1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bio-integrity.c - bio data integrity extensions 4 * 5 * Copyright (C) 2007, 2008, 2009 Oracle Corporation 6 * Written by: Martin K. Petersen <martin.petersen@oracle.com> 7 */ 8 9 #include <linux/blk-integrity.h> 10 #include <linux/mempool.h> 11 #include <linux/export.h> 12 #include <linux/bio.h> 13 #include <linux/workqueue.h> 14 #include <linux/slab.h> 15 #include "blk.h" 16 17 static struct kmem_cache *bip_slab; 18 static struct workqueue_struct *kintegrityd_wq; 19 20 void blk_flush_integrity(void) 21 { 22 flush_workqueue(kintegrityd_wq); 23 } 24 25 static void __bio_integrity_free(struct bio_set *bs, 26 struct bio_integrity_payload *bip) 27 { 28 if (bs && mempool_initialized(&bs->bio_integrity_pool)) { 29 if (bip->bip_vec) 30 bvec_free(&bs->bvec_integrity_pool, bip->bip_vec, 31 bip->bip_max_vcnt); 32 mempool_free(bip, &bs->bio_integrity_pool); 33 } else { 34 kfree(bip); 35 } 36 } 37 38 /** 39 * bio_integrity_alloc - Allocate integrity payload and attach it to bio 40 * @bio: bio to attach integrity metadata to 41 * @gfp_mask: Memory allocation mask 42 * @nr_vecs: Number of integrity metadata scatter-gather elements 43 * 44 * Description: This function prepares a bio for attaching integrity 45 * metadata. nr_vecs specifies the maximum number of pages containing 46 * integrity metadata that can be attached. 47 */ 48 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, 49 gfp_t gfp_mask, 50 unsigned int nr_vecs) 51 { 52 struct bio_integrity_payload *bip; 53 struct bio_set *bs = bio->bi_pool; 54 unsigned inline_vecs; 55 56 if (WARN_ON_ONCE(bio_has_crypt_ctx(bio))) 57 return ERR_PTR(-EOPNOTSUPP); 58 59 if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) { 60 bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask); 61 inline_vecs = nr_vecs; 62 } else { 63 bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask); 64 inline_vecs = BIO_INLINE_VECS; 65 } 66 67 if (unlikely(!bip)) 68 return ERR_PTR(-ENOMEM); 69 70 memset(bip, 0, sizeof(*bip)); 71 72 /* always report as many vecs as asked explicitly, not inline vecs */ 73 bip->bip_max_vcnt = nr_vecs; 74 if (nr_vecs > inline_vecs) { 75 bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool, 76 &bip->bip_max_vcnt, gfp_mask); 77 if (!bip->bip_vec) 78 goto err; 79 } else { 80 bip->bip_vec = bip->bip_inline_vecs; 81 } 82 83 bip->bip_bio = bio; 84 bio->bi_integrity = bip; 85 bio->bi_opf |= REQ_INTEGRITY; 86 87 return bip; 88 err: 89 __bio_integrity_free(bs, bip); 90 return ERR_PTR(-ENOMEM); 91 } 92 EXPORT_SYMBOL(bio_integrity_alloc); 93 94 static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs, 95 bool dirty) 96 { 97 int i; 98 99 for (i = 0; i < nr_vecs; i++) { 100 if (dirty && !PageCompound(bv[i].bv_page)) 101 set_page_dirty_lock(bv[i].bv_page); 102 unpin_user_page(bv[i].bv_page); 103 } 104 } 105 106 static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip) 107 { 108 unsigned short nr_vecs = bip->bip_max_vcnt - 1; 109 struct bio_vec *copy = &bip->bip_vec[1]; 110 size_t bytes = bip->bip_iter.bi_size; 111 struct iov_iter iter; 112 int ret; 113 114 iov_iter_bvec(&iter, ITER_DEST, copy, nr_vecs, bytes); 115 ret = copy_to_iter(bvec_virt(bip->bip_vec), bytes, &iter); 116 WARN_ON_ONCE(ret != bytes); 117 118 bio_integrity_unpin_bvec(copy, nr_vecs, true); 119 } 120 121 static void bio_integrity_unmap_user(struct bio_integrity_payload *bip) 122 { 123 bool dirty = bio_data_dir(bip->bip_bio) == READ; 124 125 if (bip->bip_flags & BIP_COPY_USER) { 126 if (dirty) 127 bio_integrity_uncopy_user(bip); 128 kfree(bvec_virt(bip->bip_vec)); 129 return; 130 } 131 132 bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt, dirty); 133 } 134 135 /** 136 * bio_integrity_free - Free bio integrity payload 137 * @bio: bio containing bip to be freed 138 * 139 * Description: Used to free the integrity portion of a bio. Usually 140 * called from bio_free(). 