xref: /linux/block/bio.c (revision 0408c58be5a475c99b271f08d85859f7b59ec767)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 void bio_uninit(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 
247 	if (bio_integrity(bio))
248 		bio_integrity_free(bio);
249 }
250 EXPORT_SYMBOL(bio_uninit);
251 
252 static void bio_free(struct bio *bio)
253 {
254 	struct bio_set *bs = bio->bi_pool;
255 	void *p;
256 
257 	bio_uninit(bio);
258 
259 	if (bs) {
260 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
261 
262 		/*
263 		 * If we have front padding, adjust the bio pointer before freeing
264 		 */
265 		p = bio;
266 		p -= bs->front_pad;
267 
268 		mempool_free(p, bs->bio_pool);
269 	} else {
270 		/* Bio was allocated by bio_kmalloc() */
271 		kfree(bio);
272 	}
273 }
274 
275 /*
276  * Users of this function have their own bio allocation. Subsequently,
277  * they must remember to pair any call to bio_init() with bio_uninit()
278  * when IO has completed, or when the bio is released.
279  */
280 void bio_init(struct bio *bio, struct bio_vec *table,
281 	      unsigned short max_vecs)
282 {
283 	memset(bio, 0, sizeof(*bio));
284 	atomic_set(&bio->__bi_remaining, 1);
285 	atomic_set(&bio->__bi_cnt, 1);
286 
287 	bio->bi_io_vec = table;
288 	bio->bi_max_vecs = max_vecs;
289 }
290 EXPORT_SYMBOL(bio_init);
291 
292 /**
293  * bio_reset - reinitialize a bio
294  * @bio:	bio to reset
295  *
296  * Description:
297  *   After calling bio_reset(), @bio will be in the same state as a freshly
298  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
299  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
300  *   comment in struct bio.
301  */
302 void bio_reset(struct bio *bio)
303 {
304 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
305 
306 	bio_uninit(bio);
307 
308 	memset(bio, 0, BIO_RESET_BYTES);
309 	bio->bi_flags = flags;
310 	atomic_set(&bio->__bi_remaining, 1);
311 }
312 EXPORT_SYMBOL(bio_reset);
313 
314 static struct bio *__bio_chain_endio(struct bio *bio)
315 {
316 	struct bio *parent = bio->bi_private;
317 
318 	if (!parent->bi_error)
319 		parent->bi_error = bio->bi_error;
320 	bio_put(bio);
321 	return parent;
322 }
323 
324 static void bio_chain_endio(struct bio *bio)
325 {
326 	bio_endio(__bio_chain_endio(bio));
327 }
328 
329 /**
330  * bio_chain - chain bio completions
331  * @bio: the target bio
332  * @parent: the @bio's parent bio
333  *
334  * The caller won't have a bi_end_io called when @bio completes - instead,
335  * @parent's bi_end_io won't be called until both @parent and @bio have
336  * completed; the chained bio will also be freed when it completes.
337  *
338  * The caller must not set bi_private or bi_end_io in @bio.
339  */
340 void bio_chain(struct bio *bio, struct bio *parent)
341 {
342 	BUG_ON(bio->bi_private || bio->bi_end_io);
343 
344 	bio->bi_private = parent;
345 	bio->bi_end_io	= bio_chain_endio;
346 	bio_inc_remaining(parent);
347 }
348 EXPORT_SYMBOL(bio_chain);
349 
350 static void bio_alloc_rescue(struct work_struct *work)
351 {
352 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
353 	struct bio *bio;
354 
355 	while (1) {
356 		spin_lock(&bs->rescue_lock);
357 		bio = bio_list_pop(&bs->rescue_list);
358 		spin_unlock(&bs->rescue_lock);
359 
360 		if (!bio)
361 			break;
362 
363 		generic_make_request(bio);
364 	}
365 }
366 
367 static void punt_bios_to_rescuer(struct bio_set *bs)
368 {
369 	struct bio_list punt, nopunt;
370 	struct bio *bio;
371 
372 	/*
373 	 * In order to guarantee forward progress we must punt only bios that
374 	 * were allocated from this bio_set; otherwise, if there was a bio on
375 	 * there for a stacking driver higher up in the stack, processing it
376 	 * could require allocating bios from this bio_set, and doing that from
377 	 * our own rescuer would be bad.
378 	 *
379 	 * Since bio lists are singly linked, pop them all instead of trying to
380 	 * remove from the middle of the list:
381 	 */
382 
383 	bio_list_init(&punt);
384 	bio_list_init(&nopunt);
385 
386 	while ((bio = bio_list_pop(&current->bio_list[0])))
387 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 	current->bio_list[0] = nopunt;
389 
390 	bio_list_init(&nopunt);
391 	while ((bio = bio_list_pop(&current->bio_list[1])))
392 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 	current->bio_list[1] = nopunt;
394 
395 	spin_lock(&bs->rescue_lock);
396 	bio_list_merge(&bs->rescue_list, &punt);
397 	spin_unlock(&bs->rescue_lock);
398 
399 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
400 }
401 
402 /**
403  * bio_alloc_bioset - allocate a bio for I/O
404  * @gfp_mask:   the GFP_ mask given to the slab allocator
405  * @nr_iovecs:	number of iovecs to pre-allocate
406  * @bs:		the bio_set to allocate from.
407  *
408  * Description:
409  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410  *   backed by the @bs's mempool.
411  *
412  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413  *   always be able to allocate a bio. This is due to the mempool guarantees.
414  *   To make this work, callers must never allocate more than 1 bio at a time
415  *   from this pool. Callers that need to allocate more than 1 bio must always
416  *   submit the previously allocated bio for IO before attempting to allocate
417  *   a new one. Failure to do so can cause deadlocks under memory pressure.
418  *
419  *   Note that when running under generic_make_request() (i.e. any block
420  *   driver), bios are not submitted until after you return - see the code in
421  *   generic_make_request() that converts recursion into iteration, to prevent
422  *   stack overflows.
423  *
424  *   This would normally mean allocating multiple bios under
425  *   generic_make_request() would be susceptible to deadlocks, but we have
426  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
427  *   thread.
428  *
429  *   However, we do not guarantee forward progress for allocations from other
430  *   mempools. Doing multiple allocations from the same mempool under
431  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
432  *   for per bio allocations.
433  *
434  *   RETURNS:
435  *   Pointer to new bio on success, NULL on failure.
436  */
437 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
438 			     struct bio_set *bs)
439 {
440 	gfp_t saved_gfp = gfp_mask;
441 	unsigned front_pad;
442 	unsigned inline_vecs;
443 	struct bio_vec *bvl = NULL;
444 	struct bio *bio;
445 	void *p;
446 
447 	if (!bs) {
448 		if (nr_iovecs > UIO_MAXIOV)
449 			return NULL;
450 
451 		p = kmalloc(sizeof(struct bio) +
452 			    nr_iovecs * sizeof(struct bio_vec),
453 			    gfp_mask);
454 		front_pad = 0;
455 		inline_vecs = nr_iovecs;
456 	} else {
457 		/* should not use nobvec bioset for nr_iovecs > 0 */
458 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
459 			return NULL;
460 		/*
461 		 * generic_make_request() converts recursion to iteration; this
462 		 * means if we're running beneath it, any bios we allocate and
463 		 * submit will not be submitted (and thus freed) until after we
464 		 * return.
