xref: /linux/block/bfq-wf2q.c (revision ca853314e78b0a65c20b6a889a23c31f918d4aa2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
4  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
5  * scheduler schedules generic entities. The latter can represent
6  * either single bfq queues (associated with processes) or groups of
7  * bfq queues (associated with cgroups).
8  */
9 #include "bfq-iosched.h"
10 
11 /**
12  * bfq_gt - compare two timestamps.
13  * @a: first ts.
14  * @b: second ts.
15  *
16  * Return @a > @b, dealing with wrapping correctly.
17  */
18 static int bfq_gt(u64 a, u64 b)
19 {
20 	return (s64)(a - b) > 0;
21 }
22 
23 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
24 {
25 	struct rb_node *node = tree->rb_node;
26 
27 	return rb_entry(node, struct bfq_entity, rb_node);
28 }
29 
30 static unsigned int bfq_class_idx(struct bfq_entity *entity)
31 {
32 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
33 
34 	return bfqq ? bfqq->ioprio_class - 1 :
35 		BFQ_DEFAULT_GRP_CLASS - 1;
36 }
37 
38 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
39 {
40 	return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
41 		bfqd->busy_queues[2];
42 }
43 
44 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
45 						 bool expiration);
46 
47 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
48 
49 /**
50  * bfq_update_next_in_service - update sd->next_in_service
51  * @sd: sched_data for which to perform the update.
52  * @new_entity: if not NULL, pointer to the entity whose activation,
53  *		requeueing or repositioning triggered the invocation of
54  *		this function.
55  * @expiration: id true, this function is being invoked after the
56  *             expiration of the in-service entity
57  *
58  * This function is called to update sd->next_in_service, which, in
59  * its turn, may change as a consequence of the insertion or
60  * extraction of an entity into/from one of the active trees of
61  * sd. These insertions/extractions occur as a consequence of
62  * activations/deactivations of entities, with some activations being
63  * 'true' activations, and other activations being requeueings (i.e.,
64  * implementing the second, requeueing phase of the mechanism used to
65  * reposition an entity in its active tree; see comments on
66  * __bfq_activate_entity and __bfq_requeue_entity for details). In
67  * both the last two activation sub-cases, new_entity points to the
68  * just activated or requeued entity.
69  *
70  * Returns true if sd->next_in_service changes in such a way that
71  * entity->parent may become the next_in_service for its parent
72  * entity.
73  */
74 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
75 				       struct bfq_entity *new_entity,
76 				       bool expiration)
77 {
78 	struct bfq_entity *next_in_service = sd->next_in_service;
79 	bool parent_sched_may_change = false;
80 	bool change_without_lookup = false;
81 
82 	/*
83 	 * If this update is triggered by the activation, requeueing
84 	 * or repositioning of an entity that does not coincide with
85 	 * sd->next_in_service, then a full lookup in the active tree
86 	 * can be avoided. In fact, it is enough to check whether the
87 	 * just-modified entity has the same priority as
88 	 * sd->next_in_service, is eligible and has a lower virtual
89 	 * finish time than sd->next_in_service. If this compound
90 	 * condition holds, then the new entity becomes the new
91 	 * next_in_service. Otherwise no change is needed.
92 	 */
93 	if (new_entity && new_entity != sd->next_in_service) {
94 		/*
95 		 * Flag used to decide whether to replace
96 		 * sd->next_in_service with new_entity. Tentatively
97 		 * set to true, and left as true if
98 		 * sd->next_in_service is NULL.
99 		 */
100 		change_without_lookup = true;
101 
102 		/*
103 		 * If there is already a next_in_service candidate
104 		 * entity, then compare timestamps to decide whether
105 		 * to replace sd->service_tree with new_entity.
106 		 */
107 		if (next_in_service) {
108 			unsigned int new_entity_class_idx =
109 				bfq_class_idx(new_entity);
110 			struct bfq_service_tree *st =
111 				sd->service_tree + new_entity_class_idx;
112 
113 			change_without_lookup =
114 				(new_entity_class_idx ==
115 				 bfq_class_idx(next_in_service)
116 				 &&
117 				 !bfq_gt(new_entity->start, st->vtime)
118 				 &&
119 				 bfq_gt(next_in_service->finish,
120 					new_entity->finish));
121 		}
122 
123 		if (change_without_lookup)
124 			next_in_service = new_entity;
125 	}
126 
127 	if (!change_without_lookup) /* lookup needed */
128 		next_in_service = bfq_lookup_next_entity(sd, expiration);
129 
130 	if (next_in_service) {
131 		bool new_budget_triggers_change =
132 			bfq_update_parent_budget(next_in_service);
133 
134 		parent_sched_may_change = !sd->next_in_service ||
135 			new_budget_triggers_change;
136 	}
137 
138 	sd->next_in_service = next_in_service;
139 
140 	if (!next_in_service)
141 		return parent_sched_may_change;
142 
143 	return parent_sched_may_change;
144 }
145 
146 #ifdef CONFIG_BFQ_GROUP_IOSCHED
147 
148 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
149 {
150 	struct bfq_entity *group_entity = bfqq->entity.parent;
151 
152 	if (!group_entity)
153 		group_entity = &bfqq->bfqd->root_group->entity;
154 
155 	return container_of(group_entity, struct bfq_group, entity);
156 }
157 
158 /*
159  * Returns true if this budget changes may let next_in_service->parent
160  * become the next_in_service entity for its parent entity.
161  */
162 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
163 {
164 	struct bfq_entity *bfqg_entity;
165 	struct bfq_group *bfqg;
166 	struct bfq_sched_data *group_sd;
167 	bool ret = false;
168 
169 	group_sd = next_in_service->sched_data;
170 
171 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
172 	/*
173 	 * bfq_group's my_entity field is not NULL only if the group
174 	 * is not the root group. We must not touch the root entity
175 	 * as it must never become an in-service entity.
176 	 */
177 	bfqg_entity = bfqg->my_entity;
178 	if (bfqg_entity) {
179 		if (bfqg_entity->budget > next_in_service->budget)
180 			ret = true;
181 		bfqg_entity->budget = next_in_service->budget;
182 	}
183 
184 	return ret;
185 }
186 
187 /*
188  * This function tells whether entity stops being a candidate for next
189  * service, according to the restrictive definition of the field
190  * next_in_service. In particular, this function is invoked for an
191  * entity that is about to be set in service.
192  *
193  * If entity is a queue, then the entity is no longer a candidate for
194  * next service according to the that definition, because entity is
195  * about to become the in-service queue. This function then returns
196  * true if entity is a queue.
197  *
198  * In contrast, entity could still be a candidate for next service if
199  * it is not a queue, and has more than one active child. In fact,
200  * even if one of its children is about to be set in service, other
201  * active children may still be the next to serve, for the parent
202  * entity, even according to the above definition. As a consequence, a
203  * non-queue entity is not a candidate for next-service only if it has
204  * only one active child. And only if this condition holds, then this
205  * function returns true for a non-queue entity.