141 */ 142 void bio_integrity_free(struct bio *bio) 143 { 144 struct bio_integrity_payload *bip = bio_integrity(bio); 145 struct bio_set *bs = bio->bi_pool; 146 147 if (bip->bip_flags & BIP_BLOCK_INTEGRITY) 148 kfree(bvec_virt(bip->bip_vec)); 149 else if (bip->bip_flags & BIP_INTEGRITY_USER) 150 bio_integrity_unmap_user(bip); 151 152 __bio_integrity_free(bs, bip); 153 bio->bi_integrity = NULL; 154 bio->bi_opf &= ~REQ_INTEGRITY; 155 } 156 157 /** 158 * bio_integrity_add_page - Attach integrity metadata 159 * @bio: bio to update 160 * @page: page containing integrity metadata 161 * @len: number of bytes of integrity metadata in page 162 * @offset: start offset within page 163 * 164 * Description: Attach a page containing integrity metadata to bio. 165 */ 166 int bio_integrity_add_page(struct bio *bio, struct page *page, 167 unsigned int len, unsigned int offset) 168 { 169 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 170 struct bio_integrity_payload *bip = bio_integrity(bio); 171 172 if (((bip->bip_iter.bi_size + len) >> SECTOR_SHIFT) > 173 queue_max_hw_sectors(q)) 174 return 0; 175 176 if (bip->bip_vcnt > 0) { 177 struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1]; 178 bool same_page = false; 179 180 if (bvec_try_merge_hw_page(q, bv, page, len, offset, 181 &same_page)) { 182 bip->bip_iter.bi_size += len; 183 return len; 184 } 185 186 if (bip->bip_vcnt >= 187 min(bip->bip_max_vcnt, queue_max_integrity_segments(q))) 188 return 0; 189 190 /* 191 * If the queue doesn't support SG gaps and adding this segment 192 * would create a gap, disallow it. 193 */ 194 if (bvec_gap_to_prev(&q->limits, bv, offset)) 195 return 0; 196 } 197 198 bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset); 199 bip->bip_vcnt++; 200 bip->bip_iter.bi_size += len; 201 202 return len; 203 } 204 EXPORT_SYMBOL(bio_integrity_add_page); 205 206 static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec, 207 int nr_vecs, unsigned int len, 208 unsigned int direction, u32 seed) 209 { 210 bool write = direction == ITER_SOURCE; 211 struct bio_integrity_payload *bip; 212 struct iov_iter iter; 213 void *buf; 214 int ret; 215 216 buf = kmalloc(len, GFP_KERNEL); 217 if (!buf) 218 return -ENOMEM; 219 220 if (write) { 221 iov_iter_bvec(&iter, direction, bvec, nr_vecs, len); 222 if (!copy_from_iter_full(buf, len, &iter)) { 223 ret = -EFAULT; 224 goto free_buf; 225 } 226 227 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 228 } else { 229 memset(buf, 0, len); 230 231 /* 232 * We need to preserve the original bvec and the number of vecs 233 * in it for completion handling 234 */ 235 bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1); 236 } 237 238 if (IS_ERR(bip)) { 239 ret = PTR_ERR(bip); 240 goto free_buf; 241 } 242 243 if (write) 244 bio_integrity_unpin_bvec(bvec, nr_vecs, false); 245 else 246 memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec)); 247 248 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 249 offset_in_page(buf)); 250 if (ret != len) { 251 ret = -ENOMEM; 252 goto free_bip; 253 } 254 255 bip->bip_flags |= BIP_INTEGRITY_USER | BIP_COPY_USER; 256 bip->bip_iter.bi_sector = seed; 257 return 0; 258 free_bip: 259 bio_integrity_free(bio); 260 free_buf: 261 kfree(buf); 262 return ret; 263 } 264 265 static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec, 266 int nr_vecs, unsigned int len, u32 seed) 267 { 268 struct bio_integrity_payload *bip; 269 270 bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs); 271 if (IS_ERR(bip)) 272 return PTR_ERR(bip); 273 274 memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec)); 275 bip->bip_flags |= BIP_INTEGRITY_USER; 276 bip->bip_iter.bi_sector = seed; 277 bip->bip_iter.bi_size = len; 278 return 0; 279 } 280 281 static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages, 282 int nr_vecs, ssize_t bytes, ssize_t offset) 283 { 284 unsigned int nr_bvecs = 0; 285 int i, j; 