465 		 *
466 		 * This exposes us to a potential deadlock if we allocate
467 		 * multiple bios from the same bio_set() while running
468 		 * underneath generic_make_request(). If we were to allocate
469 		 * multiple bios (say a stacking block driver that was splitting
470 		 * bios), we would deadlock if we exhausted the mempool's
471 		 * reserve.
472 		 *
473 		 * We solve this, and guarantee forward progress, with a rescuer
474 		 * workqueue per bio_set. If we go to allocate and there are
475 		 * bios on current->bio_list, we first try the allocation
476 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
477 		 * bios we would be blocking to the rescuer workqueue before
478 		 * we retry with the original gfp_flags.
479 		 */
480 
481 		if (current->bio_list &&
482 		    (!bio_list_empty(&current->bio_list[0]) ||
483 		     !bio_list_empty(&current->bio_list[1])))
484 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485 
486 		p = mempool_alloc(bs->bio_pool, gfp_mask);
487 		if (!p && gfp_mask != saved_gfp) {
488 			punt_bios_to_rescuer(bs);
489 			gfp_mask = saved_gfp;
490 			p = mempool_alloc(bs->bio_pool, gfp_mask);
491 		}
492 
493 		front_pad = bs->front_pad;
494 		inline_vecs = BIO_INLINE_VECS;
495 	}
496 
497 	if (unlikely(!p))
498 		return NULL;
499 
500 	bio = p + front_pad;
501 	bio_init(bio, NULL, 0);
502 
503 	if (nr_iovecs > inline_vecs) {
504 		unsigned long idx = 0;
505 
506 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 		if (!bvl && gfp_mask != saved_gfp) {
508 			punt_bios_to_rescuer(bs);
509 			gfp_mask = saved_gfp;
510 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 		}
512 
513 		if (unlikely(!bvl))
514 			goto err_free;
515 
516 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 	} else if (nr_iovecs) {
518 		bvl = bio->bi_inline_vecs;
519 	}
520 
521 	bio->bi_pool = bs;
522 	bio->bi_max_vecs = nr_iovecs;
523 	bio->bi_io_vec = bvl;
524 	return bio;
525 
526 err_free:
527 	mempool_free(p, bs->bio_pool);
528 	return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531 
532 void zero_fill_bio(struct bio *bio)
533 {
534 	unsigned long flags;
535 	struct bio_vec bv;
536 	struct bvec_iter iter;
537 
538 	bio_for_each_segment(bv, bio, iter) {
539 		char *data = bvec_kmap_irq(&bv, &flags);
540 		memset(data, 0, bv.bv_len);
541 		flush_dcache_page(bv.bv_page);
542 		bvec_kunmap_irq(data, &flags);
543 	}
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546 
547 /**
548  * bio_put - release a reference to a bio
549  * @bio:   bio to release reference to
550  *
551  * Description:
552  *   Put a reference to a &struct bio, either one you have gotten with
553  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
554  **/
555 void bio_put(struct bio *bio)
556 {
557 	if (!bio_flagged(bio, BIO_REFFED))
558 		bio_free(bio);
559 	else {
560 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561 
562 		/*
563 		 * last put frees it
564 		 */
565 		if (atomic_dec_and_test(&bio->__bi_cnt))
566 			bio_free(bio);
567 	}
568 }
569 EXPORT_SYMBOL(bio_put);
570 
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 		blk_recount_segments(q, bio);
575 
576 	return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579 
580 /**
581  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
582  * 	@bio: destination bio
583  * 	@bio_src: bio to clone
584  *
585  *	Clone a &bio. Caller will own the returned bio, but not
586  *	the actual data it points to. Reference count of returned
587  * 	bio will be one.
588  *
589  * 	Caller must ensure that @bio_src is not freed before @bio.
590  */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594 
595 	/*
596 	 * most users will be overriding ->bi_bdev with a new target,
597 	 * so we don't set nor calculate new physical/hw segment counts here
598 	 */
599 	bio->bi_bdev = bio_src->bi_bdev;
600 	bio_set_flag(bio, BIO_CLONED);
601 	bio->bi_opf = bio_src->bi_opf;
602 	bio->bi_iter = bio_src->bi_iter;
603 	bio->bi_io_vec = bio_src->bi_io_vec;
604 
605 	bio_clone_blkcg_association(bio, bio_src);
606 }
607 EXPORT_SYMBOL(__bio_clone_fast);
608 
609 /**
610  *	bio_clone_fast - clone a bio that shares the original bio's biovec
611  *	@bio: bio to clone
612  *	@gfp_mask: allocation priority
613  *	@bs: bio_set to allocate from
614  *
615  * 	Like __bio_clone_fast, only also allocates the returned bio
616  */
617 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
618 {
619 	struct bio *b;
620 
621 	b = bio_alloc_bioset(gfp_mask, 0, bs);
622 	if (!b)
623 		return NULL;
624 
625 	__bio_clone_fast(b, bio);
626 
627 	if (bio_integrity(bio)) {
628 		int ret;
629 
630 		ret = bio_integrity_clone(b, bio, gfp_mask);
631 
632 		if (ret < 0) {
633 			bio_put(b);
634 			return NULL;
635 		}
636 	}
637 
638 	return b;
639 }
640 EXPORT_SYMBOL(bio_clone_fast);
641 
642 /**
643  * 	bio_clone_bioset - clone a bio
644  * 	@bio_src: bio to clone
645  *	@gfp_mask: allocation priority
646  *	@bs: bio_set to allocate from
647  *
648  *	Clone bio. Caller will own the returned bio, but not the actual data it
649  *	points to. Reference count of returned bio will be one.
650  */
651 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
652 			     struct bio_set *bs)
653 {
654 	struct bvec_iter iter;
655 	struct bio_vec bv;
656 	struct bio *bio;
657 
658 	/*
659 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
660 	 * bio_src->bi_io_vec to bio->bi_io_vec.
661 	 *
662 	 * We can't do that anymore, because:
663 	 *
664 	 *  - The point of cloning the biovec is to produce a bio with a biovec
665 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
666 	 *
667 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
668 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
669 	 *    But the clone should succeed as long as the number of biovecs we
670 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
671 	 *
672 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
673 	 *    that does not own the bio - reason being drivers don't use it for
674 	 *    iterating over the biovec anymore, so expecting it to be kept up
675 	 *    to date (i.e. for clones that share the parent biovec) is just
676 	 *    asking for trouble and would force extra work on
677 	 *    __bio_clone_fast() anyways.
678 	 */
679 
680 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
681 	if (!bio)
682 		return NULL;
683 	bio->bi_bdev		= bio_src->bi_bdev;
684 	bio->bi_opf		= bio_src->bi_opf;
685 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
686 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
687 
688 	switch (bio_op(bio)) {
689 	case REQ_OP_DISCARD:
690 	case REQ_OP_SECURE_ERASE:
691 	case REQ_OP_WRITE_ZEROES:
692 		break;
693 	case REQ_OP_WRITE_SAME:
694 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
695 		break;
696 	default:
697 		bio_for_each_segment(bv, bio_src, iter)
698 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
699 		break;
700 	}
701 
702 	if (bio_integrity(bio_src)) {
703 		int ret;
704 
705 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
706 		if (ret < 0) {
707 			bio_put(bio);
708 			return NULL;
709 		}
710 	}
711 
712 	bio_clone_blkcg_association(bio, bio_src);
713 
714 	return bio;
715 }
716 EXPORT_SYMBOL(bio_clone_bioset);
717 
718 /**
719  *	bio_add_pc_page	-	attempt to add page to bio
720  *	@q: the target queue
721  *	@bio: destination bio
722  *	@page: page to add
723  *	@len: vec entry length
724  *	@offset: vec entry offset
725  *
726  *	Attempt to add a page to the bio_vec maplist. This can fail for a
727  *	number of reasons, such as the bio being full or target block device
728  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
729  *	so it is always possible to add a single page to an empty bio.
