** 1078 * bio_copy_from_iter - copy all pages from iov_iter to bio 1079 * @bio: The &struct bio which describes the I/O as destination 1080 * @iter: iov_iter as source 1081 * 1082 * Copy all pages from iov_iter to bio. 1083 * Returns 0 on success, or error on failure. 1084 */ 1085 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1086 { 1087 int i; 1088 struct bio_vec *bvec; 1089 1090 bio_for_each_segment_all(bvec, bio, i) { 1091 ssize_t ret; 1092 1093 ret = copy_page_from_iter(bvec->bv_page, 1094 bvec->bv_offset, 1095 bvec->bv_len, 1096 &iter); 1097 1098 if (!iov_iter_count(&iter)) 1099 break; 1100 1101 if (ret < bvec->bv_len) 1102 return -EFAULT; 1103 } 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * bio_copy_to_iter - copy all pages from bio to iov_iter 1110 * @bio: The &struct bio which describes the I/O as source 1111 * @iter: iov_iter as destination 1112 * 1113 * Copy all pages from bio to iov_iter. 1114 * Returns 0 on success, or error on failure. 1115 */ 1116 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1117 { 1118 int i; 1119 struct bio_vec *bvec; 1120 1121 bio_for_each_segment_all(bvec, bio, i) { 1122 ssize_t ret; 1123 1124 ret = copy_page_to_iter(bvec->bv_page, 1125 bvec->bv_offset, 1126 bvec->bv_len, 1127 &iter); 1128 1129 if (!iov_iter_count(&iter)) 1130 break; 1131 1132 if (ret < bvec->bv_len) 1133 return -EFAULT; 1134 } 1135 1136 return 0; 1137 } 1138 1139 void bio_free_pages(struct bio *bio) 1140 { 1141 struct bio_vec *bvec; 1142 int i; 1143 1144 bio_for_each_segment_all(bvec, bio, i) 1145 __free_page(bvec->bv_page); 1146 } 1147 EXPORT_SYMBOL(bio_free_pages); 1148 1149 /** 1150 * bio_uncopy_user - finish previously mapped bio 1151 * @bio: bio being terminated 1152 * 1153 * Free pages allocated from bio_copy_user_iov() and write back data 1154 * to user space in case of a read. 1155 */ 1156 int bio_uncopy_user(struct bio *bio) 1157 { 1158 struct bio_map_data *bmd = bio->bi_private; 1159 int ret = 0; 1160 1161 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1162 /* 1163 * if we're in a workqueue, the request is orphaned, so 1164 * don't copy into a random user address space, just free 1165 * and return -EINTR so user space doesn't expect any data. 1166 */ 1167 if (!current->mm) 1168 ret = -EINTR; 1169 else if (bio_data_dir(bio) == READ) 1170 ret = bio_copy_to_iter(bio, bmd->iter); 1171 if (bmd->is_our_pages) 1172 bio_free_pages(bio); 1173 } 1174 kfree(bmd); 1175 bio_put(bio); 1176 return ret; 1177 } 1178 1179 /** 1180 * bio_copy_user_iov - copy user data to bio 1181 * @q: destination block queue 1182 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1183 * @iter: iovec iterator 1184 * @gfp_mask: memory allocation flags 1185 * 1186 * Prepares and returns a bio for indirect user io, bouncing data 1187 * to/from kernel pages as necessary. Must be paired with 1188 * call bio_uncopy_user() on io completion. 1189 */ 1190 struct bio *bio_copy_user_iov(struct request_queue *q, 1191 struct rq_map_data *map_data, 1192 const struct iov_iter *iter, 1193 gfp_t gfp_mask) 1194 { 1195 struct bio_map_data *bmd; 1196 struct page *page; 1197 struct bio *bio; 1198 int i, ret; 1199 int nr_pages = 0; 1200 unsigned int len = iter->count; 1201 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1202 1203 for (i = 0; i < iter->nr_segs; i++) { 1204 unsigned long uaddr; 1205 unsigned long end; 1206 unsigned long start; 1207 1208 uaddr = (unsigned long) iter->iov[i].iov_base; 1209 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1210 >> PAGE_SHIFT; 1211 start = uaddr >> PAGE_SHIFT; 1212 1213 /* 1214 * Overflow, abort 1215 */ 1216 if (end < start) 1217 return ERR_PTR(-EINVAL); 1218 1219 nr_pages += end - start; 1220 } 1221 1222 if (offset) 1223 nr_pages++; 1224 1225 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1226 if (!bmd) 1227 return ERR_PTR(-ENOMEM); 1228 1229 /* 1230 * We need to do a deep copy of the iov_iter including the iovecs. 