xref: /linux/block/bio-integrity.c (revision 95f68e06b41b9e88291796efa3969409d13fdd4c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bio-integrity.c - bio data integrity extensions
4  *
5  * Copyright (C) 2007, 2008, 2009 Oracle Corporation
6  * Written by: Martin K. Petersen <martin.petersen@oracle.com>
7  */
8 
9 #include <linux/blk-integrity.h>
10 #include <linux/mempool.h>
11 #include <linux/export.h>
12 #include <linux/bio.h>
13 #include <linux/workqueue.h>
14 #include <linux/slab.h>
15 #include "blk.h"
16 
17 static struct kmem_cache *bip_slab;
18 static struct workqueue_struct *kintegrityd_wq;
19 
20 void blk_flush_integrity(void)
21 {
22 	flush_workqueue(kintegrityd_wq);
23 }
24 
25 /**
26  * bio_integrity_free - Free bio integrity payload
27  * @bio:	bio containing bip to be freed
28  *
29  * Description: Free the integrity portion of a bio.
30  */
31 void bio_integrity_free(struct bio *bio)
32 {
33 	struct bio_integrity_payload *bip = bio_integrity(bio);
34 	struct bio_set *bs = bio->bi_pool;
35 
36 	if (bs && mempool_initialized(&bs->bio_integrity_pool)) {
37 		if (bip->bip_vec)
38 			bvec_free(&bs->bvec_integrity_pool, bip->bip_vec,
39 				  bip->bip_max_vcnt);
40 		mempool_free(bip, &bs->bio_integrity_pool);
41 	} else {
42 		kfree(bip);
43 	}
44 	bio->bi_integrity = NULL;
45 	bio->bi_opf &= ~REQ_INTEGRITY;
46 }
47 
48 /**
49  * bio_integrity_alloc - Allocate integrity payload and attach it to bio
50  * @bio:	bio to attach integrity metadata to
51  * @gfp_mask:	Memory allocation mask
52  * @nr_vecs:	Number of integrity metadata scatter-gather elements
53  *
54  * Description: This function prepares a bio for attaching integrity
55  * metadata.  nr_vecs specifies the maximum number of pages containing
56  * integrity metadata that can be attached.
57  */
58 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
59 						  gfp_t gfp_mask,
60 						  unsigned int nr_vecs)
61 {
62 	struct bio_integrity_payload *bip;
63 	struct bio_set *bs = bio->bi_pool;
64 	unsigned inline_vecs;
65 
66 	if (WARN_ON_ONCE(bio_has_crypt_ctx(bio)))
67 		return ERR_PTR(-EOPNOTSUPP);
68 
69 	if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) {
70 		bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask);
71 		inline_vecs = nr_vecs;
72 	} else {
73 		bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask);
74 		inline_vecs = BIO_INLINE_VECS;
75 	}
76 
77 	if (unlikely(!bip))
78 		return ERR_PTR(-ENOMEM);
79 
80 	memset(bip, 0, sizeof(*bip));
81 
82 	/* always report as many vecs as asked explicitly, not inline vecs */
83 	bip->bip_max_vcnt = nr_vecs;
84 	if (nr_vecs > inline_vecs) {
85 		bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool,
86 					  &bip->bip_max_vcnt, gfp_mask);
87 		if (!bip->bip_vec)
88 			goto err;
89 	} else if (nr_vecs) {
90 		bip->bip_vec = bip->bip_inline_vecs;