730  *
731  *	This should only be used by REQ_PC bios.
732  */
733 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
734 		    *page, unsigned int len, unsigned int offset)
735 {
736 	int retried_segments = 0;
737 	struct bio_vec *bvec;
738 
739 	/*
740 	 * cloned bio must not modify vec list
741 	 */
742 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
743 		return 0;
744 
745 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
746 		return 0;
747 
748 	/*
749 	 * For filesystems with a blocksize smaller than the pagesize
750 	 * we will often be called with the same page as last time and
751 	 * a consecutive offset.  Optimize this special case.
752 	 */
753 	if (bio->bi_vcnt > 0) {
754 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
755 
756 		if (page == prev->bv_page &&
757 		    offset == prev->bv_offset + prev->bv_len) {
758 			prev->bv_len += len;
759 			bio->bi_iter.bi_size += len;
760 			goto done;
761 		}
762 
763 		/*
764 		 * If the queue doesn't support SG gaps and adding this
765 		 * offset would create a gap, disallow it.
766 		 */
767 		if (bvec_gap_to_prev(q, prev, offset))
768 			return 0;
769 	}
770 
771 	if (bio->bi_vcnt >= bio->bi_max_vecs)
772 		return 0;
773 
774 	/*
775 	 * setup the new entry, we might clear it again later if we
776 	 * cannot add the page
777 	 */
778 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
779 	bvec->bv_page = page;
780 	bvec->bv_len = len;
781 	bvec->bv_offset = offset;
782 	bio->bi_vcnt++;
783 	bio->bi_phys_segments++;
784 	bio->bi_iter.bi_size += len;
785 
786 	/*
787 	 * Perform a recount if the number of segments is greater
788 	 * than queue_max_segments(q).
789 	 */
790 
791 	while (bio->bi_phys_segments > queue_max_segments(q)) {
792 
793 		if (retried_segments)
794 			goto failed;
795 
796 		retried_segments = 1;
797 		blk_recount_segments(q, bio);
798 	}
799 
800 	/* If we may be able to merge these biovecs, force a recount */
801 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
802 		bio_clear_flag(bio, BIO_SEG_VALID);
803 
804  done:
805 	return len;
806 
807  failed:
808 	bvec->bv_page = NULL;
809 	bvec->bv_len = 0;
810 	bvec->bv_offset = 0;
811 	bio->bi_vcnt--;
812 	bio->bi_iter.bi_size -= len;
813 	blk_recount_segments(q, bio);
814 	return 0;
815 }
816 EXPORT_SYMBOL(bio_add_pc_page);
817 
818 /**
819  *	bio_add_page	-	attempt to add page to bio
820  *	@bio: destination bio
821  *	@page: page to add
822  *	@len: vec entry length
823  *	@offset: vec entry offset
824  *
825  *	Attempt to add a page to the bio_vec maplist. This will only fail
826  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
827  */
828 int bio_add_page(struct bio *bio, struct page *page,
829 		 unsigned int len, unsigned int offset)
830 {
831 	struct bio_vec *bv;
832 
833 	/*
834 	 * cloned bio must not modify vec list
835 	 */
836 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
837 		return 0;
838 
839 	/*
840 	 * For filesystems with a blocksize smaller than the pagesize
841 	 * we will often be called with the same page as last time and
842 	 * a consecutive offset.  Optimize this special case.
843 	 */
844 	if (bio->bi_vcnt > 0) {
845 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
846 
847 		if (page == bv->bv_page &&
848 		    offset == bv->bv_offset + bv->bv_len) {
849 			bv->bv_len += len;
850 			goto done;
851 		}
852 	}
853 
854 	if (bio->bi_vcnt >= bio->bi_max_vecs)
855 		return 0;
856 
857 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
858 	bv->bv_page	= page;
859 	bv->bv_len	= len;
860 	bv->bv_offset	= offset;
861 
862 	bio->bi_vcnt++;
863 done:
864 	bio->bi_iter.bi_size += len;
865 	return len;
866 }
867 EXPORT_SYMBOL(bio_add_page);
868 
869 /**
870  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
871  * @bio: bio to add pages to
872  * @iter: iov iterator describing the region to be mapped
873  *
874  * Pins as many pages from *iter and appends them to @bio's bvec array. The
875  * pages will have to be released using put_page() when done.
876  */
877 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
878 {
879 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
880 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
881 	struct page **pages = (struct page **)bv;
882 	size_t offset, diff;
883 	ssize_t size;
884 
885 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
886 	if (unlikely(size <= 0))
887 		return size ? size : -EFAULT;
888 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
889 
890 	/*
891 	 * Deep magic below:  We need to walk the pinned pages backwards
892 	 * because we are abusing the space allocated for the bio_vecs
893 	 * for the page array.  Because the bio_vecs are larger than the
894 	 * page pointers by definition this will always work.  But it also
895 	 * means we can't use bio_add_page, so any changes to it's semantics
896 	 * need to be reflected here as well.
897 	 */
898 	bio->bi_iter.bi_size += size;
899 	bio->bi_vcnt += nr_pages;
900 
901 	diff = (nr_pages * PAGE_SIZE - offset) - size;
902 	while (nr_pages--) {
903 		bv[nr_pages].bv_page = pages[nr_pages];
904 		bv[nr_pages].bv_len = PAGE_SIZE;
905 		bv[nr_pages].bv_offset = 0;
906 	}
907 
908 	bv[0].bv_offset += offset;
909 	bv[0].bv_len -= offset;
910 	if (diff)
911 		bv[bio->bi_vcnt - 1].bv_len -= diff;
912 
913 	iov_iter_advance(iter, size);
914 	return 0;
915 }
916 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
917 
918 struct submit_bio_ret {
919 	struct completion event;
920 	int error;
921 };
922 
923 static void submit_bio_wait_endio(struct bio *bio)
924 {
925 	struct submit_bio_ret *ret = bio->bi_private;
926 
927 	ret->error = bio->bi_error;
928 	complete(&ret->event);
929 }
930 
931 /**
932  * submit_bio_wait - submit a bio, and wait until it completes
933  * @bio: The &struct bio which describes the I/O
934  *
935  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
936  * bio_endio() on failure.
937  */
938 int submit_bio_wait(struct bio *bio)
939 {
940 	struct submit_bio_ret ret;
941 
942 	init_completion(&ret.event);
943 	bio->bi_private = &ret;
944 	bio->bi_end_io = submit_bio_wait_endio;
945 	bio->bi_opf |= REQ_SYNC;
946 	submit_bio(bio);
947 	wait_for_completion_io(&ret.event);
948 
949 	return ret.error;
950 }
951 EXPORT_SYMBOL(submit_bio_wait);
952 
953 /**
954  * bio_advance - increment/complete a bio by some number of bytes
955  * @bio:	bio to advance
956  * @bytes:	number of bytes to complete
957  *
958  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
959  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
960  * be updated on the last bvec as well.