1231 * The caller provided iov might point to an on-stack or otherwise 1232 * shortlived one. 1233 */ 1234 bmd->is_our_pages = map_data ? 0 : 1; 1235 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1236 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1237 iter->nr_segs, iter->count); 1238 1239 ret = -ENOMEM; 1240 bio = bio_kmalloc(gfp_mask, nr_pages); 1241 if (!bio) 1242 goto out_bmd; 1243 1244 ret = 0; 1245 1246 if (map_data) { 1247 nr_pages = 1 << map_data->page_order; 1248 i = map_data->offset / PAGE_SIZE; 1249 } 1250 while (len) { 1251 unsigned int bytes = PAGE_SIZE; 1252 1253 bytes -= offset; 1254 1255 if (bytes > len) 1256 bytes = len; 1257 1258 if (map_data) { 1259 if (i == map_data->nr_entries * nr_pages) { 1260 ret = -ENOMEM; 1261 break; 1262 } 1263 1264 page = map_data->pages[i / nr_pages]; 1265 page += (i % nr_pages); 1266 1267 i++; 1268 } else { 1269 page = alloc_page(q->bounce_gfp | gfp_mask); 1270 if (!page) { 1271 ret = -ENOMEM; 1272 break; 1273 } 1274 } 1275 1276 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1277 break; 1278 1279 len -= bytes; 1280 offset = 0; 1281 } 1282 1283 if (ret) 1284 goto cleanup; 1285 1286 /* 1287 * success 1288 */ 1289 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1290 (map_data && map_data->from_user)) { 1291 ret = bio_copy_from_iter(bio, *iter); 1292 if (ret) 1293 goto cleanup; 1294 } 1295 1296 bio->bi_private = bmd; 1297 return bio; 1298 cleanup: 1299 if (!map_data) 1300 bio_free_pages(bio); 1301 bio_put(bio); 1302 out_bmd: 1303 kfree(bmd); 1304 return ERR_PTR(ret); 1305 } 1306 1307 /** 1308 * bio_map_user_iov - map user iovec into bio 1309 * @q: the struct request_queue for the bio 1310 * @iter: iovec iterator 1311 * @gfp_mask: memory allocation flags 1312 * 1313 * Map the user space address into a bio suitable for io to a block 1314 * device. Returns an error pointer in case of error. 1315 */ 1316 struct bio *bio_map_user_iov(struct request_queue *q, 1317 const struct iov_iter *iter, 1318 gfp_t gfp_mask) 1319 { 1320 int j; 1321 int nr_pages = 0; 1322 struct page **pages; 1323 struct bio *bio; 1324 int cur_page = 0; 1325 int ret, offset; 1326 struct iov_iter i; 1327 struct iovec iov; 1328 1329 iov_for_each(iov, i, *iter) { 1330 unsigned long uaddr = (unsigned long) iov.iov_base; 1331 unsigned long len = iov.iov_len; 1332 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1333 unsigned long start = uaddr >> PAGE_SHIFT; 1334 1335 /* 1336 * Overflow, abort 1337 */ 1338 if (end < start) 1339 return ERR_PTR(-EINVAL); 1340 1341 nr_pages += end - start; 1342 /* 1343 * buffer must be aligned to at least logical block size for now 1344 */ 1345 if (uaddr & queue_dma_alignment(q)) 1346 return ERR_PTR(-EINVAL); 1347 } 1348 1349 if (!nr_pages) 1350 return ERR_PTR(-EINVAL); 1351 1352 bio = bio_kmalloc(gfp_mask, nr_pages); 1353 if (!bio) 1354 return ERR_PTR(-ENOMEM); 1355 1356 ret = -ENOMEM; 1357 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1358 if (!pages) 1359 goto out; 1360 1361 iov_for_each(iov, i, *iter) { 1362 unsigned long uaddr = (unsigned long) iov.iov_base; 1363 