xref: /linux/block/bfq-wf2q.c (revision 905e46acd3272d04566fec49afbd7ad9e2ed9ae3)
1 /*
2  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
3  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
4  * scheduler schedules generic entities. The latter can represent
5  * either single bfq queues (associated with processes) or groups of
6  * bfq queues (associated with cgroups).
7  *
8  *  This program is free software; you can redistribute it and/or
9  *  modify it under the terms of the GNU General Public License as
10  *  published by the Free Software Foundation; either version 2 of the
11  *  License, or (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  */
18 #include "bfq-iosched.h"
19 
20 /**
21  * bfq_gt - compare two timestamps.
22  * @a: first ts.
23  * @b: second ts.
24  *
25  * Return @a > @b, dealing with wrapping correctly.
26  */
27 static int bfq_gt(u64 a, u64 b)
28 {
29 	return (s64)(a - b) > 0;
30 }
31 
32 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
33 {
34 	struct rb_node *node = tree->rb_node;
35 
36 	return rb_entry(node, struct bfq_entity, rb_node);
37 }
38 
39 static unsigned int bfq_class_idx(struct bfq_entity *entity)
40 {
41 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
42 
43 	return bfqq ? bfqq->ioprio_class - 1 :
44 		BFQ_DEFAULT_GRP_CLASS - 1;
45 }
46 
47 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd);
48 
49 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
50 
51 /**
52  * bfq_update_next_in_service - update sd->next_in_service
53  * @sd: sched_data for which to perform the update.
54  * @new_entity: if not NULL, pointer to the entity whose activation,
55  *		requeueing or repositionig triggered the invocation of
56  *		this function.
57  *
58  * This function is called to update sd->next_in_service, which, in
59  * its turn, may change as a consequence of the insertion or
60  * extraction of an entity into/from one of the active trees of
61  * sd. These insertions/extractions occur as a consequence of
62  * activations/deactivations of entities, with some activations being
63  * 'true' activations, and other activations being requeueings (i.e.,
64  * implementing the second, requeueing phase of the mechanism used to
65  * reposition an entity in its active tree; see comments on
66  * __bfq_activate_entity and __bfq_requeue_entity for details). In
67  * both the last two activation sub-cases, new_entity points to the
68  * just activated or requeued entity.
69  *
70  * Returns true if sd->next_in_service changes in such a way that
71  * entity->parent may become the next_in_service for its parent
72  * entity.
73  */
74 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
75 				       struct bfq_entity *new_entity)
76 {
77 	struct bfq_entity *next_in_service = sd->next_in_service;
78 	bool parent_sched_may_change = false;
79 
80 	/*
81 	 * If this update is triggered by the activation, requeueing
82 	 * or repositiong of an entity that does not coincide with
83 	 * sd->next_in_service, then a full lookup in the active tree
84 	 * can be avoided. In fact, it is enough to check whether the
85 	 * just-modified entity has a higher priority than
86 	 * sd->next_in_service, or, even if it has the same priority
87 	 * as sd->next_in_service, is eligible and has a lower virtual
88 	 * finish time than sd->next_in_service. If this compound
89 	 * condition holds, then the new entity becomes the new
90 	 * next_in_service. Otherwise no change is needed.
91 	 */
92 	if (new_entity && new_entity != sd->next_in_service) {
93 		/*
94 		 * Flag used to decide whether to replace
95 		 * sd->next_in_service with new_entity. Tentatively
96 		 * set to true, and left as true if
97 		 * sd->next_in_service is NULL.
98 		 */
99 		bool replace_next = true;
100 
101 		/*
102 		 * If there is already a next_in_service candidate
103 		 * entity, then compare class priorities or timestamps
104 		 * to decide whether to replace sd->service_tree with
105 		 * new_entity.
106 		 */
107 		if (next_in_service) {
108 			unsigned int new_entity_class_idx =
109 				bfq_class_idx(new_entity);
110 			struct bfq_service_tree *st =
111 				sd->service_tree + new_entity_class_idx;
112 
113 			/*
114 			 * For efficiency, evaluate the most likely
115 			 * sub-condition first.
116 			 */
117 			replace_next =
118 				(new_entity_class_idx ==
119 				 bfq_class_idx(next_in_service)
120 				 &&
121 				 !bfq_gt(new_entity->start, st->vtime)
122 				 &&
123 				 bfq_gt(next_in_service->finish,
124 					new_entity->finish))
125 				||
126 				new_entity_class_idx <
127 				bfq_class_idx(next_in_service);
128 		}
129 
130 		if (replace_next)
131 			next_in_service = new_entity;
132 	} else /* invoked because of a deactivation: lookup needed */
133 		next_in_service = bfq_lookup_next_entity(sd);
134 
135 	if (next_in_service) {
136 		parent_sched_may_change = !sd->next_in_service ||
137 			bfq_update_parent_budget(next_in_service);
138 	}
139 
140 	sd->next_in_service = next_in_service;
141 
142 	if (!next_in_service)
143 		return parent_sched_may_change;
144 
145 	return parent_sched_may_change;
146 }
147 
148 #ifdef CONFIG_BFQ_GROUP_IOSCHED
149 
150 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
151 {
152 	struct bfq_entity *group_entity = bfqq->entity.parent;
153 
154 	if (!group_entity)
155 		group_entity = &bfqq->bfqd->root_group->entity;
156 
157 	return container_of(group_entity, struct bfq_group, entity);
158 }
159 
160 /*
161  * Returns true if this budget changes may let next_in_service->parent
162  * become the next_in_service entity for its parent entity.
163  */
164 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
165 {
166 	struct bfq_entity *bfqg_entity;
167 	struct bfq_group *bfqg;
168 	struct bfq_sched_data *group_sd;
169 	bool ret = false;
170 
171 	group_sd = next_in_service->sched_data;
172 
173 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
174 	/*
175 	 * bfq_group's my_entity field is not NULL only if the group
176 	 * is not the root group. We must not touch the root entity
177 	 * as it must never become an in-service entity.
178 	 */
179 	bfqg_entity = bfqg->my_entity;
180 	if (bfqg_entity) {
181 		if (bfqg_entity->budget > next_in_service->budget)
182 			ret = true;
183 		bfqg_entity->budget = next_in_service->budget;
184 	}
185 
186 	return ret;
187 }
188 
189 /*
190  * This function tells whether entity stops being a candidate for next
191  * service, according to the following logic.
192  *
193  * This function is invoked for an entity that is about to be set in
194  * service. If such an entity is a queue, then the entity is no longer
195  * a candidate for next service (i.e, a candidate entity to serve
196  * after the in-service entity is expired). The function then returns
197  * true.