91 	}
92 
93 	bip->bip_bio = bio;
94 	bio->bi_integrity = bip;
95 	bio->bi_opf |= REQ_INTEGRITY;
96 
97 	return bip;
98 err:
99 	if (bs && mempool_initialized(&bs->bio_integrity_pool))
100 		mempool_free(bip, &bs->bio_integrity_pool);
101 	else
102 		kfree(bip);
103 	return ERR_PTR(-ENOMEM);
104 }
105 EXPORT_SYMBOL(bio_integrity_alloc);
106 
107 static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs,
108 				     bool dirty)
109 {
110 	int i;
111 
112 	for (i = 0; i < nr_vecs; i++) {
113 		if (dirty && !PageCompound(bv[i].bv_page))
114 			set_page_dirty_lock(bv[i].bv_page);
115 		unpin_user_page(bv[i].bv_page);
116 	}
117 }
118 
119 static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip)
120 {
121 	unsigned short nr_vecs = bip->bip_max_vcnt - 1;
122 	struct bio_vec *copy = &bip->bip_vec[1];
123 	size_t bytes = bip->bip_iter.bi_size;
124 	struct iov_iter iter;
125 	int ret;
126 
127 	iov_iter_bvec(&iter, ITER_DEST, copy, nr_vecs, bytes);
128 	ret = copy_to_iter(bvec_virt(bip->bip_vec), bytes, &iter);
129 	WARN_ON_ONCE(ret != bytes);
130 
131 	bio_integrity_unpin_bvec(copy, nr_vecs, true);
132 }
133 
134 /**
135  * bio_integrity_unmap_user - Unmap user integrity payload
136  * @bio:	bio containing bip to be unmapped
137  *
138  * Unmap the user mapped integrity portion of a bio.
139  */
140 void bio_integrity_unmap_user(struct bio *bio)
141 {
142 	struct bio_integrity_payload *bip = bio_integrity(bio);
143 
144 	if (bip->bip_flags & BIP_COPY_USER) {
145 		if (bio_data_dir(bio) == READ)
146 			bio_integrity_uncopy_user(bip);
147 		kfree(bvec_virt(bip->bip_vec));
148 		return;
149 	}
150 
151 	bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt,
152 			bio_data_dir(bio) == READ);
153 }
154 
155 /**
156  * bio_integrity_add_page - Attach integrity metadata
157  * @bio:	bio to update
158  * @page:	page containing integrity metadata
159  * @len:	number of bytes of integrity metadata in page
160  * @offset:	start offset within page
161  *
162  * Description: Attach a page containing integrity metadata to bio.
163  */
164 int bio_integrity_add_page(struct bio *bio, struct page *page,
165 			   unsigned int len, unsigned int offset)
166 {
167 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
168 	struct bio_integrity_payload *bip = bio_integrity(bio);
169 
170 	if (bip->bip_vcnt > 0) {
171 		struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1];
172 		bool same_page = false;
173 
174 		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
175 					   &same_page)) {
176 			bip->bip_iter.bi_size += len;
177 			return len;
178 		}
179 
180 		if (bip->bip_vcnt >=
181 		    min(bip->bip_max_vcnt, queue_max_integrity_segments(q)))
182 			return 0;
183 
184 		/*
185 		 * If the queue doesn't support SG gaps and adding this segment
186 		 * would create a gap, disallow it.