unsigned long len = iov.iov_len; 1364 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1365 unsigned long start = uaddr >> PAGE_SHIFT; 1366 const int local_nr_pages = end - start; 1367 const int page_limit = cur_page + local_nr_pages; 1368 1369 ret = get_user_pages_fast(uaddr, local_nr_pages, 1370 (iter->type & WRITE) != WRITE, 1371 &pages[cur_page]); 1372 if (ret < local_nr_pages) { 1373 ret = -EFAULT; 1374 goto out_unmap; 1375 } 1376 1377 offset = offset_in_page(uaddr); 1378 for (j = cur_page; j < page_limit; j++) { 1379 unsigned int bytes = PAGE_SIZE - offset; 1380 1381 if (len <= 0) 1382 break; 1383 1384 if (bytes > len) 1385 bytes = len; 1386 1387 /* 1388 * sorry... 1389 */ 1390 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1391 bytes) 1392 break; 1393 1394 len -= bytes; 1395 offset = 0; 1396 } 1397 1398 cur_page = j; 1399 /* 1400 * release the pages we didn't map into the bio, if any 1401 */ 1402 while (j < page_limit) 1403 put_page(pages[j++]); 1404 } 1405 1406 kfree(pages); 1407 1408 bio_set_flag(bio, BIO_USER_MAPPED); 1409 1410 /* 1411 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1412 * it would normally disappear when its bi_end_io is run. 1413 * however, we need it for the unmap, so grab an extra 1414 * reference to it 1415 */ 1416 bio_get(bio); 1417 return bio; 1418 1419 out_unmap: 1420 for (j = 0; j < nr_pages; j++) { 1421 if (!pages[j]) 1422 break; 1423 put_page(pages[j]); 1424 } 1425 out: 1426 kfree(pages); 1427 bio_put(bio); 1428 return ERR_PTR(ret); 1429 } 1430 1431 static void __bio_unmap_user(struct bio *bio) 1432 { 1433 struct bio_vec *bvec; 1434 int i; 1435 1436 /* 1437 * make sure we dirty pages we wrote to 1438 */ 1439 bio_for_each_segment_all(bvec, bio, i) { 1440 if (bio_data_dir(bio) == READ) 1441 set_page_dirty_lock(bvec->bv_page); 1442 1443 put_page(bvec->bv_page); 1444 } 1445 1446 bio_put(bio); 1447 } 1448 1449 /** 1450 * bio_unmap_user - unmap a bio 1451 * @bio: the bio being unmapped 1452 * 1453 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1454 * process context. 1455 * 1456 * bio_unmap_user() may sleep. 1457 */ 1458 void bio_unmap_user(struct bio *bio) 1459 { 1460 __bio_unmap_user(bio); 1461 bio_put(bio); 1462 } 1463 1464 static void bio_map_kern_endio(struct bio *bio) 1465 { 1466 bio_put(bio); 1467 } 1468 1469 /** 1470 * bio_map_kern - map kernel address into bio 1471 * @q: the struct request_queue for the bio 1472 * @data: pointer to buffer to map 1473 * @len: length in bytes 1474 * @gfp_mask: allocation flags for bio allocation 1475 * 1476 * Map the kernel address into a bio suitable for io to a block 1477 * device. Returns an error pointer in case of error. 1478 */ 1479 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1480 gfp_t gfp_mask) 1481 { 1482 unsigned long kaddr = (unsigned long)data; 1483 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1484 unsigned long start = kaddr >> PAGE_SHIFT; 1485 const int nr_pages = end - start; 1486 int offset, i; 1487 struct bio *bio; 1488 1489 bio = bio_kmalloc(gfp_mask, nr_pages); 1490 if (!bio) 1491 return ERR_PTR(-ENOMEM); 1492 1493 offset = offset_in_page(kaddr); 1494 for (i = 0; i < nr_pages; i++) { 1495 unsigned int bytes = PAGE_SIZE - offset; 1496 1497 if (len <= 0) 1498 break; 1499 1500 if (bytes > len) 1501 bytes = len; 1502 1503 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1504 offset) < bytes) { 1505 /* we don't support partial mappings */ 1506 bio_put(bio); 1507 return ERR_PTR(-EINVAL); 1508 } 1509 1510 data += bytes; 1511 