xref: /linux/block/bfq-wf2q.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
3  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
4  * scheduler schedules generic entities. The latter can represent
5  * either single bfq queues (associated with processes) or groups of
6  * bfq queues (associated with cgroups).
7  *
8  *  This program is free software; you can redistribute it and/or
9  *  modify it under the terms of the GNU General Public License as
10  *  published by the Free Software Foundation; either version 2 of the
11  *  License, or (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  */
18 #include "bfq-iosched.h"
19 
20 /**
21  * bfq_gt - compare two timestamps.
22  * @a: first ts.
23  * @b: second ts.
24  *
25  * Return @a > @b, dealing with wrapping correctly.
26  */
27 static int bfq_gt(u64 a, u64 b)
28 {
29 	return (s64)(a - b) > 0;
30 }
31 
32 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
33 {
34 	struct rb_node *node = tree->rb_node;
35 
36 	return rb_entry(node, struct bfq_entity, rb_node);
37 }
38 
39 static unsigned int bfq_class_idx(struct bfq_entity *entity)
40 {
41 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
42 
43 	return bfqq ? bfqq->ioprio_class - 1 :
44 		BFQ_DEFAULT_GRP_CLASS - 1;
45 }
46 
47 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
48 						 bool expiration);
49 
50 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
51 
52 /**
53  * bfq_update_next_in_service - update sd->next_in_service
54  * @sd: sched_data for which to perform the update.
55  * @new_entity: if not NULL, pointer to the entity whose activation,
56  *		requeueing or repositionig triggered the invocation of
57  *		this function.
58  * @expiration: id true, this function is being invoked after the
59  *             expiration of the in-service entity
60  *
61  * This function is called to update sd->next_in_service, which, in
62  * its turn, may change as a consequence of the insertion or
63  * extraction of an entity into/from one of the active trees of
64  * sd. These insertions/extractions occur as a consequence of
65  * activations/deactivations of entities, with some activations being
66  * 'true' activations, and other activations being requeueings (i.e.,
67  * implementing the second, requeueing phase of the mechanism used to
68  * reposition an entity in its active tree; see comments on
69  * __bfq_activate_entity and __bfq_requeue_entity for details). In
70  * both the last two activation sub-cases, new_entity points to the
71  * just activated or requeued entity.
72  *
73  * Returns true if sd->next_in_service changes in such a way that
74  * entity->parent may become the next_in_service for its parent
75  * entity.
76  */
77 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
78 				       struct bfq_entity *new_entity,
79 				       bool expiration)
80 {
81 	struct bfq_entity *next_in_service = sd->next_in_service;
82 	bool parent_sched_may_change = false;
83 	bool change_without_lookup = false;
84 
85 	/*
86 	 * If this update is triggered by the activation, requeueing
87 	 * or repositiong of an entity that does not coincide with
88 	 * sd->next_in_service, then a full lookup in the active tree
89 	 * can be avoided. In fact, it is enough to check whether the
90 	 * just-modified entity has the same priority as
91 	 * sd->next_in_service, is eligible and has a lower virtual
92 	 * finish time than sd->next_in_service. If this compound
93 	 * condition holds, then the new entity becomes the new
94 	 * next_in_service. Otherwise no change is needed.
95 	 */
96 	if (new_entity && new_entity != sd->next_in_service) {
97 		/*
98 		 * Flag used to decide whether to replace
99 		 * sd->next_in_service with new_entity. Tentatively
100 		 * set to true, and left as true if
101 		 * sd->next_in_service is NULL.
102 		 */
103 		change_without_lookup = true;
104 
105 		/*
106 		 * If there is already a next_in_service candidate
107 		 * entity, then compare timestamps to decide whether
108 		 * to replace sd->service_tree with new_entity.
109 		 */
110 		if (next_in_service) {
111 			unsigned int new_entity_class_idx =
112 				bfq_class_idx(new_entity);
113 			struct bfq_service_tree *st =
114 				sd->service_tree + new_entity_class_idx;
115 
116 			change_without_lookup =
117 				(new_entity_class_idx ==
118 				 bfq_class_idx(next_in_service)
119 				 &&
120 				 !bfq_gt(new_entity->start, st->vtime)
121 				 &&
122 				 bfq_gt(next_in_service->finish,
123 					new_entity->finish));
124 		}
125 
126 		if (change_without_lookup)
127 			next_in_service = new_entity;
128 	}
129 
130 	if (!change_without_lookup) /* lookup needed */
131 		next_in_service = bfq_lookup_next_entity(sd, expiration);
132 
133 	if (next_in_service)
134 		parent_sched_may_change = !sd->next_in_service ||
135 			bfq_update_parent_budget(next_in_service);
136 
137 	sd->next_in_service = next_in_service;
138 
139 	if (!next_in_service)
140 		return parent_sched_may_change;
141 
142 	return parent_sched_may_change;
143 }
144 
145 #ifdef CONFIG_BFQ_GROUP_IOSCHED
146 
147 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
148 {
149 	struct bfq_entity *group_entity = bfqq->entity.parent;
150 
151 	if (!group_entity)
152 		group_entity = &bfqq->bfqd->root_group->entity;
153 
154 	return container_of(group_entity, struct bfq_group, entity);
155 }
156 
157 /*
158  * Returns true if this budget changes may let next_in_service->parent
159  * become the next_in_service entity for its parent entity.
160  */
161 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
162 {
163 	struct bfq_entity *bfqg_entity;
164 	struct bfq_group *bfqg;
165 	struct bfq_sched_data *group_sd;
166 	bool ret = false;
167 
168 	group_sd = next_in_service->sched_data;
169 
170 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
171 	/*
172 	 * bfq_group's my_entity field is not NULL only if the group
173 	 * is not the root group. We must not touch the root entity
174 	 * as it must never become an in-service entity.
175 	 */
176 	bfqg_entity = bfqg->my_entity;
177 	if (bfqg_entity) {
178 		if (bfqg_entity->budget > next_in_service->budget)
179 			ret = true;
180 		bfqg_entity->budget = next_in_service->budget;
181 	}
182 
183 	return ret;
184 }
185 
186 /*
187  * This function tells whether entity stops being a candidate for next
188  * service, according to the restrictive definition of the field
189  * next_in_service. In particular, this function is invoked for an
190  * entity that is about to be set in service.
191  *
192  * If entity is a queue, then the entity is no longer a candidate for
193  * next service according to the that definition, because entity is
194  * about to become the in-service queue. This function then returns
195  * true if entity is a queue.
196  *
197  * In contrast, entity could still be a candidate for next service if
198  * it is not a queue, and has more than one active child. In fact,
199  * even if one of its children is about to be set in service, other
200  * active children may still be the next to serve, for the parent
201  * entity, even according to the above definition. As a consequence, a
202  * non-queue entity is not a candidate for next-service only if it has
203  * only one active child. And only if this condition holds, then this
204  * function returns true for a non-queue entity.