198  *
199  * In contrast, the entity could stil be a candidate for next service
200  * if it is not a queue, and has more than one child. In fact, even if
201  * one of its children is about to be set in service, other children
202  * may still be the next to serve. As a consequence, a non-queue
203  * entity is not a candidate for next-service only if it has only one
204  * child. And only if this condition holds, then the function returns
205  * true for a non-queue entity.
206  */
207 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
208 {
209 	struct bfq_group *bfqg;
210 
211 	if (bfq_entity_to_bfqq(entity))
212 		return true;
213 
214 	bfqg = container_of(entity, struct bfq_group, entity);
215 
216 	if (bfqg->active_entities == 1)
217 		return true;
218 
219 	return false;
220 }
221 
222 #else /* CONFIG_BFQ_GROUP_IOSCHED */
223 
224 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
225 {
226 	return bfqq->bfqd->root_group;
227 }
228 
229 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
230 {
231 	return false;
232 }
233 
234 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
235 {
236 	return true;
237 }
238 
239 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
240 
241 /*
242  * Shift for timestamp calculations.  This actually limits the maximum
243  * service allowed in one timestamp delta (small shift values increase it),
244  * the maximum total weight that can be used for the queues in the system
245  * (big shift values increase it), and the period of virtual time
246  * wraparounds.
247  */
248 #define WFQ_SERVICE_SHIFT	22
249 
250 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
251 {
252 	struct bfq_queue *bfqq = NULL;
253 
254 	if (!entity->my_sched_data)
255 		bfqq = container_of(entity, struct bfq_queue, entity);
256 
257 	return bfqq;
258 }
259 
260 
261 /**
262  * bfq_delta - map service into the virtual time domain.
263  * @service: amount of service.
264  * @weight: scale factor (weight of an entity or weight sum).
265  */
266 static u64 bfq_delta(unsigned long service, unsigned long weight)
267 {
268 	u64 d = (u64)service << WFQ_SERVICE_SHIFT;
269 
270 	do_div(d, weight);
271 	return d;
272 }
273 
274 /**
275  * bfq_calc_finish - assign the finish time to an entity.
276  * @entity: the entity to act upon.
277  * @service: the service to be charged to the entity.
278  */
279 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
280 {
281 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
282 
283 	entity->finish = entity->start +
284 		bfq_delta(service, entity->weight);
285 
286 	if (bfqq) {
287 		bfq_log_bfqq(bfqq->bfqd, bfqq,
288 			"calc_finish: serv %lu, w %d",
289 			service, entity->weight);
290 		bfq_log_bfqq(bfqq->bfqd, bfqq,
291 			"calc_finish: start %llu, finish %llu, delta %llu",
292 			entity->start, entity->finish,
293 			bfq_delta(service, entity->weight));
294 	}
295 }
296 
297 /**
298  * bfq_entity_of - get an entity from a node.
299  * @node: the node field of the entity.
300  *
301  * Convert a node pointer to the relative entity.  This is used only
302  * to simplify the logic of some functions and not as the generic
303  * conversion mechanism because, e.g., in the tree walking functions,
304  * the check for a %NULL value would be redundant.
305  */
306 struct bfq_entity *bfq_entity_of(struct rb_node *node)
307 {
308 	struct bfq_entity *entity = NULL;
309 
310 	if (node)
311 		entity = rb_entry(node, struct bfq_entity, rb_node);
312 
313 	return entity;
314 }
315 
316 /**
317  * bfq_extract - remove an entity from a tree.
318  * @root: the tree root.
319  * @entity: the entity to remove.
320  */
321 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
322 {
323 	entity->tree = NULL;
324 	rb_erase(&entity->rb_node, root);
325 }
326 
327 /**
328  * bfq_idle_extract - extract an entity from the idle tree.
329  * @st: the service tree of the owning @entity.
330  * @entity: the entity being removed.
331  */
332 static void bfq_idle_extract(struct bfq_service_tree *st,
333 			     struct bfq_entity *entity)
334 {
335 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
336 	struct rb_node *next;
337 
338 	if (entity == st->first_idle) {
339 		next = rb_next(&entity->rb_node);
340 		st->first_idle = bfq_entity_of(next);
341 	}
342 
343 	if (entity == st->last_idle) {
344 		next = rb_prev(&entity->rb_node);
345 		st->last_idle = bfq_entity_of(next);
346 	}
347 
348 	bfq_extract(&st->idle, entity);
349 
350 	if (bfqq)
351 		list_del(&bfqq->bfqq_list);
352 }
353 
354 /**
355  * bfq_insert - generic tree insertion.
356  * @root: tree root.
357  * @entity: entity to insert.
358  *
359  * This is used for the idle and the active tree, since they are both
360  * ordered by finish time.
361  */
362 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
363 {
364 	struct bfq_entity *entry;
365 	struct rb_node **node = &root->rb_node;
366 	struct rb_node *parent = NULL;
367 
368 	while (*node) {
369 		parent = *node;
370 		entry = rb_entry(parent, struct bfq_entity, rb_node);
371 
372 		if (bfq_gt(entry->finish, entity->finish))
373 			node = &parent->rb_left;
374 		else
375 			node = &parent->rb_right;
376 	}
377 
378 	rb_link_node(&entity->rb_node, parent, node);
379 	rb_insert_color(&entity->rb_node, root);
380 
381 	entity->tree = root;
382 }
383 
384 /**
385  * bfq_update_min - update the min_start field of a entity.
386  * @entity: the entity to update.
387  * @node: one of its children.
388  *
389  * This function is called when @entity may store an invalid value for
390  * min_start due to updates to the active tree.  The function  assumes
391  * that the subtree rooted at @node (which may be its left or its right
392  * child) has a valid min_start value.
393  */
394 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
395 {
396 	struct bfq_entity *child;
397 
398 	if (node) {
399 		child = rb_entry(node, struct bfq_entity, rb_node);
400 		if (bfq_gt(entity->min_start, child->min_start))
401 			entity->min_start = child->min_start;
402 	}
403 }
404 
405 /**
406  * bfq_update_active_node - recalculate min_start.
407  * @node: the node to update.
408  *
409  * @node may have changed position or one of its children may have moved,
410  * this function updates its min_start value.  The left and right subtrees
411  * are assumed to hold a correct min_start value.
412  */
413 static void bfq_update_active_node(struct rb_node *node)
414 {
415 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
416 
417 	entity->min_start = entity->start;
418 	bfq_update_min(entity, node->rb_right);
419 	bfq_update_min(entity, node->rb_left);
420 }
421 
422 /**
423  * bfq_update_active_tree - update min_start for the whole active tree.