len -= bytes; 1512 offset = 0; 1513 } 1514 1515 bio->bi_end_io = bio_map_kern_endio; 1516 return bio; 1517 } 1518 EXPORT_SYMBOL(bio_map_kern); 1519 1520 static void bio_copy_kern_endio(struct bio *bio) 1521 { 1522 bio_free_pages(bio); 1523 bio_put(bio); 1524 } 1525 1526 static void bio_copy_kern_endio_read(struct bio *bio) 1527 { 1528 char *p = bio->bi_private; 1529 struct bio_vec *bvec; 1530 int i; 1531 1532 bio_for_each_segment_all(bvec, bio, i) { 1533 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1534 p += bvec->bv_len; 1535 } 1536 1537 bio_copy_kern_endio(bio); 1538 } 1539 1540 /** 1541 * bio_copy_kern - copy kernel address into bio 1542 * @q: the struct request_queue for the bio 1543 * @data: pointer to buffer to copy 1544 * @len: length in bytes 1545 * @gfp_mask: allocation flags for bio and page allocation 1546 * @reading: data direction is READ 1547 * 1548 * copy the kernel address into a bio suitable for io to a block 1549 * device. Returns an error pointer in case of error. 1550 */ 1551 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1552 gfp_t gfp_mask, int reading) 1553 { 1554 unsigned long kaddr = (unsigned long)data; 1555 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1556 unsigned long start = kaddr >> PAGE_SHIFT; 1557 struct bio *bio; 1558 void *p = data; 1559 int nr_pages = 0; 1560 1561 /* 1562 * Overflow, abort 1563 */ 1564 if (end < start) 1565 return ERR_PTR(-EINVAL); 1566 1567 nr_pages = end - start; 1568 bio = bio_kmalloc(gfp_mask, nr_pages); 1569 if (!bio) 1570 return ERR_PTR(-ENOMEM); 1571 1572 while (len) { 1573 struct page *page; 1574 unsigned int bytes = PAGE_SIZE; 1575 1576 if (bytes > len) 1577 bytes = len; 1578 1579 page = alloc_page(q->bounce_gfp | gfp_mask); 1580 if (!page) 1581 goto cleanup; 1582 1583 if (!reading) 1584 memcpy(page_address(page), p, bytes); 1585 1586 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1587 break; 1588 1589 len -= bytes; 1590 p += bytes; 1591 } 1592 1593 if (reading) { 1594 bio->bi_end_io = bio_copy_kern_endio_read; 1595 bio->bi_private = data; 1596 } else { 1597 bio->bi_end_io = bio_copy_kern_endio; 1598 } 1599 1600 return bio; 1601 1602 cleanup: 1603 bio_free_pages(bio); 1604 bio_put(bio); 1605 return ERR_PTR(-ENOMEM); 1606 } 1607 1608 /* 1609 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1610 * for performing direct-IO in BIOs. 1611 * 1612 * The problem is that we cannot run set_page_dirty() from interrupt context 1613 * because the required locks are not interrupt-safe. So what we can do is to 1614 * mark the pages dirty _before_ performing IO. And in interrupt context, 1615 * check that the pages are still dirty. If so, fine. If not, redirty them 1616 * in process context. 1617 * 1618 * We special-case compound pages here: normally this means reads into hugetlb 1619 * pages. The logic in here doesn't really work right for compound pages 1620 * because the VM does not uniformly chase down the head page in all cases. 1621 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1622 * handle them at all. So we skip compound pages here at an early stage. 1623 * 1624 * Note that this code is very hard to test under normal circumstances because 1625 * direct-io pins the pages with get_user_pages(). This makes 1626 * is_page_cache_freeable return false, and the VM will not clean the pages. 1627 * But other code (eg, flusher threads) could clean the pages if they are mapped 1628 * pagecache. 1629 * 1630 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1631 * deferred bio dirtying paths. 