xref: /linux/block/bio-integrity.c (revision d2a4a07190f42e4f82805daf58e708400b703f1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bio-integrity.c - bio data integrity extensions
4  *
5  * Copyright (C) 2007, 2008, 2009 Oracle Corporation
6  * Written by: Martin K. Petersen <martin.petersen@oracle.com>
7  */
8 
9 #include <linux/blk-integrity.h>
10 #include <linux/mempool.h>
11 #include <linux/export.h>
12 #include <linux/bio.h>
13 #include <linux/workqueue.h>
14 #include <linux/slab.h>
15 #include "blk.h"
16 
17 static struct kmem_cache *bip_slab;
18 static struct workqueue_struct *kintegrityd_wq;
19 
20 void blk_flush_integrity(void)
21 {
22 	flush_workqueue(kintegrityd_wq);
23 }
24 
25 static void __bio_integrity_free(struct bio_set *bs,
26 				 struct bio_integrity_payload *bip)
27 {
28 	if (bs && mempool_initialized(&bs->bio_integrity_pool)) {
29 		if (bip->bip_vec)
30 			bvec_free(&bs->bvec_integrity_pool, bip->bip_vec,
31 				  bip->bip_max_vcnt);
32 		mempool_free(bip, &bs->bio_integrity_pool);
33 	} else {
34 		kfree(bip);
35 	}
36 }
37 
38 /**
39  * bio_integrity_alloc - Allocate integrity payload and attach it to bio
40  * @bio:	bio to attach integrity metadata to
41  * @gfp_mask:	Memory allocation mask
42  * @nr_vecs:	Number of integrity metadata scatter-gather elements
43  *
44  * Description: This function prepares a bio for attaching integrity
45  * metadata.  nr_vecs specifies the maximum number of pages containing
46  * integrity metadata that can be attached.
47  */
48 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
49 						  gfp_t gfp_mask,
50 						  unsigned int nr_vecs)
51 {
52 	struct bio_integrity_payload *bip;
53 	struct bio_set *bs = bio->bi_pool;
54 	unsigned inline_vecs;
55 
56 	if (WARN_ON_ONCE(bio_has_crypt_ctx(bio)))
57 		return ERR_PTR(-EOPNOTSUPP);
58 
59 	if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) {
60 		bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask);
61 		inline_vecs = nr_vecs;
62 	} else {
63 		bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask);
64 		inline_vecs = BIO_INLINE_VECS;
65 	}
66 
67 	if (unlikely(!bip))
68 		return ERR_PTR(-ENOMEM);
69 
70 	memset(bip, 0, sizeof(*bip));
71 
72 	/* always report as many vecs as asked explicitly, not inline vecs */
73 	bip->bip_max_vcnt = nr_vecs;
74 	if (nr_vecs > inline_vecs) {
75 		bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool,
76 					  &bip->bip_max_vcnt, gfp_mask);
77 		if (!bip->bip_vec)
78 			goto err;
79 	} else {
80 		bip->bip_vec = bip->bip_inline_vecs;
81 	}
82 
83 	bip->bip_bio = bio;
84 	bio->bi_integrity = bip;
85 	bio->bi_opf |= REQ_INTEGRITY;
86 
87 	return bip;
88 err:
89 	__bio_integrity_free(bs, bip);
90 	return ERR_PTR(-ENOMEM);
91 }
92 EXPORT_SYMBOL(bio_integrity_alloc);
93 
94 static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs,
95 				     bool dirty)
96 {
97 	int i;
98 
99 	for (i = 0; i < nr_vecs; i++) {
100 		if (dirty && !PageCompound(bv[i].bv_page))
101 			set_page_dirty_lock(bv[i].bv_page);
102 		unpin_user_page(bv[i].bv_page);
103 	}
104 }
105 
106 static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip)
107 {
108 	unsigned short nr_vecs = bip->bip_max_vcnt - 1;
109 	struct bio_vec *copy = &bip->bip_vec[1];
110 	size_t bytes = bip->bip_iter.bi_size;
111 	struct iov_iter iter;
112 	int ret;
113 
114 	iov_iter_bvec(&iter, ITER_DEST, copy, nr_vecs, bytes);
115 	ret = copy_to_iter(bvec_virt(bip->bip_vec), bytes, &iter);
116 	WARN_ON_ONCE(ret != bytes);
117 
118 	bio_integrity_unpin_bvec(copy, nr_vecs, true);
119 }
120 
121 static void bio_integrity_unmap_user(struct bio_integrity_payload *bip)
122 {
123 	bool dirty = bio_data_dir(bip->bip_bio) == READ;
124 
125 	if (bip->bip_flags & BIP_COPY_USER) {
126 		if (dirty)
127 			bio_integrity_uncopy_user(bip);
128 		kfree(bvec_virt(bip->bip_vec));
129 		return;
130 	}
131 
132 	bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt, dirty);
133 }
134 
135 /**
136  * bio_integrity_free - Free bio integrity payload
137  * @bio:	bio containing bip to be freed
138  *
139  * Description: Used to free the integrity portion of a bio. Usually
140  * called from bio_free().
