1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bio-integrity.c - bio data integrity extensions 4 * 5 * Copyright (C) 2007, 2008, 2009 Oracle Corporation 6 * Written by: Martin K. Petersen <martin.petersen@oracle.com> 7 */ 8 9 #include <linux/blk-integrity.h> 10 #include <linux/mempool.h> 11 #include <linux/export.h> 12 #include <linux/bio.h> 13 #include <linux/workqueue.h> 14 #include <linux/slab.h> 15 #include "blk.h" 16 17 static struct kmem_cache *bip_slab; 18 static struct workqueue_struct *kintegrityd_wq; 19 20 void blk_flush_integrity(void) 21 { 22 flush_workqueue(kintegrityd_wq); 23 } 24 25 static void __bio_integrity_free(struct bio_set *bs, 26 struct bio_integrity_payload *bip) 27 { 28 if (bs && mempool_initialized(&bs->bio_integrity_pool)) { 29 if (bip->bip_vec) 30 bvec_free(&bs->bvec_integrity_pool, bip->bip_vec, 31 bip->bip_max_vcnt); 32 mempool_free(bip, &bs->bio_integrity_pool); 33 } else { 34 kfree(bip); 35 } 36 } 37 38 /** 39 * bio_integrity_alloc - Allocate integrity payload and attach it to bio 40 * @bio: bio to attach integrity metadata to 41 * @gfp_mask: Memory allocation mask 42 * @nr_vecs: Number of integrity metadata scatter-gather elements 43 * 44 * Description: This function prepares a bio for attaching integrity 45 * metadata. nr_vecs specifies the maximum number of pages containing 46 * integrity metadata that can be attached. 47 */ 48 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, 49 gfp_t gfp_mask, 50 unsigned int nr_vecs) 51 { 52 struct bio_integrity_payload *bip; 53 struct bio_set *bs = bio->bi_pool; 54 unsigned inline_vecs; 55 56 if (WARN_ON_ONCE(bio_has_crypt_ctx(bio))) 57 return ERR_PTR(-EOPNOTSUPP); 58 59 if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) { 60 bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask); 61 inline_vecs = nr_vecs; 62 } else { 63 bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask); 64 inline_vecs = BIO_INLINE_VECS; 65 } 66 67 if (unlikely(!bip)) 68 return ERR_PTR(-ENOMEM); 69 70 memset(bip, 0, sizeof(*bip)); 71 72 /* always report as many vecs as asked explicitly, not inline vecs */ 73 bip->bip_max_vcnt = nr_vecs; 74 if (nr_vecs > inline_vecs) { 75 bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool, 76 &bip->bip_max_vcnt, gfp_mask); 77 if (!bip->bip_vec) 78 goto err; 79 } else { 80 bip->bip_vec = bip->bip_inline_vecs; 81 } 82 83 bip->bip_bio = bio; 84 bio->bi_integrity = bip; 85 bio->bi_opf |= REQ_INTEGRITY; 86 87 return bip; 88 err: 89 __bio_integrity_free(bs, bip); 90 return ERR_PTR(-ENOMEM); 91 } 92 EXPORT_SYMBOL(bio_integrity_alloc); 93 94 static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs, 95 bool dirty) 96 { 97 int i; 98 99 for (i = 0; i < nr_vecs; i++) { 100 if (dirty && !PageCompound(bv[i].bv_page)) 101 set_page_dirty_lock(bv[i].bv_page); 102 unpin_user_page(bv[i].bv_page); 103 } 104 } 105 106 static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip) 107 { 108 unsigned short nr_vecs = bip->bip_max_vcnt - 1; 109 struct bio_vec *copy = &bip->bip_vec[1]; 110 size_t bytes = bip->bip_iter.bi_size; 111 struct iov_iter iter; 112 int ret; 113 114 iov_iter_bvec(&iter, ITER_DEST, copy, nr_vecs, bytes); 115 ret = copy_to_iter(bvec_virt(bip->bip_vec), bytes, &iter); 116 WARN_ON_ONCE(ret != bytes); 117 118 bio_integrity_unpin_bvec(copy, nr_vecs, true); 119 } 120 121 static void bio_integrity_unmap_user(struct bio_integrity_payload *bip) 122 { 123 bool dirty = bio_data_dir(bip->bip_bio) == READ; 124 125 if (bip->bip_flags & BIP_COPY_USER) { 126 if (dirty) 127 bio_integrity_uncopy_user(bip); 128 kfree(bvec_virt(bip->bip_vec)); 129 return; 130 } 131 132 bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt, dirty); 133 } 134 135 /** 136 * bio_integrity_free - Free bio integrity payload 137 * @bio: bio containing bip to be freed 138 * 139 * Description: Used to free the integrity portion of a bio. Usually 140 * called from bio_free(). 