206  */
207 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
208 {
209 	struct bfq_group *bfqg;
210 
211 	if (bfq_entity_to_bfqq(entity))
212 		return true;
213 
214 	bfqg = container_of(entity, struct bfq_group, entity);
215 
216 	/*
217 	 * The field active_entities does not always contain the
218 	 * actual number of active children entities: it happens to
219 	 * not account for the in-service entity in case the latter is
220 	 * removed from its active tree (which may get done after
221 	 * invoking the function bfq_no_longer_next_in_service in
222 	 * bfq_get_next_queue). Fortunately, here, i.e., while
223 	 * bfq_no_longer_next_in_service is not yet completed in
224 	 * bfq_get_next_queue, bfq_active_extract has not yet been
225 	 * invoked, and thus active_entities still coincides with the
226 	 * actual number of active entities.
227 	 */
228 	if (bfqg->active_entities == 1)
229 		return true;
230 
231 	return false;
232 }
233 
234 #else /* CONFIG_BFQ_GROUP_IOSCHED */
235 
236 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
237 {
238 	return bfqq->bfqd->root_group;
239 }
240 
241 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
242 {
243 	return false;
244 }
245 
246 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
247 {
248 	return true;
249 }
250 
251 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
252 
253 /*
254  * Shift for timestamp calculations.  This actually limits the maximum
255  * service allowed in one timestamp delta (small shift values increase it),
256  * the maximum total weight that can be used for the queues in the system
257  * (big shift values increase it), and the period of virtual time
258  * wraparounds.
259  */
260 #define WFQ_SERVICE_SHIFT	22
261 
262 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
263 {
264 	struct bfq_queue *bfqq = NULL;
265 
266 	if (!entity->my_sched_data)
267 		bfqq = container_of(entity, struct bfq_queue, entity);
268 
269 	return bfqq;
270 }
271 
272 
273 /**
274  * bfq_delta - map service into the virtual time domain.
275  * @service: amount of service.
276  * @weight: scale factor (weight of an entity or weight sum).
277  */
278 static u64 bfq_delta(unsigned long service, unsigned long weight)
279 {
280 	return div64_ul((u64)service << WFQ_SERVICE_SHIFT, weight);
281 }
282 
283 /**
284  * bfq_calc_finish - assign the finish time to an entity.
285  * @entity: the entity to act upon.
286  * @service: the service to be charged to the entity.
287  */
288 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
289 {
290 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
291 
292 	entity->finish = entity->start +
293 		bfq_delta(service, entity->weight);
294 
295 	if (bfqq) {
296 		bfq_log_bfqq(bfqq->bfqd, bfqq,
297 			"calc_finish: serv %lu, w %d",
298 			service, entity->weight);
299 		bfq_log_bfqq(bfqq->bfqd, bfqq,
300 			"calc_finish: start %llu, finish %llu, delta %llu",
301 			entity->start, entity->finish,
302 			bfq_delta(service, entity->weight));
303 	}
304 }
305 
306 /**
307  * bfq_entity_of - get an entity from a node.
308  * @node: the node field of the entity.
309  *
310  * Convert a node pointer to the relative entity.  This is used only
311  * to simplify the logic of some functions and not as the generic
312  * conversion mechanism because, e.g., in the tree walking functions,
313  * the check for a %NULL value would be redundant.
314  */
315 struct bfq_entity *bfq_entity_of(struct rb_node *node)
316 {
317 	struct bfq_entity *entity = NULL;
318 
319 	if (node)
320 		entity = rb_entry(node, struct bfq_entity, rb_node);
321 
322 	return entity;
323 }
324 
325 /**
326  * bfq_extract - remove an entity from a tree.
327  * @root: the tree root.
328  * @entity: the entity to remove.
329  */
330 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
331 {
332 	entity->tree = NULL;
333 	rb_erase(&entity->rb_node, root);
334 }
335 
336 /**
337  * bfq_idle_extract - extract an entity from the idle tree.
338  * @st: the service tree of the owning @entity.
339  * @entity: the entity being removed.
340  */
341 static void bfq_idle_extract(struct bfq_service_tree *st,
342 			     struct bfq_entity *entity)
343 {
344 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
345 	struct rb_node *next;
346 
347 	if (entity == st->first_idle) {
348 		next = rb_next(&entity->rb_node);
349 		st->first_idle = bfq_entity_of(next);
350 	}
351 
352 	if (entity == st->last_idle) {
353 		next = rb_prev(&entity->rb_node);
354 		st->last_idle = bfq_entity_of(next);
355 	}
356 
357 	bfq_extract(&st->idle, entity);
358 
359 	if (bfqq)
360 		list_del(&bfqq->bfqq_list);
361 }
362 
363 /**
364  * bfq_insert - generic tree insertion.
365  * @root: tree root.
366  * @entity: entity to insert.
367  *
368  * This is used for the idle and the active tree, since they are both
369  * ordered by finish time.
370  */
371 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
372 {
373 	struct bfq_entity *entry;
374 	struct rb_node **node = &root->rb_node;
375 	struct rb_node *parent = NULL;
376 
377 	while (*node) {
378 		parent = *node;
379 		entry = rb_entry(parent, struct bfq_entity, rb_node);
380 
381 		if (bfq_gt(entry->finish, entity->finish))
382 			node = &parent->rb_left;
383 		else
384 			node = &parent->rb_right;
385 	}
386 
387 	rb_link_node(&entity->rb_node, parent, node);
388 	rb_insert_color(&entity->rb_node, root);
389 
390 	entity->tree = root;
391 }
392 
393 /**
394  * bfq_update_min - update the min_start field of a entity.
395  * @entity: the entity to update.
396  * @node: one of its children.
397  *
398  * This function is called when @entity may store an invalid value for
399  * min_start due to updates to the active tree.  The function  assumes
400  * that the subtree rooted at @node (which may be its left or its right
401  * child) has a valid min_start value.
402  */
403 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
404 {
405 	struct bfq_entity *child;
406 
407 	if (node) {
408 		child = rb_entry(node, struct bfq_entity, rb_node);
409 		if (bfq_gt(entity->min_start, child->min_start))
410 			entity->min_start = child->min_start;
411 	}
412 }
413 
414 /**
415  * bfq_update_active_node - recalculate min_start.
416  * @node: the node to update.
417  *
418  * @node may have changed position or one of its children may have moved,
419  * this function updates its min_start value.  The left and right subtrees
420  * are assumed to hold a correct min_start value.
421  */
422 static void bfq_update_active_node(struct rb_node *node)
423 {
424 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
425 
426 	entity->min_start = entity->start;
427 	bfq_update_min(entity, node->rb_right);
428 	bfq_update_min(entity, node->rb_left);
429 }
430 
431 /**
432  * bfq_update_active_tree - update min_start for the whole active tree.
433  * @node: the starting node.
434  *
435  * @node must be the deepest modified node after an update.  This function
436  * updates its min_start using the values held by its children, assuming
437  * that they did not change, and then updates all the nodes that may have
438  * changed in the path to the root.  The only nodes that may have changed
439  * are the ones in the path or their siblings.
440  */
441 static void bfq_update_active_tree(struct rb_node *node)
442 {
443 	struct rb_node *parent;
444 
445 up:
446 	bfq_update_active_node(node);
447 
448 	parent = rb_parent(node);
449 	if (!parent)
450 		return;
451 
452 	if (node == parent->rb_left && parent->rb_right)
453 		bfq_update_active_node(parent->rb_right);
454 	else if (parent->rb_left)
455 		bfq_update_active_node(parent->rb_left);
456 
457 	node = parent;
458 	goto up;
459 }
460 
461 /**
462  * bfq_active_insert - insert an entity in the active tree of its
463  *                     group/device.
