xref: /linux/block/bfq-wf2q.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
4  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
5  * scheduler schedules generic entities. The latter can represent
6  * either single bfq queues (associated with processes) or groups of
7  * bfq queues (associated with cgroups).
8  */
9 #include "bfq-iosched.h"
10 
11 /**
12  * bfq_gt - compare two timestamps.
13  * @a: first ts.
14  * @b: second ts.
15  *
16  * Return @a > @b, dealing with wrapping correctly.
17  */
18 static int bfq_gt(u64 a, u64 b)
19 {
20 	return (s64)(a - b) > 0;
21 }
22 
23 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
24 {
25 	struct rb_node *node = tree->rb_node;
26 
27 	return rb_entry(node, struct bfq_entity, rb_node);
28 }
29 
30 static unsigned int bfq_class_idx(struct bfq_entity *entity)
31 {
32 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
33 
34 	return bfqq ? bfqq->ioprio_class - 1 :
35 		BFQ_DEFAULT_GRP_CLASS - 1;
36 }
37 
38 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
39 {
40 	return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
41 		bfqd->busy_queues[2];
42 }
43 
44 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
45 						 bool expiration);
46 
47 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
48 
49 /**
50  * bfq_update_next_in_service - update sd->next_in_service
51  * @sd: sched_data for which to perform the update.
52  * @new_entity: if not NULL, pointer to the entity whose activation,
53  *		requeueing or repositioning triggered the invocation of
54  *		this function.
55  * @expiration: id true, this function is being invoked after the
56  *             expiration of the in-service entity
57  *
58  * This function is called to update sd->next_in_service, which, in
59  * its turn, may change as a consequence of the insertion or
60  * extraction of an entity into/from one of the active trees of
61  * sd. These insertions/extractions occur as a consequence of
62  * activations/deactivations of entities, with some activations being
63  * 'true' activations, and other activations being requeueings (i.e.,
64  * implementing the second, requeueing phase of the mechanism used to
65  * reposition an entity in its active tree; see comments on
66  * __bfq_activate_entity and __bfq_requeue_entity for details). In
67  * both the last two activation sub-cases, new_entity points to the
68  * just activated or requeued entity.
69  *
70  * Returns true if sd->next_in_service changes in such a way that
71  * entity->parent may become the next_in_service for its parent
72  * entity.
73  */
74 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
75 				       struct bfq_entity *new_entity,
76 				       bool expiration)
77 {
78 	struct bfq_entity *next_in_service = sd->next_in_service;
79 	bool parent_sched_may_change = false;
80 	bool change_without_lookup = false;
81 
82 	/*
83 	 * If this update is triggered by the activation, requeueing
84 	 * or repositioning of an entity that does not coincide with
85 	 * sd->next_in_service, then a full lookup in the active tree
86 	 * can be avoided. In fact, it is enough to check whether the
87 	 * just-modified entity has the same priority as
88 	 * sd->next_in_service, is eligible and has a lower virtual
89 	 * finish time than sd->next_in_service. If this compound
90 	 * condition holds, then the new entity becomes the new
91 	 * next_in_service. Otherwise no change is needed.
92 	 */
93 	if (new_entity && new_entity != sd->next_in_service) {
94 		/*
95 		 * Flag used to decide whether to replace
96 		 * sd->next_in_service with new_entity. Tentatively
97 		 * set to true, and left as true if
98 		 * sd->next_in_service is NULL.
99 		 */
100 		change_without_lookup = true;
101 
102 		/*
103 		 * If there is already a next_in_service candidate
104 		 * entity, then compare timestamps to decide whether
105 		 * to replace sd->service_tree with new_entity.
106 		 */
107 		if (next_in_service) {
108 			unsigned int new_entity_class_idx =
109 				bfq_class_idx(new_entity);
110 			struct bfq_service_tree *st =
111 				sd->service_tree + new_entity_class_idx;
112 
113 			change_without_lookup =
114 				(new_entity_class_idx ==
115 				 bfq_class_idx(next_in_service)
116 				 &&
117 				 !bfq_gt(new_entity->start, st->vtime)
118 				 &&
119 				 bfq_gt(next_in_service->finish,
120 					new_entity->finish));
121 		}
122 
123 		if (change_without_lookup)
124 			next_in_service = new_entity;
125 	}
126 
127 	if (!change_without_lookup) /* lookup needed */
128 		next_in_service = bfq_lookup_next_entity(sd, expiration);
129 
130 	if (next_in_service) {
131 		bool new_budget_triggers_change =
132 			bfq_update_parent_budget(next_in_service);
133 
134 		parent_sched_may_change = !sd->next_in_service ||
135 			new_budget_triggers_change;
136 	}
137 
138 	sd->next_in_service = next_in_service;
139 
140 	if (!next_in_service)
141 		return parent_sched_may_change;
142 
143 	return parent_sched_may_change;
144 }
145 
146 #ifdef CONFIG_BFQ_GROUP_IOSCHED
147 
148 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
149 {
150 	struct bfq_entity *group_entity = bfqq->entity.parent;
151 
152 	if (!group_entity)
153 		group_entity = &bfqq->bfqd->root_group->entity;
154 
155 	return container_of(group_entity, struct bfq_group, entity);
156 }
157 
158 /*
159  * Returns true if this budget changes may let next_in_service->parent
160  * become the next_in_service entity for its parent entity.
161  */
162 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
163 {
164 	struct bfq_entity *bfqg_entity;
165 	struct bfq_group *bfqg;
166 	struct bfq_sched_data *group_sd;
167 	bool ret = false;
168 
169 	group_sd = next_in_service->sched_data;
170 
171 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
172 	/*
173 	 * bfq_group's my_entity field is not NULL only if the group
174 	 * is not the root group. We must not touch the root entity
175 	 * as it must never become an in-service entity.
176 	 */
177 	bfqg_entity = bfqg->my_entity;
178 	if (bfqg_entity) {
179 		if (bfqg_entity->budget > next_in_service->budget)
180 			ret = true;
181 		bfqg_entity->budget = next_in_service->budget;
182 	}
183 
184 	return ret;
185 }
186 
187 /*
188  * This function tells whether entity stops being a candidate for next
189  * service, according to the restrictive definition of the field
190  * next_in_service. In particular, this function is invoked for an
191  * entity that is about to be set in service.
192  *
193  * If entity is a queue, then the entity is no longer a candidate for
194  * next service according to the that definition, because entity is
195  * about to become the in-service queue. This function then returns
196  * true if entity is a queue.
197  *
198  * In contrast, entity could still be a candidate for next service if
199  * it is not a queue, and has more than one active child. In fact,
200  * even if one of its children is about to be set in service, other
201  * active children may still be the next to serve, for the parent
202  * entity, even according to the above definition. As a consequence, a
203  * non-queue entity is not a candidate for next-service only if it has
204  * only one active child. And only if this condition holds, then this
205  * function returns true for a non-queue entity.
206  */
207 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
208 {
209 	struct bfq_group *bfqg;
210 
211 	if (bfq_entity_to_bfqq(entity))
212 		return true;
213 
214 	bfqg = container_of(entity, struct bfq_group, entity);
215 
216 	/*
217 	 * The field active_entities does not always contain the
218 	 * actual number of active children entities: it happens to
219 	 * not account for the in-service entity in case the latter is
220 	 * removed from its active tree (which may get done after
221 	 * invoking the function bfq_no_longer_next_in_service in
222 	 * bfq_get_next_queue). Fortunately, here, i.e., while
223 	 * bfq_no_longer_next_in_service is not yet completed in
224 	 * bfq_get_next_queue, bfq_active_extract has not yet been
225 	 * invoked, and thus active_entities still coincides with the
226 	 * actual number of active entities.
