xref: /linux/block/bfq-wf2q.c (revision b1d29ba82cf2bc784f4c963ddd6a2cf29e229b33)
1 /*
2  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
3  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
4  * scheduler schedules generic entities. The latter can represent
5  * either single bfq queues (associated with processes) or groups of
6  * bfq queues (associated with cgroups).
7  *
8  *  This program is free software; you can redistribute it and/or
9  *  modify it under the terms of the GNU General Public License as
10  *  published by the Free Software Foundation; either version 2 of the
11  *  License, or (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  */
18 #include "bfq-iosched.h"
19 
20 /**
21  * bfq_gt - compare two timestamps.
22  * @a: first ts.
23  * @b: second ts.
24  *
25  * Return @a > @b, dealing with wrapping correctly.
26  */
27 static int bfq_gt(u64 a, u64 b)
28 {
29 	return (s64)(a - b) > 0;
30 }
31 
32 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
33 {
34 	struct rb_node *node = tree->rb_node;
35 
36 	return rb_entry(node, struct bfq_entity, rb_node);
37 }
38 
39 static unsigned int bfq_class_idx(struct bfq_entity *entity)
40 {
41 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
42 
43 	return bfqq ? bfqq->ioprio_class - 1 :
44 		BFQ_DEFAULT_GRP_CLASS - 1;
45 }
46 
47 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
48 						 bool expiration);
49 
50 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
51 
52 /**
53  * bfq_update_next_in_service - update sd->next_in_service
54  * @sd: sched_data for which to perform the update.
55  * @new_entity: if not NULL, pointer to the entity whose activation,
56  *		requeueing or repositionig triggered the invocation of
57  *		this function.
58  * @expiration: id true, this function is being invoked after the
59  *             expiration of the in-service entity
60  *
61  * This function is called to update sd->next_in_service, which, in
62  * its turn, may change as a consequence of the insertion or
63  * extraction of an entity into/from one of the active trees of
64  * sd. These insertions/extractions occur as a consequence of
65  * activations/deactivations of entities, with some activations being
66  * 'true' activations, and other activations being requeueings (i.e.,
67  * implementing the second, requeueing phase of the mechanism used to
68  * reposition an entity in its active tree; see comments on
69  * __bfq_activate_entity and __bfq_requeue_entity for details). In
70  * both the last two activation sub-cases, new_entity points to the
71  * just activated or requeued entity.
72  *
73  * Returns true if sd->next_in_service changes in such a way that
74  * entity->parent may become the next_in_service for its parent
75  * entity.
76  */
77 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
78 				       struct bfq_entity *new_entity,
79 				       bool expiration)
80 {
81 	struct bfq_entity *next_in_service = sd->next_in_service;
82 	bool parent_sched_may_change = false;
83 	bool change_without_lookup = false;
84 
85 	/*
86 	 * If this update is triggered by the activation, requeueing
87 	 * or repositiong of an entity that does not coincide with
88 	 * sd->next_in_service, then a full lookup in the active tree
89 	 * can be avoided. In fact, it is enough to check whether the
90 	 * just-modified entity has the same priority as
91 	 * sd->next_in_service, is eligible and has a lower virtual
92 	 * finish time than sd->next_in_service. If this compound
93 	 * condition holds, then the new entity becomes the new
94 	 * next_in_service. Otherwise no change is needed.
95 	 */
96 	if (new_entity && new_entity != sd->next_in_service) {
97 		/*
98 		 * Flag used to decide whether to replace
99 		 * sd->next_in_service with new_entity. Tentatively
100 		 * set to true, and left as true if
101 		 * sd->next_in_service is NULL.
102 		 */
103 		change_without_lookup = true;
104 
105 		/*
106 		 * If there is already a next_in_service candidate
107 		 * entity, then compare timestamps to decide whether
108 		 * to replace sd->service_tree with new_entity.
109 		 */
110 		if (next_in_service) {
111 			unsigned int new_entity_class_idx =
112 				bfq_class_idx(new_entity);
113 			struct bfq_service_tree *st =
114 				sd->service_tree + new_entity_class_idx;
115 
116 			change_without_lookup =
117 				(new_entity_class_idx ==
118 				 bfq_class_idx(next_in_service)
119 				 &&
120 				 !bfq_gt(new_entity->start, st->vtime)
121 				 &&
122 				 bfq_gt(next_in_service->finish,
123 					new_entity->finish));
124 		}
125 
126 		if (change_without_lookup)
127 			next_in_service = new_entity;
128 	}
129 
130 	if (!change_without_lookup) /* lookup needed */
131 		next_in_service = bfq_lookup_next_entity(sd, expiration);
132 
133 	if (next_in_service) {
134 		bool new_budget_triggers_change =
135 			bfq_update_parent_budget(next_in_service);
136 
137 		parent_sched_may_change = !sd->next_in_service ||
138 			new_budget_triggers_change;
139 	}
140 
141 	sd->next_in_service = next_in_service;
142 
143 	if (!next_in_service)
144 		return parent_sched_may_change;
145 
146 	return parent_sched_may_change;
147 }
148 
149 #ifdef CONFIG_BFQ_GROUP_IOSCHED
150 
151 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
152 {
153 	struct bfq_entity *group_entity = bfqq->entity.parent;
154 
155 	if (!group_entity)
156 		group_entity = &bfqq->bfqd->root_group->entity;
157 
158 	return container_of(group_entity, struct bfq_group, entity);
159 }
160 
161 /*
162  * Returns true if this budget changes may let next_in_service->parent
163  * become the next_in_service entity for its parent entity.
164  */
165 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
166 {
167 	struct bfq_entity *bfqg_entity;
168 	struct bfq_group *bfqg;
169 	struct bfq_sched_data *group_sd;
170 	bool ret = false;
171 
172 	group_sd = next_in_service->sched_data;
173 
174 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
175 	/*
176 	 * bfq_group's my_entity field is not NULL only if the group
177 	 * is not the root group. We must not touch the root entity
178 	 * as it must never become an in-service entity.
179 	 */
180 	bfqg_entity = bfqg->my_entity;
181 	if (bfqg_entity) {
182 		if (bfqg_entity->budget > next_in_service->budget)
183 			ret = true;
184 		bfqg_entity->budget = next_in_service->budget;
185 	}
186 
187 	return ret;
188 }
189 
190 /*
191  * This function tells whether entity stops being a candidate for next
192  * service, according to the restrictive definition of the field
193  * next_in_service. In particular, this function is invoked for an
194  * entity that is about to be set in service.
195  *
196  * If entity is a queue, then the entity is no longer a candidate for
197  * next service according to the that definition, because entity is
198  * about to become the in-service queue. This function then returns
199  * true if entity is a queue.
200  *
201  * In contrast, entity could still be a candidate for next service if
202  * it is not a queue, and has more than one active child. In fact,
203  * even if one of its children is about to be set in service, other
204  * active children may still be the next to serve, for the parent
205  * entity, even according to the above definition. As a consequence, a
206  * non-queue entity is not a candidate for next-service only if it has
207  * only one active child. And only if this condition holds, then this
208  * function returns true for a non-queue entity.