141 */ 142 void bio_integrity_free(struct bio *bio) 143 { 144 struct bio_integrity_payload *bip = bio_integrity(bio); 145 struct bio_set *bs = bio->bi_pool; 146 147 if (bip->bip_flags & BIP_BLOCK_INTEGRITY) 148 kfree(bvec_virt(bip->bip_vec)); 149 else if (bip->bip_flags & BIP_INTEGRITY_USER) 150 bio_integrity_unmap_user(bip); 151 152 __bio_integrity_free(bs, bip); 153 bio->bi_integrity = NULL; 154 bio->bi_opf &= ~REQ_INTEGRITY; 155 } 156 157 /** 158 * bio_integrity_add_page - Attach integrity metadata 159 * @bio: bio to update 160 * @page: page containing integrity metadata 161 * @len: number of bytes of integrity metadata in page 162 * @offset: start offset within page 163 * 164 * Description: Attach a page containing integrity metadata to bio. 165 */ 166 int bio_integrity_add_page(struct bio *bio, struct page *page, 167 unsigned int len, unsigned int offset) 168 { 169 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 170 struct bio_integrity_payload *bip = bio_integrity(bio); 171 172 if (((bip->bip_iter.bi_size + len) >> SECTOR_SHIFT) > 173 queue_max_hw_sectors(q)) 174 return 0; 175 176 if (bip->bip_vcnt > 0) { 177 struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1]; 178 bool same_page = false; 179 180 if (bvec_try_merge_hw_page(q, bv, page, len, offset, 181 &same_page)) { 182 bip->bip_iter.bi_size += len; 183 return len; 184 } 185 186 if (bip->bip_vcnt >= 187 min(bip->bip_max_vcnt, queue_max_integrity_segments(q))) 188 return 0; 189 190 /* 191 * If the queue doesn't support SG gaps and adding this segment 192 * would create a gap, disallow it. 193 */ 194 if (bvec_gap_to_prev(&q->limits, bv, offset)) 195 return 0; 196 } 197 198 bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset); 199 bip->bip_vcnt++; 200 bip->bip_iter.bi_size += len; 201 202 return len; 203 } 204 EXPORT_SYMBOL(bio_integrity_add_page); 205 206 static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec, 207 int nr_vecs, unsigned int len, 208 unsigned int direction, u32 seed) 209 { 210 bool write = direction == ITER_SOURCE; 211 struct bio_integrity_payload *bip; 212 struct iov_iter iter; 213 void *buf; 214 int ret; 215 216 buf = kmalloc(len, GFP_KERNEL); 217 if (!buf) 218 return -ENOMEM; 219 220 if (write) { 221 iov_iter_bvec(&iter, direction, bvec, nr_vecs, len); 222 if (!copy_from_iter_full(buf, len, &iter)) { 223 ret = -EFAULT; 224 goto free_buf; 225 } 226 227 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 228 } else { 229 memset(buf, 0, len); 230 231 /* 232 * We need to preserve the original bvec and the number of vecs 233 * in it for completion handling 234 */ 235 bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1); 236 } 237 238 if (IS_ERR(bip)) { 239 ret = PTR_ERR(bip); 240 goto free_buf; 241 } 242 243 if (write) 244 bio_integrity_unpin_bvec(bvec, nr_vecs, false); 245 else 246 memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec)); 247 248 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 249 offset_in_page(buf)); 250 if (ret != len) { 251 ret = -ENOMEM; 252 goto free_bip; 253 } 254 255 bip->bip_flags |= BIP_INTEGRITY_USER | BIP_COPY_USER; 256 bip->bip_iter.bi_sector = seed; 257 return 0; 258 free_bip: 259 bio_integrity_free(bio); 260 free_buf: 261 kfree(buf); 262 return ret; 263 } 264 265 static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec, 266 int nr_vecs, unsigned int len, u32 seed) 267 { 268 struct bio_integrity_payload *bip; 269 270 bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs); 271 if (IS_ERR(bip)) 272 return PTR_ERR(bip); 273 274 memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec)); 275 bip->bip_flags |= BIP_INTEGRITY_USER; 276 bip->bip_iter.bi_sector = seed; 277 bip->bip_iter.bi_size = len; 278 return 0; 279 } 280 281 static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages, 282 int nr_vecs, ssize_t bytes, ssize_t offset) 283 { 284 unsigned int nr_bvecs = 0; 285 int i, j; 286 287 for (i = 0; i < nr_vecs; i = j) { 288 size_t size = min_t(size_t, bytes, PAGE_SIZE - offset); 289 struct folio *folio = page_folio(pages[i]); 290 291 bytes -= size; 292 for (j = i + 1; j < nr_vecs; j++) { 293 size_t next = min_t(size_t, PAGE_SIZE, bytes); 294 295 if (page_folio(pages[j]) != folio || 296 pages[j] != pages[j - 1] + 1) 297 break; 298 unpin_user_page(pages[j]); 299 size += next; 300 bytes -= next; 301 } 302 303 bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset); 304 offset = 0; 305 nr_bvecs++; 306 } 307 308 return nr_bvecs; 309 } 310 311 int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes, 312 u32 seed) 313 { 314 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 315 unsigned int align = q->dma_pad_mask | queue_dma_alignment(q); 316 struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages; 317 struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec; 318 unsigned int direction, nr_bvecs; 319 struct iov_iter iter; 320 int ret, nr_vecs; 321 size_t offset; 322 bool copy; 323 324 if (bio_integrity(bio)) 325 return -EINVAL; 326 if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q)) 327 return -E2BIG; 328 329 if (bio_data_dir(bio) == READ) 330 direction = ITER_DEST; 331 else 332 direction = ITER_SOURCE; 333 334 iov_iter_ubuf(&iter, direction, ubuf, bytes); 335 nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1); 336 if (nr_vecs > BIO_MAX_VECS) 337 return -E2BIG; 338 if (nr_vecs > UIO_FASTIOV) { 339 bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL); 340 if (!bvec) 341 return -ENOMEM; 342 pages = NULL; 343 } 344 345 copy = !iov_iter_is_aligned(&iter, align, align); 346 ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset); 347 if (unlikely(ret < 0)) 348 goto free_bvec; 349 350 nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset); 351 if (pages != stack_pages) 352 kvfree(pages); 353 if (nr_bvecs > queue_max_integrity_segments(q)) 354 copy = true; 355 356 if (copy) 357 ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes, 358 direction, seed); 359 else 360 ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes, seed); 361 if (ret) 362 goto release_pages; 363 if (bvec != stack_vec) 364 kfree(bvec); 365 366 return 0; 367 368 release_pages: 369 bio_integrity_unpin_bvec(bvec, nr_bvecs, false); 370 free_bvec: 371 if (bvec != stack_vec) 372 kfree(bvec); 373 return ret; 374 } 375 EXPORT_SYMBOL_GPL(bio_integrity_map_user); 376 377 /** 378 * bio_integrity_process - Process integrity metadata for a bio 379 * @bio: bio to generate/verify integrity metadata for 380 * @proc_iter: iterator to process 381 * @proc_fn: Pointer to the relevant processing function 382 */ 383 static blk_status_t bio_integrity_process(struct bio *bio, 384 struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn) 385 { 386 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 387 struct blk_integrity_iter iter; 388 struct bvec_iter bviter; 389 struct bio_vec bv; 390 struct bio_integrity_payload *bip = bio_integrity(bio); 391 blk_status_t ret = BLK_STS_OK; 392 393 iter.disk_name = bio->bi_bdev->bd_disk->disk_name; 394 iter.interval = 1 << bi->interval_exp; 395 iter.tuple_size = bi->tuple_size; 396 iter.seed = proc_iter->bi_sector; 397 iter.prot_buf = bvec_virt(bip->bip_vec); 398 iter.pi_offset = bi->pi_offset; 399 400 __bio_for_each_segment(bv, bio, bviter, *proc_iter) { 401 void *kaddr = bvec_kmap_local(&bv); 402 403 iter.data_buf = kaddr; 404 iter.data_size = bv.bv_len; 405 ret = proc_fn(&iter); 406 kunmap_local(kaddr); 407 408 if (ret) 409 break; 410 411 } 412 return ret; 413 } 414 415 /** 416 * bio_integrity_prep - Prepare bio for integrity I/O 417 * @bio: bio to prepare 418 * 419 * Description: Checks if the bio already has an integrity payload attached. 420 * If it does, the payload has been generated by another kernel subsystem, 421 * and we just pass it through. Otherwise allocates integrity payload. 