227 	 */
228 	if (bfqg->active_entities == 1)
229 		return true;
230 
231 	return false;
232 }
233 
234 #else /* CONFIG_BFQ_GROUP_IOSCHED */
235 
236 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
237 {
238 	return bfqq->bfqd->root_group;
239 }
240 
241 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
242 {
243 	return false;
244 }
245 
246 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
247 {
248 	return true;
249 }
250 
251 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
252 
253 /*
254  * Shift for timestamp calculations.  This actually limits the maximum
255  * service allowed in one timestamp delta (small shift values increase it),
256  * the maximum total weight that can be used for the queues in the system
257  * (big shift values increase it), and the period of virtual time
258  * wraparounds.
259  */
260 #define WFQ_SERVICE_SHIFT	22
261 
262 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
263 {
264 	struct bfq_queue *bfqq = NULL;
265 
266 	if (!entity->my_sched_data)
267 		bfqq = container_of(entity, struct bfq_queue, entity);
268 
269 	return bfqq;
270 }
271 
272 
273 /**
274  * bfq_delta - map service into the virtual time domain.
275  * @service: amount of service.
276  * @weight: scale factor (weight of an entity or weight sum).
277  */
278 static u64 bfq_delta(unsigned long service, unsigned long weight)
279 {
280 	u64 d = (u64)service << WFQ_SERVICE_SHIFT;
281 
282 	do_div(d, weight);
283 	return d;
284 }
285 
286 /**
287  * bfq_calc_finish - assign the finish time to an entity.
288  * @entity: the entity to act upon.
289  * @service: the service to be charged to the entity.
290  */
291 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
292 {
293 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
294 
295 	entity->finish = entity->start +
296 		bfq_delta(service, entity->weight);
297 
298 	if (bfqq) {
299 		bfq_log_bfqq(bfqq->bfqd, bfqq,
300 			"calc_finish: serv %lu, w %d",
301 			service, entity->weight);
302 		bfq_log_bfqq(bfqq->bfqd, bfqq,
303 			"calc_finish: start %llu, finish %llu, delta %llu",
304 			entity->start, entity->finish,
305 			bfq_delta(service, entity->weight));
306 	}
307 }
308 
309 /**
310  * bfq_entity_of - get an entity from a node.
311  * @node: the node field of the entity.
312  *
313  * Convert a node pointer to the relative entity.  This is used only
314  * to simplify the logic of some functions and not as the generic
315  * conversion mechanism because, e.g., in the tree walking functions,
316  * the check for a %NULL value would be redundant.
317  */
318 struct bfq_entity *bfq_entity_of(struct rb_node *node)
319 {
320 	struct bfq_entity *entity = NULL;
321 
322 	if (node)
323 		entity = rb_entry(node, struct bfq_entity, rb_node);
324 
325 	return entity;
326 }
327 
328 /**
329  * bfq_extract - remove an entity from a tree.
330  * @root: the tree root.
331  * @entity: the entity to remove.
332  */
333 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
334 {
335 	entity->tree = NULL;
336 	rb_erase(&entity->rb_node, root);
337 }
338 
339 /**
340  * bfq_idle_extract - extract an entity from the idle tree.
341  * @st: the service tree of the owning @entity.
342  * @entity: the entity being removed.
343  */
344 static void bfq_idle_extract(struct bfq_service_tree *st,
345 			     struct bfq_entity *entity)
346 {
347 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
348 	struct rb_node *next;
349 
350 	if (entity == st->first_idle) {
351 		next = rb_next(&entity->rb_node);
352 		st->first_idle = bfq_entity_of(next);
353 	}
354 
355 	if (entity == st->last_idle) {
356 		next = rb_prev(&entity->rb_node);
357 		st->last_idle = bfq_entity_of(next);
358 	}
359 
360 	bfq_extract(&st->idle, entity);
361 
362 	if (bfqq)
363 		list_del(&bfqq->bfqq_list);
364 }
365 
366 /**
367  * bfq_insert - generic tree insertion.
368  * @root: tree root.
369  * @entity: entity to insert.
370  *
371  * This is used for the idle and the active tree, since they are both
372  * ordered by finish time.
373  */
374 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
375 {
376 	struct bfq_entity *entry;
377 	struct rb_node **node = &root->rb_node;
378 	struct rb_node *parent = NULL;
379 
380 	while (*node) {
381 		parent = *node;
382 		entry = rb_entry(parent, struct bfq_entity, rb_node);
383 
384 		if (bfq_gt(entry->finish, entity->finish))
385 			node = &parent->rb_left;
386 		else
387 			node = &parent->rb_right;
388 	}
389 
390 	rb_link_node(&entity->rb_node, parent, node);
391 	rb_insert_color(&entity->rb_node, root);
392 
393 	entity->tree = root;
394 }
395 
396 /**
397  * bfq_update_min - update the min_start field of a entity.
398  * @entity: the entity to update.
399  * @node: one of its children.
400  *
401  * This function is called when @entity may store an invalid value for
402  * min_start due to updates to the active tree.  The function  assumes
403  * that the subtree rooted at @node (which may be its left or its right
404  * child) has a valid min_start value.
405  */
406 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
407 {
408 	struct bfq_entity *child;
409 
410 	if (node) {
411 		child = rb_entry(node, struct bfq_entity, rb_node);
412 		if (bfq_gt(entity->min_start, child->min_start))
413 			entity->min_start = child->min_start;
414 	}
415 }
416 
417 /**
418  * bfq_update_active_node - recalculate min_start.
419  * @node: the node to update.
420  *
421  * @node may have changed position or one of its children may have moved,
422  * this function updates its min_start value.  The left and right subtrees
423  * are assumed to hold a correct min_start value.
424  */
425 static void bfq_update_active_node(struct rb_node *node)
426 {
427 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
428 
429 	entity->min_start = entity->start;
430 	bfq_update_min(entity, node->rb_right);
431 	bfq_update_min(entity, node->rb_left);
432 }
433 
434 /**
435  * bfq_update_active_tree - update min_start for the whole active tree.
436  * @node: the starting node.
437  *
438  * @node must be the deepest modified node after an update.  This function
439  * updates its min_start using the values held by its children, assuming
440  * that they did not change, and then updates all the nodes that may have
441  * changed in the path to the root.  The only nodes that may have changed
442  * are the ones in the path or their siblings.
443  */
444 static void bfq_update_active_tree(struct rb_node *node)
445 {
446 	struct rb_node *parent;
447 
448 up:
449 	bfq_update_active_node(node);
450 
451 	parent = rb_parent(node);
452 	if (!parent)
453 		return;
454 
455 	if (node == parent->rb_left && parent->rb_right)
456 		bfq_update_active_node(parent->rb_right);
457 	else if (parent->rb_left)
458 		bfq_update_active_node(parent->rb_left);
459 
460 	node = parent;
461 	goto up;
462 }
463 
464 /**
465  * bfq_active_insert - insert an entity in the active tree of its
466  *                     group/device.