205  */
206 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
207 {
208 	struct bfq_group *bfqg;
209 
210 	if (bfq_entity_to_bfqq(entity))
211 		return true;
212 
213 	bfqg = container_of(entity, struct bfq_group, entity);
214 
215 	/*
216 	 * The field active_entities does not always contain the
217 	 * actual number of active children entities: it happens to
218 	 * not account for the in-service entity in case the latter is
219 	 * removed from its active tree (which may get done after
220 	 * invoking the function bfq_no_longer_next_in_service in
221 	 * bfq_get_next_queue). Fortunately, here, i.e., while
222 	 * bfq_no_longer_next_in_service is not yet completed in
223 	 * bfq_get_next_queue, bfq_active_extract has not yet been
224 	 * invoked, and thus active_entities still coincides with the
225 	 * actual number of active entities.
226 	 */
227 	if (bfqg->active_entities == 1)
228 		return true;
229 
230 	return false;
231 }
232 
233 #else /* CONFIG_BFQ_GROUP_IOSCHED */
234 
235 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
236 {
237 	return bfqq->bfqd->root_group;
238 }
239 
240 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
241 {
242 	return false;
243 }
244 
245 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
246 {
247 	return true;
248 }
249 
250 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
251 
252 /*
253  * Shift for timestamp calculations.  This actually limits the maximum
254  * service allowed in one timestamp delta (small shift values increase it),
255  * the maximum total weight that can be used for the queues in the system
256  * (big shift values increase it), and the period of virtual time
257  * wraparounds.
258  */
259 #define WFQ_SERVICE_SHIFT	22
260 
261 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
262 {
263 	struct bfq_queue *bfqq = NULL;
264 
265 	if (!entity->my_sched_data)
266 		bfqq = container_of(entity, struct bfq_queue, entity);
267 
268 	return bfqq;
269 }
270 
271 
272 /**
273  * bfq_delta - map service into the virtual time domain.
274  * @service: amount of service.
275  * @weight: scale factor (weight of an entity or weight sum).
276  */
277 static u64 bfq_delta(unsigned long service, unsigned long weight)
278 {
279 	u64 d = (u64)service << WFQ_SERVICE_SHIFT;
280 
281 	do_div(d, weight);
282 	return d;
283 }
284 
285 /**
286  * bfq_calc_finish - assign the finish time to an entity.
287  * @entity: the entity to act upon.
288  * @service: the service to be charged to the entity.
289  */
290 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
291 {
292 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
293 
294 	entity->finish = entity->start +
295 		bfq_delta(service, entity->weight);
296 
297 	if (bfqq) {
298 		bfq_log_bfqq(bfqq->bfqd, bfqq,
299 			"calc_finish: serv %lu, w %d",
300 			service, entity->weight);
301 		bfq_log_bfqq(bfqq->bfqd, bfqq,
302 			"calc_finish: start %llu, finish %llu, delta %llu",
303 			entity->start, entity->finish,
304 			bfq_delta(service, entity->weight));
305 	}
306 }
307 
308 /**
309  * bfq_entity_of - get an entity from a node.
310  * @node: the node field of the entity.
311  *
312  * Convert a node pointer to the relative entity.  This is used only
313  * to simplify the logic of some functions and not as the generic
314  * conversion mechanism because, e.g., in the tree walking functions,
315  * the check for a %NULL value would be redundant.
316  */
317 struct bfq_entity *bfq_entity_of(struct rb_node *node)
318 {
319 	struct bfq_entity *entity = NULL;
320 
321 	if (node)
322 		entity = rb_entry(node, struct bfq_entity, rb_node);
323 
324 	return entity;
325 }
326 
327 /**
328  * bfq_extract - remove an entity from a tree.
329  * @root: the tree root.
330  * @entity: the entity to remove.
331  */
332 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
333 {
334 	entity->tree = NULL;
335 	rb_erase(&entity->rb_node, root);
336 }
337 
338 /**
339  * bfq_idle_extract - extract an entity from the idle tree.
340  * @st: the service tree of the owning @entity.
341  * @entity: the entity being removed.
342  */
343 static void bfq_idle_extract(struct bfq_service_tree *st,
344 			     struct bfq_entity *entity)
345 {
346 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
347 	struct rb_node *next;
348 
349 	if (entity == st->first_idle) {
350 		next = rb_next(&entity->rb_node);
351 		st->first_idle = bfq_entity_of(next);
352 	}
353 
354 	if (entity == st->last_idle) {
355 		next = rb_prev(&entity->rb_node);
356 		st->last_idle = bfq_entity_of(next);
357 	}
358 
359 	bfq_extract(&st->idle, entity);
360 
361 	if (bfqq)
362 		list_del(&bfqq->bfqq_list);
363 }
364 
365 /**
366  * bfq_insert - generic tree insertion.
367  * @root: tree root.
368  * @entity: entity to insert.
369  *
370  * This is used for the idle and the active tree, since they are both
371  * ordered by finish time.
372  */
373 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
374 {
375 	struct bfq_entity *entry;
376 	struct rb_node **node = &root->rb_node;
377 	struct rb_node *parent = NULL;
378 
379 	while (*node) {
380 		parent = *node;
381 		entry = rb_entry(parent, struct bfq_entity, rb_node);
382 
383 		if (bfq_gt(entry->finish, entity->finish))
384 			node = &parent->rb_left;
385 		else
386 			node = &parent->rb_right;
387 	}
388 
389 	rb_link_node(&entity->rb_node, parent, node);
390 	rb_insert_color(&entity->rb_node, root);
391 
392 	entity->tree = root;
393 }
394 
395 /**
396  * bfq_update_min - update the min_start field of a entity.
397  * @entity: the entity to update.
398  * @node: one of its children.
399  *
400  * This function is called when @entity may store an invalid value for
401  * min_start due to updates to the active tree.  The function  assumes
402  * that the subtree rooted at @node (which may be its left or its right
403  * child) has a valid min_start value.
404  */
405 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
406 {
407 	struct bfq_entity *child;
408 
409 	if (node) {
410 		child = rb_entry(node, struct bfq_entity, rb_node);
411 		if (bfq_gt(entity->min_start, child->min_start))
412 			entity->min_start = child->min_start;
413 	}
414 }
415 
416 /**
417  * bfq_update_active_node - recalculate min_start.
418  * @node: the node to update.
419  *
420  * @node may have changed position or one of its children may have moved,
421  * this function updates its min_start value.  The left and right subtrees
422  * are assumed to hold a correct min_start value.
423  */
424 static void bfq_update_active_node(struct rb_node *node)
425 {
426 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
427 
428 	entity->min_start = entity->start;
429 	bfq_update_min(entity, node->rb_right);
430 	bfq_update_min(entity, node->rb_left);
431 }
432 
433 /**
434  * bfq_update_active_tree - update min_start for the whole active tree.
435  * @node: the starting node.
436  *
437  * @node must be the deepest modified node after an update.  This function
438  * updates its min_start using the values held by its children, assuming
439  * that they did not change, and then updates all the nodes that may have
440  * changed in the path to the root.  The only nodes that may have changed
441  * are the ones in the path or their siblings.
442  */
443 static void bfq_update_active_tree(struct rb_node *node)
444 {
445 	struct rb_node *parent;
446 
447 up:
448 	bfq_update_active_node(node);
449 
450 	parent = rb_parent(node);
451 	if (!parent)
452 		return;
453 
454 	if (node == parent->rb_left && parent->rb_right)
455 		bfq_update_active_node(parent->rb_right);
456 	else if (parent->rb_left)
457 		bfq_update_active_node(parent->rb_left);
458 
459 	node = parent;
460 	goto up;
461 }
462 
463 /**
464  * bfq_active_insert - insert an entity in the active tree of its
465  *                     group/device.