464  * @st: the service tree of the entity.
465  * @entity: the entity being inserted.
466  *
467  * The active tree is ordered by finish time, but an extra key is kept
468  * per each node, containing the minimum value for the start times of
469  * its children (and the node itself), so it's possible to search for
470  * the eligible node with the lowest finish time in logarithmic time.
471  */
472 static void bfq_active_insert(struct bfq_service_tree *st,
473 			      struct bfq_entity *entity)
474 {
475 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
476 	struct rb_node *node = &entity->rb_node;
477 #ifdef CONFIG_BFQ_GROUP_IOSCHED
478 	struct bfq_sched_data *sd = NULL;
479 	struct bfq_group *bfqg = NULL;
480 	struct bfq_data *bfqd = NULL;
481 #endif
482 
483 	bfq_insert(&st->active, entity);
484 
485 	if (node->rb_left)
486 		node = node->rb_left;
487 	else if (node->rb_right)
488 		node = node->rb_right;
489 
490 	bfq_update_active_tree(node);
491 
492 #ifdef CONFIG_BFQ_GROUP_IOSCHED
493 	sd = entity->sched_data;
494 	bfqg = container_of(sd, struct bfq_group, sched_data);
495 	bfqd = (struct bfq_data *)bfqg->bfqd;
496 #endif
497 	if (bfqq)
498 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
499 #ifdef CONFIG_BFQ_GROUP_IOSCHED
500 	if (bfqg != bfqd->root_group)
501 		bfqg->active_entities++;
502 #endif
503 }
504 
505 /**
506  * bfq_ioprio_to_weight - calc a weight from an ioprio.
507  * @ioprio: the ioprio value to convert.
508  */
509 unsigned short bfq_ioprio_to_weight(int ioprio)
510 {
511 	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
512 }
513 
514 /**
515  * bfq_weight_to_ioprio - calc an ioprio from a weight.
516  * @weight: the weight value to convert.
517  *
518  * To preserve as much as possible the old only-ioprio user interface,
519  * 0 is used as an escape ioprio value for weights (numerically) equal or
520  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
521  */
522 static unsigned short bfq_weight_to_ioprio(int weight)
523 {
524 	return max_t(int, 0,
525 		     IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
526 }
527 
528 static void bfq_get_entity(struct bfq_entity *entity)
529 {
530 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
531 
532 	if (bfqq) {
533 		bfqq->ref++;
534 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
535 			     bfqq, bfqq->ref);
536 	}
537 }
538 
539 /**
540  * bfq_find_deepest - find the deepest node that an extraction can modify.
541  * @node: the node being removed.
542  *
543  * Do the first step of an extraction in an rb tree, looking for the
544  * node that will replace @node, and returning the deepest node that
545  * the following modifications to the tree can touch.  If @node is the
546  * last node in the tree return %NULL.
547  */
548 static struct rb_node *bfq_find_deepest(struct rb_node *node)
549 {
550 	struct rb_node *deepest;
551 
552 	if (!node->rb_right && !node->rb_left)
553 		deepest = rb_parent(node);
554 	else if (!node->rb_right)
555 		deepest = node->rb_left;
556 	else if (!node->rb_left)
557 		deepest = node->rb_right;
558 	else {
559 		deepest = rb_next(node);
560 		if (deepest->rb_right)
561 			deepest = deepest->rb_right;
562 		else if (rb_parent(deepest) != node)
563 			deepest = rb_parent(deepest);
564 	}
565 
566 	return deepest;
567 }
568 
569 /**
570  * bfq_active_extract - remove an entity from the active tree.
571  * @st: the service_tree containing the tree.
572  * @entity: the entity being removed.
573  */
574 static void bfq_active_extract(struct bfq_service_tree *st,
575 			       struct bfq_entity *entity)
576 {
577 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
578 	struct rb_node *node;
579 #ifdef CONFIG_BFQ_GROUP_IOSCHED
580 	struct bfq_sched_data *sd = NULL;
581 	struct bfq_group *bfqg = NULL;
582 	struct bfq_data *bfqd = NULL;
583 #endif
584 
585 	node = bfq_find_deepest(&entity->rb_node);
586 	bfq_extract(&st->active, entity);
587 
588 	if (node)
589 		bfq_update_active_tree(node);
590 
591 #ifdef CONFIG_BFQ_GROUP_IOSCHED
592 	sd = entity->sched_data;
593 	bfqg = container_of(sd, struct bfq_group, sched_data);
594 	bfqd = (struct bfq_data *)bfqg->bfqd;
595 #endif
596 	if (bfqq)
597 		list_del(&bfqq->bfqq_list);
598 #ifdef CONFIG_BFQ_GROUP_IOSCHED
599 	if (bfqg != bfqd->root_group)
600 		bfqg->active_entities--;
601 #endif
602 }
603 
604 /**
605  * bfq_idle_insert - insert an entity into the idle tree.
606  * @st: the service tree containing the tree.
607  * @entity: the entity to insert.
608  */
609 static void bfq_idle_insert(struct bfq_service_tree *st,
610 			    struct bfq_entity *entity)
611 {
612 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
613 	struct bfq_entity *first_idle = st->first_idle;
614 	struct bfq_entity *last_idle = st->last_idle;
615 
616 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
617 		st->first_idle = entity;
618 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
619 		st->last_idle = entity;
620 
621 	bfq_insert(&st->idle, entity);
622 
623 	if (bfqq)
624 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
625 }
626 
627 /**
628  * bfq_forget_entity - do not consider entity any longer for scheduling
629  * @st: the service tree.
630  * @entity: the entity being removed.
631  * @is_in_service: true if entity is currently the in-service entity.
632  *
633  * Forget everything about @entity. In addition, if entity represents
634  * a queue, and the latter is not in service, then release the service
635  * reference to the queue (the one taken through bfq_get_entity). In
636  * fact, in this case, there is really no more service reference to
637  * the queue, as the latter is also outside any service tree. If,
638  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
639  * will take care of putting the reference when the queue finally
640  * stops being served.
641  */
642 static void bfq_forget_entity(struct bfq_service_tree *st,
643 			      struct bfq_entity *entity,
644 			      bool is_in_service)
645 {
646 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
647 
648 	entity->on_st_or_in_serv = false;
649 	st->wsum -= entity->weight;
650 	if (bfqq && !is_in_service)
651 		bfq_put_queue(bfqq);
652 }
653 
654 /**
655  * bfq_put_idle_entity - release the idle tree ref of an entity.
656  * @st: service tree for the entity.
657  * @entity: the entity being released.
658  */
659 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
660 {
661 	bfq_idle_extract(st, entity);
662 	bfq_forget_entity(st, entity,
663 			  entity == entity->sched_data->in_service_entity);
664 }
665 
666 /**
667  * bfq_forget_idle - update the idle tree if necessary.
668  * @st: the service tree to act upon.
669  *
670  * To preserve the global O(log N) complexity we only remove one entry here;
671  * as the idle tree will not grow indefinitely this can be done safely.
672  */
673 static void bfq_forget_idle(struct bfq_service_tree *st)
674 {
675 	struct bfq_entity *first_idle = st->first_idle;
676 	struct bfq_entity *last_idle = st->last_idle;
677 
678 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
679 	    !bfq_gt(last_idle->finish, st->vtime)) {
680 		/*
681 		 * Forget the whole idle tree, increasing the vtime past
682 		 * the last finish time of idle entities.