467  * @st: the service tree of the entity.
468  * @entity: the entity being inserted.
469  *
470  * The active tree is ordered by finish time, but an extra key is kept
471  * per each node, containing the minimum value for the start times of
472  * its children (and the node itself), so it's possible to search for
473  * the eligible node with the lowest finish time in logarithmic time.
474  */
475 static void bfq_active_insert(struct bfq_service_tree *st,
476 			      struct bfq_entity *entity)
477 {
478 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
479 	struct rb_node *node = &entity->rb_node;
480 #ifdef CONFIG_BFQ_GROUP_IOSCHED
481 	struct bfq_sched_data *sd = NULL;
482 	struct bfq_group *bfqg = NULL;
483 	struct bfq_data *bfqd = NULL;
484 #endif
485 
486 	bfq_insert(&st->active, entity);
487 
488 	if (node->rb_left)
489 		node = node->rb_left;
490 	else if (node->rb_right)
491 		node = node->rb_right;
492 
493 	bfq_update_active_tree(node);
494 
495 #ifdef CONFIG_BFQ_GROUP_IOSCHED
496 	sd = entity->sched_data;
497 	bfqg = container_of(sd, struct bfq_group, sched_data);
498 	bfqd = (struct bfq_data *)bfqg->bfqd;
499 #endif
500 	if (bfqq)
501 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
502 #ifdef CONFIG_BFQ_GROUP_IOSCHED
503 	if (bfqg != bfqd->root_group)
504 		bfqg->active_entities++;
505 #endif
506 }
507 
508 /**
509  * bfq_ioprio_to_weight - calc a weight from an ioprio.
510  * @ioprio: the ioprio value to convert.
511  */
512 unsigned short bfq_ioprio_to_weight(int ioprio)
513 {
514 	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
515 }
516 
517 /**
518  * bfq_weight_to_ioprio - calc an ioprio from a weight.
519  * @weight: the weight value to convert.
520  *
521  * To preserve as much as possible the old only-ioprio user interface,
522  * 0 is used as an escape ioprio value for weights (numerically) equal or
523  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
524  */
525 static unsigned short bfq_weight_to_ioprio(int weight)
526 {
527 	return max_t(int, 0,
528 		     IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
529 }
530 
531 static void bfq_get_entity(struct bfq_entity *entity)
532 {
533 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
534 
535 	if (bfqq) {
536 		bfqq->ref++;
537 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
538 			     bfqq, bfqq->ref);
539 	}
540 }
541 
542 /**
543  * bfq_find_deepest - find the deepest node that an extraction can modify.
544  * @node: the node being removed.
545  *
546  * Do the first step of an extraction in an rb tree, looking for the
547  * node that will replace @node, and returning the deepest node that
548  * the following modifications to the tree can touch.  If @node is the
549  * last node in the tree return %NULL.
550  */
551 static struct rb_node *bfq_find_deepest(struct rb_node *node)
552 {
553 	struct rb_node *deepest;
554 
555 	if (!node->rb_right && !node->rb_left)
556 		deepest = rb_parent(node);
557 	else if (!node->rb_right)
558 		deepest = node->rb_left;
559 	else if (!node->rb_left)
560 		deepest = node->rb_right;
561 	else {
562 		deepest = rb_next(node);
563 		if (deepest->rb_right)
564 			deepest = deepest->rb_right;
565 		else if (rb_parent(deepest) != node)
566 			deepest = rb_parent(deepest);
567 	}
568 
569 	return deepest;
570 }
571 
572 /**
573  * bfq_active_extract - remove an entity from the active tree.
574  * @st: the service_tree containing the tree.
575  * @entity: the entity being removed.
576  */
577 static void bfq_active_extract(struct bfq_service_tree *st,
578 			       struct bfq_entity *entity)
579 {
580 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
581 	struct rb_node *node;
582 #ifdef CONFIG_BFQ_GROUP_IOSCHED
583 	struct bfq_sched_data *sd = NULL;
584 	struct bfq_group *bfqg = NULL;
585 	struct bfq_data *bfqd = NULL;
586 #endif
587 
588 	node = bfq_find_deepest(&entity->rb_node);
589 	bfq_extract(&st->active, entity);
590 
591 	if (node)
592 		bfq_update_active_tree(node);
593 
594 #ifdef CONFIG_BFQ_GROUP_IOSCHED
595 	sd = entity->sched_data;
596 	bfqg = container_of(sd, struct bfq_group, sched_data);
597 	bfqd = (struct bfq_data *)bfqg->bfqd;
598 #endif
599 	if (bfqq)
600 		list_del(&bfqq->bfqq_list);
601 #ifdef CONFIG_BFQ_GROUP_IOSCHED
602 	if (bfqg != bfqd->root_group)
603 		bfqg->active_entities--;
604 #endif
605 }
606 
607 /**
608  * bfq_idle_insert - insert an entity into the idle tree.
609  * @st: the service tree containing the tree.
610  * @entity: the entity to insert.
611  */
612 static void bfq_idle_insert(struct bfq_service_tree *st,
613 			    struct bfq_entity *entity)
614 {
615 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
616 	struct bfq_entity *first_idle = st->first_idle;
617 	struct bfq_entity *last_idle = st->last_idle;
618 
619 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
620 		st->first_idle = entity;
621 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
622 		st->last_idle = entity;
623 
624 	bfq_insert(&st->idle, entity);
625 
626 	if (bfqq)
627 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
628 }
629 
630 /**
631  * bfq_forget_entity - do not consider entity any longer for scheduling
632  * @st: the service tree.
633  * @entity: the entity being removed.
634  * @is_in_service: true if entity is currently the in-service entity.
635  *
636  * Forget everything about @entity. In addition, if entity represents
637  * a queue, and the latter is not in service, then release the service
638  * reference to the queue (the one taken through bfq_get_entity). In
639  * fact, in this case, there is really no more service reference to
640  * the queue, as the latter is also outside any service tree. If,
641  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
642  * will take care of putting the reference when the queue finally
643  * stops being served.
644  */
645 static void bfq_forget_entity(struct bfq_service_tree *st,
646 			      struct bfq_entity *entity,
647 			      bool is_in_service)
648 {
649 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
650 
651 	entity->on_st = false;
652 	st->wsum -= entity->weight;
653 	if (bfqq && !is_in_service)
654 		bfq_put_queue(bfqq);
655 }
656 
657 /**
658  * bfq_put_idle_entity - release the idle tree ref of an entity.
659  * @st: service tree for the entity.
660  * @entity: the entity being released.
661  */
662 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
663 {
664 	bfq_idle_extract(st, entity);
665 	bfq_forget_entity(st, entity,
666 			  entity == entity->sched_data->in_service_entity);
667 }
668 
669 /**
670  * bfq_forget_idle - update the idle tree if necessary.
671  * @st: the service tree to act upon.
672  *
673  * To preserve the global O(log N) complexity we only remove one entry here;
674  * as the idle tree will not grow indefinitely this can be done safely.
675  */
676 static void bfq_forget_idle(struct bfq_service_tree *st)
677 {
678 	struct bfq_entity *first_idle = st->first_idle;
679 	struct bfq_entity *last_idle = st->last_idle;
680 
681 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
682 	    !bfq_gt(last_idle->finish, st->vtime)) {
683 		/*
684 		 * Forget the whole idle tree, increasing the vtime past
685 		 * the last finish time of idle entities.