466  * @st: the service tree of the entity.
467  * @entity: the entity being inserted.
468  *
469  * The active tree is ordered by finish time, but an extra key is kept
470  * per each node, containing the minimum value for the start times of
471  * its children (and the node itself), so it's possible to search for
472  * the eligible node with the lowest finish time in logarithmic time.
473  */
474 static void bfq_active_insert(struct bfq_service_tree *st,
475 			      struct bfq_entity *entity)
476 {
477 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
478 	struct rb_node *node = &entity->rb_node;
479 #ifdef CONFIG_BFQ_GROUP_IOSCHED
480 	struct bfq_sched_data *sd = NULL;
481 	struct bfq_group *bfqg = NULL;
482 	struct bfq_data *bfqd = NULL;
483 #endif
484 
485 	bfq_insert(&st->active, entity);
486 
487 	if (node->rb_left)
488 		node = node->rb_left;
489 	else if (node->rb_right)
490 		node = node->rb_right;
491 
492 	bfq_update_active_tree(node);
493 
494 #ifdef CONFIG_BFQ_GROUP_IOSCHED
495 	sd = entity->sched_data;
496 	bfqg = container_of(sd, struct bfq_group, sched_data);
497 	bfqd = (struct bfq_data *)bfqg->bfqd;
498 #endif
499 	if (bfqq)
500 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
501 #ifdef CONFIG_BFQ_GROUP_IOSCHED
502 	else /* bfq_group */
503 		bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree);
504 
505 	if (bfqg != bfqd->root_group)
506 		bfqg->active_entities++;
507 #endif
508 }
509 
510 /**
511  * bfq_ioprio_to_weight - calc a weight from an ioprio.
512  * @ioprio: the ioprio value to convert.
513  */
514 unsigned short bfq_ioprio_to_weight(int ioprio)
515 {
516 	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
517 }
518 
519 /**
520  * bfq_weight_to_ioprio - calc an ioprio from a weight.
521  * @weight: the weight value to convert.
522  *
523  * To preserve as much as possible the old only-ioprio user interface,
524  * 0 is used as an escape ioprio value for weights (numerically) equal or
525  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
526  */
527 static unsigned short bfq_weight_to_ioprio(int weight)
528 {
529 	return max_t(int, 0,
530 		     IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
531 }
532 
533 static void bfq_get_entity(struct bfq_entity *entity)
534 {
535 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
536 
537 	if (bfqq) {
538 		bfqq->ref++;
539 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
540 			     bfqq, bfqq->ref);
541 	}
542 }
543 
544 /**
545  * bfq_find_deepest - find the deepest node that an extraction can modify.
546  * @node: the node being removed.
547  *
548  * Do the first step of an extraction in an rb tree, looking for the
549  * node that will replace @node, and returning the deepest node that
550  * the following modifications to the tree can touch.  If @node is the
551  * last node in the tree return %NULL.
552  */
553 static struct rb_node *bfq_find_deepest(struct rb_node *node)
554 {
555 	struct rb_node *deepest;
556 
557 	if (!node->rb_right && !node->rb_left)
558 		deepest = rb_parent(node);
559 	else if (!node->rb_right)
560 		deepest = node->rb_left;
561 	else if (!node->rb_left)
562 		deepest = node->rb_right;
563 	else {
564 		deepest = rb_next(node);
565 		if (deepest->rb_right)
566 			deepest = deepest->rb_right;
567 		else if (rb_parent(deepest) != node)
568 			deepest = rb_parent(deepest);
569 	}
570 
571 	return deepest;
572 }
573 
574 /**
575  * bfq_active_extract - remove an entity from the active tree.
576  * @st: the service_tree containing the tree.
577  * @entity: the entity being removed.
578  */
579 static void bfq_active_extract(struct bfq_service_tree *st,
580 			       struct bfq_entity *entity)
581 {
582 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
583 	struct rb_node *node;
584 #ifdef CONFIG_BFQ_GROUP_IOSCHED
585 	struct bfq_sched_data *sd = NULL;
586 	struct bfq_group *bfqg = NULL;
587 	struct bfq_data *bfqd = NULL;
588 #endif
589 
590 	node = bfq_find_deepest(&entity->rb_node);
591 	bfq_extract(&st->active, entity);
592 
593 	if (node)
594 		bfq_update_active_tree(node);
595 
596 #ifdef CONFIG_BFQ_GROUP_IOSCHED
597 	sd = entity->sched_data;
598 	bfqg = container_of(sd, struct bfq_group, sched_data);
599 	bfqd = (struct bfq_data *)bfqg->bfqd;
600 #endif
601 	if (bfqq)
602 		list_del(&bfqq->bfqq_list);
603 #ifdef CONFIG_BFQ_GROUP_IOSCHED
604 	else /* bfq_group */
605 		bfq_weights_tree_remove(bfqd, entity,
606 					&bfqd->group_weights_tree);
607 
608 	if (bfqg != bfqd->root_group)
609 		bfqg->active_entities--;
610 #endif
611 }
612 
613 /**
614  * bfq_idle_insert - insert an entity into the idle tree.
615  * @st: the service tree containing the tree.
616  * @entity: the entity to insert.
617  */
618 static void bfq_idle_insert(struct bfq_service_tree *st,
619 			    struct bfq_entity *entity)
620 {
621 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
622 	struct bfq_entity *first_idle = st->first_idle;
623 	struct bfq_entity *last_idle = st->last_idle;
624 
625 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
626 		st->first_idle = entity;
627 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
628 		st->last_idle = entity;
629 
630 	bfq_insert(&st->idle, entity);
631 
632 	if (bfqq)
633 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
634 }
635 
636 /**
637  * bfq_forget_entity - do not consider entity any longer for scheduling
638  * @st: the service tree.
639  * @entity: the entity being removed.
640  * @is_in_service: true if entity is currently the in-service entity.
641  *
642  * Forget everything about @entity. In addition, if entity represents
643  * a queue, and the latter is not in service, then release the service
644  * reference to the queue (the one taken through bfq_get_entity). In
645  * fact, in this case, there is really no more service reference to
646  * the queue, as the latter is also outside any service tree. If,
647  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
648  * will take care of putting the reference when the queue finally
649  * stops being served.
650  */
651 static void bfq_forget_entity(struct bfq_service_tree *st,
652 			      struct bfq_entity *entity,
653 			      bool is_in_service)
654 {
655 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
656 
657 	entity->on_st = false;
658 	st->wsum -= entity->weight;
659 	if (bfqq && !is_in_service)
660 		bfq_put_queue(bfqq);
661 }
662 
663 /**
664  * bfq_put_idle_entity - release the idle tree ref of an entity.
665  * @st: service tree for the entity.
666  * @entity: the entity being released.
667  */
668 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
669 {
670 	bfq_idle_extract(st, entity);
671 	bfq_forget_entity(st, entity,
672 			  entity == entity->sched_data->in_service_entity);
673 }
674 
675 /**
676  * bfq_forget_idle - update the idle tree if necessary.