961  *
962  * @bio will then represent the remaining, uncompleted portion of the io.
963  */
964 void bio_advance(struct bio *bio, unsigned bytes)
965 {
966 	if (bio_integrity(bio))
967 		bio_integrity_advance(bio, bytes);
968 
969 	bio_advance_iter(bio, &bio->bi_iter, bytes);
970 }
971 EXPORT_SYMBOL(bio_advance);
972 
973 /**
974  * bio_alloc_pages - allocates a single page for each bvec in a bio
975  * @bio: bio to allocate pages for
976  * @gfp_mask: flags for allocation
977  *
978  * Allocates pages up to @bio->bi_vcnt.
979  *
980  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
981  * freed.
982  */
983 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
984 {
985 	int i;
986 	struct bio_vec *bv;
987 
988 	bio_for_each_segment_all(bv, bio, i) {
989 		bv->bv_page = alloc_page(gfp_mask);
990 		if (!bv->bv_page) {
991 			while (--bv >= bio->bi_io_vec)
992 				__free_page(bv->bv_page);
993 			return -ENOMEM;
994 		}
995 	}
996 
997 	return 0;
998 }
999 EXPORT_SYMBOL(bio_alloc_pages);
1000 
1001 /**
1002  * bio_copy_data - copy contents of data buffers from one chain of bios to
1003  * another
1004  * @src: source bio list
1005  * @dst: destination bio list
1006  *
1007  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1008  * @src and @dst as linked lists of bios.
1009  *
1010  * Stops when it reaches the end of either @src or @dst - that is, copies
1011  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1012  */
1013 void bio_copy_data(struct bio *dst, struct bio *src)
1014 {
1015 	struct bvec_iter src_iter, dst_iter;
1016 	struct bio_vec src_bv, dst_bv;
1017 	void *src_p, *dst_p;
1018 	unsigned bytes;
1019 
1020 	src_iter = src->bi_iter;
1021 	dst_iter = dst->bi_iter;
1022 
1023 	while (1) {
1024 		if (!src_iter.bi_size) {
1025 			src = src->bi_next;
1026 			if (!src)
1027 				break;
1028 
1029 			src_iter = src->bi_iter;
1030 		}
1031 
1032 		if (!dst_iter.bi_size) {
1033 			dst = dst->bi_next;
1034 			if (!dst)
1035 				break;
1036 
1037 			dst_iter = dst->bi_iter;
1038 		}
1039 
1040 		src_bv = bio_iter_iovec(src, src_iter);
1041 		dst_bv = bio_iter_iovec(dst, dst_iter);
1042 
1043 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1044 
1045 		src_p = kmap_atomic(src_bv.bv_page);
1046 		dst_p = kmap_atomic(dst_bv.bv_page);
1047 
1048 		memcpy(dst_p + dst_bv.bv_offset,
1049 		       src_p + src_bv.bv_offset,
1050 		       bytes);
1051 
1052 		kunmap_atomic(dst_p);
1053 		kunmap_atomic(src_p);
1054 
1055 		bio_advance_iter(src, &src_iter, bytes);
1056 		bio_advance_iter(dst, &dst_iter, bytes);
1057 	}
1058 }
1059 EXPORT_SYMBOL(bio_copy_data);
1060 
1061 struct bio_map_data {
1062 	int is_our_pages;
1063 	struct iov_iter iter;
1064 	struct iovec iov[];
1065 };
1066 
1067 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1068 					       gfp_t gfp_mask)
1069 {
1070 	if (iov_count > UIO_MAXIOV)
1071 		return NULL;
1072 
1073 	return kmalloc(sizeof(struct bio_map_data) +
1074 		       sizeof(struct iovec) * iov_count, gfp_mask);
1075 }
1076 
1077 /**
1078  * bio_copy_from_iter - copy all pages from iov_iter to bio
1079  * @bio: The &struct bio which describes the I/O as destination
1080  * @iter: iov_iter as source
1081  *
1082  * Copy all pages from iov_iter to bio.
1083  * Returns 0 on success, or error on failure.
1084  */
1085 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1086 {
1087 	int i;
1088 	struct bio_vec *bvec;
1089 
1090 	bio_for_each_segment_all(bvec, bio, i) {
1091 		ssize_t ret;
1092 
1093 		ret = copy_page_from_iter(bvec->bv_page,
1094 					  bvec->bv_offset,
1095 					  bvec->bv_len,
1096 					  &iter);
1097 
1098 		if (!iov_iter_count(&iter))
1099 			break;
1100 
1101 		if (ret < bvec->bv_len)
1102 			return -EFAULT;
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  * bio_copy_to_iter - copy all pages from bio to iov_iter
1110  * @bio: The &struct bio which describes the I/O as source
1111  * @iter: iov_iter as destination
1112  *
1113  * Copy all pages from bio to iov_iter.
1114  * Returns 0 on success, or error on failure.
1115  */
1116 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1117 {
1118 	int i;
1119 	struct bio_vec *bvec;
1120 
1121 	bio_for_each_segment_all(bvec, bio, i) {
1122 		ssize_t ret;
1123 
1124 		ret = copy_page_to_iter(bvec->bv_page,
1125 					bvec->bv_offset,
1126 					bvec->bv_len,
1127 					&iter);
1128 
1129 		if (!iov_iter_count(&iter))
1130 			break;
1131 
1132 		if (ret < bvec->bv_len)
1133 			return -EFAULT;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 void bio_free_pages(struct bio *bio)
1140 {
1141 	struct bio_vec *bvec;
1142 	int i;
1143 
1144 	bio_for_each_segment_all(bvec, bio, i)
1145 		__free_page(bvec->bv_page);
1146 }
1147 EXPORT_SYMBOL(bio_free_pages);
1148 
1149 /**
1150  *	bio_uncopy_user	-	finish previously mapped bio
1151  *	@bio: bio being terminated
1152  *
1153  *	Free pages allocated from bio_copy_user_iov() and write back data
1154  *	to user space in case of a read.
1155  */
1156 int bio_uncopy_user(struct bio *bio)
1157 {
1158 	struct bio_map_data *bmd = bio->bi_private;
1159 	int ret = 0;
1160 
1161 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1162 		/*
1163 		 * if we're in a workqueue, the request is orphaned, so
1164 		 * don't copy into a random user address space, just free
1165 		 * and return -EINTR so user space doesn't expect any data.
1166 		 */
1167 		if (!current->mm)
1168 			ret = -EINTR;
1169 		else if (bio_data_dir(bio) == READ)
1170 			ret = bio_copy_to_iter(bio, bmd->iter);
1171 		if (bmd->is_our_pages)
1172 			bio_free_pages(bio);
1173 	}
1174 	kfree(bmd);
1175 	bio_put(bio);
1176 	return ret;
1177 }
1178 
1179 /**
1180  *	bio_copy_user_iov	-	copy user data to bio
1181  *	@q:		destination block queue
1182  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1183  *	@iter:		iovec iterator
1184  *	@gfp_mask:	memory allocation flags
1185  *
1186  *	Prepares and returns a bio for indirect user io, bouncing data
1187  *	to/from kernel pages as necessary. Must be paired with
1188  *	call bio_uncopy_user() on io completion.