686 		 */
687 		st->vtime = last_idle->finish;
688 	}
689 
690 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
691 		bfq_put_idle_entity(st, first_idle);
692 }
693 
694 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
695 {
696 	struct bfq_sched_data *sched_data = entity->sched_data;
697 	unsigned int idx = bfq_class_idx(entity);
698 
699 	return sched_data->service_tree + idx;
700 }
701 
702 /*
703  * Update weight and priority of entity. If update_class_too is true,
704  * then update the ioprio_class of entity too.
705  *
706  * The reason why the update of ioprio_class is controlled through the
707  * last parameter is as follows. Changing the ioprio class of an
708  * entity implies changing the destination service trees for that
709  * entity. If such a change occurred when the entity is already on one
710  * of the service trees for its previous class, then the state of the
711  * entity would become more complex: none of the new possible service
712  * trees for the entity, according to bfq_entity_service_tree(), would
713  * match any of the possible service trees on which the entity
714  * is. Complex operations involving these trees, such as entity
715  * activations and deactivations, should take into account this
716  * additional complexity.  To avoid this issue, this function is
717  * invoked with update_class_too unset in the points in the code where
718  * entity may happen to be on some tree.
719  */
720 struct bfq_service_tree *
721 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
722 				struct bfq_entity *entity,
723 				bool update_class_too)
724 {
725 	struct bfq_service_tree *new_st = old_st;
726 
727 	if (entity->prio_changed) {
728 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
729 		unsigned int prev_weight, new_weight;
730 		struct bfq_data *bfqd = NULL;
731 		struct rb_root_cached *root;
732 #ifdef CONFIG_BFQ_GROUP_IOSCHED
733 		struct bfq_sched_data *sd;
734 		struct bfq_group *bfqg;
735 #endif
736 
737 		if (bfqq)
738 			bfqd = bfqq->bfqd;
739 #ifdef CONFIG_BFQ_GROUP_IOSCHED
740 		else {
741 			sd = entity->my_sched_data;
742 			bfqg = container_of(sd, struct bfq_group, sched_data);
743 			bfqd = (struct bfq_data *)bfqg->bfqd;
744 		}
745 #endif
746 
747 		/* Matches the smp_wmb() in bfq_group_set_weight. */
748 		smp_rmb();
749 		old_st->wsum -= entity->weight;
750 
751 		if (entity->new_weight != entity->orig_weight) {
752 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
753 			    entity->new_weight > BFQ_MAX_WEIGHT) {
754 				pr_crit("update_weight_prio: new_weight %d\n",
755 					entity->new_weight);
756 				if (entity->new_weight < BFQ_MIN_WEIGHT)
757 					entity->new_weight = BFQ_MIN_WEIGHT;
758 				else
759 					entity->new_weight = BFQ_MAX_WEIGHT;
760 			}
761 			entity->orig_weight = entity->new_weight;
762 			if (bfqq)
763 				bfqq->ioprio =
764 				  bfq_weight_to_ioprio(entity->orig_weight);
765 		}
766 
767 		if (bfqq && update_class_too)
768 			bfqq->ioprio_class = bfqq->new_ioprio_class;
769 
770 		/*
771 		 * Reset prio_changed only if the ioprio_class change
772 		 * is not pending any longer.
773 		 */
774 		if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
775 			entity->prio_changed = 0;
776 
777 		/*
778 		 * NOTE: here we may be changing the weight too early,
779 		 * this will cause unfairness.  The correct approach
780 		 * would have required additional complexity to defer
781 		 * weight changes to the proper time instants (i.e.,
782 		 * when entity->finish <= old_st->vtime).
783 		 */
784 		new_st = bfq_entity_service_tree(entity);
785 
786 		prev_weight = entity->weight;
787 		new_weight = entity->orig_weight *
788 			     (bfqq ? bfqq->wr_coeff : 1);
789 		/*
790 		 * If the weight of the entity changes, and the entity is a
791 		 * queue, remove the entity from its old weight counter (if
792 		 * there is a counter associated with the entity).
793 		 */
794 		if (prev_weight != new_weight && bfqq) {
795 			root = &bfqd->queue_weights_tree;
796 			__bfq_weights_tree_remove(bfqd, bfqq, root);
797 		}
798 		entity->weight = new_weight;
799 		/*
800 		 * Add the entity, if it is not a weight-raised queue,
801 		 * to the counter associated with its new weight.
802 		 */
803 		if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
804 			/* If we get here, root has been initialized. */
805 			bfq_weights_tree_add(bfqd, bfqq, root);
806 		}
807 
808 		new_st->wsum += entity->weight;
809 
810 		if (new_st != old_st)
811 			entity->start = new_st->vtime;
812 	}
813 
814 	return new_st;
815 }
816 
817 /**
818  * bfq_bfqq_served - update the scheduler status after selection for
819  *                   service.
820  * @bfqq: the queue being served.
821  * @served: bytes to transfer.
822  *
823  * NOTE: this can be optimized, as the timestamps of upper level entities
824  * are synchronized every time a new bfqq is selected for service.  By now,
825  * we keep it to better check consistency.
826  */
827 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
828 {
829 	struct bfq_entity *entity = &bfqq->entity;
830 	struct bfq_service_tree *st;
831 
832 	if (!bfqq->service_from_backlogged)
833 		bfqq->first_IO_time = jiffies;
834 
835 	if (bfqq->wr_coeff > 1)
836 		bfqq->service_from_wr += served;
837 
838 	bfqq->service_from_backlogged += served;
839 	for_each_entity(entity) {
840 		st = bfq_entity_service_tree(entity);
841 
842 		entity->service += served;
843 
844 		st->vtime += bfq_delta(served, st->wsum);
845 		bfq_forget_idle(st);
846 	}
847 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
848 }
849 
850 /**
851  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
852  *			  of the time interval during which bfqq has been in
853  *			  service.
854  * @bfqd: the device
855  * @bfqq: the queue that needs a service update.
856  * @time_ms: the amount of time during which the queue has received service
857  *
858  * If a queue does not consume its budget fast enough, then providing
859  * the queue with service fairness may impair throughput, more or less
860  * severely. For this reason, queues that consume their budget slowly
861  * are provided with time fairness instead of service fairness. This
862  * goal is achieved through the BFQ scheduling engine, even if such an
863  * engine works in the service, and not in the time domain. The trick
864  * is charging these queues with an inflated amount of service, equal
865  * to the amount of service that they would have received during their
866  * service slot if they had been fast, i.e., if their requests had
867  * been dispatched at a rate equal to the estimated peak rate.
868  *
869  * It is worth noting that time fairness can cause important
870  * distortions in terms of bandwidth distribution, on devices with
871  * internal queueing. The reason is that I/O requests dispatched
872  * during the service slot of a queue may be served after that service
873  * slot is finished, and may have a total processing time loosely
874  * correlated with the duration of the service slot. This is
875  * especially true for short service slots.