677  * @st: the service tree to act upon.
678  *
679  * To preserve the global O(log N) complexity we only remove one entry here;
680  * as the idle tree will not grow indefinitely this can be done safely.
681  */
682 static void bfq_forget_idle(struct bfq_service_tree *st)
683 {
684 	struct bfq_entity *first_idle = st->first_idle;
685 	struct bfq_entity *last_idle = st->last_idle;
686 
687 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
688 	    !bfq_gt(last_idle->finish, st->vtime)) {
689 		/*
690 		 * Forget the whole idle tree, increasing the vtime past
691 		 * the last finish time of idle entities.
692 		 */
693 		st->vtime = last_idle->finish;
694 	}
695 
696 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
697 		bfq_put_idle_entity(st, first_idle);
698 }
699 
700 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
701 {
702 	struct bfq_sched_data *sched_data = entity->sched_data;
703 	unsigned int idx = bfq_class_idx(entity);
704 
705 	return sched_data->service_tree + idx;
706 }
707 
708 /*
709  * Update weight and priority of entity. If update_class_too is true,
710  * then update the ioprio_class of entity too.
711  *
712  * The reason why the update of ioprio_class is controlled through the
713  * last parameter is as follows. Changing the ioprio class of an
714  * entity implies changing the destination service trees for that
715  * entity. If such a change occurred when the entity is already on one
716  * of the service trees for its previous class, then the state of the
717  * entity would become more complex: none of the new possible service
718  * trees for the entity, according to bfq_entity_service_tree(), would
719  * match any of the possible service trees on which the entity
720  * is. Complex operations involving these trees, such as entity
721  * activations and deactivations, should take into account this
722  * additional complexity.  To avoid this issue, this function is
723  * invoked with update_class_too unset in the points in the code where
724  * entity may happen to be on some tree.
725  */
726 struct bfq_service_tree *
727 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
728 				struct bfq_entity *entity,
729 				bool update_class_too)
730 {
731 	struct bfq_service_tree *new_st = old_st;
732 
733 	if (entity->prio_changed) {
734 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
735 		unsigned int prev_weight, new_weight;
736 		struct bfq_data *bfqd = NULL;
737 		struct rb_root *root;
738 #ifdef CONFIG_BFQ_GROUP_IOSCHED
739 		struct bfq_sched_data *sd;
740 		struct bfq_group *bfqg;
741 #endif
742 
743 		if (bfqq)
744 			bfqd = bfqq->bfqd;
745 #ifdef CONFIG_BFQ_GROUP_IOSCHED
746 		else {
747 			sd = entity->my_sched_data;
748 			bfqg = container_of(sd, struct bfq_group, sched_data);
749 			bfqd = (struct bfq_data *)bfqg->bfqd;
750 		}
751 #endif
752 
753 		old_st->wsum -= entity->weight;
754 
755 		if (entity->new_weight != entity->orig_weight) {
756 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
757 			    entity->new_weight > BFQ_MAX_WEIGHT) {
758 				pr_crit("update_weight_prio: new_weight %d\n",
759 					entity->new_weight);
760 				if (entity->new_weight < BFQ_MIN_WEIGHT)
761 					entity->new_weight = BFQ_MIN_WEIGHT;
762 				else
763 					entity->new_weight = BFQ_MAX_WEIGHT;
764 			}
765 			entity->orig_weight = entity->new_weight;
766 			if (bfqq)
767 				bfqq->ioprio =
768 				  bfq_weight_to_ioprio(entity->orig_weight);
769 		}
770 
771 		if (bfqq && update_class_too)
772 			bfqq->ioprio_class = bfqq->new_ioprio_class;
773 
774 		/*
775 		 * Reset prio_changed only if the ioprio_class change
776 		 * is not pending any longer.
777 		 */
778 		if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
779 			entity->prio_changed = 0;
780 
781 		/*
782 		 * NOTE: here we may be changing the weight too early,
783 		 * this will cause unfairness.  The correct approach
784 		 * would have required additional complexity to defer
785 		 * weight changes to the proper time instants (i.e.,
786 		 * when entity->finish <= old_st->vtime).
787 		 */
788 		new_st = bfq_entity_service_tree(entity);
789 
790 		prev_weight = entity->weight;
791 		new_weight = entity->orig_weight *
792 			     (bfqq ? bfqq->wr_coeff : 1);
793 		/*
794 		 * If the weight of the entity changes, remove the entity
795 		 * from its old weight counter (if there is a counter
796 		 * associated with the entity), and add it to the counter
797 		 * associated with its new weight.
798 		 */
799 		if (prev_weight != new_weight) {
800 			root = bfqq ? &bfqd->queue_weights_tree :
801 				      &bfqd->group_weights_tree;
802 			bfq_weights_tree_remove(bfqd, entity, root);
803 		}
804 		entity->weight = new_weight;
805 		/*
806 		 * Add the entity to its weights tree only if it is
807 		 * not associated with a weight-raised queue.
808 		 */
809 		if (prev_weight != new_weight &&
810 		    (bfqq ? bfqq->wr_coeff == 1 : 1))
811 			/* If we get here, root has been initialized. */
812 			bfq_weights_tree_add(bfqd, entity, root);
813 
814 		new_st->wsum += entity->weight;
815 
816 		if (new_st != old_st)
817 			entity->start = new_st->vtime;
818 	}
819 
820 	return new_st;
821 }
822 
823 /**
824  * bfq_bfqq_served - update the scheduler status after selection for
825  *                   service.
826  * @bfqq: the queue being served.
827  * @served: bytes to transfer.
828  *
829  * NOTE: this can be optimized, as the timestamps of upper level entities
830  * are synchronized every time a new bfqq is selected for service.  By now,
831  * we keep it to better check consistency.
832  */
833 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
834 {
835 	struct bfq_entity *entity = &bfqq->entity;
836 	struct bfq_service_tree *st;
837 
838 	for_each_entity(entity) {
839 		st = bfq_entity_service_tree(entity);
840 
841 		entity->service += served;
842 
843 		st->vtime += bfq_delta(served, st->wsum);
844 		bfq_forget_idle(st);
845 	}
846 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
847 }
848 
849 /**
850  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
851  *			  of the time interval during which bfqq has been in
852  *			  service.
853  * @bfqd: the device
854  * @bfqq: the queue that needs a service update.
855  * @time_ms: the amount of time during which the queue has received service
856  *
857  * If a queue does not consume its budget fast enough, then providing
858  * the queue with service fairness may impair throughput, more or less
859  * severely. For this reason, queues that consume their budget slowly
860  * are provided with time fairness instead of service fairness. This
861  * goal is achieved through the BFQ scheduling engine, even if such an
862  * engine works in the service, and not in the time domain. The trick
863  * is charging these queues with an inflated amount of service, equal
864  * to the amount of service that they would have received during their
865  * service slot if they had been fast, i.e., if their requests had
866  * been dispatched at a rate equal to the estimated peak rate.
867  *
868  * It is worth noting that time fairness can cause important
869  * distortions in terms of bandwidth distribution, on devices with
870  * internal queueing. The reason is that I/O requests dispatched
871  * during the service slot of a queue may be served after that service
872  * slot is finished, and may have a total processing time loosely
873  * correlated with the duration of the service slot. This is
874  * especially true for short service slots.