286 287 for (i = 0; i < nr_vecs; i = j) { 288 size_t size = min_t(size_t, bytes, PAGE_SIZE - offset); 289 struct folio *folio = page_folio(pages[i]); 290 291 bytes -= size; 292 for (j = i + 1; j < nr_vecs; j++) { 293 size_t next = min_t(size_t, PAGE_SIZE, bytes); 294 295 if (page_folio(pages[j]) != folio || 296 pages[j] != pages[j - 1] + 1) 297 break; 298 unpin_user_page(pages[j]); 299 size += next; 300 bytes -= next; 301 } 302 303 bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset); 304 offset = 0; 305 nr_bvecs++; 306 } 307 308 return nr_bvecs; 309 } 310 311 int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes, 312 u32 seed) 313 { 314 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 315 unsigned int align = q->dma_pad_mask | queue_dma_alignment(q); 316 struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages; 317 struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec; 318 unsigned int direction, nr_bvecs; 319 struct iov_iter iter; 320 int ret, nr_vecs; 321 size_t offset; 322 bool copy; 323 324 if (bio_integrity(bio)) 325 return -EINVAL; 326 if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q)) 327 return -E2BIG; 328 329 if (bio_data_dir(bio) == READ) 330 direction = ITER_DEST; 331 else 332 direction = ITER_SOURCE; 333 334 iov_iter_ubuf(&iter, direction, ubuf, bytes); 335 nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1); 336 if (nr_vecs > BIO_MAX_VECS) 337 return -E2BIG; 338 if (nr_vecs > UIO_FASTIOV) { 339 bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL); 340 if (!bvec) 341 return -ENOMEM; 342 pages = NULL; 343 } 344 345 copy = !iov_iter_is_aligned(&iter, align, align); 346 ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset); 347 if (unlikely(ret < 0)) 348 goto free_bvec; 349 350 nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset); 351 if (pages != stack_pages) 352 kvfree(pages); 353 if (nr_bvecs > queue_max_integrity_segments(q)) 354 copy = true; 355 356 if (copy) 357 ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes, 358 direction, seed); 359 else 360 ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes, seed); 361 if (ret) 362 goto release_pages; 363 if (bvec != stack_vec) 364 kfree(bvec); 365 366 return 0; 367 368 release_pages: 369 bio_integrity_unpin_bvec(bvec, nr_bvecs, false); 370 free_bvec: 371 if (bvec != stack_vec) 372 kfree(bvec); 373 return ret; 374 } 375 EXPORT_SYMBOL_GPL(bio_integrity_map_user); 376 377 /** 378 * bio_integrity_process - Process integrity metadata for a bio 379 * @bio: bio to generate/verify integrity metadata for 380 * @proc_iter: iterator to process 381 * @proc_fn: Pointer to the relevant processing function 382 */ 383 static blk_status_t bio_integrity_process(struct bio *bio, 384 struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn) 385 { 386 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 387 struct blk_integrity_iter iter; 388 struct bvec_iter bviter; 389 struct bio_vec bv; 390 struct bio_integrity_payload *bip = bio_integrity(bio); 391 blk_status_t ret = BLK_STS_OK; 392 393 iter.disk_name = bio->bi_bdev->bd_disk->disk_name; 394 iter.interval = 1 << bi->interval_exp; 395 iter.tuple_size = bi->tuple_size; 396 iter.seed = proc_iter->bi_sector; 397 iter.prot_buf = bvec_virt(bip->bip_vec); 398 399 __bio_for_each_segment(bv, bio, bviter, *proc_iter) { 400 void *kaddr = bvec_kmap_local(&bv); 401 402 iter.data_buf = kaddr; 403 iter.data_size = bv.bv_len; 404 ret = proc_fn(&iter); 405 kunmap_local(kaddr); 406 407 if (ret) 408 break; 409 410 } 411 return ret; 412 } 413 414 /** 415 * bio_integrity_prep - Prepare bio for integrity I/O 416 * @bio: bio to prepare 417 * 418 * Description: Checks if the bio already has an integrity payload attached. 419 * If it does, the payload has been generated by another kernel subsystem, 420 * and we just pass it through. Otherwise allocates integrity payload. 