xref: /linux/block/bio-integrity.c (revision 3e7819886281e077e82006fe4804b0d6b0f5643b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bio-integrity.c - bio data integrity extensions
4  *
5  * Copyright (C) 2007, 2008, 2009 Oracle Corporation
6  * Written by: Martin K. Petersen <martin.petersen@oracle.com>
7  */
8 
9 #include <linux/blk-integrity.h>
10 #include <linux/mempool.h>
11 #include <linux/export.h>
12 #include <linux/bio.h>
13 #include <linux/workqueue.h>
14 #include <linux/slab.h>
15 #include "blk.h"
16 
17 static struct kmem_cache *bip_slab;
18 static struct workqueue_struct *kintegrityd_wq;
19 
20 void blk_flush_integrity(void)
21 {
22 	flush_workqueue(kintegrityd_wq);
23 }
24 
25 static void __bio_integrity_free(struct bio_set *bs,
26 				 struct bio_integrity_payload *bip)
27 {
28 	if (bs && mempool_initialized(&bs->bio_integrity_pool)) {
29 		if (bip->bip_vec)
30 			bvec_free(&bs->bvec_integrity_pool, bip->bip_vec,
31 				  bip->bip_max_vcnt);
32 		mempool_free(bip, &bs->bio_integrity_pool);
33 	} else {
34 		kfree(bip);
35 	}
36 }
37 
38 /**
39  * bio_integrity_alloc - Allocate integrity payload and attach it to bio
40  * @bio:	bio to attach integrity metadata to
41  * @gfp_mask:	Memory allocation mask
42  * @nr_vecs:	Number of integrity metadata scatter-gather elements
43  *
44  * Description: This function prepares a bio for attaching integrity
45  * metadata.  nr_vecs specifies the maximum number of pages containing
46  * integrity metadata that can be attached.
47  */
48 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
49 						  gfp_t gfp_mask,
50 						  unsigned int nr_vecs)
51 {
52 	struct bio_integrity_payload *bip;
53 	struct bio_set *bs = bio->bi_pool;
54 	unsigned inline_vecs;
55 
56 	if (WARN_ON_ONCE(bio_has_crypt_ctx(bio)))
57 		return ERR_PTR(-EOPNOTSUPP);
58 
59 	if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) {
60 		bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask);
61 		inline_vecs = nr_vecs;
62 	} else {
63 		bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask);
64 		inline_vecs = BIO_INLINE_VECS;
65 	}
66 
67 	if (unlikely(!bip))
68 		return ERR_PTR(-ENOMEM);
69 
70 	memset(bip, 0, sizeof(*bip));
71 
72 	/* always report as many vecs as asked explicitly, not inline vecs */
73 	bip->bip_max_vcnt = nr_vecs;
74 	if (nr_vecs > inline_vecs) {
75 		bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool,
76 					  &bip->bip_max_vcnt, gfp_mask);
77 		if (!bip->bip_vec)
78 			goto err;
79 	} else if (nr_vecs) {
80 		bip->bip_vec = bip->bip_inline_vecs;
81 	}
82 
83 	bip->bip_bio = bio;
84 	bio->bi_integrity = bip;
85 	bio->bi_opf |= REQ_INTEGRITY;
86 
87 	return bip;
88 err:
89 	__bio_integrity_free(bs, bip);
90 	return ERR_PTR(-ENOMEM);
91 }
92 EXPORT_SYMBOL(bio_integrity_alloc);
93 
94 static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs,
95 				     bool dirty)
96 {
97 	int i;
98 
99 	for (i = 0; i < nr_vecs; i++) {
100 		if (dirty && !PageCompound(bv[i].bv_page))
101 			set_page_dirty_lock(bv[i].bv_page);
102 		unpin_user_page(bv[i].bv_page);
103 	}
104 }
105 
106 static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip)
107 {
108 	unsigned short nr_vecs = bip->bip_max_vcnt - 1;
109 	struct bio_vec *copy = &bip->bip_vec[1];
110 	size_t bytes = bip->bip_iter.bi_size;
111 	struct iov_iter iter;
112 	int ret;
113 
114 	iov_iter_bvec(&iter, ITER_DEST, copy, nr_vecs, bytes);
115 	ret = copy_to_iter(bvec_virt(bip->bip_vec), bytes, &iter);
116 	WARN_ON_ONCE(ret != bytes);
117 
118 	bio_integrity_unpin_bvec(copy, nr_vecs, true);
119 }
120 
121 static void bio_integrity_unmap_user(struct bio_integrity_payload *bip)
122 {
123 	bool dirty = bio_data_dir(bip->bip_bio) == READ;
124 
125 	if (bip->bip_flags & BIP_COPY_USER) {
126 		if (dirty)
127 			bio_integrity_uncopy_user(bip);
128 		kfree(bvec_virt(bip->bip_vec));
129 		return;
130 	}
131 
132 	bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt, dirty);
133 }
134 
135 /**
136  * bio_integrity_free - Free bio integrity payload
137  * @bio:	bio containing bip to be freed
138  *
139  * Description: Used to free the integrity portion of a bio. Usually
140  * called from bio_free().