424  * @node: the starting node.
425  *
426  * @node must be the deepest modified node after an update.  This function
427  * updates its min_start using the values held by its children, assuming
428  * that they did not change, and then updates all the nodes that may have
429  * changed in the path to the root.  The only nodes that may have changed
430  * are the ones in the path or their siblings.
431  */
432 static void bfq_update_active_tree(struct rb_node *node)
433 {
434 	struct rb_node *parent;
435 
436 up:
437 	bfq_update_active_node(node);
438 
439 	parent = rb_parent(node);
440 	if (!parent)
441 		return;
442 
443 	if (node == parent->rb_left && parent->rb_right)
444 		bfq_update_active_node(parent->rb_right);
445 	else if (parent->rb_left)
446 		bfq_update_active_node(parent->rb_left);
447 
448 	node = parent;
449 	goto up;
450 }
451 
452 /**
453  * bfq_active_insert - insert an entity in the active tree of its
454  *                     group/device.
455  * @st: the service tree of the entity.
456  * @entity: the entity being inserted.
457  *
458  * The active tree is ordered by finish time, but an extra key is kept
459  * per each node, containing the minimum value for the start times of
460  * its children (and the node itself), so it's possible to search for
461  * the eligible node with the lowest finish time in logarithmic time.
462  */
463 static void bfq_active_insert(struct bfq_service_tree *st,
464 			      struct bfq_entity *entity)
465 {
466 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
467 	struct rb_node *node = &entity->rb_node;
468 #ifdef CONFIG_BFQ_GROUP_IOSCHED
469 	struct bfq_sched_data *sd = NULL;
470 	struct bfq_group *bfqg = NULL;
471 	struct bfq_data *bfqd = NULL;
472 #endif
473 
474 	bfq_insert(&st->active, entity);
475 
476 	if (node->rb_left)
477 		node = node->rb_left;
478 	else if (node->rb_right)
479 		node = node->rb_right;
480 
481 	bfq_update_active_tree(node);
482 
483 #ifdef CONFIG_BFQ_GROUP_IOSCHED
484 	sd = entity->sched_data;
485 	bfqg = container_of(sd, struct bfq_group, sched_data);
486 	bfqd = (struct bfq_data *)bfqg->bfqd;
487 #endif
488 	if (bfqq)
489 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
490 #ifdef CONFIG_BFQ_GROUP_IOSCHED
491 	else /* bfq_group */
492 		bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree);
493 
494 	if (bfqg != bfqd->root_group)
495 		bfqg->active_entities++;
496 #endif
497 }
498 
499 /**
500  * bfq_ioprio_to_weight - calc a weight from an ioprio.
501  * @ioprio: the ioprio value to convert.
502  */
503 unsigned short bfq_ioprio_to_weight(int ioprio)
504 {
505 	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
506 }
507 
508 /**
509  * bfq_weight_to_ioprio - calc an ioprio from a weight.
510  * @weight: the weight value to convert.
511  *
512  * To preserve as much as possible the old only-ioprio user interface,
513  * 0 is used as an escape ioprio value for weights (numerically) equal or
514  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
515  */
516 static unsigned short bfq_weight_to_ioprio(int weight)
517 {
518 	return max_t(int, 0,
519 		     IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
520 }
521 
522 static void bfq_get_entity(struct bfq_entity *entity)
523 {
524 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
525 
526 	if (bfqq) {
527 		bfqq->ref++;
528 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
529 			     bfqq, bfqq->ref);
530 	}
531 }
532 
533 /**
534  * bfq_find_deepest - find the deepest node that an extraction can modify.
535  * @node: the node being removed.
536  *
537  * Do the first step of an extraction in an rb tree, looking for the
538  * node that will replace @node, and returning the deepest node that
539  * the following modifications to the tree can touch.  If @node is the
540  * last node in the tree return %NULL.
541  */
542 static struct rb_node *bfq_find_deepest(struct rb_node *node)
543 {
544 	struct rb_node *deepest;
545 
546 	if (!node->rb_right && !node->rb_left)
547 		deepest = rb_parent(node);
548 	else if (!node->rb_right)
549 		deepest = node->rb_left;
550 	else if (!node->rb_left)
551 		deepest = node->rb_right;
552 	else {
553 		deepest = rb_next(node);
554 		if (deepest->rb_right)
555 			deepest = deepest->rb_right;
556 		else if (rb_parent(deepest) != node)
557 			deepest = rb_parent(deepest);
558 	}
559 
560 	return deepest;
561 }
562 
563 /**
564  * bfq_active_extract - remove an entity from the active tree.
565  * @st: the service_tree containing the tree.
566  * @entity: the entity being removed.
567  */
568 static void bfq_active_extract(struct bfq_service_tree *st,
569 			       struct bfq_entity *entity)
570 {
571 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
572 	struct rb_node *node;
573 #ifdef CONFIG_BFQ_GROUP_IOSCHED
574 	struct bfq_sched_data *sd = NULL;
575 	struct bfq_group *bfqg = NULL;
576 	struct bfq_data *bfqd = NULL;
577 #endif
578 
579 	node = bfq_find_deepest(&entity->rb_node);
580 	bfq_extract(&st->active, entity);
581 
582 	if (node)
583 		bfq_update_active_tree(node);
584 
585 #ifdef CONFIG_BFQ_GROUP_IOSCHED
586 	sd = entity->sched_data;
587 	bfqg = container_of(sd, struct bfq_group, sched_data);
588 	bfqd = (struct bfq_data *)bfqg->bfqd;
589 #endif
590 	if (bfqq)
591 		list_del(&bfqq->bfqq_list);
592 #ifdef CONFIG_BFQ_GROUP_IOSCHED
593 	else /* bfq_group */
594 		bfq_weights_tree_remove(bfqd, entity,
595 					&bfqd->group_weights_tree);
596 
597 	if (bfqg != bfqd->root_group)
598 		bfqg->active_entities--;
599 #endif
600 }
601 
602 /**
603  * bfq_idle_insert - insert an entity into the idle tree.
604  * @st: the service tree containing the tree.
605  * @entity: the entity to insert.
606  */
607 static void bfq_idle_insert(struct bfq_service_tree *st,
608 			    struct bfq_entity *entity)
609 {
610 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
611 	struct bfq_entity *first_idle = st->first_idle;
612 	struct bfq_entity *last_idle = st->last_idle;
613 
614 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
615 		st->first_idle = entity;
616 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
617 		st->last_idle = entity;
618 
619 	bfq_insert(&st->idle, entity);
620 
621 	if (bfqq)
622 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
623 }
624 
625 /**
626  * bfq_forget_entity - do not consider entity any longer for scheduling
627  * @st: the service tree.