1189  */
1190 struct bio *bio_copy_user_iov(struct request_queue *q,
1191 			      struct rq_map_data *map_data,
1192 			      const struct iov_iter *iter,
1193 			      gfp_t gfp_mask)
1194 {
1195 	struct bio_map_data *bmd;
1196 	struct page *page;
1197 	struct bio *bio;
1198 	int i, ret;
1199 	int nr_pages = 0;
1200 	unsigned int len = iter->count;
1201 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1202 
1203 	for (i = 0; i < iter->nr_segs; i++) {
1204 		unsigned long uaddr;
1205 		unsigned long end;
1206 		unsigned long start;
1207 
1208 		uaddr = (unsigned long) iter->iov[i].iov_base;
1209 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1210 			>> PAGE_SHIFT;
1211 		start = uaddr >> PAGE_SHIFT;
1212 
1213 		/*
1214 		 * Overflow, abort
1215 		 */
1216 		if (end < start)
1217 			return ERR_PTR(-EINVAL);
1218 
1219 		nr_pages += end - start;
1220 	}
1221 
1222 	if (offset)
1223 		nr_pages++;
1224 
1225 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1226 	if (!bmd)
1227 		return ERR_PTR(-ENOMEM);
1228 
1229 	/*
1230 	 * We need to do a deep copy of the iov_iter including the iovecs.
1231 	 * The caller provided iov might point to an on-stack or otherwise
1232 	 * shortlived one.
1233 	 */
1234 	bmd->is_our_pages = map_data ? 0 : 1;
1235 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1236 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1237 			iter->nr_segs, iter->count);
1238 
1239 	ret = -ENOMEM;
1240 	bio = bio_kmalloc(gfp_mask, nr_pages);
1241 	if (!bio)
1242 		goto out_bmd;
1243 
1244 	ret = 0;
1245 
1246 	if (map_data) {
1247 		nr_pages = 1 << map_data->page_order;
1248 		i = map_data->offset / PAGE_SIZE;
1249 	}
1250 	while (len) {
1251 		unsigned int bytes = PAGE_SIZE;
1252 
1253 		bytes -= offset;
1254 
1255 		if (bytes > len)
1256 			bytes = len;
1257 
1258 		if (map_data) {
1259 			if (i == map_data->nr_entries * nr_pages) {
1260 				ret = -ENOMEM;
1261 				break;
1262 			}
1263 
1264 			page = map_data->pages[i / nr_pages];
1265 			page += (i % nr_pages);
1266 
1267 			i++;
1268 		} else {
1269 			page = alloc_page(q->bounce_gfp | gfp_mask);
1270 			if (!page) {
1271 				ret = -ENOMEM;
1272 				break;
1273 			}
1274 		}
1275 
1276 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1277 			break;
1278 
1279 		len -= bytes;
1280 		offset = 0;
1281 	}
1282 
1283 	if (ret)
1284 		goto cleanup;
1285 
1286 	/*
1287 	 * success
1288 	 */
1289 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1290 	    (map_data && map_data->from_user)) {
1291 		ret = bio_copy_from_iter(bio, *iter);
1292 		if (ret)
1293 			goto cleanup;
1294 	}
1295 
1296 	bio->bi_private = bmd;
1297 	return bio;
1298 cleanup:
1299 	if (!map_data)
1300 		bio_free_pages(bio);
1301 	bio_put(bio);
1302 out_bmd:
1303 	kfree(bmd);
1304 	return ERR_PTR(ret);
1305 }
1306 
1307 /**
1308  *	bio_map_user_iov - map user iovec into bio
1309  *	@q:		the struct request_queue for the bio
1310  *	@iter:		iovec iterator
1311  *	@gfp_mask:	memory allocation flags
1312  *
1313  *	Map the user space address into a bio suitable for io to a block
1314  *	device. Returns an error pointer in case of error.
1315  */
1316 struct bio *bio_map_user_iov(struct request_queue *q,
1317 			     const struct iov_iter *iter,
1318 			     gfp_t gfp_mask)
1319 {
1320 	int j;
1321 	int nr_pages = 0;
1322 	struct page **pages;
1323 	struct bio *bio;
1324 	int cur_page = 0;
1325 	int ret, offset;
1326 	struct iov_iter i;
1327 	struct iovec iov;
1328 
1329 	iov_for_each(iov, i, *iter) {
1330 		unsigned long uaddr = (unsigned long) iov.iov_base;
1331 		unsigned long len = iov.iov_len;
1332 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1333 		unsigned long start = uaddr >> PAGE_SHIFT;
1334 
1335 		/*
1336 		 * Overflow, abort
1337 		 */
1338 		if (end < start)
1339 			return ERR_PTR(-EINVAL);
1340 
1341 		nr_pages += end - start;
1342 		/*
1343 		 * buffer must be aligned to at least logical block size for now
1344 		 */
1345 		if (uaddr & queue_dma_alignment(q))
1346 			return ERR_PTR(-EINVAL);
1347 	}
1348 
1349 	if (!nr_pages)
1350 		return ERR_PTR(-EINVAL);
1351 
1352 	bio = bio_kmalloc(gfp_mask, nr_pages);
1353 	if (!bio)
1354 		return ERR_PTR(-ENOMEM);
1355 
1356 	ret = -ENOMEM;
1357 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1358 	if (!pages)
1359 		goto out;
1360 
1361 	iov_for_each(iov, i, *iter) {
1362 		unsigned long uaddr = (unsigned long) iov.iov_base;
1363 		unsigned long len = iov.iov_len;
1364 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1365 		unsigned long start = uaddr >> PAGE_SHIFT;
1366 		const int local_nr_pages = end - start;
1367 		const int page_limit = cur_page + local_nr_pages;
1368 
1369 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1370 				(iter->type & WRITE) != WRITE,
1371 				&pages[cur_page]);
1372 		if (ret < local_nr_pages) {
1373 			ret = -EFAULT;
1374 			goto out_unmap;
1375 		}
1376 
1377 		offset = offset_in_page(uaddr);
1378 		for (j = cur_page; j < page_limit; j++) {
1379 			unsigned int bytes = PAGE_SIZE - offset;
1380 
1381 			if (len <= 0)
1382 				break;
1383 
1384 			if (bytes > len)
1385 				bytes = len;
1386 
1387 			/*
1388 			 * sorry...
1389 			 */
1390 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1391 					    bytes)
1392 				break;
1393 
1394 			len -= bytes;
1395 			offset = 0;
1396 		}
1397 
1398 		cur_page = j;
1399 		/*
1400 		 * release the pages we didn't map into the bio, if any
1401 		 */
1402 		while (j < page_limit)
1403 			put_page(pages[j++]);
1404 	}
1405 
1406 	kfree(pages);
1407 
1408 	bio_set_flag(bio, BIO_USER_MAPPED);
1409 
1410 	/*
1411 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1412 	 * it would normally disappear when its bi_end_io is run.