141  */
142 void bio_integrity_free(struct bio *bio)
143 {
144 	struct bio_integrity_payload *bip = bio_integrity(bio);
145 	struct bio_set *bs = bio->bi_pool;
146 
147 	if (bip->bip_flags & BIP_INTEGRITY_USER)
148 		return;
149 	if (bip->bip_flags & BIP_BLOCK_INTEGRITY)
150 		kfree(bvec_virt(bip->bip_vec));
151 
152 	__bio_integrity_free(bs, bip);
153 	bio->bi_integrity = NULL;
154 	bio->bi_opf &= ~REQ_INTEGRITY;
155 }
156 
157 /**
158  * bio_integrity_unmap_free_user - Unmap and free bio user integrity payload
159  * @bio:	bio containing bip to be unmapped and freed
160  *
161  * Description: Used to unmap and free the user mapped integrity portion of a
162  * bio. Submitter attaching the user integrity buffer is responsible for
163  * unmapping and freeing it during completion.
164  */
165 void bio_integrity_unmap_free_user(struct bio *bio)
166 {
167 	struct bio_integrity_payload *bip = bio_integrity(bio);
168 	struct bio_set *bs = bio->bi_pool;
169 
170 	if (WARN_ON_ONCE(!(bip->bip_flags & BIP_INTEGRITY_USER)))
171 		return;
172 	bio_integrity_unmap_user(bip);
173 	__bio_integrity_free(bs, bip);
174 	bio->bi_integrity = NULL;
175 	bio->bi_opf &= ~REQ_INTEGRITY;
176 }
177 EXPORT_SYMBOL(bio_integrity_unmap_free_user);
178 
179 /**
180  * bio_integrity_add_page - Attach integrity metadata
181  * @bio:	bio to update
182  * @page:	page containing integrity metadata
183  * @len:	number of bytes of integrity metadata in page
184  * @offset:	start offset within page
185  *
186  * Description: Attach a page containing integrity metadata to bio.
187  */
188 int bio_integrity_add_page(struct bio *bio, struct page *page,
189 			   unsigned int len, unsigned int offset)
190 {
191 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
192 	struct bio_integrity_payload *bip = bio_integrity(bio);
193 
194 	if (((bip->bip_iter.bi_size + len) >> SECTOR_SHIFT) >
195 	    queue_max_hw_sectors(q))
196 		return 0;
197 
198 	if (bip->bip_vcnt > 0) {
199 		struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1];
200 		bool same_page = false;
201 
202 		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
203 					   &same_page)) {
204 			bip->bip_iter.bi_size += len;
205 			return len;
206 		}
207 
208 		if (bip->bip_vcnt >=
209 		    min(bip->bip_max_vcnt, queue_max_integrity_segments(q)))
210 			return 0;
211 
212 		/*
213 		 * If the queue doesn't support SG gaps and adding this segment
214 		 * would create a gap, disallow it.