421 * The bio must have data direction, target device and start sector set priot 422 * to calling. In the WRITE case, integrity metadata will be generated using 423 * the block device's integrity function. In the READ case, the buffer 424 * will be prepared for DMA and a suitable end_io handler set up. 425 */ 426 bool bio_integrity_prep(struct bio *bio) 427 { 428 struct bio_integrity_payload *bip; 429 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 430 void *buf; 431 unsigned long start, end; 432 unsigned int len, nr_pages; 433 unsigned int bytes, offset, i; 434 435 if (!bi) 436 return true; 437 438 if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE) 439 return true; 440 441 if (!bio_sectors(bio)) 442 return true; 443 444 /* Already protected? */ 445 if (bio_integrity(bio)) 446 return true; 447 448 if (bio_data_dir(bio) == READ) { 449 if (!bi->profile->verify_fn || 450 !(bi->flags & BLK_INTEGRITY_VERIFY)) 451 return true; 452 } else { 453 if (!bi->profile->generate_fn || 454 !(bi->flags & BLK_INTEGRITY_GENERATE)) 455 return true; 456 } 457 458 /* Allocate kernel buffer for protection data */ 459 len = bio_integrity_bytes(bi, bio_sectors(bio)); 460 buf = kmalloc(len, GFP_NOIO); 461 if (unlikely(buf == NULL)) { 462 printk(KERN_ERR "could not allocate integrity buffer\n"); 463 goto err_end_io; 464 } 465 466 end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 467 start = ((unsigned long) buf) >> PAGE_SHIFT; 468 nr_pages = end - start; 469 470 /* Allocate bio integrity payload and integrity vectors */ 471 bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages); 472 if (IS_ERR(bip)) { 473 printk(KERN_ERR "could not allocate data integrity bioset\n"); 474 kfree(buf); 475 goto err_end_io; 476 } 477 478 bip->bip_flags |= BIP_BLOCK_INTEGRITY; 479 bip_set_seed(bip, bio->bi_iter.bi_sector); 480 481 if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM) 482 bip->bip_flags |= BIP_IP_CHECKSUM; 483 484 /* Map it */ 485 offset = offset_in_page(buf); 486 for (i = 0; i < nr_pages && len > 0; i++) { 487 bytes = PAGE_SIZE - offset; 488 489 if (bytes > len) 490 bytes = len; 491 492 if (bio_integrity_add_page(bio, virt_to_page(buf), 493 bytes, offset) < bytes) { 494 printk(KERN_ERR "could not attach integrity payload\n"); 495 goto err_end_io; 496 } 497 498 buf += bytes; 499 len -= bytes; 500 offset = 0; 501 } 502 503 /* Auto-generate integrity metadata if this is a write */ 504 if (bio_data_dir(bio) == WRITE) { 505 bio_integrity_process(bio, &bio->bi_iter, 506 bi->profile->generate_fn); 507 } else { 508 bip->bio_iter = bio->bi_iter; 509 } 510 return true; 511 512 err_end_io: 513 bio->bi_status = BLK_STS_RESOURCE; 514 bio_endio(bio); 515 return false; 516 } 517 EXPORT_SYMBOL(bio_integrity_prep); 518 519 /** 520 * bio_integrity_verify_fn - Integrity I/O completion worker 521 * @work: Work struct stored in bio to be verified 522 * 523 * Description: This workqueue function is called to complete a READ 524 * request. The function verifies the transferred integrity metadata 525 * and then calls the original bio end_io function. 526 */ 527 static void bio_integrity_verify_fn(struct work_struct *work) 528 { 529 struct bio_integrity_payload *bip = 530 container_of(work, struct bio_integrity_payload, bip_work); 531 struct bio *bio = bip->bip_bio; 532 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 533 534 /* 535 * At the moment verify is called bio's iterator was advanced 536 * during split and completion, we need to rewind iterator to 537 * it's original position. 538 */ 539 bio->bi_status = bio_integrity_process(bio, &bip->bio_iter, 540 bi->profile->verify_fn); 541 bio_integrity_free(bio); 542 bio_endio(bio); 543 } 544 545 /** 546 * __bio_integrity_endio - Integrity I/O completion function 547 * @bio: Protected bio 548 * 549 * Description: Completion for integrity I/O 550 * 551 * Normally I/O completion is done in interrupt context. However, 552 * verifying I/O integrity is a time-consuming task which must be run 553 * in process context. This function postpones completion 554 * accordingly. 