628  * @entity: the entity being removed.
629  * @is_in_service: true if entity is currently the in-service entity.
630  *
631  * Forget everything about @entity. In addition, if entity represents
632  * a queue, and the latter is not in service, then release the service
633  * reference to the queue (the one taken through bfq_get_entity). In
634  * fact, in this case, there is really no more service reference to
635  * the queue, as the latter is also outside any service tree. If,
636  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
637  * will take care of putting the reference when the queue finally
638  * stops being served.
639  */
640 static void bfq_forget_entity(struct bfq_service_tree *st,
641 			      struct bfq_entity *entity,
642 			      bool is_in_service)
643 {
644 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
645 
646 	entity->on_st = false;
647 	st->wsum -= entity->weight;
648 	if (bfqq && !is_in_service)
649 		bfq_put_queue(bfqq);
650 }
651 
652 /**
653  * bfq_put_idle_entity - release the idle tree ref of an entity.
654  * @st: service tree for the entity.
655  * @entity: the entity being released.
656  */
657 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
658 {
659 	bfq_idle_extract(st, entity);
660 	bfq_forget_entity(st, entity,
661 			  entity == entity->sched_data->in_service_entity);
662 }
663 
664 /**
665  * bfq_forget_idle - update the idle tree if necessary.
666  * @st: the service tree to act upon.
667  *
668  * To preserve the global O(log N) complexity we only remove one entry here;
669  * as the idle tree will not grow indefinitely this can be done safely.
670  */
671 static void bfq_forget_idle(struct bfq_service_tree *st)
672 {
673 	struct bfq_entity *first_idle = st->first_idle;
674 	struct bfq_entity *last_idle = st->last_idle;
675 
676 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
677 	    !bfq_gt(last_idle->finish, st->vtime)) {
678 		/*
679 		 * Forget the whole idle tree, increasing the vtime past
680 		 * the last finish time of idle entities.
681 		 */
682 		st->vtime = last_idle->finish;
683 	}
684 
685 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
686 		bfq_put_idle_entity(st, first_idle);
687 }
688 
689 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
690 {
691 	struct bfq_sched_data *sched_data = entity->sched_data;
692 	unsigned int idx = bfq_class_idx(entity);
693 
694 	return sched_data->service_tree + idx;
695 }
696 
697 
698 struct bfq_service_tree *
699 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
700 				struct bfq_entity *entity)
701 {
702 	struct bfq_service_tree *new_st = old_st;
703 
704 	if (entity->prio_changed) {
705 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
706 		unsigned int prev_weight, new_weight;
707 		struct bfq_data *bfqd = NULL;
708 		struct rb_root *root;
709 #ifdef CONFIG_BFQ_GROUP_IOSCHED
710 		struct bfq_sched_data *sd;
711 		struct bfq_group *bfqg;
712 #endif
713 
714 		if (bfqq)
715 			bfqd = bfqq->bfqd;
716 #ifdef CONFIG_BFQ_GROUP_IOSCHED
717 		else {
718 			sd = entity->my_sched_data;
719 			bfqg = container_of(sd, struct bfq_group, sched_data);
720 			bfqd = (struct bfq_data *)bfqg->bfqd;
721 		}
722 #endif
723 
724 		old_st->wsum -= entity->weight;
725 
726 		if (entity->new_weight != entity->orig_weight) {
727 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
728 			    entity->new_weight > BFQ_MAX_WEIGHT) {
729 				pr_crit("update_weight_prio: new_weight %d\n",
730 					entity->new_weight);
731 				if (entity->new_weight < BFQ_MIN_WEIGHT)
732 					entity->new_weight = BFQ_MIN_WEIGHT;
733 				else
734 					entity->new_weight = BFQ_MAX_WEIGHT;
735 			}
736 			entity->orig_weight = entity->new_weight;
737 			if (bfqq)
738 				bfqq->ioprio =
739 				  bfq_weight_to_ioprio(entity->orig_weight);
740 		}
741 
742 		if (bfqq)
743 			bfqq->ioprio_class = bfqq->new_ioprio_class;
744 		entity->prio_changed = 0;
745 
746 		/*
747 		 * NOTE: here we may be changing the weight too early,
748 		 * this will cause unfairness.  The correct approach
749 		 * would have required additional complexity to defer
750 		 * weight changes to the proper time instants (i.e.,
751 		 * when entity->finish <= old_st->vtime).
752 		 */
753 		new_st = bfq_entity_service_tree(entity);
754 
755 		prev_weight = entity->weight;
756 		new_weight = entity->orig_weight *
757 			     (bfqq ? bfqq->wr_coeff : 1);
758 		/*
759 		 * If the weight of the entity changes, remove the entity
760 		 * from its old weight counter (if there is a counter
761 		 * associated with the entity), and add it to the counter
762 		 * associated with its new weight.
763 		 */
764 		if (prev_weight != new_weight) {
765 			root = bfqq ? &bfqd->queue_weights_tree :
766 				      &bfqd->group_weights_tree;
767 			bfq_weights_tree_remove(bfqd, entity, root);
768 		}
769 		entity->weight = new_weight;
770 		/*
771 		 * Add the entity to its weights tree only if it is
772 		 * not associated with a weight-raised queue.
773 		 */
774 		if (prev_weight != new_weight &&
775 		    (bfqq ? bfqq->wr_coeff == 1 : 1))
776 			/* If we get here, root has been initialized. */
777 			bfq_weights_tree_add(bfqd, entity, root);
778 
779 		new_st->wsum += entity->weight;
780 
781 		if (new_st != old_st)
782 			entity->start = new_st->vtime;
783 	}
784 
785 	return new_st;
786 }
787 
788 /**
789  * bfq_bfqq_served - update the scheduler status after selection for
790  *                   service.
791  * @bfqq: the queue being served.
792  * @served: bytes to transfer.
793  *
794  * NOTE: this can be optimized, as the timestamps of upper level entities
795  * are synchronized every time a new bfqq is selected for service.  By now,
796  * we keep it to better check consistency.
797  */
798 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
799 {
800 	struct bfq_entity *entity = &bfqq->entity;
801 	struct bfq_service_tree *st;
802 
803 	for_each_entity(entity) {
804 		st = bfq_entity_service_tree(entity);
805 
806 		entity->service += served;
807 
808 		st->vtime += bfq_delta(served, st->wsum);
809 		bfq_forget_idle(st);
810 	}
811 	bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
812 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
813 }
814 
815 /**
816  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
817  *			  of the time interval during which bfqq has been in
818  *			  service.