215 		 */
216 		if (bvec_gap_to_prev(&q->limits, bv, offset))
217 			return 0;
218 	}
219 
220 	bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset);
221 	bip->bip_vcnt++;
222 	bip->bip_iter.bi_size += len;
223 
224 	return len;
225 }
226 EXPORT_SYMBOL(bio_integrity_add_page);
227 
228 static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec,
229 				   int nr_vecs, unsigned int len,
230 				   unsigned int direction, u32 seed)
231 {
232 	bool write = direction == ITER_SOURCE;
233 	struct bio_integrity_payload *bip;
234 	struct iov_iter iter;
235 	void *buf;
236 	int ret;
237 
238 	buf = kmalloc(len, GFP_KERNEL);
239 	if (!buf)
240 		return -ENOMEM;
241 
242 	if (write) {
243 		iov_iter_bvec(&iter, direction, bvec, nr_vecs, len);
244 		if (!copy_from_iter_full(buf, len, &iter)) {
245 			ret = -EFAULT;
246 			goto free_buf;
247 		}
248 
249 		bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
250 	} else {
251 		memset(buf, 0, len);
252 
253 		/*
254 		 * We need to preserve the original bvec and the number of vecs
255 		 * in it for completion handling
256 		 */
257 		bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1);
258 	}
259 
260 	if (IS_ERR(bip)) {
261 		ret = PTR_ERR(bip);
262 		goto free_buf;
263 	}
264 
265 	if (write)
266 		bio_integrity_unpin_bvec(bvec, nr_vecs, false);
267 	else
268 		memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec));
269 
270 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
271 				     offset_in_page(buf));
272 	if (ret != len) {
273 		ret = -ENOMEM;
274 		goto free_bip;
275 	}
276 
277 	bip->bip_flags |= BIP_INTEGRITY_USER | BIP_COPY_USER;
278 	bip->bip_iter.bi_sector = seed;
279 	bip->bip_vcnt = nr_vecs;
280 	return 0;
281 free_bip:
282 	bio_integrity_free(bio);
283 free_buf:
284 	kfree(buf);
285 	return ret;
286 }
287 
288 static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec,
289 				   int nr_vecs, unsigned int len, u32 seed)
290 {
291 	struct bio_integrity_payload *bip;
292 
293 	bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs);
294 	if (IS_ERR(bip))
295 		return PTR_ERR(bip);
296 
297 	memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec));
298 	bip->bip_flags |= BIP_INTEGRITY_USER;
299 	bip->bip_iter.bi_sector = seed;
300 	bip->bip_iter.bi_size = len;
301 	bip->bip_vcnt = nr_vecs;
302 	return 0;
303 }
304 
305 static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages,
306 				    int nr_vecs, ssize_t bytes, ssize_t offset)
307 {
308 	unsigned int nr_bvecs = 0;
309 	int i, j;
310 
311 	for (i = 0; i < nr_vecs; i = j) {
312 		size_t size = min_t(size_t, bytes, PAGE_SIZE - offset);
313 		struct folio *folio = page_folio(pages[i]);
314 
315 		bytes -= size;
316 		for (j = i + 1; j < nr_vecs; j++) {
317 			size_t next = min_t(size_t, PAGE_SIZE, bytes);
318 
319 			if (page_folio(pages[j]) != folio ||
320 			    pages[j] != pages[j - 1] + 1)
321 				break;
322 			unpin_user_page(pages[j]);
323 			size += next;
324 			bytes -= next;
325 		}
326 
327 		bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset);
328 		offset = 0;
329 		nr_bvecs++;
330 	}
331 
332 	return nr_bvecs;
333 }
334 
335 int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes,
336 			   u32 seed)
337 {
338 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
339 	unsigned int align = blk_lim_dma_alignment_and_pad(&q->limits);
340 	struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages;
341 	struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec;
342 	unsigned int direction, nr_bvecs;
343 	struct iov_iter iter;
344 	int ret, nr_vecs;
345 	size_t offset;
346 	bool copy;
347 
348 	if (bio_integrity(bio))
349 		return -EINVAL;
350 	if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q))
351 		return -E2BIG;
352 
353 	if (bio_data_dir(bio) == READ)
354 		direction = ITER_DEST;
355 	else
356 		direction = ITER_SOURCE;
357 
358 	iov_iter_ubuf(&iter, direction, ubuf, bytes);
359 	nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1);
360 	if (nr_vecs > BIO_MAX_VECS)
361 		return -E2BIG;
362 	if (nr_vecs > UIO_FASTIOV) {
363 		bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL);
364 		if (!bvec)
365 			return -ENOMEM;
366 		pages = NULL;
367 	}
368 
369 	copy = !iov_iter_is_aligned(&iter, align, align);
370 	ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset);
371 	if (unlikely(ret < 0))
372 		goto free_bvec;
373 
374 	nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset);
375 	if (pages != stack_pages)
376 		kvfree(pages);
377 	if (nr_bvecs > queue_max_integrity_segments(q))
378 		copy = true;
379 
380 	if (copy)
381 		ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes,
382 					      direction, seed);
383 	else
384 		ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes, seed);
385 	if (ret)
386 		goto release_pages;
387 	if (bvec != stack_vec)
388 		kfree(bvec);
389 
390 	return 0;
391 
392 release_pages:
393 	bio_integrity_unpin_bvec(bvec, nr_bvecs, false);
394 free_bvec:
395 	if (bvec != stack_vec)
396 		kfree(bvec);
397 	return ret;
398 }
399 EXPORT_SYMBOL_GPL(bio_integrity_map_user);
400 
401 /**
402  * bio_integrity_prep - Prepare bio for integrity I/O
403  * @bio:	bio to prepare
404  *
405  * Description:  Checks if the bio already has an integrity payload attached.