683 		 */
684 		st->vtime = last_idle->finish;
685 	}
686 
687 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
688 		bfq_put_idle_entity(st, first_idle);
689 }
690 
691 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
692 {
693 	struct bfq_sched_data *sched_data = entity->sched_data;
694 	unsigned int idx = bfq_class_idx(entity);
695 
696 	return sched_data->service_tree + idx;
697 }
698 
699 /*
700  * Update weight and priority of entity. If update_class_too is true,
701  * then update the ioprio_class of entity too.
702  *
703  * The reason why the update of ioprio_class is controlled through the
704  * last parameter is as follows. Changing the ioprio class of an
705  * entity implies changing the destination service trees for that
706  * entity. If such a change occurred when the entity is already on one
707  * of the service trees for its previous class, then the state of the
708  * entity would become more complex: none of the new possible service
709  * trees for the entity, according to bfq_entity_service_tree(), would
710  * match any of the possible service trees on which the entity
711  * is. Complex operations involving these trees, such as entity
712  * activations and deactivations, should take into account this
713  * additional complexity.  To avoid this issue, this function is
714  * invoked with update_class_too unset in the points in the code where
715  * entity may happen to be on some tree.
716  */
717 struct bfq_service_tree *
718 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
719 				struct bfq_entity *entity,
720 				bool update_class_too)
721 {
722 	struct bfq_service_tree *new_st = old_st;
723 
724 	if (entity->prio_changed) {
725 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
726 		unsigned int prev_weight, new_weight;
727 		struct bfq_data *bfqd = NULL;
728 		struct rb_root_cached *root;
729 #ifdef CONFIG_BFQ_GROUP_IOSCHED
730 		struct bfq_sched_data *sd;
731 		struct bfq_group *bfqg;
732 #endif
733 
734 		if (bfqq)
735 			bfqd = bfqq->bfqd;
736 #ifdef CONFIG_BFQ_GROUP_IOSCHED
737 		else {
738 			sd = entity->my_sched_data;
739 			bfqg = container_of(sd, struct bfq_group, sched_data);
740 			bfqd = (struct bfq_data *)bfqg->bfqd;
741 		}
742 #endif
743 
744 		/* Matches the smp_wmb() in bfq_group_set_weight. */
745 		smp_rmb();
746 		old_st->wsum -= entity->weight;
747 
748 		if (entity->new_weight != entity->orig_weight) {
749 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
750 			    entity->new_weight > BFQ_MAX_WEIGHT) {
751 				pr_crit("update_weight_prio: new_weight %d\n",
752 					entity->new_weight);
753 				if (entity->new_weight < BFQ_MIN_WEIGHT)
754 					entity->new_weight = BFQ_MIN_WEIGHT;
755 				else
756 					entity->new_weight = BFQ_MAX_WEIGHT;
757 			}
758 			entity->orig_weight = entity->new_weight;
759 			if (bfqq)
760 				bfqq->ioprio =
761 				  bfq_weight_to_ioprio(entity->orig_weight);
762 		}
763 
764 		if (bfqq && update_class_too)
765 			bfqq->ioprio_class = bfqq->new_ioprio_class;
766 
767 		/*
768 		 * Reset prio_changed only if the ioprio_class change
769 		 * is not pending any longer.
770 		 */
771 		if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
772 			entity->prio_changed = 0;
773 
774 		/*
775 		 * NOTE: here we may be changing the weight too early,
776 		 * this will cause unfairness.  The correct approach
777 		 * would have required additional complexity to defer
778 		 * weight changes to the proper time instants (i.e.,
779 		 * when entity->finish <= old_st->vtime).
780 		 */
781 		new_st = bfq_entity_service_tree(entity);
782 
783 		prev_weight = entity->weight;
784 		new_weight = entity->orig_weight *
785 			     (bfqq ? bfqq->wr_coeff : 1);
786 		/*
787 		 * If the weight of the entity changes, and the entity is a
788 		 * queue, remove the entity from its old weight counter (if
789 		 * there is a counter associated with the entity).
790 		 */
791 		if (prev_weight != new_weight && bfqq) {
792 			root = &bfqd->queue_weights_tree;
793 			__bfq_weights_tree_remove(bfqd, bfqq, root);
794 		}
795 		entity->weight = new_weight;
796 		/*
797 		 * Add the entity, if it is not a weight-raised queue,
798 		 * to the counter associated with its new weight.
799 		 */
800 		if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
801 			/* If we get here, root has been initialized. */
802 			bfq_weights_tree_add(bfqd, bfqq, root);
803 		}
804 
805 		new_st->wsum += entity->weight;
806 
807 		if (new_st != old_st)
808 			entity->start = new_st->vtime;
809 	}
810 
811 	return new_st;
812 }
813 
814 /**
815  * bfq_bfqq_served - update the scheduler status after selection for
816  *                   service.
817  * @bfqq: the queue being served.
818  * @served: bytes to transfer.
819  *
820  * NOTE: this can be optimized, as the timestamps of upper level entities
821  * are synchronized every time a new bfqq is selected for service.  By now,
822  * we keep it to better check consistency.
823  */
824 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
825 {
826 	struct bfq_entity *entity = &bfqq->entity;
827 	struct bfq_service_tree *st;
828 
829 	if (!bfqq->service_from_backlogged)
830 		bfqq->first_IO_time = jiffies;
831 
832 	if (bfqq->wr_coeff > 1)
833 		bfqq->service_from_wr += served;
834 
835 	bfqq->service_from_backlogged += served;
836 	for_each_entity(entity) {
837 		st = bfq_entity_service_tree(entity);
838 
839 		entity->service += served;
840 
841 		st->vtime += bfq_delta(served, st->wsum);
842 		bfq_forget_idle(st);
843 	}
844 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
845 }
846 
847 /**
848  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
849  *			  of the time interval during which bfqq has been in
850  *			  service.
851  * @bfqd: the device
852  * @bfqq: the queue that needs a service update.
853  * @time_ms: the amount of time during which the queue has received service
854  *
855  * If a queue does not consume its budget fast enough, then providing
856  * the queue with service fairness may impair throughput, more or less
857  * severely. For this reason, queues that consume their budget slowly
858  * are provided with time fairness instead of service fairness. This
859  * goal is achieved through the BFQ scheduling engine, even if such an
860  * engine works in the service, and not in the time domain. The trick
861  * is charging these queues with an inflated amount of service, equal
862  * to the amount of service that they would have received during their
863  * service slot if they had been fast, i.e., if their requests had
864  * been dispatched at a rate equal to the estimated peak rate.
865  *
866  * It is worth noting that time fairness can cause important
867  * distortions in terms of bandwidth distribution, on devices with
868  * internal queueing. The reason is that I/O requests dispatched
869  * during the service slot of a queue may be served after that service
870  * slot is finished, and may have a total processing time loosely
871  * correlated with the duration of the service slot. This is
872  * especially true for short service slots.