209  */
210 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
211 {
212 	struct bfq_group *bfqg;
213 
214 	if (bfq_entity_to_bfqq(entity))
215 		return true;
216 
217 	bfqg = container_of(entity, struct bfq_group, entity);
218 
219 	/*
220 	 * The field active_entities does not always contain the
221 	 * actual number of active children entities: it happens to
222 	 * not account for the in-service entity in case the latter is
223 	 * removed from its active tree (which may get done after
224 	 * invoking the function bfq_no_longer_next_in_service in
225 	 * bfq_get_next_queue). Fortunately, here, i.e., while
226 	 * bfq_no_longer_next_in_service is not yet completed in
227 	 * bfq_get_next_queue, bfq_active_extract has not yet been
228 	 * invoked, and thus active_entities still coincides with the
229 	 * actual number of active entities.
230 	 */
231 	if (bfqg->active_entities == 1)
232 		return true;
233 
234 	return false;
235 }
236 
237 #else /* CONFIG_BFQ_GROUP_IOSCHED */
238 
239 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
240 {
241 	return bfqq->bfqd->root_group;
242 }
243 
244 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
245 {
246 	return false;
247 }
248 
249 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
250 {
251 	return true;
252 }
253 
254 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
255 
256 /*
257  * Shift for timestamp calculations.  This actually limits the maximum
258  * service allowed in one timestamp delta (small shift values increase it),
259  * the maximum total weight that can be used for the queues in the system
260  * (big shift values increase it), and the period of virtual time
261  * wraparounds.
262  */
263 #define WFQ_SERVICE_SHIFT	22
264 
265 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
266 {
267 	struct bfq_queue *bfqq = NULL;
268 
269 	if (!entity->my_sched_data)
270 		bfqq = container_of(entity, struct bfq_queue, entity);
271 
272 	return bfqq;
273 }
274 
275 
276 /**
277  * bfq_delta - map service into the virtual time domain.
278  * @service: amount of service.
279  * @weight: scale factor (weight of an entity or weight sum).
280  */
281 static u64 bfq_delta(unsigned long service, unsigned long weight)
282 {
283 	u64 d = (u64)service << WFQ_SERVICE_SHIFT;
284 
285 	do_div(d, weight);
286 	return d;
287 }
288 
289 /**
290  * bfq_calc_finish - assign the finish time to an entity.
291  * @entity: the entity to act upon.
292  * @service: the service to be charged to the entity.
293  */
294 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
295 {
296 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
297 
298 	entity->finish = entity->start +
299 		bfq_delta(service, entity->weight);
300 
301 	if (bfqq) {
302 		bfq_log_bfqq(bfqq->bfqd, bfqq,
303 			"calc_finish: serv %lu, w %d",
304 			service, entity->weight);
305 		bfq_log_bfqq(bfqq->bfqd, bfqq,
306 			"calc_finish: start %llu, finish %llu, delta %llu",
307 			entity->start, entity->finish,
308 			bfq_delta(service, entity->weight));
309 	}
310 }
311 
312 /**
313  * bfq_entity_of - get an entity from a node.
314  * @node: the node field of the entity.
315  *
316  * Convert a node pointer to the relative entity.  This is used only
317  * to simplify the logic of some functions and not as the generic
318  * conversion mechanism because, e.g., in the tree walking functions,
319  * the check for a %NULL value would be redundant.
320  */
321 struct bfq_entity *bfq_entity_of(struct rb_node *node)
322 {
323 	struct bfq_entity *entity = NULL;
324 
325 	if (node)
326 		entity = rb_entry(node, struct bfq_entity, rb_node);
327 
328 	return entity;
329 }
330 
331 /**
332  * bfq_extract - remove an entity from a tree.
333  * @root: the tree root.
334  * @entity: the entity to remove.
335  */
336 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
337 {
338 	entity->tree = NULL;
339 	rb_erase(&entity->rb_node, root);
340 }
341 
342 /**
343  * bfq_idle_extract - extract an entity from the idle tree.
344  * @st: the service tree of the owning @entity.
345  * @entity: the entity being removed.
346  */
347 static void bfq_idle_extract(struct bfq_service_tree *st,
348 			     struct bfq_entity *entity)
349 {
350 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
351 	struct rb_node *next;
352 
353 	if (entity == st->first_idle) {
354 		next = rb_next(&entity->rb_node);
355 		st->first_idle = bfq_entity_of(next);
356 	}
357 
358 	if (entity == st->last_idle) {
359 		next = rb_prev(&entity->rb_node);
360 		st->last_idle = bfq_entity_of(next);
361 	}
362 
363 	bfq_extract(&st->idle, entity);
364 
365 	if (bfqq)
366 		list_del(&bfqq->bfqq_list);
367 }
368 
369 /**
370  * bfq_insert - generic tree insertion.
371  * @root: tree root.
372  * @entity: entity to insert.
373  *
374  * This is used for the idle and the active tree, since they are both
375  * ordered by finish time.
376  */
377 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
378 {
379 	struct bfq_entity *entry;
380 	struct rb_node **node = &root->rb_node;
381 	struct rb_node *parent = NULL;
382 
383 	while (*node) {
384 		parent = *node;
385 		entry = rb_entry(parent, struct bfq_entity, rb_node);
386 
387 		if (bfq_gt(entry->finish, entity->finish))
388 			node = &parent->rb_left;
389 		else
390 			node = &parent->rb_right;
391 	}
392 
393 	rb_link_node(&entity->rb_node, parent, node);
394 	rb_insert_color(&entity->rb_node, root);
395 
396 	entity->tree = root;
397 }
398 
399 /**
400  * bfq_update_min - update the min_start field of a entity.
401  * @entity: the entity to update.
402  * @node: one of its children.
403  *
404  * This function is called when @entity may store an invalid value for
405  * min_start due to updates to the active tree.  The function  assumes
406  * that the subtree rooted at @node (which may be its left or its right
407  * child) has a valid min_start value.
408  */
409 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
410 {
411 	struct bfq_entity *child;
412 
413 	if (node) {
414 		child = rb_entry(node, struct bfq_entity, rb_node);
415 		if (bfq_gt(entity->min_start, child->min_start))
416 			entity->min_start = child->min_start;
417 	}
418 }
419 
420 /**
421  * bfq_update_active_node - recalculate min_start.
422  * @node: the node to update.
423  *
424  * @node may have changed position or one of its children may have moved,
425  * this function updates its min_start value.  The left and right subtrees
426  * are assumed to hold a correct min_start value.
427  */
428 static void bfq_update_active_node(struct rb_node *node)
429 {
430 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
431 
432 	entity->min_start = entity->start;
433 	bfq_update_min(entity, node->rb_right);
434 	bfq_update_min(entity, node->rb_left);
435 }
436 
437 /**
438  * bfq_update_active_tree - update min_start for the whole active tree.
439  * @node: the starting node.
440  *
441  * @node must be the deepest modified node after an update.  This function
442  * updates its min_start using the values held by its children, assuming
443  * that they did not change, and then updates all the nodes that may have
444  * changed in the path to the root.  The only nodes that may have changed
445  * are the ones in the path or their siblings.
446  */
447 static void bfq_update_active_tree(struct rb_node *node)
448 {
449 	struct rb_node *parent;
450 
451 up:
452 	bfq_update_active_node(node);
453 
454 	parent = rb_parent(node);
455 	if (!parent)
456 		return;
457 
458 	if (node == parent->rb_left && parent->rb_right)
459 		bfq_update_active_node(parent->rb_right);
460 	else if (parent->rb_left)
461 		bfq_update_active_node(parent->rb_left);
462 
463 	node = parent;
464 	goto up;
465 }
466 
467 /**
468  * bfq_active_insert - insert an entity in the active tree of its
469  *                     group/device.