1632 */ 1633 1634 /* 1635 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1636 */ 1637 void bio_set_pages_dirty(struct bio *bio) 1638 { 1639 struct bio_vec *bvec; 1640 int i; 1641 1642 bio_for_each_segment_all(bvec, bio, i) { 1643 struct page *page = bvec->bv_page; 1644 1645 if (page && !PageCompound(page)) 1646 set_page_dirty_lock(page); 1647 } 1648 } 1649 1650 static void bio_release_pages(struct bio *bio) 1651 { 1652 struct bio_vec *bvec; 1653 int i; 1654 1655 bio_for_each_segment_all(bvec, bio, i) { 1656 struct page *page = bvec->bv_page; 1657 1658 if (page) 1659 put_page(page); 1660 } 1661 } 1662 1663 /* 1664 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1665 * If they are, then fine. If, however, some pages are clean then they must 1666 * have been written out during the direct-IO read. So we take another ref on 1667 * the BIO and the offending pages and re-dirty the pages in process context. 1668 * 1669 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1670 * here on. It will run one put_page() against each page and will run one 1671 * bio_put() against the BIO. 1672 */ 1673 1674 static void bio_dirty_fn(struct work_struct *work); 1675 1676 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1677 static DEFINE_SPINLOCK(bio_dirty_lock); 1678 static struct bio *bio_dirty_list; 1679 1680 /* 1681 * This runs in process context 1682 */ 1683 static void bio_dirty_fn(struct work_struct *work) 1684 { 1685 unsigned long flags; 1686 struct bio *bio; 1687 1688 spin_lock_irqsave(&bio_dirty_lock, flags); 1689 bio = bio_dirty_list; 1690 bio_dirty_list = NULL; 1691 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1692 1693 while (bio) { 1694 struct bio *next = bio->bi_private; 1695 1696 bio_set_pages_dirty(bio); 1697 bio_release_pages(bio); 1698 bio_put(bio); 1699 bio = next; 1700 } 1701 } 1702 1703 void bio_check_pages_dirty(struct bio *bio) 1704 { 1705 struct bio_vec *bvec; 1706 int nr_clean_pages = 0; 1707 int i; 1708 1709 bio_for_each_segment_all(bvec, bio, i) { 1710 struct page *page = bvec->bv_page; 1711 1712 if (PageDirty(page) || PageCompound(page)) { 1713 put_page(page); 1714 bvec->bv_page = NULL; 1715 } else { 1716 nr_clean_pages++; 1717 } 1718 } 1719 1720 if (nr_clean_pages) { 1721 unsigned long flags; 1722 1723 spin_lock_irqsave(&bio_dirty_lock, flags); 1724 bio->bi_private = bio_dirty_list; 1725 bio_dirty_list = bio; 1726 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1727 schedule_work(&bio_dirty_work); 1728 } else { 1729 bio_put(bio); 1730 } 1731 } 1732 1733 void generic_start_io_acct(int rw, unsigned long sectors, 1734 struct hd_struct *part) 1735 { 1736 int cpu = part_stat_lock(); 1737 1738 part_round_stats(cpu, part); 1739 part_stat_inc(cpu, part, ios[rw]); 1740 part_stat_add(cpu, part, sectors[rw], sectors); 1741 part_inc_in_flight(part, rw); 1742 1743 part_stat_unlock(); 1744 } 1745 EXPORT_SYMBOL(generic_start_io_acct); 1746 1747 void generic_end_io_acct(int rw, struct hd_struct *part, 1748 unsigned long start_time) 1749 { 1750 unsigned long duration = jiffies - start_time; 1751 int cpu = part_stat_lock(); 1752 1753 part_stat_add(cpu, part, ticks[rw], duration); 1754 part_round_stats(cpu, part); 1755 part_dec_in_flight(part, rw); 1756 1757 part_stat_unlock(); 1758 } 1759 EXPORT_SYMBOL(generic_end_io_acct); 1760 1761 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1762 void bio_flush_dcache_pages(struct bio *bi) 1763 { 1764 struct bio_vec bvec; 1765 struct bvec_iter iter; 1766 1767 bio_for_each_segment(bvec, bi, iter) 1768 flush_dcache_page(bvec.bv_page); 1769 } 1770 EXPORT_SYMBOL(bio_flush_dcache_pages); 1771 #endif 1772 1773 static inline bool bio_remaining_done(struct bio *bio) 1774 { 1775 /* 1776 * If we're not chaining, then ->__bi_remaining is always 1 and 1777 * we always end io on the first invocation. 