187 		 */
188 		if (bvec_gap_to_prev(&q->limits, bv, offset))
189 			return 0;
190 	}
191 
192 	bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset);
193 	bip->bip_vcnt++;
194 	bip->bip_iter.bi_size += len;
195 
196 	return len;
197 }
198 EXPORT_SYMBOL(bio_integrity_add_page);
199 
200 static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec,
201 				   int nr_vecs, unsigned int len,
202 				   unsigned int direction)
203 {
204 	bool write = direction == ITER_SOURCE;
205 	struct bio_integrity_payload *bip;
206 	struct iov_iter iter;
207 	void *buf;
208 	int ret;
209 
210 	buf = kmalloc(len, GFP_KERNEL);
211 	if (!buf)
212 		return -ENOMEM;
213 
214 	if (write) {
215 		iov_iter_bvec(&iter, direction, bvec, nr_vecs, len);
216 		if (!copy_from_iter_full(buf, len, &iter)) {
217 			ret = -EFAULT;
218 			goto free_buf;
219 		}
220 
221 		bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
222 	} else {
223 		memset(buf, 0, len);
224 
225 		/*
226 		 * We need to preserve the original bvec and the number of vecs
227 		 * in it for completion handling
228 		 */
229 		bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1);
230 	}
231 
232 	if (IS_ERR(bip)) {
233 		ret = PTR_ERR(bip);
234 		goto free_buf;
235 	}
236 
237 	if (write)
238 		bio_integrity_unpin_bvec(bvec, nr_vecs, false);
239 	else
240 		memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec));
241 
242 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
243 				     offset_in_page(buf));
244 	if (ret != len) {
245 		ret = -ENOMEM;
246 		goto free_bip;
247 	}
248 
249 	bip->bip_flags |= BIP_COPY_USER;
250 	bip->bip_vcnt = nr_vecs;
251 	return 0;
252 free_bip:
253 	bio_integrity_free(bio);
254 free_buf:
255 	kfree(buf);
256 	return ret;
257 }
258 
259 static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec,
260 				   int nr_vecs, unsigned int len)
261 {
262 	struct bio_integrity_payload *bip;
263 
264 	bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs);
265 	if (IS_ERR(bip))
266 		return PTR_ERR(bip);
267 
268 	memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec));
269 	bip->bip_iter.bi_size = len;
270 	bip->bip_vcnt = nr_vecs;
271 	return 0;
272 }
273 
274 static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages,
275 				    int nr_vecs, ssize_t bytes, ssize_t offset)
276 {
277 	unsigned int nr_bvecs = 0;
278 	int i, j;
279 
280 	for (i = 0; i < nr_vecs; i = j) {
281 		size_t size = min_t(size_t, bytes, PAGE_SIZE - offset);
282 		struct folio *folio = page_folio(pages[i]);
283 
284 		bytes -= size;
285 		for (j = i + 1; j < nr_vecs; j++) {
286 			size_t next = min_t(size_t, PAGE_SIZE, bytes);
287 
288 			if (page_folio(pages[j]) != folio ||
289 			    pages[j] != pages[j - 1] + 1)
290 				break;
291 			unpin_user_page(pages[j]);
292 			size += next;
293 			bytes -= next;
294 		}
295 
296 		bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset);
297 		offset = 0;
298 		nr_bvecs++;
299 	}
300 
301 	return nr_bvecs;
302 }
303 
304 int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes)
305 {
306 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
307 	unsigned int align = blk_lim_dma_alignment_and_pad(&q->limits);
308 	struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages;
309 	struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec;
310 	unsigned int direction, nr_bvecs;
311 	struct iov_iter iter;
312 	int ret, nr_vecs;
313 	size_t offset;
314 	bool copy;
315 
316 	if (bio_integrity(bio))
317 		return -EINVAL;
318 	if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q))
319 		return -E2BIG;
320 
321 	if (bio_data_dir(bio) == READ)
322 		direction = ITER_DEST;
323 	else
324 		direction = ITER_SOURCE;
325 
326 	iov_iter_ubuf(&iter, direction, ubuf, bytes);
327 	nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1);
328 	if (nr_vecs > BIO_MAX_VECS)
329 		return -E2BIG;
330 	if (nr_vecs > UIO_FASTIOV) {
331 		bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL);
332 		if (!bvec)
333 			return -ENOMEM;
334 		pages = NULL;
335 	}
336 
337 	copy = !iov_iter_is_aligned(&iter, align, align);
338 	ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset);
339 	if (unlikely(ret < 0))
340 		goto free_bvec;
341 
342 	nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset);
343 	if (pages != stack_pages)
344 		kvfree(pages);
345 	if (nr_bvecs > queue_max_integrity_segments(q))
346 		copy = true;
347 
348 	if (copy)
349 		ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes,
350 					      direction);
351 	else
352 		ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes);
353 	if (ret)
354 		goto release_pages;
355 	if (bvec != stack_vec)
356 		kfree(bvec);
357 
358 	return 0;
359 
360 release_pages:
361 	bio_integrity_unpin_bvec(bvec, nr_bvecs, false);
362 free_bvec:
363 	if (bvec != stack_vec)
364 		kfree(bvec);
365 	return ret;
366 }
367 
368 /**
369  * bio_integrity_prep - Prepare bio for integrity I/O
370  * @bio:	bio to prepare
371  *
372  * Description:  Checks if the bio already has an integrity payload attached.