470  * @st: the service tree of the entity.
471  * @entity: the entity being inserted.
472  *
473  * The active tree is ordered by finish time, but an extra key is kept
474  * per each node, containing the minimum value for the start times of
475  * its children (and the node itself), so it's possible to search for
476  * the eligible node with the lowest finish time in logarithmic time.
477  */
478 static void bfq_active_insert(struct bfq_service_tree *st,
479 			      struct bfq_entity *entity)
480 {
481 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
482 	struct rb_node *node = &entity->rb_node;
483 #ifdef CONFIG_BFQ_GROUP_IOSCHED
484 	struct bfq_sched_data *sd = NULL;
485 	struct bfq_group *bfqg = NULL;
486 	struct bfq_data *bfqd = NULL;
487 #endif
488 
489 	bfq_insert(&st->active, entity);
490 
491 	if (node->rb_left)
492 		node = node->rb_left;
493 	else if (node->rb_right)
494 		node = node->rb_right;
495 
496 	bfq_update_active_tree(node);
497 
498 #ifdef CONFIG_BFQ_GROUP_IOSCHED
499 	sd = entity->sched_data;
500 	bfqg = container_of(sd, struct bfq_group, sched_data);
501 	bfqd = (struct bfq_data *)bfqg->bfqd;
502 #endif
503 	if (bfqq)
504 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
505 #ifdef CONFIG_BFQ_GROUP_IOSCHED
506 	if (bfqg != bfqd->root_group)
507 		bfqg->active_entities++;
508 #endif
509 }
510 
511 /**
512  * bfq_ioprio_to_weight - calc a weight from an ioprio.
513  * @ioprio: the ioprio value to convert.
514  */
515 unsigned short bfq_ioprio_to_weight(int ioprio)
516 {
517 	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
518 }
519 
520 /**
521  * bfq_weight_to_ioprio - calc an ioprio from a weight.
522  * @weight: the weight value to convert.
523  *
524  * To preserve as much as possible the old only-ioprio user interface,
525  * 0 is used as an escape ioprio value for weights (numerically) equal or
526  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
527  */
528 static unsigned short bfq_weight_to_ioprio(int weight)
529 {
530 	return max_t(int, 0,
531 		     IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
532 }
533 
534 static void bfq_get_entity(struct bfq_entity *entity)
535 {
536 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
537 
538 	if (bfqq) {
539 		bfqq->ref++;
540 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
541 			     bfqq, bfqq->ref);
542 	}
543 }
544 
545 /**
546  * bfq_find_deepest - find the deepest node that an extraction can modify.
547  * @node: the node being removed.
548  *
549  * Do the first step of an extraction in an rb tree, looking for the
550  * node that will replace @node, and returning the deepest node that
551  * the following modifications to the tree can touch.  If @node is the
552  * last node in the tree return %NULL.
553  */
554 static struct rb_node *bfq_find_deepest(struct rb_node *node)
555 {
556 	struct rb_node *deepest;
557 
558 	if (!node->rb_right && !node->rb_left)
559 		deepest = rb_parent(node);
560 	else if (!node->rb_right)
561 		deepest = node->rb_left;
562 	else if (!node->rb_left)
563 		deepest = node->rb_right;
564 	else {
565 		deepest = rb_next(node);
566 		if (deepest->rb_right)
567 			deepest = deepest->rb_right;
568 		else if (rb_parent(deepest) != node)
569 			deepest = rb_parent(deepest);
570 	}
571 
572 	return deepest;
573 }
574 
575 /**
576  * bfq_active_extract - remove an entity from the active tree.
577  * @st: the service_tree containing the tree.
578  * @entity: the entity being removed.
579  */
580 static void bfq_active_extract(struct bfq_service_tree *st,
581 			       struct bfq_entity *entity)
582 {
583 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
584 	struct rb_node *node;
585 #ifdef CONFIG_BFQ_GROUP_IOSCHED
586 	struct bfq_sched_data *sd = NULL;
587 	struct bfq_group *bfqg = NULL;
588 	struct bfq_data *bfqd = NULL;
589 #endif
590 
591 	node = bfq_find_deepest(&entity->rb_node);
592 	bfq_extract(&st->active, entity);
593 
594 	if (node)
595 		bfq_update_active_tree(node);
596 
597 #ifdef CONFIG_BFQ_GROUP_IOSCHED
598 	sd = entity->sched_data;
599 	bfqg = container_of(sd, struct bfq_group, sched_data);
600 	bfqd = (struct bfq_data *)bfqg->bfqd;
601 #endif
602 	if (bfqq)
603 		list_del(&bfqq->bfqq_list);
604 #ifdef CONFIG_BFQ_GROUP_IOSCHED
605 	if (bfqg != bfqd->root_group)
606 		bfqg->active_entities--;
607 #endif
608 }
609 
610 /**
611  * bfq_idle_insert - insert an entity into the idle tree.
612  * @st: the service tree containing the tree.
613  * @entity: the entity to insert.
614  */
615 static void bfq_idle_insert(struct bfq_service_tree *st,
616 			    struct bfq_entity *entity)
617 {
618 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
619 	struct bfq_entity *first_idle = st->first_idle;
620 	struct bfq_entity *last_idle = st->last_idle;
621 
622 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
623 		st->first_idle = entity;
624 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
625 		st->last_idle = entity;
626 
627 	bfq_insert(&st->idle, entity);
628 
629 	if (bfqq)
630 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
631 }
632 
633 /**
634  * bfq_forget_entity - do not consider entity any longer for scheduling
635  * @st: the service tree.
636  * @entity: the entity being removed.
637  * @is_in_service: true if entity is currently the in-service entity.
638  *
639  * Forget everything about @entity. In addition, if entity represents
640  * a queue, and the latter is not in service, then release the service
641  * reference to the queue (the one taken through bfq_get_entity). In
642  * fact, in this case, there is really no more service reference to
643  * the queue, as the latter is also outside any service tree. If,
644  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
645  * will take care of putting the reference when the queue finally
646  * stops being served.
647  */
648 static void bfq_forget_entity(struct bfq_service_tree *st,
649 			      struct bfq_entity *entity,
650 			      bool is_in_service)
651 {
652 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
653 
654 	entity->on_st = false;
655 	st->wsum -= entity->weight;
656 	if (bfqq && !is_in_service)
657 		bfq_put_queue(bfqq);
658 }
659 
660 /**
661  * bfq_put_idle_entity - release the idle tree ref of an entity.
662  * @st: service tree for the entity.
663  * @entity: the entity being released.
664  */
665 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
666 {
667 	bfq_idle_extract(st, entity);
668 	bfq_forget_entity(st, entity,
669 			  entity == entity->sched_data->in_service_entity);
670 }
671 
672 /**
673  * bfq_forget_idle - update the idle tree if necessary.
674  * @st: the service tree to act upon.
675  *
676  * To preserve the global O(log N) complexity we only remove one entry here;
677  * as the idle tree will not grow indefinitely this can be done safely.