875  */
876 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
877 			  unsigned long time_ms)
878 {
879 	struct bfq_entity *entity = &bfqq->entity;
880 	int tot_serv_to_charge = entity->service;
881 	unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
882 
883 	if (time_ms > 0 && time_ms < timeout_ms)
884 		tot_serv_to_charge =
885 			(bfqd->bfq_max_budget * time_ms) / timeout_ms;
886 
887 	if (tot_serv_to_charge < entity->service)
888 		tot_serv_to_charge = entity->service;
889 
890 	/* Increase budget to avoid inconsistencies */
891 	if (tot_serv_to_charge > entity->budget)
892 		entity->budget = tot_serv_to_charge;
893 
894 	bfq_bfqq_served(bfqq,
895 			max_t(int, 0, tot_serv_to_charge - entity->service));
896 }
897 
898 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
899 					struct bfq_service_tree *st,
900 					bool backshifted)
901 {
902 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
903 
904 	/*
905 	 * When this function is invoked, entity is not in any service
906 	 * tree, then it is safe to invoke next function with the last
907 	 * parameter set (see the comments on the function).
908 	 */
909 	st = __bfq_entity_update_weight_prio(st, entity, true);
910 	bfq_calc_finish(entity, entity->budget);
911 
912 	/*
913 	 * If some queues enjoy backshifting for a while, then their
914 	 * (virtual) finish timestamps may happen to become lower and
915 	 * lower than the system virtual time.	In particular, if
916 	 * these queues often happen to be idle for short time
917 	 * periods, and during such time periods other queues with
918 	 * higher timestamps happen to be busy, then the backshifted
919 	 * timestamps of the former queues can become much lower than
920 	 * the system virtual time. In fact, to serve the queues with
921 	 * higher timestamps while the ones with lower timestamps are
922 	 * idle, the system virtual time may be pushed-up to much
923 	 * higher values than the finish timestamps of the idle
924 	 * queues. As a consequence, the finish timestamps of all new
925 	 * or newly activated queues may end up being much larger than
926 	 * those of lucky queues with backshifted timestamps. The
927 	 * latter queues may then monopolize the device for a lot of
928 	 * time. This would simply break service guarantees.
929 	 *
930 	 * To reduce this problem, push up a little bit the
931 	 * backshifted timestamps of the queue associated with this
932 	 * entity (only a queue can happen to have the backshifted
933 	 * flag set): just enough to let the finish timestamp of the
934 	 * queue be equal to the current value of the system virtual
935 	 * time. This may introduce a little unfairness among queues
936 	 * with backshifted timestamps, but it does not break
937 	 * worst-case fairness guarantees.
938 	 *
939 	 * As a special case, if bfqq is weight-raised, push up
940 	 * timestamps much less, to keep very low the probability that
941 	 * this push up causes the backshifted finish timestamps of
942 	 * weight-raised queues to become higher than the backshifted
943 	 * finish timestamps of non weight-raised queues.
944 	 */
945 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
946 		unsigned long delta = st->vtime - entity->finish;
947 
948 		if (bfqq)
949 			delta /= bfqq->wr_coeff;
950 
951 		entity->start += delta;
952 		entity->finish += delta;
953 	}
954 
955 	bfq_active_insert(st, entity);
956 }
957 
958 /**
959  * __bfq_activate_entity - handle activation of entity.
960  * @entity: the entity being activated.
961  * @non_blocking_wait_rq: true if entity was waiting for a request
962  *
963  * Called for a 'true' activation, i.e., if entity is not active and
964  * one of its children receives a new request.
965  *
966  * Basically, this function updates the timestamps of entity and
967  * inserts entity into its active tree, ater possibly extracting it
968  * from its idle tree.
969  */
970 static void __bfq_activate_entity(struct bfq_entity *entity,
971 				  bool non_blocking_wait_rq)
972 {
973 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
974 	bool backshifted = false;
975 	unsigned long long min_vstart;
976 
977 	/* See comments on bfq_fqq_update_budg_for_activation */
978 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
979 		backshifted = true;
980 		min_vstart = entity->finish;
981 	} else
982 		min_vstart = st->vtime;
983 
984 	if (entity->tree == &st->idle) {
985 		/*
986 		 * Must be on the idle tree, bfq_idle_extract() will
987 		 * check for that.
988 		 */
989 		bfq_idle_extract(st, entity);
990 		entity->start = bfq_gt(min_vstart, entity->finish) ?
991 			min_vstart : entity->finish;
992 	} else {
993 		/*
994 		 * The finish time of the entity may be invalid, and
995 		 * it is in the past for sure, otherwise the queue
996 		 * would have been on the idle tree.
997 		 */
998 		entity->start = min_vstart;
999 		st->wsum += entity->weight;
1000 		/*
1001 		 * entity is about to be inserted into a service tree,
1002 		 * and then set in service: get a reference to make
1003 		 * sure entity does not disappear until it is no
1004 		 * longer in service or scheduled for service.
1005 		 */
1006 		bfq_get_entity(entity);
1007 
1008 		entity->on_st = true;
1009 	}
1010 
1011 	bfq_update_fin_time_enqueue(entity, st, backshifted);
1012 }
1013 
1014 /**
1015  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1016  * @entity: the entity being requeued or repositioned.
1017  *
1018  * Requeueing is needed if this entity stops being served, which
1019  * happens if a leaf descendant entity has expired. On the other hand,
1020  * repositioning is needed if the next_inservice_entity for the child
1021  * entity has changed. See the comments inside the function for
1022  * details.
1023  *
1024  * Basically, this function: 1) removes entity from its active tree if
1025  * present there, 2) updates the timestamps of entity and 3) inserts
1026  * entity back into its active tree (in the new, right position for
1027  * the new values of the timestamps).
1028  */
1029 static void __bfq_requeue_entity(struct bfq_entity *entity)
1030 {
1031 	struct bfq_sched_data *sd = entity->sched_data;
1032 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1033 
1034 	if (entity == sd->in_service_entity) {
1035 		/*
1036 		 * We are requeueing the current in-service entity,
1037 		 * which may have to be done for one of the following
1038 		 * reasons:
1039 		 * - entity represents the in-service queue, and the
1040 		 *   in-service queue is being requeued after an
1041 		 *   expiration;
1042 		 * - entity represents a group, and its budget has
1043 		 *   changed because one of its child entities has
1044 		 *   just been either activated or requeued for some
1045 		 *   reason; the timestamps of the entity need then to
1046 		 *   be updated, and the entity needs to be enqueued
1047 		 *   or repositioned accordingly.
1048 		 *
1049 		 * In particular, before requeueing, the start time of
1050 		 * the entity must be moved forward to account for the
1051 		 * service that the entity has received while in
1052 		 * service. This is done by the next instructions. The
1053 		 * finish time will then be updated according to this
1054 		 * new value of the start time, and to the budget of
1055 		 * the entity.