373  * If it does, the payload has been generated by another kernel subsystem,
374  * and we just pass it through. Otherwise allocates integrity payload.
375  * The bio must have data direction, target device and start sector set priot
376  * to calling.  In the WRITE case, integrity metadata will be generated using
377  * the block device's integrity function.  In the READ case, the buffer
378  * will be prepared for DMA and a suitable end_io handler set up.
379  */
380 bool bio_integrity_prep(struct bio *bio)
381 {
382 	struct bio_integrity_payload *bip;
383 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
384 	unsigned int len;
385 	void *buf;
386 	gfp_t gfp = GFP_NOIO;
387 
388 	if (!bi)
389 		return true;
390 
391 	if (!bio_sectors(bio))
392 		return true;
393 
394 	/* Already protected? */
395 	if (bio_integrity(bio))
396 		return true;
397 
398 	switch (bio_op(bio)) {
399 	case REQ_OP_READ:
400 		if (bi->flags & BLK_INTEGRITY_NOVERIFY)
401 			return true;
402 		break;
403 	case REQ_OP_WRITE:
404 		if (bi->flags & BLK_INTEGRITY_NOGENERATE)
405 			return true;
406 
407 		/*
408 		 * Zero the memory allocated to not leak uninitialized kernel
409 		 * memory to disk for non-integrity metadata where nothing else
410 		 * initializes the memory.
411 		 */
412 		if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE)
413 			gfp |= __GFP_ZERO;
414 		break;
415 	default:
416 		return true;
417 	}
418 
419 	/* Allocate kernel buffer for protection data */
420 	len = bio_integrity_bytes(bi, bio_sectors(bio));
421 	buf = kmalloc(len, gfp);
422 	if (unlikely(buf == NULL)) {
423 		goto err_end_io;
424 	}
425 
426 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
427 	if (IS_ERR(bip)) {
428 		kfree(buf);
429 		goto err_end_io;
430 	}
431 
432 	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
433 	bip_set_seed(bip, bio->bi_iter.bi_sector);
434 
435 	if (bi->csum_type == BLK_INTEGRITY_CSUM_IP)
436 		bip->bip_flags |= BIP_IP_CHECKSUM;
437 
438 	if (bio_integrity_add_page(bio, virt_to_page(buf), len,
439 			offset_in_page(buf)) < len) {
440 		printk(KERN_ERR "could not attach integrity payload\n");
441 		goto err_end_io;
442 	}
443 
444 	/* Auto-generate integrity metadata if this is a write */
445 	if (bio_data_dir(bio) == WRITE)
446 		blk_integrity_generate(bio);
447 	else
448 		bip->bio_iter = bio->bi_iter;
449 	return true;
450 
451 err_end_io:
452 	bio->bi_status = BLK_STS_RESOURCE;
453 	bio_endio(bio);
454 	return false;
455 }
456 EXPORT_SYMBOL(bio_integrity_prep);
457 
458 /**
459  * bio_integrity_verify_fn - Integrity I/O completion worker
460  * @work:	Work struct stored in bio to be verified
461  *
462  * Description: This workqueue function is called to complete a READ
463  * request.  The function verifies the transferred integrity metadata
464  * and then calls the original bio end_io function.
465  */
466 static void bio_integrity_verify_fn(struct work_struct *work)
467 {
468 	struct bio_integrity_payload *bip =
469 		container_of(work, struct bio_integrity_payload, bip_work);
470 	struct bio *bio = bip->bip_bio;
471 
472 	blk_integrity_verify(bio);
473 
474 	kfree(bvec_virt(bip->bip_vec));
475 	bio_integrity_free(bio);
476 	bio_endio(bio);
477 }
478 
479 /**
480  * __bio_integrity_endio - Integrity I/O completion function
481  * @bio:	Protected bio
482  *
483  * Description: Completion for integrity I/O
484  *
485  * Normally I/O completion is done in interrupt context.  However,
486  * verifying I/O integrity is a time-consuming task which must be run
487  * in process context.	This function postpones completion
488  * accordingly.