678  */
679 static void bfq_forget_idle(struct bfq_service_tree *st)
680 {
681 	struct bfq_entity *first_idle = st->first_idle;
682 	struct bfq_entity *last_idle = st->last_idle;
683 
684 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
685 	    !bfq_gt(last_idle->finish, st->vtime)) {
686 		/*
687 		 * Forget the whole idle tree, increasing the vtime past
688 		 * the last finish time of idle entities.
689 		 */
690 		st->vtime = last_idle->finish;
691 	}
692 
693 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
694 		bfq_put_idle_entity(st, first_idle);
695 }
696 
697 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
698 {
699 	struct bfq_sched_data *sched_data = entity->sched_data;
700 	unsigned int idx = bfq_class_idx(entity);
701 
702 	return sched_data->service_tree + idx;
703 }
704 
705 /*
706  * Update weight and priority of entity. If update_class_too is true,
707  * then update the ioprio_class of entity too.
708  *
709  * The reason why the update of ioprio_class is controlled through the
710  * last parameter is as follows. Changing the ioprio class of an
711  * entity implies changing the destination service trees for that
712  * entity. If such a change occurred when the entity is already on one
713  * of the service trees for its previous class, then the state of the
714  * entity would become more complex: none of the new possible service
715  * trees for the entity, according to bfq_entity_service_tree(), would
716  * match any of the possible service trees on which the entity
717  * is. Complex operations involving these trees, such as entity
718  * activations and deactivations, should take into account this
719  * additional complexity.  To avoid this issue, this function is
720  * invoked with update_class_too unset in the points in the code where
721  * entity may happen to be on some tree.
722  */
723 struct bfq_service_tree *
724 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
725 				struct bfq_entity *entity,
726 				bool update_class_too)
727 {
728 	struct bfq_service_tree *new_st = old_st;
729 
730 	if (entity->prio_changed) {
731 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
732 		unsigned int prev_weight, new_weight;
733 		struct bfq_data *bfqd = NULL;
734 		struct rb_root *root;
735 #ifdef CONFIG_BFQ_GROUP_IOSCHED
736 		struct bfq_sched_data *sd;
737 		struct bfq_group *bfqg;
738 #endif
739 
740 		if (bfqq)
741 			bfqd = bfqq->bfqd;
742 #ifdef CONFIG_BFQ_GROUP_IOSCHED
743 		else {
744 			sd = entity->my_sched_data;
745 			bfqg = container_of(sd, struct bfq_group, sched_data);
746 			bfqd = (struct bfq_data *)bfqg->bfqd;
747 		}
748 #endif
749 
750 		old_st->wsum -= entity->weight;
751 
752 		if (entity->new_weight != entity->orig_weight) {
753 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
754 			    entity->new_weight > BFQ_MAX_WEIGHT) {
755 				pr_crit("update_weight_prio: new_weight %d\n",
756 					entity->new_weight);
757 				if (entity->new_weight < BFQ_MIN_WEIGHT)
758 					entity->new_weight = BFQ_MIN_WEIGHT;
759 				else
760 					entity->new_weight = BFQ_MAX_WEIGHT;
761 			}
762 			entity->orig_weight = entity->new_weight;
763 			if (bfqq)
764 				bfqq->ioprio =
765 				  bfq_weight_to_ioprio(entity->orig_weight);
766 		}
767 
768 		if (bfqq && update_class_too)
769 			bfqq->ioprio_class = bfqq->new_ioprio_class;
770 
771 		/*
772 		 * Reset prio_changed only if the ioprio_class change
773 		 * is not pending any longer.
774 		 */
775 		if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
776 			entity->prio_changed = 0;
777 
778 		/*
779 		 * NOTE: here we may be changing the weight too early,
780 		 * this will cause unfairness.  The correct approach
781 		 * would have required additional complexity to defer
782 		 * weight changes to the proper time instants (i.e.,
783 		 * when entity->finish <= old_st->vtime).
784 		 */
785 		new_st = bfq_entity_service_tree(entity);
786 
787 		prev_weight = entity->weight;
788 		new_weight = entity->orig_weight *
789 			     (bfqq ? bfqq->wr_coeff : 1);
790 		/*
791 		 * If the weight of the entity changes, and the entity is a
792 		 * queue, remove the entity from its old weight counter (if
793 		 * there is a counter associated with the entity).
794 		 */
795 		if (prev_weight != new_weight) {
796 			if (bfqq) {
797 				root = &bfqd->queue_weights_tree;
798 				__bfq_weights_tree_remove(bfqd, bfqq, root);
799 			} else
800 				bfqd->num_active_groups--;
801 		}
802 		entity->weight = new_weight;
803 		/*
804 		 * Add the entity, if it is not a weight-raised queue,
805 		 * to the counter associated with its new weight.
806 		 */
807 		if (prev_weight != new_weight) {
808 			if (bfqq && bfqq->wr_coeff == 1) {
809 				/* If we get here, root has been initialized. */
810 				bfq_weights_tree_add(bfqd, bfqq, root);
811 			} else
812 				bfqd->num_active_groups++;
813 		}
814 
815 		new_st->wsum += entity->weight;
816 
817 		if (new_st != old_st)
818 			entity->start = new_st->vtime;
819 	}
820 
821 	return new_st;
822 }
823 
824 /**
825  * bfq_bfqq_served - update the scheduler status after selection for
826  *                   service.
827  * @bfqq: the queue being served.
828  * @served: bytes to transfer.
829  *
830  * NOTE: this can be optimized, as the timestamps of upper level entities
831  * are synchronized every time a new bfqq is selected for service.  By now,
832  * we keep it to better check consistency.
833  */
834 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
835 {
836 	struct bfq_entity *entity = &bfqq->entity;
837 	struct bfq_service_tree *st;
838 
839 	if (!bfqq->service_from_backlogged)
840 		bfqq->first_IO_time = jiffies;
841 
842 	if (bfqq->wr_coeff > 1)
843 		bfqq->service_from_wr += served;
844 
845 	bfqq->service_from_backlogged += served;
846 	for_each_entity(entity) {
847 		st = bfq_entity_service_tree(entity);
848 
849 		entity->service += served;
850 
851 		st->vtime += bfq_delta(served, st->wsum);
852 		bfq_forget_idle(st);
853 	}
854 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
855 }
856 
857 /**
858  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
859  *			  of the time interval during which bfqq has been in
860  *			  service.
861  * @bfqd: the device
862  * @bfqq: the queue that needs a service update.
863  * @time_ms: the amount of time during which the queue has received service
864  *
865  * If a queue does not consume its budget fast enough, then providing
866  * the queue with service fairness may impair throughput, more or less
867  * severely. For this reason, queues that consume their budget slowly
868  * are provided with time fairness instead of service fairness. This
869  * goal is achieved through the BFQ scheduling engine, even if such an
870  * engine works in the service, and not in the time domain. The trick
871  * is charging these queues with an inflated amount of service, equal
872  * to the amount of service that they would have received during their
873  * service slot if they had been fast, i.e., if their requests had
874  * been dispatched at a rate equal to the estimated peak rate.
875  *
876  * It is worth noting that time fairness can cause important
877  * distortions in terms of bandwidth distribution, on devices with
878  * internal queueing. The reason is that I/O requests dispatched
879  * during the service slot of a queue may be served after that service
880  * slot is finished, and may have a total processing time loosely
881  * correlated with the duration of the service slot. This is
882  * especially true for short service slots.