876  */
877 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
878 			  unsigned long time_ms)
879 {
880 	struct bfq_entity *entity = &bfqq->entity;
881 	unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
882 	unsigned long bounded_time_ms = min(time_ms, timeout_ms);
883 	int serv_to_charge_for_time =
884 		(bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
885 	int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
886 
887 	/* Increase budget to avoid inconsistencies */
888 	if (tot_serv_to_charge > entity->budget)
889 		entity->budget = tot_serv_to_charge;
890 
891 	bfq_bfqq_served(bfqq,
892 			max_t(int, 0, tot_serv_to_charge - entity->service));
893 }
894 
895 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
896 					struct bfq_service_tree *st,
897 					bool backshifted)
898 {
899 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
900 
901 	/*
902 	 * When this function is invoked, entity is not in any service
903 	 * tree, then it is safe to invoke next function with the last
904 	 * parameter set (see the comments on the function).
905 	 */
906 	st = __bfq_entity_update_weight_prio(st, entity, true);
907 	bfq_calc_finish(entity, entity->budget);
908 
909 	/*
910 	 * If some queues enjoy backshifting for a while, then their
911 	 * (virtual) finish timestamps may happen to become lower and
912 	 * lower than the system virtual time.	In particular, if
913 	 * these queues often happen to be idle for short time
914 	 * periods, and during such time periods other queues with
915 	 * higher timestamps happen to be busy, then the backshifted
916 	 * timestamps of the former queues can become much lower than
917 	 * the system virtual time. In fact, to serve the queues with
918 	 * higher timestamps while the ones with lower timestamps are
919 	 * idle, the system virtual time may be pushed-up to much
920 	 * higher values than the finish timestamps of the idle
921 	 * queues. As a consequence, the finish timestamps of all new
922 	 * or newly activated queues may end up being much larger than
923 	 * those of lucky queues with backshifted timestamps. The
924 	 * latter queues may then monopolize the device for a lot of
925 	 * time. This would simply break service guarantees.
926 	 *
927 	 * To reduce this problem, push up a little bit the
928 	 * backshifted timestamps of the queue associated with this
929 	 * entity (only a queue can happen to have the backshifted
930 	 * flag set): just enough to let the finish timestamp of the
931 	 * queue be equal to the current value of the system virtual
932 	 * time. This may introduce a little unfairness among queues
933 	 * with backshifted timestamps, but it does not break
934 	 * worst-case fairness guarantees.
935 	 *
936 	 * As a special case, if bfqq is weight-raised, push up
937 	 * timestamps much less, to keep very low the probability that
938 	 * this push up causes the backshifted finish timestamps of
939 	 * weight-raised queues to become higher than the backshifted
940 	 * finish timestamps of non weight-raised queues.
941 	 */
942 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
943 		unsigned long delta = st->vtime - entity->finish;
944 
945 		if (bfqq)
946 			delta /= bfqq->wr_coeff;
947 
948 		entity->start += delta;
949 		entity->finish += delta;
950 	}
951 
952 	bfq_active_insert(st, entity);
953 }
954 
955 /**
956  * __bfq_activate_entity - handle activation of entity.
957  * @entity: the entity being activated.
958  * @non_blocking_wait_rq: true if entity was waiting for a request
959  *
960  * Called for a 'true' activation, i.e., if entity is not active and
961  * one of its children receives a new request.
962  *
963  * Basically, this function updates the timestamps of entity and
964  * inserts entity into its active tree, after possibly extracting it
965  * from its idle tree.
966  */
967 static void __bfq_activate_entity(struct bfq_entity *entity,
968 				  bool non_blocking_wait_rq)
969 {
970 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
971 	bool backshifted = false;
972 	unsigned long long min_vstart;
973 
974 	/* See comments on bfq_fqq_update_budg_for_activation */
975 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
976 		backshifted = true;
977 		min_vstart = entity->finish;
978 	} else
979 		min_vstart = st->vtime;
980 
981 	if (entity->tree == &st->idle) {
982 		/*
983 		 * Must be on the idle tree, bfq_idle_extract() will
984 		 * check for that.
985 		 */
986 		bfq_idle_extract(st, entity);
987 		entity->start = bfq_gt(min_vstart, entity->finish) ?
988 			min_vstart : entity->finish;
989 	} else {
990 		/*
991 		 * The finish time of the entity may be invalid, and
992 		 * it is in the past for sure, otherwise the queue
993 		 * would have been on the idle tree.
994 		 */
995 		entity->start = min_vstart;
996 		st->wsum += entity->weight;
997 		/*
998 		 * entity is about to be inserted into a service tree,
999 		 * and then set in service: get a reference to make
1000 		 * sure entity does not disappear until it is no
1001 		 * longer in service or scheduled for service.
1002 		 */
1003 		bfq_get_entity(entity);
1004 
1005 		entity->on_st = true;
1006 	}
1007 
1008 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1009 	if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
1010 		struct bfq_group *bfqg =
1011 			container_of(entity, struct bfq_group, entity);
1012 		struct bfq_data *bfqd = bfqg->bfqd;
1013 
1014 		if (!entity->in_groups_with_pending_reqs) {
1015 			entity->in_groups_with_pending_reqs = true;
1016 			bfqd->num_groups_with_pending_reqs++;
1017 		}
1018 	}
1019 #endif
1020 
1021 	bfq_update_fin_time_enqueue(entity, st, backshifted);
1022 }
1023 
1024 /**
1025  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1026  * @entity: the entity being requeued or repositioned.
1027  *
1028  * Requeueing is needed if this entity stops being served, which
1029  * happens if a leaf descendant entity has expired. On the other hand,
1030  * repositioning is needed if the next_inservice_entity for the child
1031  * entity has changed. See the comments inside the function for
1032  * details.
1033  *
1034  * Basically, this function: 1) removes entity from its active tree if
1035  * present there, 2) updates the timestamps of entity and 3) inserts
1036  * entity back into its active tree (in the new, right position for
1037  * the new values of the timestamps).
1038  */
1039 static void __bfq_requeue_entity(struct bfq_entity *entity)
1040 {
1041 	struct bfq_sched_data *sd = entity->sched_data;
1042 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1043 
1044 	if (entity == sd->in_service_entity) {
1045 		/*
1046 		 * We are requeueing the current in-service entity,
1047 		 * which may have to be done for one of the following
1048 		 * reasons:
1049 		 * - entity represents the in-service queue, and the
1050 		 *   in-service queue is being requeued after an
1051 		 *   expiration;
1052 		 * - entity represents a group, and its budget has
1053 		 *   changed because one of its child entities has
1054 		 *   just been either activated or requeued for some
1055 		 *   reason; the timestamps of the entity need then to
1056 		 *   be updated, and the entity needs to be enqueued
1057 		 *   or repositioned accordingly.
1058 		 *
1059 		 * In particular, before requeueing, the start time of
1060 		 * the entity must be moved forward to account for the
1061 		 * service that the entity has received while in
1062 		 * service. This is done by the next instructions. The
1063 		 * finish time will then be updated according to this
1064 		 * new value of the start time, and to the budget of
1065 		 * the entity.
1066 		 */
1067 		bfq_calc_finish(entity, entity->service);
1068 		entity->start = entity->finish;
1069 		/*
1070 		 * In addition, if the entity had more than one child
1071 		 * when set in service, then it was not extracted from
1072 		 * the active tree. This implies that the position of
1073 		 * the entity in the active tree may need to be
1074 		 * changed now, because we have just updated the start
1075 		 * time of the entity, and we will update its finish
1076 		 * time in a moment (the requeueing is then, more
1077 		 * precisely, a repositioning in this case). To
1078 		 * implement this repositioning, we: 1) dequeue the
1079 		 * entity here, 2) update the finish time and requeue
1080 		 * the entity according to the new timestamps below.