1056 		 */
1057 		bfq_calc_finish(entity, entity->service);
1058 		entity->start = entity->finish;
1059 		/*
1060 		 * In addition, if the entity had more than one child
1061 		 * when set in service, then it was not extracted from
1062 		 * the active tree. This implies that the position of
1063 		 * the entity in the active tree may need to be
1064 		 * changed now, because we have just updated the start
1065 		 * time of the entity, and we will update its finish
1066 		 * time in a moment (the requeueing is then, more
1067 		 * precisely, a repositioning in this case). To
1068 		 * implement this repositioning, we: 1) dequeue the
1069 		 * entity here, 2) update the finish time and requeue
1070 		 * the entity according to the new timestamps below.
1071 		 */
1072 		if (entity->tree)
1073 			bfq_active_extract(st, entity);
1074 	} else { /* The entity is already active, and not in service */
1075 		/*
1076 		 * In this case, this function gets called only if the
1077 		 * next_in_service entity below this entity has
1078 		 * changed, and this change has caused the budget of
1079 		 * this entity to change, which, finally implies that
1080 		 * the finish time of this entity must be
1081 		 * updated. Such an update may cause the scheduling,
1082 		 * i.e., the position in the active tree, of this
1083 		 * entity to change. We handle this change by: 1)
1084 		 * dequeueing the entity here, 2) updating the finish
1085 		 * time and requeueing the entity according to the new
1086 		 * timestamps below. This is the same approach as the
1087 		 * non-extracted-entity sub-case above.
1088 		 */
1089 		bfq_active_extract(st, entity);
1090 	}
1091 
1092 	bfq_update_fin_time_enqueue(entity, st, false);
1093 }
1094 
1095 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1096 					  struct bfq_sched_data *sd,
1097 					  bool non_blocking_wait_rq)
1098 {
1099 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1100 
1101 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1102 		 /*
1103 		  * in service or already queued on the active tree,
1104 		  * requeue or reposition
1105 		  */
1106 		__bfq_requeue_entity(entity);
1107 	else
1108 		/*
1109 		 * Not in service and not queued on its active tree:
1110 		 * the activity is idle and this is a true activation.
1111 		 */
1112 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1113 }
1114 
1115 
1116 /**
1117  * bfq_activate_requeue_entity - activate or requeue an entity representing a
1118  *				 bfq_queue, and activate, requeue or reposition
1119  *				 all ancestors for which such an update becomes
1120  *				 necessary.
1121  * @entity: the entity to activate.
1122  * @non_blocking_wait_rq: true if this entity was waiting for a request
1123  * @requeue: true if this is a requeue, which implies that bfqq is
1124  *	     being expired; thus ALL its ancestors stop being served and must
1125  *	     therefore be requeued
1126  * @expiration: true if this function is being invoked in the expiration path
1127  *             of the in-service queue
1128  */
1129 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1130 					bool non_blocking_wait_rq,
1131 					bool requeue, bool expiration)
1132 {
1133 	struct bfq_sched_data *sd;
1134 
1135 	for_each_entity(entity) {
1136 		sd = entity->sched_data;
1137 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1138 
1139 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1140 		    !requeue)
1141 			break;
1142 	}
1143 }
1144 
1145 /**
1146  * __bfq_deactivate_entity - deactivate an entity from its service tree.
1147  * @entity: the entity to deactivate.
1148  * @ins_into_idle_tree: if false, the entity will not be put into the
1149  *			idle tree.
1150  *
1151  * Deactivates an entity, independently of its previous state.  Must
1152  * be invoked only if entity is on a service tree. Extracts the entity
1153  * from that tree, and if necessary and allowed, puts it into the idle
1154  * tree.
1155  */
1156 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1157 {
1158 	struct bfq_sched_data *sd = entity->sched_data;
1159 	struct bfq_service_tree *st;
1160 	bool is_in_service;
1161 
1162 	if (!entity->on_st) /* entity never activated, or already inactive */
1163 		return false;
1164 
1165 	/*
1166 	 * If we get here, then entity is active, which implies that
1167 	 * bfq_group_set_parent has already been invoked for the group
1168 	 * represented by entity. Therefore, the field
1169 	 * entity->sched_data has been set, and we can safely use it.
1170 	 */
1171 	st = bfq_entity_service_tree(entity);
1172 	is_in_service = entity == sd->in_service_entity;
1173 
1174 	if (is_in_service) {
1175 		bfq_calc_finish(entity, entity->service);
1176 		sd->in_service_entity = NULL;
1177 	}
1178 
1179 	if (entity->tree == &st->active)
1180 		bfq_active_extract(st, entity);
1181 	else if (!is_in_service && entity->tree == &st->idle)
1182 		bfq_idle_extract(st, entity);
1183 
1184 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1185 		bfq_forget_entity(st, entity, is_in_service);
1186 	else
1187 		bfq_idle_insert(st, entity);
1188 
1189 	return true;
1190 }
1191 
1192 /**
1193  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1194  * @entity: the entity to deactivate.
1195  * @ins_into_idle_tree: true if the entity can be put into the idle tree
1196  * @expiration: true if this function is being invoked in the expiration path
1197  *             of the in-service queue
1198  */
1199 static void bfq_deactivate_entity(struct bfq_entity *entity,
1200 				  bool ins_into_idle_tree,
1201 				  bool expiration)
1202 {
1203 	struct bfq_sched_data *sd;
1204 	struct bfq_entity *parent = NULL;
1205 
1206 	for_each_entity_safe(entity, parent) {
1207 		sd = entity->sched_data;
1208 
1209 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1210 			/*
1211 			 * entity is not in any tree any more, so
1212 			 * this deactivation is a no-op, and there is
1213 			 * nothing to change for upper-level entities
1214 			 * (in case of expiration, this can never
1215 			 * happen).
1216 			 */
1217 			return;
1218 		}
1219 
1220 		if (sd->next_in_service == entity)
1221 			/*
1222 			 * entity was the next_in_service entity,
1223 			 * then, since entity has just been
1224 			 * deactivated, a new one must be found.
1225 			 */
1226 			bfq_update_next_in_service(sd, NULL, expiration);
1227 
1228 		if (sd->next_in_service || sd->in_service_entity) {
1229 			/*
1230 			 * The parent entity is still active, because
1231 			 * either next_in_service or in_service_entity
1232 			 * is not NULL. So, no further upwards
1233 			 * deactivation must be performed.  Yet,
1234 			 * next_in_service has changed.	Then the
1235 			 * schedule does need to be updated upwards.
1236 			 *
1237 			 * NOTE If in_service_entity is not NULL, then
1238 			 * next_in_service may happen to be NULL,
1239 			 * although the parent entity is evidently
1240 			 * active. This happens if 1) the entity
1241 			 * pointed by in_service_entity is the only
1242 			 * active entity in the parent entity, and 2)
1243 			 * according to the definition of
1244 			 * next_in_service, the in_service_entity
1245 			 * cannot be considered as
1246 			 * next_in_service. See the comments on the
1247 			 * definition of next_in_service for details.
1248 			 */
1249 			break;
1250 		}
1251 
1252 		/*
1253 		 * If we get here, then the parent is no more
1254 		 * backlogged and we need to propagate the
1255 		 * deactivation upwards. Thus let the loop go on.
1256 		 */
1257 
1258 		/*
1259 		 * Also let parent be queued into the idle tree on
1260 		 * deactivation, to preserve service guarantees, and
1261 		 * assuming that who invoked this function does not
1262 		 * need parent entities too to be removed completely.