883  */
884 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
885 			  unsigned long time_ms)
886 {
887 	struct bfq_entity *entity = &bfqq->entity;
888 	unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
889 	unsigned long bounded_time_ms = min(time_ms, timeout_ms);
890 	int serv_to_charge_for_time =
891 		(bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
892 	int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
893 
894 	/* Increase budget to avoid inconsistencies */
895 	if (tot_serv_to_charge > entity->budget)
896 		entity->budget = tot_serv_to_charge;
897 
898 	bfq_bfqq_served(bfqq,
899 			max_t(int, 0, tot_serv_to_charge - entity->service));
900 }
901 
902 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
903 					struct bfq_service_tree *st,
904 					bool backshifted)
905 {
906 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
907 
908 	/*
909 	 * When this function is invoked, entity is not in any service
910 	 * tree, then it is safe to invoke next function with the last
911 	 * parameter set (see the comments on the function).
912 	 */
913 	st = __bfq_entity_update_weight_prio(st, entity, true);
914 	bfq_calc_finish(entity, entity->budget);
915 
916 	/*
917 	 * If some queues enjoy backshifting for a while, then their
918 	 * (virtual) finish timestamps may happen to become lower and
919 	 * lower than the system virtual time.	In particular, if
920 	 * these queues often happen to be idle for short time
921 	 * periods, and during such time periods other queues with
922 	 * higher timestamps happen to be busy, then the backshifted
923 	 * timestamps of the former queues can become much lower than
924 	 * the system virtual time. In fact, to serve the queues with
925 	 * higher timestamps while the ones with lower timestamps are
926 	 * idle, the system virtual time may be pushed-up to much
927 	 * higher values than the finish timestamps of the idle
928 	 * queues. As a consequence, the finish timestamps of all new
929 	 * or newly activated queues may end up being much larger than
930 	 * those of lucky queues with backshifted timestamps. The
931 	 * latter queues may then monopolize the device for a lot of
932 	 * time. This would simply break service guarantees.
933 	 *
934 	 * To reduce this problem, push up a little bit the
935 	 * backshifted timestamps of the queue associated with this
936 	 * entity (only a queue can happen to have the backshifted
937 	 * flag set): just enough to let the finish timestamp of the
938 	 * queue be equal to the current value of the system virtual
939 	 * time. This may introduce a little unfairness among queues
940 	 * with backshifted timestamps, but it does not break
941 	 * worst-case fairness guarantees.
942 	 *
943 	 * As a special case, if bfqq is weight-raised, push up
944 	 * timestamps much less, to keep very low the probability that
945 	 * this push up causes the backshifted finish timestamps of
946 	 * weight-raised queues to become higher than the backshifted
947 	 * finish timestamps of non weight-raised queues.
948 	 */
949 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
950 		unsigned long delta = st->vtime - entity->finish;
951 
952 		if (bfqq)
953 			delta /= bfqq->wr_coeff;
954 
955 		entity->start += delta;
956 		entity->finish += delta;
957 	}
958 
959 	bfq_active_insert(st, entity);
960 }
961 
962 /**
963  * __bfq_activate_entity - handle activation of entity.
964  * @entity: the entity being activated.
965  * @non_blocking_wait_rq: true if entity was waiting for a request
966  *
967  * Called for a 'true' activation, i.e., if entity is not active and
968  * one of its children receives a new request.
969  *
970  * Basically, this function updates the timestamps of entity and
971  * inserts entity into its active tree, after possibly extracting it
972  * from its idle tree.
973  */
974 static void __bfq_activate_entity(struct bfq_entity *entity,
975 				  bool non_blocking_wait_rq)
976 {
977 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
978 	bool backshifted = false;
979 	unsigned long long min_vstart;
980 
981 	/* See comments on bfq_fqq_update_budg_for_activation */
982 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
983 		backshifted = true;
984 		min_vstart = entity->finish;
985 	} else
986 		min_vstart = st->vtime;
987 
988 	if (entity->tree == &st->idle) {
989 		/*
990 		 * Must be on the idle tree, bfq_idle_extract() will
991 		 * check for that.
992 		 */
993 		bfq_idle_extract(st, entity);
994 		entity->start = bfq_gt(min_vstart, entity->finish) ?
995 			min_vstart : entity->finish;
996 	} else {
997 		/*
998 		 * The finish time of the entity may be invalid, and
999 		 * it is in the past for sure, otherwise the queue
1000 		 * would have been on the idle tree.
1001 		 */
1002 		entity->start = min_vstart;
1003 		st->wsum += entity->weight;
1004 		/*
1005 		 * entity is about to be inserted into a service tree,
1006 		 * and then set in service: get a reference to make
1007 		 * sure entity does not disappear until it is no
1008 		 * longer in service or scheduled for service.
1009 		 */
1010 		bfq_get_entity(entity);
1011 
1012 		entity->on_st = true;
1013 	}
1014 
1015 #ifdef BFQ_GROUP_IOSCHED_ENABLED
1016 	if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
1017 		struct bfq_group *bfqg =
1018 			container_of(entity, struct bfq_group, entity);
1019 		struct bfq_data *bfqd = bfqg->bfqd;
1020 
1021 		bfqd->num_active_groups++;
1022 	}
1023 #endif
1024 
1025 	bfq_update_fin_time_enqueue(entity, st, backshifted);
1026 }
1027 
1028 /**
1029  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1030  * @entity: the entity being requeued or repositioned.
1031  *
1032  * Requeueing is needed if this entity stops being served, which
1033  * happens if a leaf descendant entity has expired. On the other hand,
1034  * repositioning is needed if the next_inservice_entity for the child
1035  * entity has changed. See the comments inside the function for
1036  * details.
1037  *
1038  * Basically, this function: 1) removes entity from its active tree if
1039  * present there, 2) updates the timestamps of entity and 3) inserts
1040  * entity back into its active tree (in the new, right position for
1041  * the new values of the timestamps).
1042  */
1043 static void __bfq_requeue_entity(struct bfq_entity *entity)
1044 {
1045 	struct bfq_sched_data *sd = entity->sched_data;
1046 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1047 
1048 	if (entity == sd->in_service_entity) {
1049 		/*
1050 		 * We are requeueing the current in-service entity,
1051 		 * which may have to be done for one of the following
1052 		 * reasons:
1053 		 * - entity represents the in-service queue, and the
1054 		 *   in-service queue is being requeued after an
1055 		 *   expiration;
1056 		 * - entity represents a group, and its budget has
1057 		 *   changed because one of its child entities has
1058 		 *   just been either activated or requeued for some
1059 		 *   reason; the timestamps of the entity need then to
1060 		 *   be updated, and the entity needs to be enqueued
1061 		 *   or repositioned accordingly.
1062 		 *
1063 		 * In particular, before requeueing, the start time of
1064 		 * the entity must be moved forward to account for the
1065 		 * service that the entity has received while in
1066 		 * service. This is done by the next instructions. The
1067 		 * finish time will then be updated according to this
1068 		 * new value of the start time, and to the budget of
1069 		 * the entity.