141  */
142 void bio_integrity_free(struct bio *bio)
143 {
144 	struct bio_integrity_payload *bip = bio_integrity(bio);
145 	struct bio_set *bs = bio->bi_pool;
146 
147 	if (bip->bip_flags & BIP_INTEGRITY_USER)
148 		return;
149 	if (bip->bip_flags & BIP_BLOCK_INTEGRITY)
150 		kfree(bvec_virt(bip->bip_vec));
151 
152 	__bio_integrity_free(bs, bip);
153 	bio->bi_integrity = NULL;
154 	bio->bi_opf &= ~REQ_INTEGRITY;
155 }
156 
157 /**
158  * bio_integrity_unmap_free_user - Unmap and free bio user integrity payload
159  * @bio:	bio containing bip to be unmapped and freed
160  *
161  * Description: Used to unmap and free the user mapped integrity portion of a
162  * bio. Submitter attaching the user integrity buffer is responsible for
163  * unmapping and freeing it during completion.
164  */
165 void bio_integrity_unmap_free_user(struct bio *bio)
166 {
167 	struct bio_integrity_payload *bip = bio_integrity(bio);
168 	struct bio_set *bs = bio->bi_pool;
169 
170 	if (WARN_ON_ONCE(!(bip->bip_flags & BIP_INTEGRITY_USER)))
171 		return;
172 	bio_integrity_unmap_user(bip);
173 	__bio_integrity_free(bs, bip);
174 	bio->bi_integrity = NULL;
175 	bio->bi_opf &= ~REQ_INTEGRITY;
176 }
177 EXPORT_SYMBOL(bio_integrity_unmap_free_user);
178 
179 /**
180  * bio_integrity_add_page - Attach integrity metadata
181  * @bio:	bio to update
182  * @page:	page containing integrity metadata
183  * @len:	number of bytes of integrity metadata in page
184  * @offset:	start offset within page
185  *
186  * Description: Attach a page containing integrity metadata to bio.
187  */
188 int bio_integrity_add_page(struct bio *bio, struct page *page,
189 			   unsigned int len, unsigned int offset)
190 {
191 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
192 	struct bio_integrity_payload *bip = bio_integrity(bio);
193 
194 	if (((bip->bip_iter.bi_size + len) >> SECTOR_SHIFT) >
195 	    queue_max_hw_sectors(q))
196 		return 0;
197 
198 	if (bip->bip_vcnt > 0) {
199 		struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1];
200 		bool same_page = false;
201 
202 		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
203 					   &same_page)) {
204 			bip->bip_iter.bi_size += len;
205 			return len;
206 		}
207 
208 		if (bip->bip_vcnt >=
209 		    min(bip->bip_max_vcnt, queue_max_integrity_segments(q)))
210 			return 0;
211 
212 		/*
213 		 * If the queue doesn't support SG gaps and adding this segment
214 		 * would create a gap, disallow it.