422 * The bio must have data direction, target device and start sector set priot 423 * to calling. In the WRITE case, integrity metadata will be generated using 424 * the block device's integrity function. In the READ case, the buffer 425 * will be prepared for DMA and a suitable end_io handler set up. 426 */ 427 bool bio_integrity_prep(struct bio *bio) 428 { 429 struct bio_integrity_payload *bip; 430 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 431 void *buf; 432 unsigned long start, end; 433 unsigned int len, nr_pages; 434 unsigned int bytes, offset, i; 435 436 if (!bi) 437 return true; 438 439 if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE) 440 return true; 441 442 if (!bio_sectors(bio)) 443 return true; 444 445 /* Already protected? */ 446 if (bio_integrity(bio)) 447 return true; 448 449 if (bio_data_dir(bio) == READ) { 450 if (!bi->profile->verify_fn || 451 !(bi->flags & BLK_INTEGRITY_VERIFY)) 452 return true; 453 } else { 454 if (!bi->profile->generate_fn || 455 !(bi->flags & BLK_INTEGRITY_GENERATE)) 456 return true; 457 } 458 459 /* Allocate kernel buffer for protection data */ 460 len = bio_integrity_bytes(bi, bio_sectors(bio)); 461 buf = kmalloc(len, GFP_NOIO); 462 if (unlikely(buf == NULL)) { 463 printk(KERN_ERR "could not allocate integrity buffer\n"); 464 goto err_end_io; 465 } 466 467 end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 468 start = ((unsigned long) buf) >> PAGE_SHIFT; 469 nr_pages = end - start; 470 471 /* Allocate bio integrity payload and integrity vectors */ 472 bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages); 473 if (IS_ERR(bip)) { 474 printk(KERN_ERR "could not allocate data integrity bioset\n"); 475 kfree(buf); 476 goto err_end_io; 477 } 478 479 bip->bip_flags |= BIP_BLOCK_INTEGRITY; 480 bip_set_seed(bip, bio->bi_iter.bi_sector); 481 482 if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM) 483 bip->bip_flags |= BIP_IP_CHECKSUM; 484 485 /* Map it */ 486 offset = offset_in_page(buf); 487 for (i = 0; i < nr_pages && len > 0; i++) { 488 bytes = PAGE_SIZE - offset; 489 490 if (bytes > len) 491 bytes = len; 492 493 if (bio_integrity_add_page(bio, virt_to_page(buf), 494 bytes, offset) < bytes) { 495 printk(KERN_ERR "could not attach integrity payload\n"); 496 goto err_end_io; 497 } 498 499 buf += bytes; 500 len -= bytes; 501 offset = 0; 502 } 503 504 /* Auto-generate integrity metadata if this is a write */ 505 if (bio_data_dir(bio) == WRITE) { 506 bio_integrity_process(bio, &bio->bi_iter, 507 bi->profile->generate_fn); 508 } else { 509 bip->bio_iter = bio->bi_iter; 510 } 511 return true; 512 513 err_end_io: 514 bio->bi_status = BLK_STS_RESOURCE; 515 bio_endio(bio); 516 return false; 517 } 518 EXPORT_SYMBOL(bio_integrity_prep); 519 520 /** 521 * bio_integrity_verify_fn - Integrity I/O completion worker 522 * @work: Work struct stored in bio to be verified 523 * 524 * Description: This workqueue function is called to complete a READ 525 * request. The function verifies the transferred integrity metadata 526 * and then calls the original bio end_io function. 527 */ 528 static void bio_integrity_verify_fn(struct work_struct *work) 529 { 530 struct bio_integrity_payload *bip = 531 container_of(work, struct bio_integrity_payload, bip_work); 532 struct bio *bio = bip->bip_bio; 533 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 534 535 /* 536 * At the moment verify is called bio's iterator was advanced 537 * during split and completion, we need to rewind iterator to 538 * it's original position. 539 */ 540 bio->bi_status = bio_integrity_process(bio, &bip->bio_iter, 541 bi->profile->verify_fn); 542 bio_integrity_free(bio); 543 bio_endio(bio); 544 } 545 546 /** 547 * __bio_integrity_endio - Integrity I/O completion function 548 * @bio: Protected bio 549 * 550 * Description: Completion for integrity I/O 551 * 552 * Normally I/O completion is done in interrupt context. However, 553 * verifying I/O integrity is a time-consuming task which must be run 554 * in process context. This function postpones completion 555 * accordingly. 