1070 		 */
1071 		bfq_calc_finish(entity, entity->service);
1072 		entity->start = entity->finish;
1073 		/*
1074 		 * In addition, if the entity had more than one child
1075 		 * when set in service, then it was not extracted from
1076 		 * the active tree. This implies that the position of
1077 		 * the entity in the active tree may need to be
1078 		 * changed now, because we have just updated the start
1079 		 * time of the entity, and we will update its finish
1080 		 * time in a moment (the requeueing is then, more
1081 		 * precisely, a repositioning in this case). To
1082 		 * implement this repositioning, we: 1) dequeue the
1083 		 * entity here, 2) update the finish time and requeue
1084 		 * the entity according to the new timestamps below.
1085 		 */
1086 		if (entity->tree)
1087 			bfq_active_extract(st, entity);
1088 	} else { /* The entity is already active, and not in service */
1089 		/*
1090 		 * In this case, this function gets called only if the
1091 		 * next_in_service entity below this entity has
1092 		 * changed, and this change has caused the budget of
1093 		 * this entity to change, which, finally implies that
1094 		 * the finish time of this entity must be
1095 		 * updated. Such an update may cause the scheduling,
1096 		 * i.e., the position in the active tree, of this
1097 		 * entity to change. We handle this change by: 1)
1098 		 * dequeueing the entity here, 2) updating the finish
1099 		 * time and requeueing the entity according to the new
1100 		 * timestamps below. This is the same approach as the
1101 		 * non-extracted-entity sub-case above.
1102 		 */
1103 		bfq_active_extract(st, entity);
1104 	}
1105 
1106 	bfq_update_fin_time_enqueue(entity, st, false);
1107 }
1108 
1109 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1110 					  struct bfq_sched_data *sd,
1111 					  bool non_blocking_wait_rq)
1112 {
1113 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1114 
1115 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1116 		 /*
1117 		  * in service or already queued on the active tree,
1118 		  * requeue or reposition
1119 		  */
1120 		__bfq_requeue_entity(entity);
1121 	else
1122 		/*
1123 		 * Not in service and not queued on its active tree:
1124 		 * the activity is idle and this is a true activation.
1125 		 */
1126 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1127 }
1128 
1129 
1130 /**
1131  * bfq_activate_requeue_entity - activate or requeue an entity representing a
1132  *				 bfq_queue, and activate, requeue or reposition
1133  *				 all ancestors for which such an update becomes
1134  *				 necessary.
1135  * @entity: the entity to activate.
1136  * @non_blocking_wait_rq: true if this entity was waiting for a request
1137  * @requeue: true if this is a requeue, which implies that bfqq is
1138  *	     being expired; thus ALL its ancestors stop being served and must
1139  *	     therefore be requeued
1140  * @expiration: true if this function is being invoked in the expiration path
1141  *             of the in-service queue
1142  */
1143 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1144 					bool non_blocking_wait_rq,
1145 					bool requeue, bool expiration)
1146 {
1147 	struct bfq_sched_data *sd;
1148 
1149 	for_each_entity(entity) {
1150 		sd = entity->sched_data;
1151 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1152 
1153 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1154 		    !requeue)
1155 			break;
1156 	}
1157 }
1158 
1159 /**
1160  * __bfq_deactivate_entity - deactivate an entity from its service tree.
1161  * @entity: the entity to deactivate.
1162  * @ins_into_idle_tree: if false, the entity will not be put into the
1163  *			idle tree.
1164  *
1165  * Deactivates an entity, independently of its previous state.  Must
1166  * be invoked only if entity is on a service tree. Extracts the entity
1167  * from that tree, and if necessary and allowed, puts it into the idle
1168  * tree.
1169  */
1170 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1171 {
1172 	struct bfq_sched_data *sd = entity->sched_data;
1173 	struct bfq_service_tree *st;
1174 	bool is_in_service;
1175 
1176 	if (!entity->on_st) /* entity never activated, or already inactive */
1177 		return false;
1178 
1179 	/*
1180 	 * If we get here, then entity is active, which implies that
1181 	 * bfq_group_set_parent has already been invoked for the group
1182 	 * represented by entity. Therefore, the field
1183 	 * entity->sched_data has been set, and we can safely use it.
1184 	 */
1185 	st = bfq_entity_service_tree(entity);
1186 	is_in_service = entity == sd->in_service_entity;
1187 
1188 	bfq_calc_finish(entity, entity->service);
1189 
1190 	if (is_in_service)
1191 		sd->in_service_entity = NULL;
1192 	else
1193 		/*
1194 		 * Non in-service entity: nobody will take care of
1195 		 * resetting its service counter on expiration. Do it
1196 		 * now.
1197 		 */
1198 		entity->service = 0;
1199 
1200 	if (entity->tree == &st->active)
1201 		bfq_active_extract(st, entity);
1202 	else if (!is_in_service && entity->tree == &st->idle)
1203 		bfq_idle_extract(st, entity);
1204 
1205 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1206 		bfq_forget_entity(st, entity, is_in_service);
1207 	else
1208 		bfq_idle_insert(st, entity);
1209 
1210 	return true;
1211 }
1212 
1213 /**
1214  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1215  * @entity: the entity to deactivate.
1216  * @ins_into_idle_tree: true if the entity can be put into the idle tree
1217  * @expiration: true if this function is being invoked in the expiration path
1218  *             of the in-service queue
1219  */
1220 static void bfq_deactivate_entity(struct bfq_entity *entity,
1221 				  bool ins_into_idle_tree,
1222 				  bool expiration)
1223 {
1224 	struct bfq_sched_data *sd;
1225 	struct bfq_entity *parent = NULL;
1226 
1227 	for_each_entity_safe(entity, parent) {
1228 		sd = entity->sched_data;
1229 
1230 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1231 			/*
1232 			 * entity is not in any tree any more, so
1233 			 * this deactivation is a no-op, and there is
1234 			 * nothing to change for upper-level entities
1235 			 * (in case of expiration, this can never
1236 			 * happen).
1237 			 */
1238 			return;
1239 		}
1240 
1241 		if (sd->next_in_service == entity)
1242 			/*
1243 			 * entity was the next_in_service entity,
1244 			 * then, since entity has just been
1245 			 * deactivated, a new one must be found.
1246 			 */
1247 			bfq_update_next_in_service(sd, NULL, expiration);
1248 
1249 		if (sd->next_in_service || sd->in_service_entity) {
1250 			/*
1251 			 * The parent entity is still active, because
1252 			 * either next_in_service or in_service_entity
1253 			 * is not NULL. So, no further upwards
1254 			 * deactivation must be performed.  Yet,
1255 			 * next_in_service has changed.	Then the
1256 			 * schedule does need to be updated upwards.
1257 			 *
1258 			 * NOTE If in_service_entity is not NULL, then
1259 			 * next_in_service may happen to be NULL,
1260 			 * although the parent entity is evidently
1261 			 * active. This happens if 1) the entity
1262 			 * pointed by in_service_entity is the only
1263 			 * active entity in the parent entity, and 2)
1264 			 * according to the definition of
1265 			 * next_in_service, the in_service_entity
1266 			 * cannot be considered as
1267 			 * next_in_service. See the comments on the
1268 			 * definition of next_in_service for details.
1269 			 */
1270 			break;
1271 		}
1272 
1273 		/*
1274 		 * If we get here, then the parent is no more
1275 		 * backlogged and we need to propagate the
1276 		 * deactivation upwards. Thus let the loop go on.