1413 	 * however, we need it for the unmap, so grab an extra
1414 	 * reference to it
1415 	 */
1416 	bio_get(bio);
1417 	return bio;
1418 
1419  out_unmap:
1420 	for (j = 0; j < nr_pages; j++) {
1421 		if (!pages[j])
1422 			break;
1423 		put_page(pages[j]);
1424 	}
1425  out:
1426 	kfree(pages);
1427 	bio_put(bio);
1428 	return ERR_PTR(ret);
1429 }
1430 
1431 static void __bio_unmap_user(struct bio *bio)
1432 {
1433 	struct bio_vec *bvec;
1434 	int i;
1435 
1436 	/*
1437 	 * make sure we dirty pages we wrote to
1438 	 */
1439 	bio_for_each_segment_all(bvec, bio, i) {
1440 		if (bio_data_dir(bio) == READ)
1441 			set_page_dirty_lock(bvec->bv_page);
1442 
1443 		put_page(bvec->bv_page);
1444 	}
1445 
1446 	bio_put(bio);
1447 }
1448 
1449 /**
1450  *	bio_unmap_user	-	unmap a bio
1451  *	@bio:		the bio being unmapped
1452  *
1453  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1454  *	process context.
1455  *
1456  *	bio_unmap_user() may sleep.
1457  */
1458 void bio_unmap_user(struct bio *bio)
1459 {
1460 	__bio_unmap_user(bio);
1461 	bio_put(bio);
1462 }
1463 
1464 static void bio_map_kern_endio(struct bio *bio)
1465 {
1466 	bio_put(bio);
1467 }
1468 
1469 /**
1470  *	bio_map_kern	-	map kernel address into bio
1471  *	@q: the struct request_queue for the bio
1472  *	@data: pointer to buffer to map
1473  *	@len: length in bytes
1474  *	@gfp_mask: allocation flags for bio allocation
1475  *
1476  *	Map the kernel address into a bio suitable for io to a block
1477  *	device. Returns an error pointer in case of error.
1478  */
1479 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1480 			 gfp_t gfp_mask)
1481 {
1482 	unsigned long kaddr = (unsigned long)data;
1483 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1484 	unsigned long start = kaddr >> PAGE_SHIFT;
1485 	const int nr_pages = end - start;
1486 	int offset, i;
1487 	struct bio *bio;
1488 
1489 	bio = bio_kmalloc(gfp_mask, nr_pages);
1490 	if (!bio)
1491 		return ERR_PTR(-ENOMEM);
1492 
1493 	offset = offset_in_page(kaddr);
1494 	for (i = 0; i < nr_pages; i++) {
1495 		unsigned int bytes = PAGE_SIZE - offset;
1496 
1497 		if (len <= 0)
1498 			break;
1499 
1500 		if (bytes > len)
1501 			bytes = len;
1502 
1503 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1504 				    offset) < bytes) {
1505 			/* we don't support partial mappings */
1506 			bio_put(bio);
1507 			return ERR_PTR(-EINVAL);
1508 		}
1509 
1510 		data += bytes;
1511 		len -= bytes;
1512 		offset = 0;
1513 	}
1514 
1515 	bio->bi_end_io = bio_map_kern_endio;
1516 	return bio;
1517 }
1518 EXPORT_SYMBOL(bio_map_kern);
1519 
1520 static void bio_copy_kern_endio(struct bio *bio)
1521 {
1522 	bio_free_pages(bio);
1523 	bio_put(bio);
1524 }
1525 
1526 static void bio_copy_kern_endio_read(struct bio *bio)
1527 {
1528 	char *p = bio->bi_private;
1529 	struct bio_vec *bvec;
1530 	int i;
1531 
1532 	bio_for_each_segment_all(bvec, bio, i) {
1533 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1534 		p += bvec->bv_len;
1535 	}
1536 
1537 	bio_copy_kern_endio(bio);
1538 }
1539 
1540 /**
1541  *	bio_copy_kern	-	copy kernel address into bio
1542  *	@q: the struct request_queue for the bio
1543  *	@data: pointer to buffer to copy
1544  *	@len: length in bytes
1545  *	@gfp_mask: allocation flags for bio and page allocation
1546  *	@reading: data direction is READ
1547  *
1548  *	copy the kernel address into a bio suitable for io to a block
1549  *	device. Returns an error pointer in case of error.
1550  */
1551 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1552 			  gfp_t gfp_mask, int reading)
1553 {
1554 	unsigned long kaddr = (unsigned long)data;
1555 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1556 	unsigned long start = kaddr >> PAGE_SHIFT;
1557 	struct bio *bio;
1558 	void *p = data;
1559 	int nr_pages = 0;
1560 
1561 	/*
1562 	 * Overflow, abort
1563 	 */
1564 	if (end < start)
1565 		return ERR_PTR(-EINVAL);
1566 
1567 	nr_pages = end - start;
1568 	bio = bio_kmalloc(gfp_mask, nr_pages);
1569 	if (!bio)
1570 		return ERR_PTR(-ENOMEM);
1571 
1572 	while (len) {
1573 		struct page *page;
1574 		unsigned int bytes = PAGE_SIZE;
1575 
1576 		if (bytes > len)
1577 			bytes = len;
1578 
1579 		page = alloc_page(q->bounce_gfp | gfp_mask);
1580 		if (!page)
1581 			goto cleanup;
1582 
1583 		if (!reading)
1584 			memcpy(page_address(page), p, bytes);
1585 
1586 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1587 			break;
1588 
1589 		len -= bytes;
1590 		p += bytes;
1591 	}
1592 
1593 	if (reading) {
1594 		bio->bi_end_io = bio_copy_kern_endio_read;
1595 		bio->bi_private = data;
1596 	} else {
1597 		bio->bi_end_io = bio_copy_kern_endio;
1598 	}
1599 
1600 	return bio;
1601 
1602 cleanup:
1603 	bio_free_pages(bio);
1604 	bio_put(bio);
1605 	return ERR_PTR(-ENOMEM);
1606 }
1607 
1608 /*
1609  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1610  * for performing direct-IO in BIOs.
1611  *
1612  * The problem is that we cannot run set_page_dirty() from interrupt context
1613  * because the required locks are not interrupt-safe.  So what we can do is to
1614  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1615  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1616  * in process context.
1617  *
1618  * We special-case compound pages here: normally this means reads into hugetlb
1619  * pages.  The logic in here doesn't really work right for compound pages
1620  * because the VM does not uniformly chase down the head page in all cases.
1621  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1622  * handle them at all.  So we skip compound pages here at an early stage.
1623  *
1624  * Note that this code is very hard to test under normal circumstances because
1625  * direct-io pins the pages with get_user_pages().  This makes
1626  * is_page_cache_freeable return false, and the VM will not clean the pages.
1627  * But other code (eg, flusher threads) could clean the pages if they are mapped
1628  * pagecache.
1629  *
1630  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1631  * deferred bio dirtying paths.
1632  */
1633 
1634 /*
1635  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1636  */
1637 void bio_set_pages_dirty(struct bio *bio)
1638 {
1639 	struct bio_vec *bvec;
1640 	int i;
1641 
1642 	bio_for_each_segment_all(bvec, bio, i) {
1643 		struct page *page = bvec->bv_page;
1644 
1645 		if (page && !PageCompound(page))
1646 			set_page_dirty_lock(page);
1647 	}
1648 }
1649 
1650 static void bio_release_pages(struct bio *bio)
1651 {
1652 	struct bio_vec *bvec;
1653 	int i;
1654 
1655 	bio_for_each_segment_all(bvec, bio, i) {
1656 		struct page *page = bvec->bv_page;
1657 
1658 		if (page)
1659 			put_page(page);
1660 	}
1661 }
1662 
1663 /*
1664  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1665  * If they are, then fine.  If, however, some pages are clean then they must
1666  * have been written out during the direct-IO read.  So we take another ref on
1667  * the BIO and the offending pages and re-dirty the pages in process context.