1081 		 */
1082 		if (entity->tree)
1083 			bfq_active_extract(st, entity);
1084 	} else { /* The entity is already active, and not in service */
1085 		/*
1086 		 * In this case, this function gets called only if the
1087 		 * next_in_service entity below this entity has
1088 		 * changed, and this change has caused the budget of
1089 		 * this entity to change, which, finally implies that
1090 		 * the finish time of this entity must be
1091 		 * updated. Such an update may cause the scheduling,
1092 		 * i.e., the position in the active tree, of this
1093 		 * entity to change. We handle this change by: 1)
1094 		 * dequeueing the entity here, 2) updating the finish
1095 		 * time and requeueing the entity according to the new
1096 		 * timestamps below. This is the same approach as the
1097 		 * non-extracted-entity sub-case above.
1098 		 */
1099 		bfq_active_extract(st, entity);
1100 	}
1101 
1102 	bfq_update_fin_time_enqueue(entity, st, false);
1103 }
1104 
1105 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1106 					  struct bfq_sched_data *sd,
1107 					  bool non_blocking_wait_rq)
1108 {
1109 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1110 
1111 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1112 		 /*
1113 		  * in service or already queued on the active tree,
1114 		  * requeue or reposition
1115 		  */
1116 		__bfq_requeue_entity(entity);
1117 	else
1118 		/*
1119 		 * Not in service and not queued on its active tree:
1120 		 * the activity is idle and this is a true activation.
1121 		 */
1122 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1123 }
1124 
1125 
1126 /**
1127  * bfq_activate_requeue_entity - activate or requeue an entity representing a
1128  *				 bfq_queue, and activate, requeue or reposition
1129  *				 all ancestors for which such an update becomes
1130  *				 necessary.
1131  * @entity: the entity to activate.
1132  * @non_blocking_wait_rq: true if this entity was waiting for a request
1133  * @requeue: true if this is a requeue, which implies that bfqq is
1134  *	     being expired; thus ALL its ancestors stop being served and must
1135  *	     therefore be requeued
1136  * @expiration: true if this function is being invoked in the expiration path
1137  *             of the in-service queue
1138  */
1139 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1140 					bool non_blocking_wait_rq,
1141 					bool requeue, bool expiration)
1142 {
1143 	struct bfq_sched_data *sd;
1144 
1145 	for_each_entity(entity) {
1146 		sd = entity->sched_data;
1147 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1148 
1149 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1150 		    !requeue)
1151 			break;
1152 	}
1153 }
1154 
1155 /**
1156  * __bfq_deactivate_entity - update sched_data and service trees for
1157  * entity, so as to represent entity as inactive
1158  * @entity: the entity being deactivated.
1159  * @ins_into_idle_tree: if false, the entity will not be put into the
1160  *			idle tree.
1161  *
1162  * If necessary and allowed, puts entity into the idle tree. NOTE:
1163  * entity may be on no tree if in service.
1164  */
1165 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1166 {
1167 	struct bfq_sched_data *sd = entity->sched_data;
1168 	struct bfq_service_tree *st;
1169 	bool is_in_service;
1170 
1171 	if (!entity->on_st) /* entity never activated, or already inactive */
1172 		return false;
1173 
1174 	/*
1175 	 * If we get here, then entity is active, which implies that
1176 	 * bfq_group_set_parent has already been invoked for the group
1177 	 * represented by entity. Therefore, the field
1178 	 * entity->sched_data has been set, and we can safely use it.
1179 	 */
1180 	st = bfq_entity_service_tree(entity);
1181 	is_in_service = entity == sd->in_service_entity;
1182 
1183 	bfq_calc_finish(entity, entity->service);
1184 
1185 	if (is_in_service)
1186 		sd->in_service_entity = NULL;
1187 	else
1188 		/*
1189 		 * Non in-service entity: nobody will take care of
1190 		 * resetting its service counter on expiration. Do it
1191 		 * now.
1192 		 */
1193 		entity->service = 0;
1194 
1195 	if (entity->tree == &st->active)
1196 		bfq_active_extract(st, entity);
1197 	else if (!is_in_service && entity->tree == &st->idle)
1198 		bfq_idle_extract(st, entity);
1199 
1200 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1201 		bfq_forget_entity(st, entity, is_in_service);
1202 	else
1203 		bfq_idle_insert(st, entity);
1204 
1205 	return true;
1206 }
1207 
1208 /**
1209  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1210  * @entity: the entity to deactivate.
1211  * @ins_into_idle_tree: true if the entity can be put into the idle tree
1212  * @expiration: true if this function is being invoked in the expiration path
1213  *             of the in-service queue
1214  */
1215 static void bfq_deactivate_entity(struct bfq_entity *entity,
1216 				  bool ins_into_idle_tree,
1217 				  bool expiration)
1218 {
1219 	struct bfq_sched_data *sd;
1220 	struct bfq_entity *parent = NULL;
1221 
1222 	for_each_entity_safe(entity, parent) {
1223 		sd = entity->sched_data;
1224 
1225 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1226 			/*
1227 			 * entity is not in any tree any more, so
1228 			 * this deactivation is a no-op, and there is
1229 			 * nothing to change for upper-level entities
1230 			 * (in case of expiration, this can never
1231 			 * happen).
1232 			 */
1233 			return;
1234 		}
1235 
1236 		if (sd->next_in_service == entity)
1237 			/*
1238 			 * entity was the next_in_service entity,
1239 			 * then, since entity has just been
1240 			 * deactivated, a new one must be found.
1241 			 */
1242 			bfq_update_next_in_service(sd, NULL, expiration);
1243 
1244 		if (sd->next_in_service || sd->in_service_entity) {
1245 			/*
1246 			 * The parent entity is still active, because
1247 			 * either next_in_service or in_service_entity
1248 			 * is not NULL. So, no further upwards
1249 			 * deactivation must be performed.  Yet,
1250 			 * next_in_service has changed.	Then the
1251 			 * schedule does need to be updated upwards.
1252 			 *
1253 			 * NOTE If in_service_entity is not NULL, then
1254 			 * next_in_service may happen to be NULL,
1255 			 * although the parent entity is evidently
1256 			 * active. This happens if 1) the entity
1257 			 * pointed by in_service_entity is the only
1258 			 * active entity in the parent entity, and 2)
1259 			 * according to the definition of
1260 			 * next_in_service, the in_service_entity
1261 			 * cannot be considered as
1262 			 * next_in_service. See the comments on the
1263 			 * definition of next_in_service for details.
1264 			 */
1265 			break;
1266 		}
1267 
1268 		/*
1269 		 * If we get here, then the parent is no more
1270 		 * backlogged and we need to propagate the
1271 		 * deactivation upwards. Thus let the loop go on.
1272 		 */
1273 
1274 		/*
1275 		 * Also let parent be queued into the idle tree on
1276 		 * deactivation, to preserve service guarantees, and
1277 		 * assuming that who invoked this function does not
1278 		 * need parent entities too to be removed completely.