406  * If it does, the payload has been generated by another kernel subsystem,
407  * and we just pass it through. Otherwise allocates integrity payload.
408  * The bio must have data direction, target device and start sector set priot
409  * to calling.  In the WRITE case, integrity metadata will be generated using
410  * the block device's integrity function.  In the READ case, the buffer
411  * will be prepared for DMA and a suitable end_io handler set up.
412  */
413 bool bio_integrity_prep(struct bio *bio)
414 {
415 	struct bio_integrity_payload *bip;
416 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
417 	unsigned int len;
418 	void *buf;
419 	gfp_t gfp = GFP_NOIO;
420 
421 	if (!bi)
422 		return true;
423 
424 	if (!bio_sectors(bio))
425 		return true;
426 
427 	/* Already protected? */
428 	if (bio_integrity(bio))
429 		return true;
430 
431 	switch (bio_op(bio)) {
432 	case REQ_OP_READ:
433 		if (bi->flags & BLK_INTEGRITY_NOVERIFY)
434 			return true;
435 		break;
436 	case REQ_OP_WRITE:
437 		if (bi->flags & BLK_INTEGRITY_NOGENERATE)
438 			return true;
439 
440 		/*
441 		 * Zero the memory allocated to not leak uninitialized kernel
442 		 * memory to disk for non-integrity metadata where nothing else
443 		 * initializes the memory.
444 		 */
445 		if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE)
446 			gfp |= __GFP_ZERO;
447 		break;
448 	default:
449 		return true;
450 	}
451 
452 	/* Allocate kernel buffer for protection data */
453 	len = bio_integrity_bytes(bi, bio_sectors(bio));
454 	buf = kmalloc(len, gfp);
455 	if (unlikely(buf == NULL)) {
456 		goto err_end_io;
457 	}
458 
459 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
460 	if (IS_ERR(bip)) {
461 		kfree(buf);
462 		goto err_end_io;
463 	}
464 
465 	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
466 	bip_set_seed(bip, bio->bi_iter.bi_sector);
467 
468 	if (bi->csum_type == BLK_INTEGRITY_CSUM_IP)
469 		bip->bip_flags |= BIP_IP_CHECKSUM;
470 
471 	if (bio_integrity_add_page(bio, virt_to_page(buf), len,
472 			offset_in_page(buf)) < len) {
473 		printk(KERN_ERR "could not attach integrity payload\n");
474 		goto err_end_io;
475 	}
476 
477 	/* Auto-generate integrity metadata if this is a write */
478 	if (bio_data_dir(bio) == WRITE)
479 		blk_integrity_generate(bio);
480 	else
481 		bip->bio_iter = bio->bi_iter;
482 	return true;
483 
484 err_end_io:
485 	bio->bi_status = BLK_STS_RESOURCE;
486 	bio_endio(bio);
487 	return false;
488 }
489 EXPORT_SYMBOL(bio_integrity_prep);
490 
491 /**
492  * bio_integrity_verify_fn - Integrity I/O completion worker
493  * @work:	Work struct stored in bio to be verified
494  *
495  * Description: This workqueue function is called to complete a READ
496  * request.  The function verifies the transferred integrity metadata
497  * and then calls the original bio end_io function.