873  */
874 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
875 			  unsigned long time_ms)
876 {
877 	struct bfq_entity *entity = &bfqq->entity;
878 	unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
879 	unsigned long bounded_time_ms = min(time_ms, timeout_ms);
880 	int serv_to_charge_for_time =
881 		(bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
882 	int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
883 
884 	/* Increase budget to avoid inconsistencies */
885 	if (tot_serv_to_charge > entity->budget)
886 		entity->budget = tot_serv_to_charge;
887 
888 	bfq_bfqq_served(bfqq,
889 			max_t(int, 0, tot_serv_to_charge - entity->service));
890 }
891 
892 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
893 					struct bfq_service_tree *st,
894 					bool backshifted)
895 {
896 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
897 
898 	/*
899 	 * When this function is invoked, entity is not in any service
900 	 * tree, then it is safe to invoke next function with the last
901 	 * parameter set (see the comments on the function).
902 	 */
903 	st = __bfq_entity_update_weight_prio(st, entity, true);
904 	bfq_calc_finish(entity, entity->budget);
905 
906 	/*
907 	 * If some queues enjoy backshifting for a while, then their
908 	 * (virtual) finish timestamps may happen to become lower and
909 	 * lower than the system virtual time.	In particular, if
910 	 * these queues often happen to be idle for short time
911 	 * periods, and during such time periods other queues with
912 	 * higher timestamps happen to be busy, then the backshifted
913 	 * timestamps of the former queues can become much lower than
914 	 * the system virtual time. In fact, to serve the queues with
915 	 * higher timestamps while the ones with lower timestamps are
916 	 * idle, the system virtual time may be pushed-up to much
917 	 * higher values than the finish timestamps of the idle
918 	 * queues. As a consequence, the finish timestamps of all new
919 	 * or newly activated queues may end up being much larger than
920 	 * those of lucky queues with backshifted timestamps. The
921 	 * latter queues may then monopolize the device for a lot of
922 	 * time. This would simply break service guarantees.
923 	 *
924 	 * To reduce this problem, push up a little bit the
925 	 * backshifted timestamps of the queue associated with this
926 	 * entity (only a queue can happen to have the backshifted
927 	 * flag set): just enough to let the finish timestamp of the
928 	 * queue be equal to the current value of the system virtual
929 	 * time. This may introduce a little unfairness among queues
930 	 * with backshifted timestamps, but it does not break
931 	 * worst-case fairness guarantees.
932 	 *
933 	 * As a special case, if bfqq is weight-raised, push up
934 	 * timestamps much less, to keep very low the probability that
935 	 * this push up causes the backshifted finish timestamps of
936 	 * weight-raised queues to become higher than the backshifted
937 	 * finish timestamps of non weight-raised queues.
938 	 */
939 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
940 		unsigned long delta = st->vtime - entity->finish;
941 
942 		if (bfqq)
943 			delta /= bfqq->wr_coeff;
944 
945 		entity->start += delta;
946 		entity->finish += delta;
947 	}
948 
949 	bfq_active_insert(st, entity);
950 }
951 
952 /**
953  * __bfq_activate_entity - handle activation of entity.
954  * @entity: the entity being activated.
955  * @non_blocking_wait_rq: true if entity was waiting for a request
956  *
957  * Called for a 'true' activation, i.e., if entity is not active and
958  * one of its children receives a new request.
959  *
960  * Basically, this function updates the timestamps of entity and
961  * inserts entity into its active tree, after possibly extracting it
962  * from its idle tree.
963  */
964 static void __bfq_activate_entity(struct bfq_entity *entity,
965 				  bool non_blocking_wait_rq)
966 {
967 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
968 	bool backshifted = false;
969 	unsigned long long min_vstart;
970 
971 	/* See comments on bfq_fqq_update_budg_for_activation */
972 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
973 		backshifted = true;
974 		min_vstart = entity->finish;
975 	} else
976 		min_vstart = st->vtime;
977 
978 	if (entity->tree == &st->idle) {
979 		/*
980 		 * Must be on the idle tree, bfq_idle_extract() will
981 		 * check for that.
982 		 */
983 		bfq_idle_extract(st, entity);
984 		entity->start = bfq_gt(min_vstart, entity->finish) ?
985 			min_vstart : entity->finish;
986 	} else {
987 		/*
988 		 * The finish time of the entity may be invalid, and
989 		 * it is in the past for sure, otherwise the queue
990 		 * would have been on the idle tree.
991 		 */
992 		entity->start = min_vstart;
993 		st->wsum += entity->weight;
994 		/*
995 		 * entity is about to be inserted into a service tree,
996 		 * and then set in service: get a reference to make
997 		 * sure entity does not disappear until it is no
998 		 * longer in service or scheduled for service.
999 		 */
1000 		bfq_get_entity(entity);
1001 
1002 		entity->on_st_or_in_serv = true;
1003 	}
1004 
1005 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1006 	if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
1007 		struct bfq_group *bfqg =
1008 			container_of(entity, struct bfq_group, entity);
1009 		struct bfq_data *bfqd = bfqg->bfqd;
1010 
1011 		if (!entity->in_groups_with_pending_reqs) {
1012 			entity->in_groups_with_pending_reqs = true;
1013 			bfqd->num_groups_with_pending_reqs++;
1014 		}
1015 	}
1016 #endif
1017 
1018 	bfq_update_fin_time_enqueue(entity, st, backshifted);
1019 }
1020 
1021 /**
1022  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1023  * @entity: the entity being requeued or repositioned.
1024  *
1025  * Requeueing is needed if this entity stops being served, which
1026  * happens if a leaf descendant entity has expired. On the other hand,
1027  * repositioning is needed if the next_inservice_entity for the child
1028  * entity has changed. See the comments inside the function for
1029  * details.
1030  *
1031  * Basically, this function: 1) removes entity from its active tree if
1032  * present there, 2) updates the timestamps of entity and 3) inserts
1033  * entity back into its active tree (in the new, right position for
1034  * the new values of the timestamps).
1035  */
1036 static void __bfq_requeue_entity(struct bfq_entity *entity)
1037 {
1038 	struct bfq_sched_data *sd = entity->sched_data;
1039 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1040 
1041 	if (entity == sd->in_service_entity) {
1042 		/*
1043 		 * We are requeueing the current in-service entity,
1044 		 * which may have to be done for one of the following
1045 		 * reasons:
1046 		 * - entity represents the in-service queue, and the
1047 		 *   in-service queue is being requeued after an
1048 		 *   expiration;
1049 		 * - entity represents a group, and its budget has
1050 		 *   changed because one of its child entities has
1051 		 *   just been either activated or requeued for some
1052 		 *   reason; the timestamps of the entity need then to
1053 		 *   be updated, and the entity needs to be enqueued
1054 		 *   or repositioned accordingly.
1055 		 *
1056 		 * In particular, before requeueing, the start time of
1057 		 * the entity must be moved forward to account for the
1058 		 * service that the entity has received while in
1059 		 * service. This is done by the next instructions. The
1060 		 * finish time will then be updated according to this
1061 		 * new value of the start time, and to the budget of
1062 		 * the entity.
1063 		 */
1064 		bfq_calc_finish(entity, entity->service);
1065 		entity->start = entity->finish;
1066 		/*
1067 		 * In addition, if the entity had more than one child
1068 		 * when set in service, then it was not extracted from
1069 		 * the active tree. This implies that the position of
1070 		 * the entity in the active tree may need to be
1071 		 * changed now, because we have just updated the start
1072 		 * time of the entity, and we will update its finish
1073 		 * time in a moment (the requeueing is then, more
1074 		 * precisely, a repositioning in this case). To
1075 		 * implement this repositioning, we: 1) dequeue the
1076 		 * entity here, 2) update the finish time and requeue
1077 		 * the entity according to the new timestamps below.