1668  *
1669  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1670  * here on.  It will run one put_page() against each page and will run one
1671  * bio_put() against the BIO.
1672  */
1673 
1674 static void bio_dirty_fn(struct work_struct *work);
1675 
1676 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1677 static DEFINE_SPINLOCK(bio_dirty_lock);
1678 static struct bio *bio_dirty_list;
1679 
1680 /*
1681  * This runs in process context
1682  */
1683 static void bio_dirty_fn(struct work_struct *work)
1684 {
1685 	unsigned long flags;
1686 	struct bio *bio;
1687 
1688 	spin_lock_irqsave(&bio_dirty_lock, flags);
1689 	bio = bio_dirty_list;
1690 	bio_dirty_list = NULL;
1691 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1692 
1693 	while (bio) {
1694 		struct bio *next = bio->bi_private;
1695 
1696 		bio_set_pages_dirty(bio);
1697 		bio_release_pages(bio);
1698 		bio_put(bio);
1699 		bio = next;
1700 	}
1701 }
1702 
1703 void bio_check_pages_dirty(struct bio *bio)
1704 {
1705 	struct bio_vec *bvec;
1706 	int nr_clean_pages = 0;
1707 	int i;
1708 
1709 	bio_for_each_segment_all(bvec, bio, i) {
1710 		struct page *page = bvec->bv_page;
1711 
1712 		if (PageDirty(page) || PageCompound(page)) {
1713 			put_page(page);
1714 			bvec->bv_page = NULL;
1715 		} else {
1716 			nr_clean_pages++;
1717 		}
1718 	}
1719 
1720 	if (nr_clean_pages) {
1721 		unsigned long flags;
1722 
1723 		spin_lock_irqsave(&bio_dirty_lock, flags);
1724 		bio->bi_private = bio_dirty_list;
1725 		bio_dirty_list = bio;
1726 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1727 		schedule_work(&bio_dirty_work);
1728 	} else {
1729 		bio_put(bio);
1730 	}
1731 }
1732 
1733 void generic_start_io_acct(int rw, unsigned long sectors,
1734 			   struct hd_struct *part)
1735 {
1736 	int cpu = part_stat_lock();
1737 
1738 	part_round_stats(cpu, part);
1739 	part_stat_inc(cpu, part, ios[rw]);
1740 	part_stat_add(cpu, part, sectors[rw], sectors);
1741 	part_inc_in_flight(part, rw);
1742 
1743 	part_stat_unlock();
1744 }
1745 EXPORT_SYMBOL(generic_start_io_acct);
1746 
1747 void generic_end_io_acct(int rw, struct hd_struct *part,
1748 			 unsigned long start_time)
1749 {
1750 	unsigned long duration = jiffies - start_time;
1751 	int cpu = part_stat_lock();
1752 
1753 	part_stat_add(cpu, part, ticks[rw], duration);
1754 	part_round_stats(cpu, part);
1755 	part_dec_in_flight(part, rw);
1756 
1757 	part_stat_unlock();
1758 }
1759 EXPORT_SYMBOL(generic_end_io_acct);
1760 
1761 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1762 void bio_flush_dcache_pages(struct bio *bi)
1763 {
1764 	struct bio_vec bvec;
1765 	struct bvec_iter iter;
1766 
1767 	bio_for_each_segment(bvec, bi, iter)
1768 		flush_dcache_page(bvec.bv_page);
1769 }
1770 EXPORT_SYMBOL(bio_flush_dcache_pages);
1771 #endif
1772 
1773 static inline bool bio_remaining_done(struct bio *bio)
1774 {
1775 	/*
1776 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1777 	 * we always end io on the first invocation.
1778 	 */
1779 	if (!bio_flagged(bio, BIO_CHAIN))
1780 		return true;
1781 
1782 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1783 
1784 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1785 		bio_clear_flag(bio, BIO_CHAIN);
1786 		return true;
1787 	}
1788 
1789 	return false;
1790 }
1791 
1792 /**
1793  * bio_endio - end I/O on a bio
1794  * @bio:	bio
1795  *
1796  * Description:
1797  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1798  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1799  *   bio unless they own it and thus know that it has an end_io function.
1800  *
1801  *   bio_endio() can be called several times on a bio that has been chained
1802  *   using bio_chain().  The ->bi_end_io() function will only be called the
1803  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1804  *   generated if BIO_TRACE_COMPLETION is set.
1805  **/
1806 void bio_endio(struct bio *bio)
1807 {
1808 again:
1809 	if (!bio_remaining_done(bio))
1810 		return;
1811 
1812 	/*
1813 	 * Need to have a real endio function for chained bios, otherwise
1814 	 * various corner cases will break (like stacking block devices that
1815 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1816 	 * recursion and blowing the stack. Tail call optimization would
1817 	 * handle this, but compiling with frame pointers also disables
1818 	 * gcc's sibling call optimization.
1819 	 */
1820 	if (bio->bi_end_io == bio_chain_endio) {
1821 		bio = __bio_chain_endio(bio);
1822 		goto again;
1823 	}
1824 
1825 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1826 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev),
1827 					 bio, bio->bi_error);
1828 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1829 	}
1830 
1831 	blk_throtl_bio_endio(bio);
1832 	if (bio->bi_end_io)
1833 		bio->bi_end_io(bio);
1834 }
1835 EXPORT_SYMBOL(bio_endio);
1836 
1837 /**
1838  * bio_split - split a bio
1839  * @bio:	bio to split
1840  * @sectors:	number of sectors to split from the front of @bio
1841  * @gfp:	gfp mask
1842  * @bs:		bio set to allocate from
1843  *
1844  * Allocates and returns a new bio which represents @sectors from the start of
1845  * @bio, and updates @bio to represent the remaining sectors.
1846  *
1847  * Unless this is a discard request the newly allocated bio will point
1848  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1849  * @bio is not freed before the split.
1850  */
1851 struct bio *bio_split(struct bio *bio, int sectors,
1852 		      gfp_t gfp, struct bio_set *bs)
1853 {
1854 	struct bio *split = NULL;
1855 
1856 	BUG_ON(sectors <= 0);
1857 	BUG_ON(sectors >= bio_sectors(bio));
1858 
1859 	split = bio_clone_fast(bio, gfp, bs);
1860 	if (!split)
1861 		return NULL;
1862 
1863 	split->bi_iter.bi_size = sectors << 9;
1864 
1865 	if (bio_integrity(split))
1866 		bio_integrity_trim(split, 0, sectors);
1867 
1868 	bio_advance(bio, split->bi_iter.bi_size);
1869 
1870 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1871 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1872 
1873 	return split;
1874 }
1875 EXPORT_SYMBOL(bio_split);
1876 
1877 /**
1878  * bio_trim - trim a bio
1879  * @bio:	bio to trim
1880  * @offset:	number of sectors to trim from the front of @bio
1881  * @size:	size we want to trim @bio to, in sectors
1882  */
1883 void bio_trim(struct bio *bio, int offset, int size)
1884 {
1885 	/* 'bio' is a cloned bio which we need to trim to match
1886 	 * the given offset and size.