215 		 */
216 		if (bvec_gap_to_prev(&q->limits, bv, offset))
217 			return 0;
218 	}
219 
220 	bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset);
221 	bip->bip_vcnt++;
222 	bip->bip_iter.bi_size += len;
223 
224 	return len;
225 }
226 EXPORT_SYMBOL(bio_integrity_add_page);
227 
228 static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec,
229 				   int nr_vecs, unsigned int len,
230 				   unsigned int direction, u32 seed)
231 {
232 	bool write = direction == ITER_SOURCE;
233 	struct bio_integrity_payload *bip;
234 	struct iov_iter iter;
235 	void *buf;
236 	int ret;
237 
238 	buf = kmalloc(len, GFP_KERNEL);
239 	if (!buf)
240 		return -ENOMEM;
241 
242 	if (write) {
243 		iov_iter_bvec(&iter, direction, bvec, nr_vecs, len);
244 		if (!copy_from_iter_full(buf, len, &iter)) {
245 			ret = -EFAULT;
246 			goto free_buf;
247 		}
248 
249 		bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
250 	} else {
251 		memset(buf, 0, len);
252 
253 		/*
254 		 * We need to preserve the original bvec and the number of vecs
255 		 * in it for completion handling
256 		 */
257 		bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1);
258 	}
259 
260 	if (IS_ERR(bip)) {
261 		ret = PTR_ERR(bip);
262 		goto free_buf;
263 	}
264 
265 	if (write)
266 		bio_integrity_unpin_bvec(bvec, nr_vecs, false);
267 	else
268 		memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec));
269 
270 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
271 				     offset_in_page(buf));
272 	if (ret != len) {
273 		ret = -ENOMEM;
274 		goto free_bip;
275 	}
276 
277 	bip->bip_flags |= BIP_INTEGRITY_USER | BIP_COPY_USER;
278 	bip->bip_iter.bi_sector = seed;
279 	return 0;
280 free_bip:
281 	bio_integrity_free(bio);
282 free_buf:
283 	kfree(buf);
284 	return ret;
285 }
286 
287 static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec,
288 				   int nr_vecs, unsigned int len, u32 seed)
289 {
290 	struct bio_integrity_payload *bip;
291 
292 	bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs);
293 	if (IS_ERR(bip))
294 		return PTR_ERR(bip);
295 
296 	memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec));
297 	bip->bip_flags |= BIP_INTEGRITY_USER;
298 	bip->bip_iter.bi_sector = seed;
299 	bip->bip_iter.bi_size = len;
300 	return 0;
301 }
302 
303 static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages,
304 				    int nr_vecs, ssize_t bytes, ssize_t offset)
305 {
306 	unsigned int nr_bvecs = 0;
307 	int i, j;
308 
309 	for (i = 0; i < nr_vecs; i = j) {
310 		size_t size = min_t(size_t, bytes, PAGE_SIZE - offset);
311 		struct folio *folio = page_folio(pages[i]);
312 
313 		bytes -= size;
314 		for (j = i + 1; j < nr_vecs; j++) {
315 			size_t next = min_t(size_t, PAGE_SIZE, bytes);
316 
317 			if (page_folio(pages[j]) != folio ||
318 			    pages[j] != pages[j - 1] + 1)
319 				break;
320 			unpin_user_page(pages[j]);
321 			size += next;
322 			bytes -= next;
323 		}
324 
325 		bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset);
326 		offset = 0;
327 		nr_bvecs++;
328 	}
329 
330 	return nr_bvecs;
331 }
332 
333 int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes,
334 			   u32 seed)
335 {
336 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
337 	unsigned int align = q->dma_pad_mask | queue_dma_alignment(q);
338 	struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages;
339 	struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec;