1279 		 */
1280 		ins_into_idle_tree = true;
1281 	}
1282 
1283 	/*
1284 	 * If the deactivation loop is fully executed, then there are
1285 	 * no more entities to touch and next loop is not executed at
1286 	 * all. Otherwise, requeue remaining entities if they are
1287 	 * about to stop receiving service, or reposition them if this
1288 	 * is not the case.
1289 	 */
1290 	entity = parent;
1291 	for_each_entity(entity) {
1292 		/*
1293 		 * Invoke __bfq_requeue_entity on entity, even if
1294 		 * already active, to requeue/reposition it in the
1295 		 * active tree (because sd->next_in_service has
1296 		 * changed)
1297 		 */
1298 		__bfq_requeue_entity(entity);
1299 
1300 		sd = entity->sched_data;
1301 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1302 		    !expiration)
1303 			/*
1304 			 * next_in_service unchanged or not causing
1305 			 * any change in entity->parent->sd, and no
1306 			 * requeueing needed for expiration: stop
1307 			 * here.
1308 			 */
1309 			break;
1310 	}
1311 }
1312 
1313 /**
1314  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1315  *                       if needed, to have at least one entity eligible.
1316  * @st: the service tree to act upon.
1317  *
1318  * Assumes that st is not empty.
1319  */
1320 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1321 {
1322 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1323 
1324 	if (bfq_gt(root_entity->min_start, st->vtime))
1325 		return root_entity->min_start;
1326 
1327 	return st->vtime;
1328 }
1329 
1330 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1331 {
1332 	if (new_value > st->vtime) {
1333 		st->vtime = new_value;
1334 		bfq_forget_idle(st);
1335 	}
1336 }
1337 
1338 /**
1339  * bfq_first_active_entity - find the eligible entity with
1340  *                           the smallest finish time
1341  * @st: the service tree to select from.
1342  * @vtime: the system virtual to use as a reference for eligibility
1343  *
1344  * This function searches the first schedulable entity, starting from the
1345  * root of the tree and going on the left every time on this side there is
1346  * a subtree with at least one eligible (start <= vtime) entity. The path on
1347  * the right is followed only if a) the left subtree contains no eligible
1348  * entities and b) no eligible entity has been found yet.
1349  */
1350 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1351 						  u64 vtime)
1352 {
1353 	struct bfq_entity *entry, *first = NULL;
1354 	struct rb_node *node = st->active.rb_node;
1355 
1356 	while (node) {
1357 		entry = rb_entry(node, struct bfq_entity, rb_node);
1358 left:
1359 		if (!bfq_gt(entry->start, vtime))
1360 			first = entry;
1361 
1362 		if (node->rb_left) {
1363 			entry = rb_entry(node->rb_left,
1364 					 struct bfq_entity, rb_node);
1365 			if (!bfq_gt(entry->min_start, vtime)) {
1366 				node = node->rb_left;
1367 				goto left;
1368 			}
1369 		}
1370 		if (first)
1371 			break;
1372 		node = node->rb_right;
1373 	}
1374 
1375 	return first;
1376 }
1377 
1378 /**
1379  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1380  * @st: the service tree.
1381  *
1382  * If there is no in-service entity for the sched_data st belongs to,
1383  * then return the entity that will be set in service if:
1384  * 1) the parent entity this st belongs to is set in service;
1385  * 2) no entity belonging to such parent entity undergoes a state change
1386  * that would influence the timestamps of the entity (e.g., becomes idle,
1387  * becomes backlogged, changes its budget, ...).
1388  *
1389  * In this first case, update the virtual time in @st too (see the
1390  * comments on this update inside the function).
1391  *
1392  * In contrast, if there is an in-service entity, then return the
1393  * entity that would be set in service if not only the above
1394  * conditions, but also the next one held true: the currently
1395  * in-service entity, on expiration,
1396  * 1) gets a finish time equal to the current one, or
1397  * 2) is not eligible any more, or
1398  * 3) is idle.
1399  */
1400 static struct bfq_entity *
1401 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1402 {
1403 	struct bfq_entity *entity;
1404 	u64 new_vtime;
1405 
1406 	if (RB_EMPTY_ROOT(&st->active))
1407 		return NULL;
1408 
1409 	/*
1410 	 * Get the value of the system virtual time for which at
1411 	 * least one entity is eligible.
1412 	 */
1413 	new_vtime = bfq_calc_vtime_jump(st);
1414 
1415 	/*
1416 	 * If there is no in-service entity for the sched_data this
1417 	 * active tree belongs to, then push the system virtual time
1418 	 * up to the value that guarantees that at least one entity is
1419 	 * eligible. If, instead, there is an in-service entity, then
1420 	 * do not make any such update, because there is already an
1421 	 * eligible entity, namely the in-service one (even if the
1422 	 * entity is not on st, because it was extracted when set in
1423 	 * service).
1424 	 */
1425 	if (!in_service)
1426 		bfq_update_vtime(st, new_vtime);
1427 
1428 	entity = bfq_first_active_entity(st, new_vtime);
1429 
1430 	return entity;
1431 }
1432 
1433 /**
1434  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1435  * @sd: the sched_data.
1436  * @expiration: true if we are on the expiration path of the in-service queue
1437  *
1438  * This function is invoked when there has been a change in the trees
1439  * for sd, and we need to know what is the new next entity to serve
1440  * after this change.
1441  */
1442 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1443 						 bool expiration)
1444 {
1445 	struct bfq_service_tree *st = sd->service_tree;
1446 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1447 	struct bfq_entity *entity = NULL;
1448 	int class_idx = 0;
1449 
1450 	/*
1451 	 * Choose from idle class, if needed to guarantee a minimum
1452 	 * bandwidth to this class (and if there is some active entity
1453 	 * in idle class). This should also mitigate
1454 	 * priority-inversion problems in case a low priority task is
1455 	 * holding file system resources.
1456 	 */
1457 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1458 				   BFQ_CL_IDLE_TIMEOUT)) {
1459 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1460 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1461 		/* About to be served if backlogged, or not yet backlogged */
1462 		sd->bfq_class_idle_last_service = jiffies;
1463 	}
1464 
1465 	/*
1466 	 * Find the next entity to serve for the highest-priority
1467 	 * class, unless the idle class needs to be served.
1468 	 */
1469 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1470 		/*
1471 		 * If expiration is true, then bfq_lookup_next_entity
1472 		 * is being invoked as a part of the expiration path
1473 		 * of the in-service queue. In this case, even if
1474 		 * sd->in_service_entity is not NULL,
1475 		 * sd->in_service_entity at this point is actually not
1476 		 * in service any more, and, if needed, has already
1477 		 * been properly queued or requeued into the right
1478 		 * tree. The reason why sd->in_service_entity is still
1479 		 * not NULL here, even if expiration is true, is that
1480 		 * sd->in_service_entity is reset as a last step in the
1481 		 * expiration path. So, if expiration is true, tell
1482 		 * __bfq_lookup_next_entity that there is no
1483 		 * sd->in_service_entity.
1484 		 */
1485 		entity = __bfq_lookup_next_entity(st + class_idx,
1486 						  sd->in_service_entity &&
1487 						  !expiration);
1488 
1489 		if (entity)
1490 			break;
1491 	}
1492 
1493 	if (!entity)
1494 		return NULL;
1495 
1496 	return entity;
1497 }
1498 
1499 bool next_queue_may_preempt(struct bfq_data *bfqd)
1500 {
1501 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1502 
1503 	return sd->next_in_service != sd->in_service_entity;
1504 }
1505 
1506 /*
1507  * Get next queue for service.