1887 	 */
1888 
1889 	size <<= 9;
1890 	if (offset == 0 && size == bio->bi_iter.bi_size)
1891 		return;
1892 
1893 	bio_clear_flag(bio, BIO_SEG_VALID);
1894 
1895 	bio_advance(bio, offset << 9);
1896 
1897 	bio->bi_iter.bi_size = size;
1898 }
1899 EXPORT_SYMBOL_GPL(bio_trim);
1900 
1901 /*
1902  * create memory pools for biovec's in a bio_set.
1903  * use the global biovec slabs created for general use.
1904  */
1905 mempool_t *biovec_create_pool(int pool_entries)
1906 {
1907 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1908 
1909 	return mempool_create_slab_pool(pool_entries, bp->slab);
1910 }
1911 
1912 void bioset_free(struct bio_set *bs)
1913 {
1914 	if (bs->rescue_workqueue)
1915 		destroy_workqueue(bs->rescue_workqueue);
1916 
1917 	if (bs->bio_pool)
1918 		mempool_destroy(bs->bio_pool);
1919 
1920 	if (bs->bvec_pool)
1921 		mempool_destroy(bs->bvec_pool);
1922 
1923 	bioset_integrity_free(bs);
1924 	bio_put_slab(bs);
1925 
1926 	kfree(bs);
1927 }
1928 EXPORT_SYMBOL(bioset_free);
1929 
1930 static struct bio_set *__bioset_create(unsigned int pool_size,
1931 				       unsigned int front_pad,
1932 				       bool create_bvec_pool)
1933 {
1934 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1935 	struct bio_set *bs;
1936 
1937 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1938 	if (!bs)
1939 		return NULL;
1940 
1941 	bs->front_pad = front_pad;
1942 
1943 	spin_lock_init(&bs->rescue_lock);
1944 	bio_list_init(&bs->rescue_list);
1945 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1946 
1947 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1948 	if (!bs->bio_slab) {
1949 		kfree(bs);
1950 		return NULL;
1951 	}
1952 
1953 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1954 	if (!bs->bio_pool)
1955 		goto bad;
1956 
1957 	if (create_bvec_pool) {
1958 		bs->bvec_pool = biovec_create_pool(pool_size);
1959 		if (!bs->bvec_pool)
1960 			goto bad;
1961 	}
1962 
1963 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1964 	if (!bs->rescue_workqueue)
1965 		goto bad;
1966 
1967 	return bs;
1968 bad:
1969 	bioset_free(bs);
1970 	return NULL;
1971 }
1972 
1973 /**
1974  * bioset_create  - Create a bio_set
1975  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1976  * @front_pad:	Number of bytes to allocate in front of the returned bio
1977  *
1978  * Description:
1979  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1980  *    to ask for a number of bytes to be allocated in front of the bio.
1981  *    Front pad allocation is useful for embedding the bio inside
1982  *    another structure, to avoid allocating extra data to go with the bio.
1983  *    Note that the bio must be embedded at the END of that structure always,
1984  *    or things will break badly.
1985  */
1986 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1987 {
1988 	return __bioset_create(pool_size, front_pad, true);
1989 }
1990 EXPORT_SYMBOL(bioset_create);
1991 
1992 /**
1993  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1994  * @pool_size:	Number of bio to cache in the mempool
1995  * @front_pad:	Number of bytes to allocate in front of the returned bio
1996  *
1997  * Description:
1998  *    Same functionality as bioset_create() except that mempool is not
1999  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
2000  */
2001 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2002 {
2003 	return __bioset_create(pool_size, front_pad, false);
2004 }
2005 EXPORT_SYMBOL(bioset_create_nobvec);
2006 
2007 #ifdef CONFIG_BLK_CGROUP
2008 
2009 /**
2010  * bio_associate_blkcg - associate a bio with the specified blkcg
2011  * @bio: target bio
2012  * @blkcg_css: css of the blkcg to associate
2013  *
2014  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2015  * treat @bio as if it were issued by a task which belongs to the blkcg.
2016  *
2017  * This function takes an extra reference of @blkcg_css which will be put
2018  * when @bio is released.  The caller must own @bio and is responsible for
2019  * synchronizing calls to this function.
2020  */
2021 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2022 {
2023 	if (unlikely(bio->bi_css))
2024 		return -EBUSY;
2025 	css_get(blkcg_css);
2026 	bio->bi_css = blkcg_css;
2027 	return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2030 
2031 /**
2032  * bio_associate_current - associate a bio with %current
2033  * @bio: target bio
2034  *
2035  * Associate @bio with %current if it hasn't been associated yet.  Block
2036  * layer will treat @bio as if it were issued by %current no matter which
2037  * task actually issues it.
2038  *
2039  * This function takes an extra reference of @task's io_context and blkcg
2040  * which will be put when @bio is released.  The caller must own @bio,
2041  * ensure %current->io_context exists, and is responsible for synchronizing
2042  * calls to this function.
2043  */
2044 int bio_associate_current(struct bio *bio)
2045 {
2046 	struct io_context *ioc;
2047 
2048 	if (bio->bi_css)
2049 		return -EBUSY;
2050 
2051 	ioc = current->io_context;
2052 	if (!ioc)
2053 		return -ENOENT;
2054 
2055 	get_io_context_active(ioc);
2056 	bio->bi_ioc = ioc;
2057 	bio->bi_css = task_get_css(current, io_cgrp_id);
2058 	return 0;
2059 }
2060 EXPORT_SYMBOL_GPL(bio_associate_current);
2061 
2062 /**
2063  * bio_disassociate_task - undo bio_associate_current()
2064  * @bio: target bio
2065  */
2066 void bio_disassociate_task(struct bio *bio)
2067 {
2068 	if (bio->bi_ioc) {
2069 		put_io_context(bio->bi_ioc);
2070 		bio->bi_ioc = NULL;
2071 	}
2072 	if (bio->bi_css) {
2073 		css_put(bio->bi_css);
2074 		bio->bi_css = NULL;
2075 	}
2076 }
2077 
2078 /**
2079  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2080  * @dst: destination bio
2081  * @src: source bio
2082  */
2083 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2084 {
2085 	if (src->bi_css)
2086 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2087 }
2088 
2089 #endif /* CONFIG_BLK_CGROUP */
2090 
2091 static void __init biovec_init_slabs(void)
2092 {
2093 	int i;
2094 
2095 	for (i = 0; i < BVEC_POOL_NR; i++) {
2096 		int size;
2097 		struct biovec_slab *bvs = bvec_slabs + i;
2098 
2099 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2100 			bvs->slab = NULL;
2101 			continue;
2102 		}
2103 
2104 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2105 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2106                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2107 	}
2108 }
2109 
2110 static int __init init_bio(void)
2111 {
2112 	bio_slab_max = 2;
2113 	bio_slab_nr = 0;
2114 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2115 	if (!bio_slabs)
2116 		panic("bio: can't allocate bios\n");
2117 
2118 	bio_integrity_init();
2119 	biovec_init_slabs();
2120 
2121 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2122 	if (!fs_bio_set)
2123 		panic("bio: can't allocate bios\n");
2124 
2125 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2126 		panic("bio: can't create integrity pool\n");
2127 
2128 	return 0;
2129 }
2130 subsys_initcall(init_bio);
2131