1277 		 */
1278 
1279 		/*
1280 		 * Also let parent be queued into the idle tree on
1281 		 * deactivation, to preserve service guarantees, and
1282 		 * assuming that who invoked this function does not
1283 		 * need parent entities too to be removed completely.
1284 		 */
1285 		ins_into_idle_tree = true;
1286 	}
1287 
1288 	/*
1289 	 * If the deactivation loop is fully executed, then there are
1290 	 * no more entities to touch and next loop is not executed at
1291 	 * all. Otherwise, requeue remaining entities if they are
1292 	 * about to stop receiving service, or reposition them if this
1293 	 * is not the case.
1294 	 */
1295 	entity = parent;
1296 	for_each_entity(entity) {
1297 		/*
1298 		 * Invoke __bfq_requeue_entity on entity, even if
1299 		 * already active, to requeue/reposition it in the
1300 		 * active tree (because sd->next_in_service has
1301 		 * changed)
1302 		 */
1303 		__bfq_requeue_entity(entity);
1304 
1305 		sd = entity->sched_data;
1306 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1307 		    !expiration)
1308 			/*
1309 			 * next_in_service unchanged or not causing
1310 			 * any change in entity->parent->sd, and no
1311 			 * requeueing needed for expiration: stop
1312 			 * here.
1313 			 */
1314 			break;
1315 	}
1316 }
1317 
1318 /**
1319  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1320  *                       if needed, to have at least one entity eligible.
1321  * @st: the service tree to act upon.
1322  *
1323  * Assumes that st is not empty.
1324  */
1325 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1326 {
1327 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1328 
1329 	if (bfq_gt(root_entity->min_start, st->vtime))
1330 		return root_entity->min_start;
1331 
1332 	return st->vtime;
1333 }
1334 
1335 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1336 {
1337 	if (new_value > st->vtime) {
1338 		st->vtime = new_value;
1339 		bfq_forget_idle(st);
1340 	}
1341 }
1342 
1343 /**
1344  * bfq_first_active_entity - find the eligible entity with
1345  *                           the smallest finish time
1346  * @st: the service tree to select from.
1347  * @vtime: the system virtual to use as a reference for eligibility
1348  *
1349  * This function searches the first schedulable entity, starting from the
1350  * root of the tree and going on the left every time on this side there is
1351  * a subtree with at least one eligible (start <= vtime) entity. The path on
1352  * the right is followed only if a) the left subtree contains no eligible
1353  * entities and b) no eligible entity has been found yet.
1354  */
1355 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1356 						  u64 vtime)
1357 {
1358 	struct bfq_entity *entry, *first = NULL;
1359 	struct rb_node *node = st->active.rb_node;
1360 
1361 	while (node) {
1362 		entry = rb_entry(node, struct bfq_entity, rb_node);
1363 left:
1364 		if (!bfq_gt(entry->start, vtime))
1365 			first = entry;
1366 
1367 		if (node->rb_left) {
1368 			entry = rb_entry(node->rb_left,
1369 					 struct bfq_entity, rb_node);
1370 			if (!bfq_gt(entry->min_start, vtime)) {
1371 				node = node->rb_left;
1372 				goto left;
1373 			}
1374 		}
1375 		if (first)
1376 			break;
1377 		node = node->rb_right;
1378 	}
1379 
1380 	return first;
1381 }
1382 
1383 /**
1384  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1385  * @st: the service tree.
1386  *
1387  * If there is no in-service entity for the sched_data st belongs to,
1388  * then return the entity that will be set in service if:
1389  * 1) the parent entity this st belongs to is set in service;
1390  * 2) no entity belonging to such parent entity undergoes a state change
1391  * that would influence the timestamps of the entity (e.g., becomes idle,
1392  * becomes backlogged, changes its budget, ...).
1393  *
1394  * In this first case, update the virtual time in @st too (see the
1395  * comments on this update inside the function).
1396  *
1397  * In constrast, if there is an in-service entity, then return the
1398  * entity that would be set in service if not only the above
1399  * conditions, but also the next one held true: the currently
1400  * in-service entity, on expiration,
1401  * 1) gets a finish time equal to the current one, or
1402  * 2) is not eligible any more, or
1403  * 3) is idle.
1404  */
1405 static struct bfq_entity *
1406 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1407 {
1408 	struct bfq_entity *entity;
1409 	u64 new_vtime;
1410 
1411 	if (RB_EMPTY_ROOT(&st->active))
1412 		return NULL;
1413 
1414 	/*
1415 	 * Get the value of the system virtual time for which at
1416 	 * least one entity is eligible.
1417 	 */
1418 	new_vtime = bfq_calc_vtime_jump(st);
1419 
1420 	/*
1421 	 * If there is no in-service entity for the sched_data this
1422 	 * active tree belongs to, then push the system virtual time
1423 	 * up to the value that guarantees that at least one entity is
1424 	 * eligible. If, instead, there is an in-service entity, then
1425 	 * do not make any such update, because there is already an
1426 	 * eligible entity, namely the in-service one (even if the
1427 	 * entity is not on st, because it was extracted when set in
1428 	 * service).
1429 	 */
1430 	if (!in_service)
1431 		bfq_update_vtime(st, new_vtime);
1432 
1433 	entity = bfq_first_active_entity(st, new_vtime);
1434 
1435 	return entity;
1436 }
1437 
1438 /**
1439  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1440  * @sd: the sched_data.
1441  * @expiration: true if we are on the expiration path of the in-service queue
1442  *
1443  * This function is invoked when there has been a change in the trees
1444  * for sd, and we need to know what is the new next entity to serve
1445  * after this change.
1446  */
1447 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1448 						 bool expiration)
1449 {
1450 	struct bfq_service_tree *st = sd->service_tree;
1451 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1452 	struct bfq_entity *entity = NULL;
1453 	int class_idx = 0;
1454 
1455 	/*
1456 	 * Choose from idle class, if needed to guarantee a minimum
1457 	 * bandwidth to this class (and if there is some active entity
1458 	 * in idle class). This should also mitigate
1459 	 * priority-inversion problems in case a low priority task is
1460 	 * holding file system resources.
1461 	 */
1462 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1463 				   BFQ_CL_IDLE_TIMEOUT)) {
1464 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1465 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1466 		/* About to be served if backlogged, or not yet backlogged */
1467 		sd->bfq_class_idle_last_service = jiffies;
1468 	}
1469 
1470 	/*
1471 	 * Find the next entity to serve for the highest-priority
1472 	 * class, unless the idle class needs to be served.
1473 	 */
1474 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1475 		/*
1476 		 * If expiration is true, then bfq_lookup_next_entity
1477 		 * is being invoked as a part of the expiration path
1478 		 * of the in-service queue. In this case, even if
1479 		 * sd->in_service_entity is not NULL,
1480 		 * sd->in_service_entiy at this point is actually not
1481 		 * in service any more, and, if needed, has already
1482 		 * been properly queued or requeued into the right
1483 		 * tree. The reason why sd->in_service_entity is still
1484 		 * not NULL here, even if expiration is true, is that
1485 		 * sd->in_service_entiy is reset as a last step in the
1486 		 * expiration path. So, if expiration is true, tell
1487 		 * __bfq_lookup_next_entity that there is no
1488 		 * sd->in_service_entity.