555 */ 556 bool __bio_integrity_endio(struct bio *bio) 557 { 558 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 559 struct bio_integrity_payload *bip = bio_integrity(bio); 560 561 if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && 562 (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) { 563 INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); 564 queue_work(kintegrityd_wq, &bip->bip_work); 565 return false; 566 } 567 568 bio_integrity_free(bio); 569 return true; 570 } 571 572 /** 573 * bio_integrity_advance - Advance integrity vector 574 * @bio: bio whose integrity vector to update 575 * @bytes_done: number of data bytes that have been completed 576 * 577 * Description: This function calculates how many integrity bytes the 578 * number of completed data bytes correspond to and advances the 579 * integrity vector accordingly. 580 */ 581 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) 582 { 583 struct bio_integrity_payload *bip = bio_integrity(bio); 584 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 585 unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); 586 587 bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9); 588 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); 589 } 590 591 /** 592 * bio_integrity_trim - Trim integrity vector 593 * @bio: bio whose integrity vector to update 594 * 595 * Description: Used to trim the integrity vector in a cloned bio. 596 */ 597 void bio_integrity_trim(struct bio *bio) 598 { 599 struct bio_integrity_payload *bip = bio_integrity(bio); 600 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 601 602 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 603 } 604 EXPORT_SYMBOL(bio_integrity_trim); 605 606 /** 607 * bio_integrity_clone - Callback for cloning bios with integrity metadata 608 * @bio: New bio 609 * @bio_src: Original bio 610 * @gfp_mask: Memory allocation mask 611 * 612 * Description: Called to allocate a bip when cloning a bio 613 */ 614 int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 615 gfp_t gfp_mask) 616 { 617 struct bio_integrity_payload *bip_src = bio_integrity(bio_src); 618 struct bio_integrity_payload *bip; 619 620 BUG_ON(bip_src == NULL); 621 622 bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt); 623 if (IS_ERR(bip)) 624 return PTR_ERR(bip); 625 626 memcpy(bip->bip_vec, bip_src->bip_vec, 627 bip_src->bip_vcnt * sizeof(struct bio_vec)); 628 629 bip->bip_vcnt = bip_src->bip_vcnt; 630 bip->bip_iter = bip_src->bip_iter; 631 bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY; 632 633 return 0; 634 } 635 636 int bioset_integrity_create(struct bio_set *bs, int pool_size) 637 { 638 if (mempool_initialized(&bs->bio_integrity_pool)) 639 return 0; 640 641 if (mempool_init_slab_pool(&bs->bio_integrity_pool, 642 pool_size, bip_slab)) 643 return -1; 644 645 if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) { 646 mempool_exit(&bs->bio_integrity_pool); 647 return -1; 648 } 649 650 return 0; 651 } 652 EXPORT_SYMBOL(bioset_integrity_create); 653 654 void bioset_integrity_free(struct bio_set *bs) 655 { 656 mempool_exit(&bs->bio_integrity_pool); 657 mempool_exit(&bs->bvec_integrity_pool); 658 } 659 660 void __init bio_integrity_init(void) 661 { 662 /* 663 * kintegrityd won't block much but may burn a lot of CPU cycles. 664 * Make it highpri CPU intensive wq with max concurrency of 1. 665 */ 666 kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | 667 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); 668 if (!kintegrityd_wq) 669 panic("Failed to create kintegrityd\n"); 670 671 bip_slab = kmem_cache_create("bio_integrity_payload", 672 sizeof(struct bio_integrity_payload) + 673 sizeof(struct bio_vec) * BIO_INLINE_VECS, 674 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 675 } 676