1508  */
1509 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1510 {
1511 	struct bfq_entity *entity = NULL;
1512 	struct bfq_sched_data *sd;
1513 	struct bfq_queue *bfqq;
1514 
1515 	if (bfq_tot_busy_queues(bfqd) == 0)
1516 		return NULL;
1517 
1518 	/*
1519 	 * Traverse the path from the root to the leaf entity to
1520 	 * serve. Set in service all the entities visited along the
1521 	 * way.
1522 	 */
1523 	sd = &bfqd->root_group->sched_data;
1524 	for (; sd ; sd = entity->my_sched_data) {
1525 		/*
1526 		 * WARNING. We are about to set the in-service entity
1527 		 * to sd->next_in_service, i.e., to the (cached) value
1528 		 * returned by bfq_lookup_next_entity(sd) the last
1529 		 * time it was invoked, i.e., the last time when the
1530 		 * service order in sd changed as a consequence of the
1531 		 * activation or deactivation of an entity. In this
1532 		 * respect, if we execute bfq_lookup_next_entity(sd)
1533 		 * in this very moment, it may, although with low
1534 		 * probability, yield a different entity than that
1535 		 * pointed to by sd->next_in_service. This rare event
1536 		 * happens in case there was no CLASS_IDLE entity to
1537 		 * serve for sd when bfq_lookup_next_entity(sd) was
1538 		 * invoked for the last time, while there is now one
1539 		 * such entity.
1540 		 *
1541 		 * If the above event happens, then the scheduling of
1542 		 * such entity in CLASS_IDLE is postponed until the
1543 		 * service of the sd->next_in_service entity
1544 		 * finishes. In fact, when the latter is expired,
1545 		 * bfq_lookup_next_entity(sd) gets called again,
1546 		 * exactly to update sd->next_in_service.
1547 		 */
1548 
1549 		/* Make next_in_service entity become in_service_entity */
1550 		entity = sd->next_in_service;
1551 		sd->in_service_entity = entity;
1552 
1553 		/*
1554 		 * If entity is no longer a candidate for next
1555 		 * service, then it must be extracted from its active
1556 		 * tree, so as to make sure that it won't be
1557 		 * considered when computing next_in_service. See the
1558 		 * comments on the function
1559 		 * bfq_no_longer_next_in_service() for details.
1560 		 */
1561 		if (bfq_no_longer_next_in_service(entity))
1562 			bfq_active_extract(bfq_entity_service_tree(entity),
1563 					   entity);
1564 
1565 		/*
1566 		 * Even if entity is not to be extracted according to
1567 		 * the above check, a descendant entity may get
1568 		 * extracted in one of the next iterations of this
1569 		 * loop. Such an event could cause a change in
1570 		 * next_in_service for the level of the descendant
1571 		 * entity, and thus possibly back to this level.
1572 		 *
1573 		 * However, we cannot perform the resulting needed
1574 		 * update of next_in_service for this level before the
1575 		 * end of the whole loop, because, to know which is
1576 		 * the correct next-to-serve candidate entity for each
1577 		 * level, we need first to find the leaf entity to set
1578 		 * in service. In fact, only after we know which is
1579 		 * the next-to-serve leaf entity, we can discover
1580 		 * whether the parent entity of the leaf entity
1581 		 * becomes the next-to-serve, and so on.
1582 		 */
1583 	}
1584 
1585 	bfqq = bfq_entity_to_bfqq(entity);
1586 
1587 	/*
1588 	 * We can finally update all next-to-serve entities along the
1589 	 * path from the leaf entity just set in service to the root.
1590 	 */
1591 	for_each_entity(entity) {
1592 		struct bfq_sched_data *sd = entity->sched_data;
1593 
1594 		if (!bfq_update_next_in_service(sd, NULL, false))
1595 			break;
1596 	}
1597 
1598 	return bfqq;
1599 }
1600 
1601 /* returns true if the in-service queue gets freed */
1602 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1603 {
1604 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1605 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1606 	struct bfq_entity *entity = in_serv_entity;
1607 
1608 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1609 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1610 	bfqd->in_service_queue = NULL;
1611 
1612 	/*
1613 	 * When this function is called, all in-service entities have
1614 	 * been properly deactivated or requeued, so we can safely
1615 	 * execute the final step: reset in_service_entity along the
1616 	 * path from entity to the root.
1617 	 */
1618 	for_each_entity(entity)
1619 		entity->sched_data->in_service_entity = NULL;
1620 
1621 	/*
1622 	 * in_serv_entity is no longer in service, so, if it is in no
1623 	 * service tree either, then release the service reference to
1624 	 * the queue it represents (taken with bfq_get_entity).
1625 	 */
1626 	if (!in_serv_entity->on_st) {
1627 		/*
1628 		 * If no process is referencing in_serv_bfqq any
1629 		 * longer, then the service reference may be the only
1630 		 * reference to the queue. If this is the case, then
1631 		 * bfqq gets freed here.
1632 		 */
1633 		int ref = in_serv_bfqq->ref;
1634 		bfq_put_queue(in_serv_bfqq);
1635 		if (ref == 1)
1636 			return true;
1637 	}
1638 
1639 	return false;
1640 }
1641 
1642 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1643 			 bool ins_into_idle_tree, bool expiration)
1644 {
1645 	struct bfq_entity *entity = &bfqq->entity;
1646 
1647 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1648 }
1649 
1650 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1651 {
1652 	struct bfq_entity *entity = &bfqq->entity;
1653 
1654 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1655 				    false, false);
1656 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1657 }
1658 
1659 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1660 		      bool expiration)
1661 {
1662 	struct bfq_entity *entity = &bfqq->entity;
1663 
1664 	bfq_activate_requeue_entity(entity, false,
1665 				    bfqq == bfqd->in_service_queue, expiration);
1666 }
1667 
1668 /*
1669  * Called when the bfqq no longer has requests pending, remove it from
1670  * the service tree. As a special case, it can be invoked during an
1671  * expiration.
1672  */
1673 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1674 		       bool expiration)
1675 {
1676 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1677 
1678 	bfq_clear_bfqq_busy(bfqq);
1679 
1680 	bfqd->busy_queues[bfqq->ioprio_class - 1]--;
1681 
1682 	if (bfqq->wr_coeff > 1)
1683 		bfqd->wr_busy_queues--;
1684 
1685 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1686 
1687 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1688 
1689 	if (!bfqq->dispatched)
1690 		bfq_weights_tree_remove(bfqd, bfqq);
1691 }
1692 
1693 /*
1694  * Called when an inactive queue receives a new request.
1695  */
1696 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1697 {
1698 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1699 
1700 	bfq_activate_bfqq(bfqd, bfqq);
1701 
1702 	bfq_mark_bfqq_busy(bfqq);
1703 	bfqd->busy_queues[bfqq->ioprio_class - 1]++;
1704 
1705 	if (!bfqq->dispatched)
1706 		if (bfqq->wr_coeff == 1)
1707 			bfq_weights_tree_add(bfqd, bfqq,
1708 					     &bfqd->queue_weights_tree);
1709 
1710 	if (bfqq->wr_coeff > 1)
1711 		bfqd->wr_busy_queues++;
1712 }
1713