498  */
499 static void bio_integrity_verify_fn(struct work_struct *work)
500 {
501 	struct bio_integrity_payload *bip =
502 		container_of(work, struct bio_integrity_payload, bip_work);
503 	struct bio *bio = bip->bip_bio;
504 
505 	blk_integrity_verify(bio);
506 	bio_integrity_free(bio);
507 	bio_endio(bio);
508 }
509 
510 /**
511  * __bio_integrity_endio - Integrity I/O completion function
512  * @bio:	Protected bio
513  *
514  * Description: Completion for integrity I/O
515  *
516  * Normally I/O completion is done in interrupt context.  However,
517  * verifying I/O integrity is a time-consuming task which must be run
518  * in process context.	This function postpones completion
519  * accordingly.
520  */
521 bool __bio_integrity_endio(struct bio *bio)
522 {
523 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
524 	struct bio_integrity_payload *bip = bio_integrity(bio);
525 
526 	if (bio_op(bio) == REQ_OP_READ && !bio->bi_status &&
527 	    (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->csum_type) {
528 		INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
529 		queue_work(kintegrityd_wq, &bip->bip_work);
530 		return false;
531 	}
532 
533 	bio_integrity_free(bio);
534 	return true;
535 }
536 
537 /**
538  * bio_integrity_advance - Advance integrity vector
539  * @bio:	bio whose integrity vector to update
540  * @bytes_done:	number of data bytes that have been completed
541  *
542  * Description: This function calculates how many integrity bytes the
543  * number of completed data bytes correspond to and advances the
544  * integrity vector accordingly.
545  */
546 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
547 {
548 	struct bio_integrity_payload *bip = bio_integrity(bio);
549 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
550 	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
551 
552 	bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9);
553 	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
554 }
555 
556 /**
557  * bio_integrity_trim - Trim integrity vector
558  * @bio:	bio whose integrity vector to update
559  *
560  * Description: Used to trim the integrity vector in a cloned bio.
561  */
562 void bio_integrity_trim(struct bio *bio)
563 {
564 	struct bio_integrity_payload *bip = bio_integrity(bio);
565 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
566 
567 	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
568 }
569 EXPORT_SYMBOL(bio_integrity_trim);
570 
571 /**
572  * bio_integrity_clone - Callback for cloning bios with integrity metadata
573  * @bio:	New bio
574  * @bio_src:	Original bio
575  * @gfp_mask:	Memory allocation mask
576  *
577  * Description:	Called to allocate a bip when cloning a bio
578  */
579 int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
580 			gfp_t gfp_mask)
581 {
582 	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
583 	struct bio_integrity_payload *bip;
584 
585 	BUG_ON(bip_src == NULL);
586 
587 	bip = bio_integrity_alloc(bio, gfp_mask, 0);
588 	if (IS_ERR(bip))
589 		return PTR_ERR(bip);
590 
591 	bip->bip_vec = bip_src->bip_vec;
592 	bip->bip_iter = bip_src->bip_iter;
593 	bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY;
594 
595 	return 0;
596 }
597 
598 int bioset_integrity_create(struct bio_set *bs, int pool_size)
599 {
600 	if (mempool_initialized(&bs->bio_integrity_pool))
601 		return 0;
602 
603 	if (mempool_init_slab_pool(&bs->bio_integrity_pool,
604 				   pool_size, bip_slab))
605 		return -1;
606 
607 	if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) {
608 		mempool_exit(&bs->bio_integrity_pool);
609 		return -1;
610 	}
611 
612 	return 0;
613 }
614 EXPORT_SYMBOL(bioset_integrity_create);
615 
616 void bioset_integrity_free(struct bio_set *bs)
617 {
618 	mempool_exit(&bs->bio_integrity_pool);
619 	mempool_exit(&bs->bvec_integrity_pool);
620 }
621 
622 void __init bio_integrity_init(void)
623 {
624 	/*
625 	 * kintegrityd won't block much but may burn a lot of CPU cycles.
626 	 * Make it highpri CPU intensive wq with max concurrency of 1.
627 	 */
628 	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
629 					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
630 	if (!kintegrityd_wq)
631 		panic("Failed to create kintegrityd\n");
632 
633 	bip_slab = kmem_cache_create("bio_integrity_payload",
634 				     sizeof(struct bio_integrity_payload) +
635 				     sizeof(struct bio_vec) * BIO_INLINE_VECS,
636 				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
637 }
638