340 	unsigned int direction, nr_bvecs;
341 	struct iov_iter iter;
342 	int ret, nr_vecs;
343 	size_t offset;
344 	bool copy;
345 
346 	if (bio_integrity(bio))
347 		return -EINVAL;
348 	if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q))
349 		return -E2BIG;
350 
351 	if (bio_data_dir(bio) == READ)
352 		direction = ITER_DEST;
353 	else
354 		direction = ITER_SOURCE;
355 
356 	iov_iter_ubuf(&iter, direction, ubuf, bytes);
357 	nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1);
358 	if (nr_vecs > BIO_MAX_VECS)
359 		return -E2BIG;
360 	if (nr_vecs > UIO_FASTIOV) {
361 		bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL);
362 		if (!bvec)
363 			return -ENOMEM;
364 		pages = NULL;
365 	}
366 
367 	copy = !iov_iter_is_aligned(&iter, align, align);
368 	ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset);
369 	if (unlikely(ret < 0))
370 		goto free_bvec;
371 
372 	nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset);
373 	if (pages != stack_pages)
374 		kvfree(pages);
375 	if (nr_bvecs > queue_max_integrity_segments(q))
376 		copy = true;
377 
378 	if (copy)
379 		ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes,
380 					      direction, seed);
381 	else
382 		ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes, seed);
383 	if (ret)
384 		goto release_pages;
385 	if (bvec != stack_vec)
386 		kfree(bvec);
387 
388 	return 0;
389 
390 release_pages:
391 	bio_integrity_unpin_bvec(bvec, nr_bvecs, false);
392 free_bvec:
393 	if (bvec != stack_vec)
394 		kfree(bvec);
395 	return ret;
396 }
397 EXPORT_SYMBOL_GPL(bio_integrity_map_user);
398 
399 /**
400  * bio_integrity_process - Process integrity metadata for a bio
401  * @bio:	bio to generate/verify integrity metadata for
402  * @proc_iter:  iterator to process
403  * @proc_fn:	Pointer to the relevant processing function
404  */
405 static blk_status_t bio_integrity_process(struct bio *bio,
406 		struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn)
407 {
408 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
409 	struct blk_integrity_iter iter;
410 	struct bvec_iter bviter;
411 	struct bio_vec bv;
412 	struct bio_integrity_payload *bip = bio_integrity(bio);
413 	blk_status_t ret = BLK_STS_OK;
414 
415 	iter.disk_name = bio->bi_bdev->bd_disk->disk_name;
416 	iter.interval = 1 << bi->interval_exp;
417 	iter.tuple_size = bi->tuple_size;
418 	iter.seed = proc_iter->bi_sector;
419 	iter.prot_buf = bvec_virt(bip->bip_vec);
420 	iter.pi_offset = bi->pi_offset;
421 
422 	__bio_for_each_segment(bv, bio, bviter, *proc_iter) {
423 		void *kaddr = bvec_kmap_local(&bv);
424 
425 		iter.data_buf = kaddr;
426 		iter.data_size = bv.bv_len;
427 		ret = proc_fn(&iter);
428 		kunmap_local(kaddr);
429 
430 		if (ret)
431 			break;
432 
433 	}
434 	return ret;
435 }
436 
437 /**
438  * bio_integrity_prep - Prepare bio for integrity I/O
439  * @bio:	bio to prepare
440  *
441  * Description:  Checks if the bio already has an integrity payload attached.
442  * If it does, the payload has been generated by another kernel subsystem,
443  * and we just pass it through. Otherwise allocates integrity payload.
444  * The bio must have data direction, target device and start sector set priot
445  * to calling.  In the WRITE case, integrity metadata will be generated using
446  * the block device's integrity function.  In the READ case, the buffer
447  * will be prepared for DMA and a suitable end_io handler set up.