1489 		 */
1490 		entity = __bfq_lookup_next_entity(st + class_idx,
1491 						  sd->in_service_entity &&
1492 						  !expiration);
1493 
1494 		if (entity)
1495 			break;
1496 	}
1497 
1498 	if (!entity)
1499 		return NULL;
1500 
1501 	return entity;
1502 }
1503 
1504 bool next_queue_may_preempt(struct bfq_data *bfqd)
1505 {
1506 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1507 
1508 	return sd->next_in_service != sd->in_service_entity;
1509 }
1510 
1511 /*
1512  * Get next queue for service.
1513  */
1514 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1515 {
1516 	struct bfq_entity *entity = NULL;
1517 	struct bfq_sched_data *sd;
1518 	struct bfq_queue *bfqq;
1519 
1520 	if (bfqd->busy_queues == 0)
1521 		return NULL;
1522 
1523 	/*
1524 	 * Traverse the path from the root to the leaf entity to
1525 	 * serve. Set in service all the entities visited along the
1526 	 * way.
1527 	 */
1528 	sd = &bfqd->root_group->sched_data;
1529 	for (; sd ; sd = entity->my_sched_data) {
1530 		/*
1531 		 * WARNING. We are about to set the in-service entity
1532 		 * to sd->next_in_service, i.e., to the (cached) value
1533 		 * returned by bfq_lookup_next_entity(sd) the last
1534 		 * time it was invoked, i.e., the last time when the
1535 		 * service order in sd changed as a consequence of the
1536 		 * activation or deactivation of an entity. In this
1537 		 * respect, if we execute bfq_lookup_next_entity(sd)
1538 		 * in this very moment, it may, although with low
1539 		 * probability, yield a different entity than that
1540 		 * pointed to by sd->next_in_service. This rare event
1541 		 * happens in case there was no CLASS_IDLE entity to
1542 		 * serve for sd when bfq_lookup_next_entity(sd) was
1543 		 * invoked for the last time, while there is now one
1544 		 * such entity.
1545 		 *
1546 		 * If the above event happens, then the scheduling of
1547 		 * such entity in CLASS_IDLE is postponed until the
1548 		 * service of the sd->next_in_service entity
1549 		 * finishes. In fact, when the latter is expired,
1550 		 * bfq_lookup_next_entity(sd) gets called again,
1551 		 * exactly to update sd->next_in_service.
1552 		 */
1553 
1554 		/* Make next_in_service entity become in_service_entity */
1555 		entity = sd->next_in_service;
1556 		sd->in_service_entity = entity;
1557 
1558 		/*
1559 		 * If entity is no longer a candidate for next
1560 		 * service, then it must be extracted from its active
1561 		 * tree, so as to make sure that it won't be
1562 		 * considered when computing next_in_service. See the
1563 		 * comments on the function
1564 		 * bfq_no_longer_next_in_service() for details.
1565 		 */
1566 		if (bfq_no_longer_next_in_service(entity))
1567 			bfq_active_extract(bfq_entity_service_tree(entity),
1568 					   entity);
1569 
1570 		/*
1571 		 * Even if entity is not to be extracted according to
1572 		 * the above check, a descendant entity may get
1573 		 * extracted in one of the next iterations of this
1574 		 * loop. Such an event could cause a change in
1575 		 * next_in_service for the level of the descendant
1576 		 * entity, and thus possibly back to this level.
1577 		 *
1578 		 * However, we cannot perform the resulting needed
1579 		 * update of next_in_service for this level before the
1580 		 * end of the whole loop, because, to know which is
1581 		 * the correct next-to-serve candidate entity for each
1582 		 * level, we need first to find the leaf entity to set
1583 		 * in service. In fact, only after we know which is
1584 		 * the next-to-serve leaf entity, we can discover
1585 		 * whether the parent entity of the leaf entity
1586 		 * becomes the next-to-serve, and so on.
1587 		 */
1588 	}
1589 
1590 	bfqq = bfq_entity_to_bfqq(entity);
1591 
1592 	/*
1593 	 * We can finally update all next-to-serve entities along the
1594 	 * path from the leaf entity just set in service to the root.
1595 	 */
1596 	for_each_entity(entity) {
1597 		struct bfq_sched_data *sd = entity->sched_data;
1598 
1599 		if (!bfq_update_next_in_service(sd, NULL, false))
1600 			break;
1601 	}
1602 
1603 	return bfqq;
1604 }
1605 
1606 void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1607 {
1608 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1609 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1610 	struct bfq_entity *entity = in_serv_entity;
1611 
1612 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1613 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1614 	bfqd->in_service_queue = NULL;
1615 
1616 	/*
1617 	 * When this function is called, all in-service entities have
1618 	 * been properly deactivated or requeued, so we can safely
1619 	 * execute the final step: reset in_service_entity along the
1620 	 * path from entity to the root.
1621 	 */
1622 	for_each_entity(entity)
1623 		entity->sched_data->in_service_entity = NULL;
1624 
1625 	/*
1626 	 * in_serv_entity is no longer in service, so, if it is in no
1627 	 * service tree either, then release the service reference to
1628 	 * the queue it represents (taken with bfq_get_entity).
1629 	 */
1630 	if (!in_serv_entity->on_st)
1631 		bfq_put_queue(in_serv_bfqq);
1632 }
1633 
1634 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1635 			 bool ins_into_idle_tree, bool expiration)
1636 {
1637 	struct bfq_entity *entity = &bfqq->entity;
1638 
1639 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1640 }
1641 
1642 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1643 {
1644 	struct bfq_entity *entity = &bfqq->entity;
1645 
1646 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1647 				    false, false);
1648 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1649 }
1650 
1651 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1652 		      bool expiration)
1653 {
1654 	struct bfq_entity *entity = &bfqq->entity;
1655 
1656 	bfq_activate_requeue_entity(entity, false,
1657 				    bfqq == bfqd->in_service_queue, expiration);
1658 }
1659 
1660 /*
1661  * Called when the bfqq no longer has requests pending, remove it from
1662  * the service tree. As a special case, it can be invoked during an
1663  * expiration.
1664  */
1665 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1666 		       bool expiration)
1667 {
1668 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1669 
1670 	bfq_clear_bfqq_busy(bfqq);
1671 
1672 	bfqd->busy_queues--;
1673 
1674 	if (!bfqq->dispatched)
1675 		bfq_weights_tree_remove(bfqd, bfqq);
1676 
1677 	if (bfqq->wr_coeff > 1)
1678 		bfqd->wr_busy_queues--;
1679 
1680 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1681 
1682 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1683 }
1684 
1685 /*
1686  * Called when an inactive queue receives a new request.
1687  */
1688 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1689 {
1690 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1691 
1692 	bfq_activate_bfqq(bfqd, bfqq);
1693 
1694 	bfq_mark_bfqq_busy(bfqq);
1695 	bfqd->busy_queues++;
1696 
1697 	if (!bfqq->dispatched)
1698 		if (bfqq->wr_coeff == 1)
1699 			bfq_weights_tree_add(bfqd, bfqq,
1700 					     &bfqd->queue_weights_tree);
1701 
1702 	if (bfqq->wr_coeff > 1)
1703 		bfqd->wr_busy_queues++;
1704 }
1705