819  * @bfqd: the device
820  * @bfqq: the queue that needs a service update.
821  * @time_ms: the amount of time during which the queue has received service
822  *
823  * If a queue does not consume its budget fast enough, then providing
824  * the queue with service fairness may impair throughput, more or less
825  * severely. For this reason, queues that consume their budget slowly
826  * are provided with time fairness instead of service fairness. This
827  * goal is achieved through the BFQ scheduling engine, even if such an
828  * engine works in the service, and not in the time domain. The trick
829  * is charging these queues with an inflated amount of service, equal
830  * to the amount of service that they would have received during their
831  * service slot if they had been fast, i.e., if their requests had
832  * been dispatched at a rate equal to the estimated peak rate.
833  *
834  * It is worth noting that time fairness can cause important
835  * distortions in terms of bandwidth distribution, on devices with
836  * internal queueing. The reason is that I/O requests dispatched
837  * during the service slot of a queue may be served after that service
838  * slot is finished, and may have a total processing time loosely
839  * correlated with the duration of the service slot. This is
840  * especially true for short service slots.
841  */
842 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
843 			  unsigned long time_ms)
844 {
845 	struct bfq_entity *entity = &bfqq->entity;
846 	int tot_serv_to_charge = entity->service;
847 	unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
848 
849 	if (time_ms > 0 && time_ms < timeout_ms)
850 		tot_serv_to_charge =
851 			(bfqd->bfq_max_budget * time_ms) / timeout_ms;
852 
853 	if (tot_serv_to_charge < entity->service)
854 		tot_serv_to_charge = entity->service;
855 
856 	/* Increase budget to avoid inconsistencies */
857 	if (tot_serv_to_charge > entity->budget)
858 		entity->budget = tot_serv_to_charge;
859 
860 	bfq_bfqq_served(bfqq,
861 			max_t(int, 0, tot_serv_to_charge - entity->service));
862 }
863 
864 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
865 					struct bfq_service_tree *st,
866 					bool backshifted)
867 {
868 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
869 
870 	st = __bfq_entity_update_weight_prio(st, entity);
871 	bfq_calc_finish(entity, entity->budget);
872 
873 	/*
874 	 * If some queues enjoy backshifting for a while, then their
875 	 * (virtual) finish timestamps may happen to become lower and
876 	 * lower than the system virtual time.	In particular, if
877 	 * these queues often happen to be idle for short time
878 	 * periods, and during such time periods other queues with
879 	 * higher timestamps happen to be busy, then the backshifted
880 	 * timestamps of the former queues can become much lower than
881 	 * the system virtual time. In fact, to serve the queues with
882 	 * higher timestamps while the ones with lower timestamps are
883 	 * idle, the system virtual time may be pushed-up to much
884 	 * higher values than the finish timestamps of the idle
885 	 * queues. As a consequence, the finish timestamps of all new
886 	 * or newly activated queues may end up being much larger than
887 	 * those of lucky queues with backshifted timestamps. The
888 	 * latter queues may then monopolize the device for a lot of
889 	 * time. This would simply break service guarantees.
890 	 *
891 	 * To reduce this problem, push up a little bit the
892 	 * backshifted timestamps of the queue associated with this
893 	 * entity (only a queue can happen to have the backshifted
894 	 * flag set): just enough to let the finish timestamp of the
895 	 * queue be equal to the current value of the system virtual
896 	 * time. This may introduce a little unfairness among queues
897 	 * with backshifted timestamps, but it does not break
898 	 * worst-case fairness guarantees.
899 	 *
900 	 * As a special case, if bfqq is weight-raised, push up
901 	 * timestamps much less, to keep very low the probability that
902 	 * this push up causes the backshifted finish timestamps of
903 	 * weight-raised queues to become higher than the backshifted
904 	 * finish timestamps of non weight-raised queues.
905 	 */
906 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
907 		unsigned long delta = st->vtime - entity->finish;
908 
909 		if (bfqq)
910 			delta /= bfqq->wr_coeff;
911 
912 		entity->start += delta;
913 		entity->finish += delta;
914 	}
915 
916 	bfq_active_insert(st, entity);
917 }
918 
919 /**
920  * __bfq_activate_entity - handle activation of entity.
921  * @entity: the entity being activated.
922  * @non_blocking_wait_rq: true if entity was waiting for a request
923  *
924  * Called for a 'true' activation, i.e., if entity is not active and
925  * one of its children receives a new request.
926  *
927  * Basically, this function updates the timestamps of entity and
928  * inserts entity into its active tree, ater possible extracting it
929  * from its idle tree.
930  */
931 static void __bfq_activate_entity(struct bfq_entity *entity,
932 				  bool non_blocking_wait_rq)
933 {
934 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
935 	bool backshifted = false;
936 	unsigned long long min_vstart;
937 
938 	/* See comments on bfq_fqq_update_budg_for_activation */
939 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
940 		backshifted = true;
941 		min_vstart = entity->finish;
942 	} else
943 		min_vstart = st->vtime;
944 
945 	if (entity->tree == &st->idle) {
946 		/*
947 		 * Must be on the idle tree, bfq_idle_extract() will
948 		 * check for that.
949 		 */
950 		bfq_idle_extract(st, entity);
951 		entity->start = bfq_gt(min_vstart, entity->finish) ?
952 			min_vstart : entity->finish;
953 	} else {
954 		/*
955 		 * The finish time of the entity may be invalid, and
956 		 * it is in the past for sure, otherwise the queue
957 		 * would have been on the idle tree.
958 		 */
959 		entity->start = min_vstart;
960 		st->wsum += entity->weight;
961 		/*
962 		 * entity is about to be inserted into a service tree,
963 		 * and then set in service: get a reference to make
964 		 * sure entity does not disappear until it is no
965 		 * longer in service or scheduled for service.
966 		 */
967 		bfq_get_entity(entity);
968 
969 		entity->on_st = true;
970 	}
971 
972 	bfq_update_fin_time_enqueue(entity, st, backshifted);
973 }
974 
975 /**
976  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
977  * @entity: the entity being requeued or repositioned.
978  *
979  * Requeueing is needed if this entity stops being served, which
980  * happens if a leaf descendant entity has expired. On the other hand,
981  * repositioning is needed if the next_inservice_entity for the child
982  * entity has changed. See the comments inside the function for
983  * details.
984  *
985  * Basically, this function: 1) removes entity from its active tree if
986  * present there, 2) updates the timestamps of entity and 3) inserts
987  * entity back into its active tree (in the new, right position for
988  * the new values of the timestamps).