489  */
490 bool __bio_integrity_endio(struct bio *bio)
491 {
492 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
493 	struct bio_integrity_payload *bip = bio_integrity(bio);
494 
495 	if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && bi->csum_type) {
496 		INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
497 		queue_work(kintegrityd_wq, &bip->bip_work);
498 		return false;
499 	}
500 
501 	kfree(bvec_virt(bip->bip_vec));
502 	bio_integrity_free(bio);
503 	return true;
504 }
505 
506 /**
507  * bio_integrity_advance - Advance integrity vector
508  * @bio:	bio whose integrity vector to update
509  * @bytes_done:	number of data bytes that have been completed
510  *
511  * Description: This function calculates how many integrity bytes the
512  * number of completed data bytes correspond to and advances the
513  * integrity vector accordingly.
514  */
515 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
516 {
517 	struct bio_integrity_payload *bip = bio_integrity(bio);
518 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
519 	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
520 
521 	bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9);
522 	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
523 }
524 
525 /**
526  * bio_integrity_trim - Trim integrity vector
527  * @bio:	bio whose integrity vector to update
528  *
529  * Description: Used to trim the integrity vector in a cloned bio.
530  */
531 void bio_integrity_trim(struct bio *bio)
532 {
533 	struct bio_integrity_payload *bip = bio_integrity(bio);
534 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
535 
536 	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
537 }
538 EXPORT_SYMBOL(bio_integrity_trim);
539 
540 /**
541  * bio_integrity_clone - Callback for cloning bios with integrity metadata
542  * @bio:	New bio
543  * @bio_src:	Original bio
544  * @gfp_mask:	Memory allocation mask
545  *
546  * Description:	Called to allocate a bip when cloning a bio
547  */
548 int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
549 			gfp_t gfp_mask)
550 {
551 	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
552 	struct bio_integrity_payload *bip;
553 
554 	BUG_ON(bip_src == NULL);
555 
556 	bip = bio_integrity_alloc(bio, gfp_mask, 0);
557 	if (IS_ERR(bip))
558 		return PTR_ERR(bip);
559 
560 	bip->bip_vec = bip_src->bip_vec;
561 	bip->bip_iter = bip_src->bip_iter;
562 	bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY;
563 
564 	return 0;
565 }
566 
567 int bioset_integrity_create(struct bio_set *bs, int pool_size)
568 {
569 	if (mempool_initialized(&bs->bio_integrity_pool))
570 		return 0;
571 
572 	if (mempool_init_slab_pool(&bs->bio_integrity_pool,
573 				   pool_size, bip_slab))
574 		return -1;
575 
576 	if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) {
577 		mempool_exit(&bs->bio_integrity_pool);
578 		return -1;
579 	}
580 
581 	return 0;
582 }
583 EXPORT_SYMBOL(bioset_integrity_create);
584 
585 void bioset_integrity_free(struct bio_set *bs)
586 {
587 	mempool_exit(&bs->bio_integrity_pool);
588 	mempool_exit(&bs->bvec_integrity_pool);
589 }
590 
591 void __init bio_integrity_init(void)
592 {
593 	/*
594 	 * kintegrityd won't block much but may burn a lot of CPU cycles.
595 	 * Make it highpri CPU intensive wq with max concurrency of 1.
596 	 */
597 	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
598 					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
599 	if (!kintegrityd_wq)
600 		panic("Failed to create kintegrityd\n");
601 
602 	bip_slab = kmem_cache_create("bio_integrity_payload",
603 				     sizeof(struct bio_integrity_payload) +
604 				     sizeof(struct bio_vec) * BIO_INLINE_VECS,
605 				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
606 }
607