1263 		 */
1264 		ins_into_idle_tree = true;
1265 	}
1266 
1267 	/*
1268 	 * If the deactivation loop is fully executed, then there are
1269 	 * no more entities to touch and next loop is not executed at
1270 	 * all. Otherwise, requeue remaining entities if they are
1271 	 * about to stop receiving service, or reposition them if this
1272 	 * is not the case.
1273 	 */
1274 	entity = parent;
1275 	for_each_entity(entity) {
1276 		/*
1277 		 * Invoke __bfq_requeue_entity on entity, even if
1278 		 * already active, to requeue/reposition it in the
1279 		 * active tree (because sd->next_in_service has
1280 		 * changed)
1281 		 */
1282 		__bfq_requeue_entity(entity);
1283 
1284 		sd = entity->sched_data;
1285 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1286 		    !expiration)
1287 			/*
1288 			 * next_in_service unchanged or not causing
1289 			 * any change in entity->parent->sd, and no
1290 			 * requeueing needed for expiration: stop
1291 			 * here.
1292 			 */
1293 			break;
1294 	}
1295 }
1296 
1297 /**
1298  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1299  *                       if needed, to have at least one entity eligible.
1300  * @st: the service tree to act upon.
1301  *
1302  * Assumes that st is not empty.
1303  */
1304 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1305 {
1306 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1307 
1308 	if (bfq_gt(root_entity->min_start, st->vtime))
1309 		return root_entity->min_start;
1310 
1311 	return st->vtime;
1312 }
1313 
1314 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1315 {
1316 	if (new_value > st->vtime) {
1317 		st->vtime = new_value;
1318 		bfq_forget_idle(st);
1319 	}
1320 }
1321 
1322 /**
1323  * bfq_first_active_entity - find the eligible entity with
1324  *                           the smallest finish time
1325  * @st: the service tree to select from.
1326  * @vtime: the system virtual to use as a reference for eligibility
1327  *
1328  * This function searches the first schedulable entity, starting from the
1329  * root of the tree and going on the left every time on this side there is
1330  * a subtree with at least one eligible (start <= vtime) entity. The path on
1331  * the right is followed only if a) the left subtree contains no eligible
1332  * entities and b) no eligible entity has been found yet.
1333  */
1334 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1335 						  u64 vtime)
1336 {
1337 	struct bfq_entity *entry, *first = NULL;
1338 	struct rb_node *node = st->active.rb_node;
1339 
1340 	while (node) {
1341 		entry = rb_entry(node, struct bfq_entity, rb_node);
1342 left:
1343 		if (!bfq_gt(entry->start, vtime))
1344 			first = entry;
1345 
1346 		if (node->rb_left) {
1347 			entry = rb_entry(node->rb_left,
1348 					 struct bfq_entity, rb_node);
1349 			if (!bfq_gt(entry->min_start, vtime)) {
1350 				node = node->rb_left;
1351 				goto left;
1352 			}
1353 		}
1354 		if (first)
1355 			break;
1356 		node = node->rb_right;
1357 	}
1358 
1359 	return first;
1360 }
1361 
1362 /**
1363  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1364  * @st: the service tree.
1365  *
1366  * If there is no in-service entity for the sched_data st belongs to,
1367  * then return the entity that will be set in service if:
1368  * 1) the parent entity this st belongs to is set in service;
1369  * 2) no entity belonging to such parent entity undergoes a state change
1370  * that would influence the timestamps of the entity (e.g., becomes idle,
1371  * becomes backlogged, changes its budget, ...).
1372  *
1373  * In this first case, update the virtual time in @st too (see the
1374  * comments on this update inside the function).
1375  *
1376  * In constrast, if there is an in-service entity, then return the
1377  * entity that would be set in service if not only the above
1378  * conditions, but also the next one held true: the currently
1379  * in-service entity, on expiration,
1380  * 1) gets a finish time equal to the current one, or
1381  * 2) is not eligible any more, or
1382  * 3) is idle.
1383  */
1384 static struct bfq_entity *
1385 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1386 {
1387 	struct bfq_entity *entity;
1388 	u64 new_vtime;
1389 
1390 	if (RB_EMPTY_ROOT(&st->active))
1391 		return NULL;
1392 
1393 	/*
1394 	 * Get the value of the system virtual time for which at
1395 	 * least one entity is eligible.
1396 	 */
1397 	new_vtime = bfq_calc_vtime_jump(st);
1398 
1399 	/*
1400 	 * If there is no in-service entity for the sched_data this
1401 	 * active tree belongs to, then push the system virtual time
1402 	 * up to the value that guarantees that at least one entity is
1403 	 * eligible. If, instead, there is an in-service entity, then
1404 	 * do not make any such update, because there is already an
1405 	 * eligible entity, namely the in-service one (even if the
1406 	 * entity is not on st, because it was extracted when set in
1407 	 * service).
1408 	 */
1409 	if (!in_service)
1410 		bfq_update_vtime(st, new_vtime);
1411 
1412 	entity = bfq_first_active_entity(st, new_vtime);
1413 
1414 	return entity;
1415 }
1416 
1417 /**
1418  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1419  * @sd: the sched_data.
1420  * @expiration: true if we are on the expiration path of the in-service queue
1421  *
1422  * This function is invoked when there has been a change in the trees
1423  * for sd, and we need to know what is the new next entity to serve
1424  * after this change.
1425  */
1426 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1427 						 bool expiration)
1428 {
1429 	struct bfq_service_tree *st = sd->service_tree;
1430 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1431 	struct bfq_entity *entity = NULL;
1432 	int class_idx = 0;
1433 
1434 	/*
1435 	 * Choose from idle class, if needed to guarantee a minimum
1436 	 * bandwidth to this class (and if there is some active entity
1437 	 * in idle class). This should also mitigate
1438 	 * priority-inversion problems in case a low priority task is
1439 	 * holding file system resources.
1440 	 */
1441 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1442 				   BFQ_CL_IDLE_TIMEOUT)) {
1443 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1444 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1445 		/* About to be served if backlogged, or not yet backlogged */
1446 		sd->bfq_class_idle_last_service = jiffies;
1447 	}
1448 
1449 	/*
1450 	 * Find the next entity to serve for the highest-priority
1451 	 * class, unless the idle class needs to be served.
1452 	 */
1453 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1454 		/*
1455 		 * If expiration is true, then bfq_lookup_next_entity
1456 		 * is being invoked as a part of the expiration path
1457 		 * of the in-service queue. In this case, even if
1458 		 * sd->in_service_entity is not NULL,
1459 		 * sd->in_service_entiy at this point is actually not
1460 		 * in service any more, and, if needed, has already
1461 		 * been properly queued or requeued into the right
1462 		 * tree. The reason why sd->in_service_entity is still
1463 		 * not NULL here, even if expiration is true, is that
1464 		 * sd->in_service_entiy is reset as a last step in the
1465 		 * expiration path. So, if expiration is true, tell
1466 		 * __bfq_lookup_next_entity that there is no
1467 		 * sd->in_service_entity.