989  */
990 static void __bfq_requeue_entity(struct bfq_entity *entity)
991 {
992 	struct bfq_sched_data *sd = entity->sched_data;
993 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
994 
995 	if (entity == sd->in_service_entity) {
996 		/*
997 		 * We are requeueing the current in-service entity,
998 		 * which may have to be done for one of the following
999 		 * reasons:
1000 		 * - entity represents the in-service queue, and the
1001 		 *   in-service queue is being requeued after an
1002 		 *   expiration;
1003 		 * - entity represents a group, and its budget has
1004 		 *   changed because one of its child entities has
1005 		 *   just been either activated or requeued for some
1006 		 *   reason; the timestamps of the entity need then to
1007 		 *   be updated, and the entity needs to be enqueued
1008 		 *   or repositioned accordingly.
1009 		 *
1010 		 * In particular, before requeueing, the start time of
1011 		 * the entity must be moved forward to account for the
1012 		 * service that the entity has received while in
1013 		 * service. This is done by the next instructions. The
1014 		 * finish time will then be updated according to this
1015 		 * new value of the start time, and to the budget of
1016 		 * the entity.
1017 		 */
1018 		bfq_calc_finish(entity, entity->service);
1019 		entity->start = entity->finish;
1020 		/*
1021 		 * In addition, if the entity had more than one child
1022 		 * when set in service, then was not extracted from
1023 		 * the active tree. This implies that the position of
1024 		 * the entity in the active tree may need to be
1025 		 * changed now, because we have just updated the start
1026 		 * time of the entity, and we will update its finish
1027 		 * time in a moment (the requeueing is then, more
1028 		 * precisely, a repositioning in this case). To
1029 		 * implement this repositioning, we: 1) dequeue the
1030 		 * entity here, 2) update the finish time and
1031 		 * requeue the entity according to the new
1032 		 * timestamps below.
1033 		 */
1034 		if (entity->tree)
1035 			bfq_active_extract(st, entity);
1036 	} else { /* The entity is already active, and not in service */
1037 		/*
1038 		 * In this case, this function gets called only if the
1039 		 * next_in_service entity below this entity has
1040 		 * changed, and this change has caused the budget of
1041 		 * this entity to change, which, finally implies that
1042 		 * the finish time of this entity must be
1043 		 * updated. Such an update may cause the scheduling,
1044 		 * i.e., the position in the active tree, of this
1045 		 * entity to change. We handle this change by: 1)
1046 		 * dequeueing the entity here, 2) updating the finish
1047 		 * time and requeueing the entity according to the new
1048 		 * timestamps below. This is the same approach as the
1049 		 * non-extracted-entity sub-case above.
1050 		 */
1051 		bfq_active_extract(st, entity);
1052 	}
1053 
1054 	bfq_update_fin_time_enqueue(entity, st, false);
1055 }
1056 
1057 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1058 					  struct bfq_sched_data *sd,
1059 					  bool non_blocking_wait_rq)
1060 {
1061 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1062 
1063 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1064 		 /*
1065 		  * in service or already queued on the active tree,
1066 		  * requeue or reposition
1067 		  */
1068 		__bfq_requeue_entity(entity);
1069 	else
1070 		/*
1071 		 * Not in service and not queued on its active tree:
1072 		 * the activity is idle and this is a true activation.
1073 		 */
1074 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1075 }
1076 
1077 
1078 /**
1079  * bfq_activate_entity - activate or requeue an entity representing a bfq_queue,
1080  *			 and activate, requeue or reposition all ancestors
1081  *			 for which such an update becomes necessary.
1082  * @entity: the entity to activate.
1083  * @non_blocking_wait_rq: true if this entity was waiting for a request
1084  * @requeue: true if this is a requeue, which implies that bfqq is
1085  *	     being expired; thus ALL its ancestors stop being served and must
1086  *	     therefore be requeued
1087  */
1088 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1089 					bool non_blocking_wait_rq,
1090 					bool requeue)
1091 {
1092 	struct bfq_sched_data *sd;
1093 
1094 	for_each_entity(entity) {
1095 		sd = entity->sched_data;
1096 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1097 
1098 		if (!bfq_update_next_in_service(sd, entity) && !requeue)
1099 			break;
1100 	}
1101 }
1102 
1103 /**
1104  * __bfq_deactivate_entity - deactivate an entity from its service tree.
1105  * @entity: the entity to deactivate.
1106  * @ins_into_idle_tree: if false, the entity will not be put into the
1107  *			idle tree.
1108  *
1109  * Deactivates an entity, independently from its previous state.  Must
1110  * be invoked only if entity is on a service tree. Extracts the entity
1111  * from that tree, and if necessary and allowed, puts it on the idle
1112  * tree.
1113  */
1114 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1115 {
1116 	struct bfq_sched_data *sd = entity->sched_data;
1117 	struct bfq_service_tree *st;
1118 	bool is_in_service;
1119 
1120 	if (!entity->on_st) /* entity never activated, or already inactive */
1121 		return false;
1122 
1123 	/*
1124 	 * If we get here, then entity is active, which implies that
1125 	 * bfq_group_set_parent has already been invoked for the group
1126 	 * represented by entity. Therefore, the field
1127 	 * entity->sched_data has been set, and we can safely use it.
1128 	 */
1129 	st = bfq_entity_service_tree(entity);
1130 	is_in_service = entity == sd->in_service_entity;
1131 
1132 	if (is_in_service)
1133 		bfq_calc_finish(entity, entity->service);
1134 
1135 	if (entity->tree == &st->active)
1136 		bfq_active_extract(st, entity);
1137 	else if (!is_in_service && entity->tree == &st->idle)
1138 		bfq_idle_extract(st, entity);
1139 
1140 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1141 		bfq_forget_entity(st, entity, is_in_service);
1142 	else
1143 		bfq_idle_insert(st, entity);
1144 
1145 	return true;
1146 }
1147 
1148 /**
1149  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1150  * @entity: the entity to deactivate.
1151  * @ins_into_idle_tree: true if the entity can be put on the idle tree
1152  */
1153 static void bfq_deactivate_entity(struct bfq_entity *entity,
1154 				  bool ins_into_idle_tree,
1155 				  bool expiration)
1156 {
1157 	struct bfq_sched_data *sd;
1158 	struct bfq_entity *parent = NULL;
1159 
1160 	for_each_entity_safe(entity, parent) {
1161 		sd = entity->sched_data;
1162 
1163 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1164 			/*
1165 			 * entity is not in any tree any more, so
1166 			 * this deactivation is a no-op, and there is
1167 			 * nothing to change for upper-level entities
1168 			 * (in case of expiration, this can never
1169 			 * happen).