448  */
449 bool bio_integrity_prep(struct bio *bio)
450 {
451 	struct bio_integrity_payload *bip;
452 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
453 	void *buf;
454 	unsigned long start, end;
455 	unsigned int len, nr_pages;
456 	unsigned int bytes, offset, i;
457 
458 	if (!bi)
459 		return true;
460 
461 	if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE)
462 		return true;
463 
464 	if (!bio_sectors(bio))
465 		return true;
466 
467 	/* Already protected? */
468 	if (bio_integrity(bio))
469 		return true;
470 
471 	if (bio_data_dir(bio) == READ) {
472 		if (!bi->profile->verify_fn ||
473 		    !(bi->flags & BLK_INTEGRITY_VERIFY))
474 			return true;
475 	} else {
476 		if (!bi->profile->generate_fn ||
477 		    !(bi->flags & BLK_INTEGRITY_GENERATE))
478 			return true;
479 	}
480 
481 	/* Allocate kernel buffer for protection data */
482 	len = bio_integrity_bytes(bi, bio_sectors(bio));
483 	buf = kmalloc(len, GFP_NOIO);
484 	if (unlikely(buf == NULL)) {
485 		printk(KERN_ERR "could not allocate integrity buffer\n");
486 		goto err_end_io;
487 	}
488 
489 	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
490 	start = ((unsigned long) buf) >> PAGE_SHIFT;
491 	nr_pages = end - start;
492 
493 	/* Allocate bio integrity payload and integrity vectors */
494 	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
495 	if (IS_ERR(bip)) {
496 		printk(KERN_ERR "could not allocate data integrity bioset\n");
497 		kfree(buf);
498 		goto err_end_io;
499 	}
500 
501 	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
502 	bip_set_seed(bip, bio->bi_iter.bi_sector);
503 
504 	if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM)
505 		bip->bip_flags |= BIP_IP_CHECKSUM;
506 
507 	/* Map it */
508 	offset = offset_in_page(buf);
509 	for (i = 0; i < nr_pages && len > 0; i++) {
510 		bytes = PAGE_SIZE - offset;
511 
512 		if (bytes > len)
513 			bytes = len;
514 
515 		if (bio_integrity_add_page(bio, virt_to_page(buf),
516 					   bytes, offset) < bytes) {
517 			printk(KERN_ERR "could not attach integrity payload\n");
518 			goto err_end_io;
519 		}
520 
521 		buf += bytes;
522 		len -= bytes;
523 		offset = 0;
524 	}
525 
526 	/* Auto-generate integrity metadata if this is a write */
527 	if (bio_data_dir(bio) == WRITE) {
528 		bio_integrity_process(bio, &bio->bi_iter,
529 				      bi->profile->generate_fn);
530 	} else {
531 		bip->bio_iter = bio->bi_iter;
532 	}
533 	return true;
534 
535 err_end_io:
536 	bio->bi_status = BLK_STS_RESOURCE;
537 	bio_endio(bio);
538 	return false;
539 }
540 EXPORT_SYMBOL(bio_integrity_prep);
541 
542 /**
543  * bio_integrity_verify_fn - Integrity I/O completion worker
544  * @work:	Work struct stored in bio to be verified
545  *
546  * Description: This workqueue function is called to complete a READ
547  * request.  The function verifies the transferred integrity metadata
548  * and then calls the original bio end_io function.
549  */
550 static void bio_integrity_verify_fn(struct work_struct *work)
551 {
552 	struct bio_integrity_payload *bip =
553 		container_of(work, struct bio_integrity_payload, bip_work);
554 	struct bio *bio = bip->bip_bio;
555 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
556 
557 	/*
558 	 * At the moment verify is called bio's iterator was advanced
559 	 * during split and completion, we need to rewind iterator to
560 	 * it's original position.
561 	 */
562 	bio->bi_status = bio_integrity_process(bio, &bip->bio_iter,
563 						bi->profile->verify_fn);
564 	bio_integrity_free(bio);
565 	bio_endio(bio);
566 }
567 
568 /**
569  * __bio_integrity_endio - Integrity I/O completion function
570  * @bio:	Protected bio
571  *
572  * Description: Completion for integrity I/O
573  *
574  * Normally I/O completion is done in interrupt context.  However,
575  * verifying I/O integrity is a time-consuming task which must be run
576  * in process context.	This function postpones completion
577  * accordingly.