1468 		 */
1469 		entity = __bfq_lookup_next_entity(st + class_idx,
1470 						  sd->in_service_entity &&
1471 						  !expiration);
1472 
1473 		if (entity)
1474 			break;
1475 	}
1476 
1477 	if (!entity)
1478 		return NULL;
1479 
1480 	return entity;
1481 }
1482 
1483 bool next_queue_may_preempt(struct bfq_data *bfqd)
1484 {
1485 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1486 
1487 	return sd->next_in_service != sd->in_service_entity;
1488 }
1489 
1490 /*
1491  * Get next queue for service.
1492  */
1493 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1494 {
1495 	struct bfq_entity *entity = NULL;
1496 	struct bfq_sched_data *sd;
1497 	struct bfq_queue *bfqq;
1498 
1499 	if (bfqd->busy_queues == 0)
1500 		return NULL;
1501 
1502 	/*
1503 	 * Traverse the path from the root to the leaf entity to
1504 	 * serve. Set in service all the entities visited along the
1505 	 * way.
1506 	 */
1507 	sd = &bfqd->root_group->sched_data;
1508 	for (; sd ; sd = entity->my_sched_data) {
1509 		/*
1510 		 * WARNING. We are about to set the in-service entity
1511 		 * to sd->next_in_service, i.e., to the (cached) value
1512 		 * returned by bfq_lookup_next_entity(sd) the last
1513 		 * time it was invoked, i.e., the last time when the
1514 		 * service order in sd changed as a consequence of the
1515 		 * activation or deactivation of an entity. In this
1516 		 * respect, if we execute bfq_lookup_next_entity(sd)
1517 		 * in this very moment, it may, although with low
1518 		 * probability, yield a different entity than that
1519 		 * pointed to by sd->next_in_service. This rare event
1520 		 * happens in case there was no CLASS_IDLE entity to
1521 		 * serve for sd when bfq_lookup_next_entity(sd) was
1522 		 * invoked for the last time, while there is now one
1523 		 * such entity.
1524 		 *
1525 		 * If the above event happens, then the scheduling of
1526 		 * such entity in CLASS_IDLE is postponed until the
1527 		 * service of the sd->next_in_service entity
1528 		 * finishes. In fact, when the latter is expired,
1529 		 * bfq_lookup_next_entity(sd) gets called again,
1530 		 * exactly to update sd->next_in_service.
1531 		 */
1532 
1533 		/* Make next_in_service entity become in_service_entity */
1534 		entity = sd->next_in_service;
1535 		sd->in_service_entity = entity;
1536 
1537 		/*
1538 		 * Reset the accumulator of the amount of service that
1539 		 * the entity is about to receive.
1540 		 */
1541 		entity->service = 0;
1542 
1543 		/*
1544 		 * If entity is no longer a candidate for next
1545 		 * service, then it must be extracted from its active
1546 		 * tree, so as to make sure that it won't be
1547 		 * considered when computing next_in_service. See the
1548 		 * comments on the function
1549 		 * bfq_no_longer_next_in_service() for details.
1550 		 */
1551 		if (bfq_no_longer_next_in_service(entity))
1552 			bfq_active_extract(bfq_entity_service_tree(entity),
1553 					   entity);
1554 
1555 		/*
1556 		 * Even if entity is not to be extracted according to
1557 		 * the above check, a descendant entity may get
1558 		 * extracted in one of the next iterations of this
1559 		 * loop. Such an event could cause a change in
1560 		 * next_in_service for the level of the descendant
1561 		 * entity, and thus possibly back to this level.
1562 		 *
1563 		 * However, we cannot perform the resulting needed
1564 		 * update of next_in_service for this level before the
1565 		 * end of the whole loop, because, to know which is
1566 		 * the correct next-to-serve candidate entity for each
1567 		 * level, we need first to find the leaf entity to set
1568 		 * in service. In fact, only after we know which is
1569 		 * the next-to-serve leaf entity, we can discover
1570 		 * whether the parent entity of the leaf entity
1571 		 * becomes the next-to-serve, and so on.
1572 		 */
1573 	}
1574 
1575 	bfqq = bfq_entity_to_bfqq(entity);
1576 
1577 	/*
1578 	 * We can finally update all next-to-serve entities along the
1579 	 * path from the leaf entity just set in service to the root.
1580 	 */
1581 	for_each_entity(entity) {
1582 		struct bfq_sched_data *sd = entity->sched_data;
1583 
1584 		if (!bfq_update_next_in_service(sd, NULL, false))
1585 			break;
1586 	}
1587 
1588 	return bfqq;
1589 }
1590 
1591 void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1592 {
1593 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1594 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1595 	struct bfq_entity *entity = in_serv_entity;
1596 
1597 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1598 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1599 	bfqd->in_service_queue = NULL;
1600 
1601 	/*
1602 	 * When this function is called, all in-service entities have
1603 	 * been properly deactivated or requeued, so we can safely
1604 	 * execute the final step: reset in_service_entity along the
1605 	 * path from entity to the root.
1606 	 */
1607 	for_each_entity(entity)
1608 		entity->sched_data->in_service_entity = NULL;
1609 
1610 	/*
1611 	 * in_serv_entity is no longer in service, so, if it is in no
1612 	 * service tree either, then release the service reference to
1613 	 * the queue it represents (taken with bfq_get_entity).
1614 	 */
1615 	if (!in_serv_entity->on_st)
1616 		bfq_put_queue(in_serv_bfqq);
1617 }
1618 
1619 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1620 			 bool ins_into_idle_tree, bool expiration)
1621 {
1622 	struct bfq_entity *entity = &bfqq->entity;
1623 
1624 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1625 }
1626 
1627 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1628 {
1629 	struct bfq_entity *entity = &bfqq->entity;
1630 
1631 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1632 				    false, false);
1633 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1634 }
1635 
1636 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1637 		      bool expiration)
1638 {
1639 	struct bfq_entity *entity = &bfqq->entity;
1640 
1641 	bfq_activate_requeue_entity(entity, false,
1642 				    bfqq == bfqd->in_service_queue, expiration);
1643 }
1644 
1645 /*
1646  * Called when the bfqq no longer has requests pending, remove it from
1647  * the service tree. As a special case, it can be invoked during an
1648  * expiration.
1649  */
1650 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1651 		       bool expiration)
1652 {
1653 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1654 
1655 	bfq_clear_bfqq_busy(bfqq);
1656 
1657 	bfqd->busy_queues--;
1658 
1659 	if (!bfqq->dispatched)
1660 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
1661 					&bfqd->queue_weights_tree);
1662 
1663 	if (bfqq->wr_coeff > 1)
1664 		bfqd->wr_busy_queues--;
1665 
1666 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1667 
1668 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1669 }
1670 
1671 /*
1672  * Called when an inactive queue receives a new request.
1673  */
1674 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1675 {
1676 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1677 
1678 	bfq_activate_bfqq(bfqd, bfqq);
1679 
1680 	bfq_mark_bfqq_busy(bfqq);
1681 	bfqd->busy_queues++;
1682 
1683 	if (!bfqq->dispatched)
1684 		if (bfqq->wr_coeff == 1)
1685 			bfq_weights_tree_add(bfqd, &bfqq->entity,
1686 					     &bfqd->queue_weights_tree);
1687 
1688 	if (bfqq->wr_coeff > 1)
1689 		bfqd->wr_busy_queues++;
1690 }
1691