1170 			 */
1171 			return;
1172 		}
1173 
1174 		if (sd->next_in_service == entity)
1175 			/*
1176 			 * entity was the next_in_service entity,
1177 			 * then, since entity has just been
1178 			 * deactivated, a new one must be found.
1179 			 */
1180 			bfq_update_next_in_service(sd, NULL);
1181 
1182 		if (sd->next_in_service)
1183 			/*
1184 			 * The parent entity is still backlogged,
1185 			 * because next_in_service is not NULL. So, no
1186 			 * further upwards deactivation must be
1187 			 * performed.  Yet, next_in_service has
1188 			 * changed.  Then the schedule does need to be
1189 			 * updated upwards.
1190 			 */
1191 			break;
1192 
1193 		/*
1194 		 * If we get here, then the parent is no more
1195 		 * backlogged and we need to propagate the
1196 		 * deactivation upwards. Thus let the loop go on.
1197 		 */
1198 
1199 		/*
1200 		 * Also let parent be queued into the idle tree on
1201 		 * deactivation, to preserve service guarantees, and
1202 		 * assuming that who invoked this function does not
1203 		 * need parent entities too to be removed completely.
1204 		 */
1205 		ins_into_idle_tree = true;
1206 	}
1207 
1208 	/*
1209 	 * If the deactivation loop is fully executed, then there are
1210 	 * no more entities to touch and next loop is not executed at
1211 	 * all. Otherwise, requeue remaining entities if they are
1212 	 * about to stop receiving service, or reposition them if this
1213 	 * is not the case.
1214 	 */
1215 	entity = parent;
1216 	for_each_entity(entity) {
1217 		/*
1218 		 * Invoke __bfq_requeue_entity on entity, even if
1219 		 * already active, to requeue/reposition it in the
1220 		 * active tree (because sd->next_in_service has
1221 		 * changed)
1222 		 */
1223 		__bfq_requeue_entity(entity);
1224 
1225 		sd = entity->sched_data;
1226 		if (!bfq_update_next_in_service(sd, entity) &&
1227 		    !expiration)
1228 			/*
1229 			 * next_in_service unchanged or not causing
1230 			 * any change in entity->parent->sd, and no
1231 			 * requeueing needed for expiration: stop
1232 			 * here.
1233 			 */
1234 			break;
1235 	}
1236 }
1237 
1238 /**
1239  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1240  *                       if needed, to have at least one entity eligible.
1241  * @st: the service tree to act upon.
1242  *
1243  * Assumes that st is not empty.
1244  */
1245 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1246 {
1247 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1248 
1249 	if (bfq_gt(root_entity->min_start, st->vtime))
1250 		return root_entity->min_start;
1251 
1252 	return st->vtime;
1253 }
1254 
1255 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1256 {
1257 	if (new_value > st->vtime) {
1258 		st->vtime = new_value;
1259 		bfq_forget_idle(st);
1260 	}
1261 }
1262 
1263 /**
1264  * bfq_first_active_entity - find the eligible entity with
1265  *                           the smallest finish time
1266  * @st: the service tree to select from.
1267  * @vtime: the system virtual to use as a reference for eligibility
1268  *
1269  * This function searches the first schedulable entity, starting from the
1270  * root of the tree and going on the left every time on this side there is
1271  * a subtree with at least one eligible (start >= vtime) entity. The path on
1272  * the right is followed only if a) the left subtree contains no eligible
1273  * entities and b) no eligible entity has been found yet.
1274  */
1275 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1276 						  u64 vtime)
1277 {
1278 	struct bfq_entity *entry, *first = NULL;
1279 	struct rb_node *node = st->active.rb_node;
1280 
1281 	while (node) {
1282 		entry = rb_entry(node, struct bfq_entity, rb_node);
1283 left:
1284 		if (!bfq_gt(entry->start, vtime))
1285 			first = entry;
1286 
1287 		if (node->rb_left) {
1288 			entry = rb_entry(node->rb_left,
1289 					 struct bfq_entity, rb_node);
1290 			if (!bfq_gt(entry->min_start, vtime)) {
1291 				node = node->rb_left;
1292 				goto left;
1293 			}
1294 		}
1295 		if (first)
1296 			break;
1297 		node = node->rb_right;
1298 	}
1299 
1300 	return first;
1301 }
1302 
1303 /**
1304  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1305  * @st: the service tree.
1306  *
1307  * If there is no in-service entity for the sched_data st belongs to,
1308  * then return the entity that will be set in service if:
1309  * 1) the parent entity this st belongs to is set in service;
1310  * 2) no entity belonging to such parent entity undergoes a state change
1311  * that would influence the timestamps of the entity (e.g., becomes idle,
1312  * becomes backlogged, changes its budget, ...).
1313  *
1314  * In this first case, update the virtual time in @st too (see the
1315  * comments on this update inside the function).
1316  *
1317  * In constrast, if there is an in-service entity, then return the
1318  * entity that would be set in service if not only the above
1319  * conditions, but also the next one held true: the currently
1320  * in-service entity, on expiration,
1321  * 1) gets a finish time equal to the current one, or
1322  * 2) is not eligible any more, or
1323  * 3) is idle.
1324  */
1325 static struct bfq_entity *
1326 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1327 {
1328 	struct bfq_entity *entity;
1329 	u64 new_vtime;
1330 
1331 	if (RB_EMPTY_ROOT(&st->active))
1332 		return NULL;
1333 
1334 	/*
1335 	 * Get the value of the system virtual time for which at
1336 	 * least one entity is eligible.
1337 	 */
1338 	new_vtime = bfq_calc_vtime_jump(st);
1339 
1340 	/*
1341 	 * If there is no in-service entity for the sched_data this
1342 	 * active tree belongs to, then push the system virtual time
1343 	 * up to the value that guarantees that at least one entity is
1344 	 * eligible. If, instead, there is an in-service entity, then
1345 	 * do not make any such update, because there is already an
1346 	 * eligible entity, namely the in-service one (even if the
1347 	 * entity is not on st, because it was extracted when set in
1348 	 * service).
1349 	 */
1350 	if (!in_service)
1351 		bfq_update_vtime(st, new_vtime);
1352 
1353 	entity = bfq_first_active_entity(st, new_vtime);
1354 
1355 	return entity;
1356 }
1357 
1358 /**
1359  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1360  * @sd: the sched_data.
1361  *
1362  * This function is invoked when there has been a change in the trees
1363  * for sd, and we need know what is the new next entity after this
1364  * change.