578  */
579 bool __bio_integrity_endio(struct bio *bio)
580 {
581 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
582 	struct bio_integrity_payload *bip = bio_integrity(bio);
583 
584 	if (bio_op(bio) == REQ_OP_READ && !bio->bi_status &&
585 	    (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) {
586 		INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
587 		queue_work(kintegrityd_wq, &bip->bip_work);
588 		return false;
589 	}
590 
591 	bio_integrity_free(bio);
592 	return true;
593 }
594 
595 /**
596  * bio_integrity_advance - Advance integrity vector
597  * @bio:	bio whose integrity vector to update
598  * @bytes_done:	number of data bytes that have been completed
599  *
600  * Description: This function calculates how many integrity bytes the
601  * number of completed data bytes correspond to and advances the
602  * integrity vector accordingly.
603  */
604 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
605 {
606 	struct bio_integrity_payload *bip = bio_integrity(bio);
607 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
608 	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
609 
610 	bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9);
611 	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
612 }
613 
614 /**
615  * bio_integrity_trim - Trim integrity vector
616  * @bio:	bio whose integrity vector to update
617  *
618  * Description: Used to trim the integrity vector in a cloned bio.
619  */
620 void bio_integrity_trim(struct bio *bio)
621 {
622 	struct bio_integrity_payload *bip = bio_integrity(bio);
623 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
624 
625 	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
626 }
627 EXPORT_SYMBOL(bio_integrity_trim);
628 
629 /**
630  * bio_integrity_clone - Callback for cloning bios with integrity metadata
631  * @bio:	New bio
632  * @bio_src:	Original bio
633  * @gfp_mask:	Memory allocation mask
634  *
635  * Description:	Called to allocate a bip when cloning a bio
636  */
637 int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
638 			gfp_t gfp_mask)
639 {
640 	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
641 	struct bio_integrity_payload *bip;
642 
643 	BUG_ON(bip_src == NULL);
644 
645 	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
646 	if (IS_ERR(bip))
647 		return PTR_ERR(bip);
648 
649 	memcpy(bip->bip_vec, bip_src->bip_vec,
650 	       bip_src->bip_vcnt * sizeof(struct bio_vec));
651 
652 	bip->bip_vcnt = bip_src->bip_vcnt;
653 	bip->bip_iter = bip_src->bip_iter;
654 	bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY;
655 
656 	return 0;
657 }
658 
659 int bioset_integrity_create(struct bio_set *bs, int pool_size)
660 {
661 	if (mempool_initialized(&bs->bio_integrity_pool))
662 		return 0;
663 
664 	if (mempool_init_slab_pool(&bs->bio_integrity_pool,
665 				   pool_size, bip_slab))
666 		return -1;
667 
668 	if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) {
669 		mempool_exit(&bs->bio_integrity_pool);
670 		return -1;
671 	}
672 
673 	return 0;
674 }
675 EXPORT_SYMBOL(bioset_integrity_create);
676 
677 void bioset_integrity_free(struct bio_set *bs)
678 {
679 	mempool_exit(&bs->bio_integrity_pool);
680 	mempool_exit(&bs->bvec_integrity_pool);
681 }
682 
683 void __init bio_integrity_init(void)
684 {
685 	/*
686 	 * kintegrityd won't block much but may burn a lot of CPU cycles.
687 	 * Make it highpri CPU intensive wq with max concurrency of 1.
688 	 */
689 	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
690 					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
691 	if (!kintegrityd_wq)
692 		panic("Failed to create kintegrityd\n");
693 
694 	bip_slab = kmem_cache_create("bio_integrity_payload",
695 				     sizeof(struct bio_integrity_payload) +
696 				     sizeof(struct bio_vec) * BIO_INLINE_VECS,
697 				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
698 }
699