1078 		 */
1079 		if (entity->tree)
1080 			bfq_active_extract(st, entity);
1081 	} else { /* The entity is already active, and not in service */
1082 		/*
1083 		 * In this case, this function gets called only if the
1084 		 * next_in_service entity below this entity has
1085 		 * changed, and this change has caused the budget of
1086 		 * this entity to change, which, finally implies that
1087 		 * the finish time of this entity must be
1088 		 * updated. Such an update may cause the scheduling,
1089 		 * i.e., the position in the active tree, of this
1090 		 * entity to change. We handle this change by: 1)
1091 		 * dequeueing the entity here, 2) updating the finish
1092 		 * time and requeueing the entity according to the new
1093 		 * timestamps below. This is the same approach as the
1094 		 * non-extracted-entity sub-case above.
1095 		 */
1096 		bfq_active_extract(st, entity);
1097 	}
1098 
1099 	bfq_update_fin_time_enqueue(entity, st, false);
1100 }
1101 
1102 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1103 					  struct bfq_sched_data *sd,
1104 					  bool non_blocking_wait_rq)
1105 {
1106 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1107 
1108 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1109 		 /*
1110 		  * in service or already queued on the active tree,
1111 		  * requeue or reposition
1112 		  */
1113 		__bfq_requeue_entity(entity);
1114 	else
1115 		/*
1116 		 * Not in service and not queued on its active tree:
1117 		 * the activity is idle and this is a true activation.
1118 		 */
1119 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1120 }
1121 
1122 
1123 /**
1124  * bfq_activate_requeue_entity - activate or requeue an entity representing a
1125  *				 bfq_queue, and activate, requeue or reposition
1126  *				 all ancestors for which such an update becomes
1127  *				 necessary.
1128  * @entity: the entity to activate.
1129  * @non_blocking_wait_rq: true if this entity was waiting for a request
1130  * @requeue: true if this is a requeue, which implies that bfqq is
1131  *	     being expired; thus ALL its ancestors stop being served and must
1132  *	     therefore be requeued
1133  * @expiration: true if this function is being invoked in the expiration path
1134  *             of the in-service queue
1135  */
1136 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1137 					bool non_blocking_wait_rq,
1138 					bool requeue, bool expiration)
1139 {
1140 	struct bfq_sched_data *sd;
1141 
1142 	for_each_entity(entity) {
1143 		sd = entity->sched_data;
1144 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1145 
1146 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1147 		    !requeue)
1148 			break;
1149 	}
1150 }
1151 
1152 /**
1153  * __bfq_deactivate_entity - update sched_data and service trees for
1154  * entity, so as to represent entity as inactive
1155  * @entity: the entity being deactivated.
1156  * @ins_into_idle_tree: if false, the entity will not be put into the
1157  *			idle tree.
1158  *
1159  * If necessary and allowed, puts entity into the idle tree. NOTE:
1160  * entity may be on no tree if in service.
1161  */
1162 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1163 {
1164 	struct bfq_sched_data *sd = entity->sched_data;
1165 	struct bfq_service_tree *st;
1166 	bool is_in_service;
1167 
1168 	if (!entity->on_st_or_in_serv) /*
1169 					* entity never activated, or
1170 					* already inactive
1171 					*/
1172 		return false;
1173 
1174 	/*
1175 	 * If we get here, then entity is active, which implies that
1176 	 * bfq_group_set_parent has already been invoked for the group
1177 	 * represented by entity. Therefore, the field
1178 	 * entity->sched_data has been set, and we can safely use it.
1179 	 */
1180 	st = bfq_entity_service_tree(entity);
1181 	is_in_service = entity == sd->in_service_entity;
1182 
1183 	bfq_calc_finish(entity, entity->service);
1184 
1185 	if (is_in_service)
1186 		sd->in_service_entity = NULL;
1187 	else
1188 		/*
1189 		 * Non in-service entity: nobody will take care of
1190 		 * resetting its service counter on expiration. Do it
1191 		 * now.
1192 		 */
1193 		entity->service = 0;
1194 
1195 	if (entity->tree == &st->active)
1196 		bfq_active_extract(st, entity);
1197 	else if (!is_in_service && entity->tree == &st->idle)
1198 		bfq_idle_extract(st, entity);
1199 
1200 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1201 		bfq_forget_entity(st, entity, is_in_service);
1202 	else
1203 		bfq_idle_insert(st, entity);
1204 
1205 	return true;
1206 }
1207 
1208 /**
1209  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1210  * @entity: the entity to deactivate.
1211  * @ins_into_idle_tree: true if the entity can be put into the idle tree
1212  * @expiration: true if this function is being invoked in the expiration path
1213  *             of the in-service queue
1214  */
1215 static void bfq_deactivate_entity(struct bfq_entity *entity,
1216 				  bool ins_into_idle_tree,
1217 				  bool expiration)
1218 {
1219 	struct bfq_sched_data *sd;
1220 	struct bfq_entity *parent = NULL;
1221 
1222 	for_each_entity_safe(entity, parent) {
1223 		sd = entity->sched_data;
1224 
1225 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1226 			/*
1227 			 * entity is not in any tree any more, so
1228 			 * this deactivation is a no-op, and there is
1229 			 * nothing to change for upper-level entities
1230 			 * (in case of expiration, this can never
1231 			 * happen).
1232 			 */
1233 			return;
1234 		}
1235 
1236 		if (sd->next_in_service == entity)
1237 			/*
1238 			 * entity was the next_in_service entity,
1239 			 * then, since entity has just been
1240 			 * deactivated, a new one must be found.
1241 			 */
1242 			bfq_update_next_in_service(sd, NULL, expiration);
1243 
1244 		if (sd->next_in_service || sd->in_service_entity) {
1245 			/*
1246 			 * The parent entity is still active, because
1247 			 * either next_in_service or in_service_entity
1248 			 * is not NULL. So, no further upwards
1249 			 * deactivation must be performed.  Yet,
1250 			 * next_in_service has changed.	Then the
1251 			 * schedule does need to be updated upwards.
1252 			 *
1253 			 * NOTE If in_service_entity is not NULL, then
1254 			 * next_in_service may happen to be NULL,
1255 			 * although the parent entity is evidently
1256 			 * active. This happens if 1) the entity
1257 			 * pointed by in_service_entity is the only
1258 			 * active entity in the parent entity, and 2)
1259 			 * according to the definition of
1260 			 * next_in_service, the in_service_entity
1261 			 * cannot be considered as
1262 			 * next_in_service. See the comments on the
1263 			 * definition of next_in_service for details.
1264 			 */
1265 			break;
1266 		}
1267 
1268 		/*
1269 		 * If we get here, then the parent is no more
1270 		 * backlogged and we need to propagate the
1271 		 * deactivation upwards. Thus let the loop go on.
1272 		 */
1273 
1274 		/*
1275 		 * Also let parent be queued into the idle tree on
1276 		 * deactivation, to preserve service guarantees, and
1277 		 * assuming that who invoked this function does not
1278 		 * need parent entities too to be removed completely.