556 */ 557 bool __bio_integrity_endio(struct bio *bio) 558 { 559 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 560 struct bio_integrity_payload *bip = bio_integrity(bio); 561 562 if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && 563 (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) { 564 INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); 565 queue_work(kintegrityd_wq, &bip->bip_work); 566 return false; 567 } 568 569 bio_integrity_free(bio); 570 return true; 571 } 572 573 /** 574 * bio_integrity_advance - Advance integrity vector 575 * @bio: bio whose integrity vector to update 576 * @bytes_done: number of data bytes that have been completed 577 * 578 * Description: This function calculates how many integrity bytes the 579 * number of completed data bytes correspond to and advances the 580 * integrity vector accordingly. 581 */ 582 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) 583 { 584 struct bio_integrity_payload *bip = bio_integrity(bio); 585 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 586 unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); 587 588 bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9); 589 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); 590 } 591 592 /** 593 * bio_integrity_trim - Trim integrity vector 594 * @bio: bio whose integrity vector to update 595 * 596 * Description: Used to trim the integrity vector in a cloned bio. 597 */ 598 void bio_integrity_trim(struct bio *bio) 599 { 600 struct bio_integrity_payload *bip = bio_integrity(bio); 601 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 602 603 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 604 } 605 EXPORT_SYMBOL(bio_integrity_trim); 606 607 /** 608 * bio_integrity_clone - Callback for cloning bios with integrity metadata 609 * @bio: New bio 610 * @bio_src: Original bio 611 * @gfp_mask: Memory allocation mask 612 * 613 * Description: Called to allocate a bip when cloning a bio 614 */ 615 int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 616 gfp_t gfp_mask) 617 { 618 struct bio_integrity_payload *bip_src = bio_integrity(bio_src); 619 struct bio_integrity_payload *bip; 620 621 BUG_ON(bip_src == NULL); 622 623 bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt); 624 if (IS_ERR(bip)) 625 return PTR_ERR(bip); 626 627 memcpy(bip->bip_vec, bip_src->bip_vec, 628 bip_src->bip_vcnt * sizeof(struct bio_vec)); 629 630 bip->bip_vcnt = bip_src->bip_vcnt; 631 bip->bip_iter = bip_src->bip_iter; 632 bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY; 633 634 return 0; 635 } 636 637 int bioset_integrity_create(struct bio_set *bs, int pool_size) 638 { 639 if (mempool_initialized(&bs->bio_integrity_pool)) 640 return 0; 641 642 if (mempool_init_slab_pool(&bs->bio_integrity_pool, 643 pool_size, bip_slab)) 644 return -1; 645 646 if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) { 647 mempool_exit(&bs->bio_integrity_pool); 648 return -1; 649 } 650 651 return 0; 652 } 653 EXPORT_SYMBOL(bioset_integrity_create); 654 655 void bioset_integrity_free(struct bio_set *bs) 656 { 657 mempool_exit(&bs->bio_integrity_pool); 658 mempool_exit(&bs->bvec_integrity_pool); 659 } 660 661 void __init bio_integrity_init(void) 662 { 663 /* 664 * kintegrityd won't block much but may burn a lot of CPU cycles. 665 * Make it highpri CPU intensive wq with max concurrency of 1. 666 */ 667 kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | 668 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); 669 if (!kintegrityd_wq) 670 panic("Failed to create kintegrityd\n"); 671 672 bip_slab = kmem_cache_create("bio_integrity_payload", 673 sizeof(struct bio_integrity_payload) + 674 sizeof(struct bio_vec) * BIO_INLINE_VECS, 675 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 676 } 677