1778 */ 1779 if (!bio_flagged(bio, BIO_CHAIN)) 1780 return true; 1781 1782 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1783 1784 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1785 bio_clear_flag(bio, BIO_CHAIN); 1786 return true; 1787 } 1788 1789 return false; 1790 } 1791 1792 /** 1793 * bio_endio - end I/O on a bio 1794 * @bio: bio 1795 * 1796 * Description: 1797 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1798 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1799 * bio unless they own it and thus know that it has an end_io function. 1800 * 1801 * bio_endio() can be called several times on a bio that has been chained 1802 * using bio_chain(). The ->bi_end_io() function will only be called the 1803 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1804 * generated if BIO_TRACE_COMPLETION is set. 1805 **/ 1806 void bio_endio(struct bio *bio) 1807 { 1808 again: 1809 if (!bio_remaining_done(bio)) 1810 return; 1811 1812 /* 1813 * Need to have a real endio function for chained bios, otherwise 1814 * various corner cases will break (like stacking block devices that 1815 * save/restore bi_end_io) - however, we want to avoid unbounded 1816 * recursion and blowing the stack. Tail call optimization would 1817 * handle this, but compiling with frame pointers also disables 1818 * gcc's sibling call optimization. 1819 */ 1820 if (bio->bi_end_io == bio_chain_endio) { 1821 bio = __bio_chain_endio(bio); 1822 goto again; 1823 } 1824 1825 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1826 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), 1827 bio, bio->bi_error); 1828 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1829 } 1830 1831 blk_throtl_bio_endio(bio); 1832 if (bio->bi_end_io) 1833 bio->bi_end_io(bio); 1834 } 1835 EXPORT_SYMBOL(bio_endio); 1836 1837 /** 1838 * bio_split - split a bio 1839 * @bio: bio to split 1840 * @sectors: number of sectors to split from the front of @bio 1841 * @gfp: gfp mask 1842 * @bs: bio set to allocate from 1843 * 1844 * Allocates and returns a new bio which represents @sectors from the start of 1845 * @bio, and updates @bio to represent the remaining sectors. 1846 * 1847 * Unless this is a discard request the newly allocated bio will point 1848 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1849 * @bio is not freed before the split. 1850 */ 1851 struct bio *bio_split(struct bio *bio, int sectors, 1852 gfp_t gfp, struct bio_set *bs) 1853 { 1854 struct bio *split = NULL; 1855 1856 BUG_ON(sectors <= 0); 1857 BUG_ON(sectors >= bio_sectors(bio)); 1858 1859 split = bio_clone_fast(bio, gfp, bs); 1860 if (!split) 1861 return NULL; 1862 1863 split->bi_iter.bi_size = sectors << 9; 1864 1865 if (bio_integrity(split)) 1866 bio_integrity_trim(split, 0, sectors); 1867 1868 bio_advance(bio, split->bi_iter.bi_size); 1869 1870 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1871 bio_set_flag(bio, BIO_TRACE_COMPLETION); 1872 1873 return split; 1874 } 1875 EXPORT_SYMBOL(bio_split); 1876 1877 /** 1878 * bio_trim - trim a bio 1879 * @bio: bio to trim 1880 * @offset: number of sectors to trim from the front of @bio 1881 * @size: size we want to trim @bio to, in sectors 