1279 		 */
1280 		ins_into_idle_tree = true;
1281 	}
1282 
1283 	/*
1284 	 * If the deactivation loop is fully executed, then there are
1285 	 * no more entities to touch and next loop is not executed at
1286 	 * all. Otherwise, requeue remaining entities if they are
1287 	 * about to stop receiving service, or reposition them if this
1288 	 * is not the case.
1289 	 */
1290 	entity = parent;
1291 	for_each_entity(entity) {
1292 		/*
1293 		 * Invoke __bfq_requeue_entity on entity, even if
1294 		 * already active, to requeue/reposition it in the
1295 		 * active tree (because sd->next_in_service has
1296 		 * changed)
1297 		 */
1298 		__bfq_requeue_entity(entity);
1299 
1300 		sd = entity->sched_data;
1301 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1302 		    !expiration)
1303 			/*
1304 			 * next_in_service unchanged or not causing
1305 			 * any change in entity->parent->sd, and no
1306 			 * requeueing needed for expiration: stop
1307 			 * here.
1308 			 */
1309 			break;
1310 	}
1311 }
1312 
1313 /**
1314  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1315  *                       if needed, to have at least one entity eligible.
1316  * @st: the service tree to act upon.
1317  *
1318  * Assumes that st is not empty.
1319  */
1320 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1321 {
1322 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1323 
1324 	if (bfq_gt(root_entity->min_start, st->vtime))
1325 		return root_entity->min_start;
1326 
1327 	return st->vtime;
1328 }
1329 
1330 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1331 {
1332 	if (new_value > st->vtime) {
1333 		st->vtime = new_value;
1334 		bfq_forget_idle(st);
1335 	}
1336 }
1337 
1338 /**
1339  * bfq_first_active_entity - find the eligible entity with
1340  *                           the smallest finish time
1341  * @st: the service tree to select from.
1342  * @vtime: the system virtual to use as a reference for eligibility
1343  *
1344  * This function searches the first schedulable entity, starting from the
1345  * root of the tree and going on the left every time on this side there is
1346  * a subtree with at least one eligible (start <= vtime) entity. The path on
1347  * the right is followed only if a) the left subtree contains no eligible
1348  * entities and b) no eligible entity has been found yet.
1349  */
1350 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1351 						  u64 vtime)
1352 {
1353 	struct bfq_entity *entry, *first = NULL;
1354 	struct rb_node *node = st->active.rb_node;
1355 
1356 	while (node) {
1357 		entry = rb_entry(node, struct bfq_entity, rb_node);
1358 left:
1359 		if (!bfq_gt(entry->start, vtime))
1360 			first = entry;
1361 
1362 		if (node->rb_left) {
1363 			entry = rb_entry(node->rb_left,
1364 					 struct bfq_entity, rb_node);
1365 			if (!bfq_gt(entry->min_start, vtime)) {
1366 				node = node->rb_left;
1367 				goto left;
1368 			}
1369 		}
1370 		if (first)
1371 			break;
1372 		node = node->rb_right;
1373 	}
1374 
1375 	return first;
1376 }
1377 
1378 /**
1379  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1380  * @st: the service tree.
1381  *
1382  * If there is no in-service entity for the sched_data st belongs to,
1383  * then return the entity that will be set in service if:
1384  * 1) the parent entity this st belongs to is set in service;
1385  * 2) no entity belonging to such parent entity undergoes a state change
1386  * that would influence the timestamps of the entity (e.g., becomes idle,
1387  * becomes backlogged, changes its budget, ...).
1388  *
1389  * In this first case, update the virtual time in @st too (see the
1390  * comments on this update inside the function).
1391  *
1392  * In contrast, if there is an in-service entity, then return the
1393  * entity that would be set in service if not only the above
1394  * conditions, but also the next one held true: the currently
1395  * in-service entity, on expiration,
1396  * 1) gets a finish time equal to the current one, or
1397  * 2) is not eligible any more, or
1398  * 3) is idle.
1399  */
1400 static struct bfq_entity *
1401 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1402 {
1403 	struct bfq_entity *entity;
1404 	u64 new_vtime;
1405 
1406 	if (RB_EMPTY_ROOT(&st->active))
1407 		return NULL;
1408 
1409 	/*
1410 	 * Get the value of the system virtual time for which at
1411 	 * least one entity is eligible.
1412 	 */
1413 	new_vtime = bfq_calc_vtime_jump(st);
1414 
1415 	/*
1416 	 * If there is no in-service entity for the sched_data this
1417 	 * active tree belongs to, then push the system virtual time
1418 	 * up to the value that guarantees that at least one entity is
1419 	 * eligible. If, instead, there is an in-service entity, then
1420 	 * do not make any such update, because there is already an
1421 	 * eligible entity, namely the in-service one (even if the
1422 	 * entity is not on st, because it was extracted when set in
1423 	 * service).
1424 	 */
1425 	if (!in_service)
1426 		bfq_update_vtime(st, new_vtime);
1427 
1428 	entity = bfq_first_active_entity(st, new_vtime);
1429 
1430 	return entity;
1431 }
1432 
1433 /**
1434  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1435  * @sd: the sched_data.
1436  * @expiration: true if we are on the expiration path of the in-service queue
1437  *
1438  * This function is invoked when there has been a change in the trees
1439  * for sd, and we need to know what is the new next entity to serve
1440  * after this change.
1441  */
1442 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1443 						 bool expiration)
1444 {
1445 	struct bfq_service_tree *st = sd->service_tree;
1446 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1447 	struct bfq_entity *entity = NULL;
1448 	int class_idx = 0;
1449 
1450 	/*
1451 	 * Choose from idle class, if needed to guarantee a minimum
1452 	 * bandwidth to this class (and if there is some active entity
1453 	 * in idle class). This should also mitigate
1454 	 * priority-inversion problems in case a low priority task is
1455 	 * holding file system resources.
1456 	 */
1457 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1458 				   BFQ_CL_IDLE_TIMEOUT)) {
1459 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1460 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1461 		/* About to be served if backlogged, or not yet backlogged */
1462 		sd->bfq_class_idle_last_service = jiffies;
1463 	}
1464 
1465 	/*
1466 	 * Find the next entity to serve for the highest-priority
1467 	 * class, unless the idle class needs to be served.
1468 	 */
1469 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1470 		/*
1471 		 * If expiration is true, then bfq_lookup_next_entity
1472 		 * is being invoked as a part of the expiration path
1473 		 * of the in-service queue. In this case, even if
1474 		 * sd->in_service_entity is not NULL,
1475 		 * sd->in_service_entity at this point is actually not
1476 		 * in service any more, and, if needed, has already
1477 		 * been properly queued or requeued into the right
1478 		 * tree. The reason why sd->in_service_entity is still
1479 		 * not NULL here, even if expiration is true, is that
1480 		 * sd->in_service_entity is reset as a last step in the
1481 		 * expiration path. So, if expiration is true, tell
1482 		 * __bfq_lookup_next_entity that there is no
1483 		 * sd->in_service_entity.
1484 		 */
1485 		entity = __bfq_lookup_next_entity(st + class_idx,
1486 						  sd->in_service_entity &&
1487 						  !expiration);
1488 
1489 		if (entity)
1490 			break;
1491 	}
1492 
1493 	if (!entity)
1494 		return NULL;
1495 
1496 	return entity;
1497 }
1498 
1499 bool next_queue_may_preempt(struct bfq_data *bfqd)
1500 {
1501 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1502 
1503 	return sd->next_in_service != sd->in_service_entity;
1504 }
1505 
1506 /*
1507  * Get next queue for service.
1508  */
1509 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1510 {
1511 	struct bfq_entity *entity = NULL;
1512 	struct bfq_sched_data *sd;
1513 	struct bfq_queue *bfqq;
1514 
1515 	if (bfq_tot_busy_queues(bfqd) == 0)
1516 		return NULL;
1517 
1518 	/*
1519 	 * Traverse the path from the root to the leaf entity to
1520 	 * serve. Set in service all the entities visited along the
1521 	 * way.
1522 	 */
1523 	sd = &bfqd->root_group->sched_data;
1524 	for (; sd ; sd = entity->my_sched_data) {
1525 		/*
1526 		 * WARNING. We are about to set the in-service entity
1527 		 * to sd->next_in_service, i.e., to the (cached) value
1528 		 * returned by bfq_lookup_next_entity(sd) the last
1529 		 * time it was invoked, i.e., the last time when the
1530 		 * service order in sd changed as a consequence of the
1531 		 * activation or deactivation of an entity. In this
1532 		 * respect, if we execute bfq_lookup_next_entity(sd)
1533 		 * in this very moment, it may, although with low
1534 		 * probability, yield a different entity than that
1535 		 * pointed to by sd->next_in_service. This rare event
1536 		 * happens in case there was no CLASS_IDLE entity to
1537 		 * serve for sd when bfq_lookup_next_entity(sd) was
1538 		 * invoked for the last time, while there is now one
1539 		 * such entity.
1540 		 *
1541 		 * If the above event happens, then the scheduling of
1542 		 * such entity in CLASS_IDLE is postponed until the
1543 		 * service of the sd->next_in_service entity
1544 		 * finishes. In fact, when the latter is expired,
1545 		 * bfq_lookup_next_entity(sd) gets called again,
1546 		 * exactly to update sd->next_in_service.
1547 		 */
1548 
1549 		/* Make next_in_service entity become in_service_entity */
1550 		entity = sd->next_in_service;
1551 		sd->in_service_entity = entity;
1552 
1553 		/*
1554 		 * If entity is no longer a candidate for next
1555 		 * service, then it must be extracted from its active
1556 		 * tree, so as to make sure that it won't be
1557 		 * considered when computing next_in_service. See the
1558 		 * comments on the function
1559 		 * bfq_no_longer_next_in_service() for details.
1560 		 */
1561 		if (bfq_no_longer_next_in_service(entity))
1562 			bfq_active_extract(bfq_entity_service_tree(entity),
1563 					   entity);
1564 
1565 		/*
1566 		 * Even if entity is not to be extracted according to
1567 		 * the above check, a descendant entity may get
1568 		 * extracted in one of the next iterations of this
1569 		 * loop. Such an event could cause a change in
1570 		 * next_in_service for the level of the descendant
1571 		 * entity, and thus possibly back to this level.
1572 		 *
1573 		 * However, we cannot perform the resulting needed
1574 		 * update of next_in_service for this level before the
1575 		 * end of the whole loop, because, to know which is
1576 		 * the correct next-to-serve candidate entity for each
1577 		 * level, we need first to find the leaf entity to set
1578 		 * in service. In fact, only after we know which is
1579 		 * the next-to-serve leaf entity, we can discover
1580 		 * whether the parent entity of the leaf entity
1581 		 * becomes the next-to-serve, and so on.
1582 		 */
1583 	}
1584 
1585 	bfqq = bfq_entity_to_bfqq(entity);
1586 
1587 	/*
1588 	 * We can finally update all next-to-serve entities along the
1589 	 * path from the leaf entity just set in service to the root.
1590 	 */
1591 	for_each_entity(entity) {
1592 		struct bfq_sched_data *sd = entity->sched_data;
1593 
1594 		if (!bfq_update_next_in_service(sd, NULL, false))
1595 			break;
1596 	}
1597 
1598 	return bfqq;
1599 }
1600 
1601 /* returns true if the in-service queue gets freed */
1602 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1603 {
1604 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1605 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1606 	struct bfq_entity *entity = in_serv_entity;
1607 
1608 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1609 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1610 	bfqd->in_service_queue = NULL;
1611 
1612 	/*
1613 	 * When this function is called, all in-service entities have
1614 	 * been properly deactivated or requeued, so we can safely
1615 	 * execute the final step: reset in_service_entity along the
1616 	 * path from entity to the root.
1617 	 */
1618 	for_each_entity(entity)
1619 		entity->sched_data->in_service_entity = NULL;
1620 
1621 	/*
1622 	 * in_serv_entity is no longer in service, so, if it is in no
1623 	 * service tree either, then release the service reference to
1624 	 * the queue it represents (taken with bfq_get_entity).
1625 	 */
1626 	if (!in_serv_entity->on_st_or_in_serv) {
1627 		/*
1628 		 * If no process is referencing in_serv_bfqq any
1629 		 * longer, then the service reference may be the only
1630 		 * reference to the queue. If this is the case, then
1631 		 * bfqq gets freed here.
1632 		 */
1633 		int ref = in_serv_bfqq->ref;
1634 		bfq_put_queue(in_serv_bfqq);
1635 		if (ref == 1)
1636 			return true;
1637 	}
1638 
1639 	return false;
1640 }
1641 
1642 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1643 			 bool ins_into_idle_tree, bool expiration)
1644 {
1645 	struct bfq_entity *entity = &bfqq->entity;
1646 
1647 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1648 }
1649 
1650 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1651 {
1652 	struct bfq_entity *entity = &bfqq->entity;
1653 
1654 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1655 				    false, false);
1656 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1657 }
1658 
1659 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1660 		      bool expiration)
1661 {
1662 	struct bfq_entity *entity = &bfqq->entity;
1663 
1664 	bfq_activate_requeue_entity(entity, false,
1665 				    bfqq == bfqd->in_service_queue, expiration);
1666 }
1667 
1668 /*
1669  * Called when the bfqq no longer has requests pending, remove it from
1670  * the service tree. As a special case, it can be invoked during an
1671  * expiration.
1672  */
1673 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1674 		       bool expiration)
1675 {
1676 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1677 
1678 	bfq_clear_bfqq_busy(bfqq);
1679 
1680 	bfqd->busy_queues[bfqq->ioprio_class - 1]--;
1681 
1682 	if (bfqq->wr_coeff > 1)
1683 		bfqd->wr_busy_queues--;
1684 
1685 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1686 
1687 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1688 
1689 	if (!bfqq->dispatched)
1690 		bfq_weights_tree_remove(bfqd, bfqq);
1691 }
1692 
1693 /*
1694  * Called when an inactive queue receives a new request.
1695  */
1696 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1697 {
1698 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1699 
1700 	bfq_activate_bfqq(bfqd, bfqq);
1701 
1702 	bfq_mark_bfqq_busy(bfqq);
1703 	bfqd->busy_queues[bfqq->ioprio_class - 1]++;
1704 
1705 	if (!bfqq->dispatched)
1706 		if (bfqq->wr_coeff == 1)
1707 			bfq_weights_tree_add(bfqd, bfqq,
1708 					     &bfqd->queue_weights_tree);
1709 
1710 	if (bfqq->wr_coeff > 1)
1711 		bfqd->wr_busy_queues++;
1712 }
1713