1882 */ 1883 void bio_trim(struct bio *bio, int offset, int size) 1884 { 1885 /* 'bio' is a cloned bio which we need to trim to match 1886 * the given offset and size. 1887 */ 1888 1889 size <<= 9; 1890 if (offset == 0 && size == bio->bi_iter.bi_size) 1891 return; 1892 1893 bio_clear_flag(bio, BIO_SEG_VALID); 1894 1895 bio_advance(bio, offset << 9); 1896 1897 bio->bi_iter.bi_size = size; 1898 } 1899 EXPORT_SYMBOL_GPL(bio_trim); 1900 1901 /* 1902 * create memory pools for biovec's in a bio_set. 1903 * use the global biovec slabs created for general use. 1904 */ 1905 mempool_t *biovec_create_pool(int pool_entries) 1906 { 1907 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1908 1909 return mempool_create_slab_pool(pool_entries, bp->slab); 1910 } 1911 1912 void bioset_free(struct bio_set *bs) 1913 { 1914 if (bs->rescue_workqueue) 1915 destroy_workqueue(bs->rescue_workqueue); 1916 1917 if (bs->bio_pool) 1918 mempool_destroy(bs->bio_pool); 1919 1920 if (bs->bvec_pool) 1921 mempool_destroy(bs->bvec_pool); 1922 1923 bioset_integrity_free(bs); 1924 bio_put_slab(bs); 1925 1926 kfree(bs); 1927 } 1928 EXPORT_SYMBOL(bioset_free); 1929 1930 static struct bio_set *__bioset_create(unsigned int pool_size, 1931 unsigned int front_pad, 1932 bool create_bvec_pool) 1933 { 1934 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1935 struct bio_set *bs; 1936 1937 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1938 if (!bs) 1939 return NULL; 1940 1941 bs->front_pad = front_pad; 1942 1943 spin_lock_init(&bs->rescue_lock); 1944 bio_list_init(&bs->rescue_list); 1945 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1946 1947 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1948 if (!bs->bio_slab) { 1949 kfree(bs); 1950 return NULL; 1951 } 1952 1953 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1954 if (!bs->bio_pool) 1955 goto bad; 1956 1957 if (create_bvec_pool) { 1958 bs->bvec_pool = biovec_create_pool(pool_size); 1959 if (!bs->bvec_pool) 1960 goto bad; 1961 } 1962 1963 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1964 if (!bs->rescue_workqueue) 1965 goto bad; 1966 1967 return bs; 1968 bad: 1969 bioset_free(bs); 1970 return NULL; 1971 } 1972 1973 /** 1974 * bioset_create - Create a bio_set 1975 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1976 * @front_pad: Number of bytes to allocate in front of the returned bio 1977 * 1978 * Description: 1979 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1980 * to ask for a number of bytes to be allocated in front of the bio. 1981 * Front pad allocation is useful for embedding the bio inside 1982 * another structure, to avoid allocating extra data to go with the bio. 1983 * Note that the bio must be embedded at the END of that structure always, 1984 * or things will break badly. 1985 */ 1986 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1987 { 1988 return __bioset_create(pool_size, front_pad, true); 1989 } 1990 EXPORT_SYMBOL(bioset_create); 1991 1992 /** 1993 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 1994 * @pool_size: Number of bio to cache in the mempool 1995 * @front_pad: Number of bytes to allocate in front of the returned bio 1996 * 1997 * Description: 1998 * Same functionality as bioset_create() except that mempool is not 1999 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 2000 */ 2001 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 2002 { 2003 return __bioset_create(pool_size, front_pad, false); 2004 } 2005 EXPORT_SYMBOL(bioset_create_nobvec); 2006 2007 #ifdef CONFIG_BLK_CGROUP 2008 2009 /** 2010 * bio_associate_blkcg - associate a bio with the specified blkcg 2011 * @bio: target bio 2012 * @blkcg_css: css of the blkcg to associate 2013 * 2014 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 2015 * treat @bio as if it were issued by a task which belongs to the blkcg. 2016 * 2017 * This function takes an extra reference of @blkcg_css which will be put 2018 * when @bio is released. The caller must own @bio and is responsible for 2019 * synchronizing calls to this function. 2020 */ 2021 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 2022 { 2023 if (unlikely(bio->bi_css)) 2024 return -EBUSY; 2025 css_get(blkcg_css); 2026 bio->bi_css = blkcg_css; 2027 return 0; 2028 } 2029 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 2030 2031 /** 2032 * bio_associate_current - associate a bio with %current 2033 * @bio: target bio 2034 * 2035 * Associate @bio with %current if it hasn't been associated yet. Block 2036 * layer will treat @bio as if it were issued by %current no matter which 2037 * task actually issues it. 2038 * 2039 * This function takes an extra reference of @task's io_context and blkcg 2040 * which will be put when @bio is released. The caller must own @bio, 2041 * ensure %current->io_context exists, and is responsible for synchronizing 2042 * calls to this function. 2043 */ 2044 int bio_associate_current(struct bio *bio) 2045 { 2046 struct io_context *ioc; 2047 2048 if (bio->bi_css) 2049 return -EBUSY; 2050 2051 ioc = current->io_context; 2052 if (!ioc) 2053 return -ENOENT; 2054 2055 get_io_context_active(ioc); 2056 bio->bi_ioc = ioc; 2057 bio->bi_css = task_get_css(current, io_cgrp_id); 2058 return 0; 2059 } 2060 EXPORT_SYMBOL_GPL(bio_associate_current); 2061 2062 /** 2063 * bio_disassociate_task - undo bio_associate_current() 2064 * @bio: target bio 2065 */ 2066 void bio_disassociate_task(struct bio *bio) 2067 { 2068 if (bio->bi_ioc) { 2069 put_io_context(bio->bi_ioc); 2070 bio->bi_ioc = NULL; 2071 } 2072 if (bio->bi_css) { 2073 css_put(bio->bi_css); 2074 bio->bi_css = NULL; 2075 } 2076 } 2077 2078 /** 2079 * bio_clone_blkcg_association - clone blkcg association from src to dst bio 2080 * @dst: destination bio 2081 * @src: source bio 2082 */ 2083 void bio_clone_blkcg_association(struct bio *dst, struct bio *src) 2084 { 2085 if (src->bi_css) 2086 WARN_ON(bio_associate_blkcg(dst, src->bi_css)); 2087 } 2088 2089 #endif /* CONFIG_BLK_CGROUP */ 2090 2091 static void __init biovec_init_slabs(void) 2092 { 2093 int i; 2094 2095 for (i = 0; i < BVEC_POOL_NR; i++) { 2096 int size; 2097 struct biovec_slab *bvs = bvec_slabs + i; 2098 2099 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2100 bvs->slab = NULL; 2101 continue; 2102 } 2103 2104 size = bvs->nr_vecs * sizeof(struct bio_vec); 2105 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2106 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2107 } 2108 } 2109 2110 static int __init init_bio(void) 2111 { 2112 bio_slab_max = 2; 2113 bio_slab_nr = 0; 2114 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2115 if (!bio_slabs) 2116 panic("bio: can't allocate bios\n"); 2117 2118 bio_integrity_init(); 2119 biovec_init_slabs(); 2120 2121 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2122 if (!fs_bio_set) 2123 panic("bio: can't allocate bios\n"); 2124 2125 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2126 panic("bio: can't create integrity pool\n"); 2127 2128 return 0; 2129 } 2130 subsys_initcall(init_bio); 2131