1365  */
1366 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd)
1367 {
1368 	struct bfq_service_tree *st = sd->service_tree;
1369 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1370 	struct bfq_entity *entity = NULL;
1371 	int class_idx = 0;
1372 
1373 	/*
1374 	 * Choose from idle class, if needed to guarantee a minimum
1375 	 * bandwidth to this class (and if there is some active entity
1376 	 * in idle class). This should also mitigate
1377 	 * priority-inversion problems in case a low priority task is
1378 	 * holding file system resources.
1379 	 */
1380 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1381 				   BFQ_CL_IDLE_TIMEOUT)) {
1382 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1383 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1384 		/* About to be served if backlogged, or not yet backlogged */
1385 		sd->bfq_class_idle_last_service = jiffies;
1386 	}
1387 
1388 	/*
1389 	 * Find the next entity to serve for the highest-priority
1390 	 * class, unless the idle class needs to be served.
1391 	 */
1392 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1393 		entity = __bfq_lookup_next_entity(st + class_idx,
1394 						  sd->in_service_entity);
1395 
1396 		if (entity)
1397 			break;
1398 	}
1399 
1400 	if (!entity)
1401 		return NULL;
1402 
1403 	return entity;
1404 }
1405 
1406 bool next_queue_may_preempt(struct bfq_data *bfqd)
1407 {
1408 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1409 
1410 	return sd->next_in_service != sd->in_service_entity;
1411 }
1412 
1413 /*
1414  * Get next queue for service.
1415  */
1416 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1417 {
1418 	struct bfq_entity *entity = NULL;
1419 	struct bfq_sched_data *sd;
1420 	struct bfq_queue *bfqq;
1421 
1422 	if (bfqd->busy_queues == 0)
1423 		return NULL;
1424 
1425 	/*
1426 	 * Traverse the path from the root to the leaf entity to
1427 	 * serve. Set in service all the entities visited along the
1428 	 * way.
1429 	 */
1430 	sd = &bfqd->root_group->sched_data;
1431 	for (; sd ; sd = entity->my_sched_data) {
1432 		/*
1433 		 * WARNING. We are about to set the in-service entity
1434 		 * to sd->next_in_service, i.e., to the (cached) value
1435 		 * returned by bfq_lookup_next_entity(sd) the last
1436 		 * time it was invoked, i.e., the last time when the
1437 		 * service order in sd changed as a consequence of the
1438 		 * activation or deactivation of an entity. In this
1439 		 * respect, if we execute bfq_lookup_next_entity(sd)
1440 		 * in this very moment, it may, although with low
1441 		 * probability, yield a different entity than that
1442 		 * pointed to by sd->next_in_service. This rare event
1443 		 * happens in case there was no CLASS_IDLE entity to
1444 		 * serve for sd when bfq_lookup_next_entity(sd) was
1445 		 * invoked for the last time, while there is now one
1446 		 * such entity.
1447 		 *
1448 		 * If the above event happens, then the scheduling of
1449 		 * such entity in CLASS_IDLE is postponed until the
1450 		 * service of the sd->next_in_service entity
1451 		 * finishes. In fact, when the latter is expired,
1452 		 * bfq_lookup_next_entity(sd) gets called again,
1453 		 * exactly to update sd->next_in_service.
1454 		 */
1455 
1456 		/* Make next_in_service entity become in_service_entity */
1457 		entity = sd->next_in_service;
1458 		sd->in_service_entity = entity;
1459 
1460 		/*
1461 		 * Reset the accumulator of the amount of service that
1462 		 * the entity is about to receive.
1463 		 */
1464 		entity->service = 0;
1465 
1466 		/*
1467 		 * If entity is no longer a candidate for next
1468 		 * service, then we extract it from its active tree,
1469 		 * for the following reason. To further boost the
1470 		 * throughput in some special case, BFQ needs to know
1471 		 * which is the next candidate entity to serve, while
1472 		 * there is already an entity in service. In this
1473 		 * respect, to make it easy to compute/update the next
1474 		 * candidate entity to serve after the current
1475 		 * candidate has been set in service, there is a case
1476 		 * where it is necessary to extract the current
1477 		 * candidate from its service tree. Such a case is
1478 		 * when the entity just set in service cannot be also
1479 		 * a candidate for next service. Details about when
1480 		 * this conditions holds are reported in the comments
1481 		 * on the function bfq_no_longer_next_in_service()
1482 		 * invoked below.
1483 		 */
1484 		if (bfq_no_longer_next_in_service(entity))
1485 			bfq_active_extract(bfq_entity_service_tree(entity),
1486 					   entity);
1487 
1488 		/*
1489 		 * For the same reason why we may have just extracted
1490 		 * entity from its active tree, we may need to update
1491 		 * next_in_service for the sched_data of entity too,
1492 		 * regardless of whether entity has been extracted.
1493 		 * In fact, even if entity has not been extracted, a
1494 		 * descendant entity may get extracted. Such an event
1495 		 * would cause a change in next_in_service for the
1496 		 * level of the descendant entity, and thus possibly
1497 		 * back to upper levels.
1498 		 *
1499 		 * We cannot perform the resulting needed update
1500 		 * before the end of this loop, because, to know which
1501 		 * is the correct next-to-serve candidate entity for
1502 		 * each level, we need first to find the leaf entity
1503 		 * to set in service. In fact, only after we know
1504 		 * which is the next-to-serve leaf entity, we can
1505 		 * discover whether the parent entity of the leaf
1506 		 * entity becomes the next-to-serve, and so on.
1507 		 */
1508 
1509 	}
1510 
1511 	bfqq = bfq_entity_to_bfqq(entity);
1512 
1513 	/*
1514 	 * We can finally update all next-to-serve entities along the
1515 	 * path from the leaf entity just set in service to the root.
1516 	 */
1517 	for_each_entity(entity) {
1518 		struct bfq_sched_data *sd = entity->sched_data;
1519 
1520 		if (!bfq_update_next_in_service(sd, NULL))
1521 			break;
1522 	}
1523 
1524 	return bfqq;
1525 }
1526 
1527 void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1528 {
1529 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1530 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1531 	struct bfq_entity *entity = in_serv_entity;
1532 
1533 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1534 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1535 	bfqd->in_service_queue = NULL;
1536 
1537 	/*
1538 	 * When this function is called, all in-service entities have
1539 	 * been properly deactivated or requeued, so we can safely
1540 	 * execute the final step: reset in_service_entity along the
1541 	 * path from entity to the root.
1542 	 */
1543 	for_each_entity(entity)
1544 		entity->sched_data->in_service_entity = NULL;
1545 
1546 	/*
1547 	 * in_serv_entity is no longer in service, so, if it is in no
1548 	 * service tree either, then release the service reference to
1549 	 * the queue it represents (taken with bfq_get_entity).
1550 	 */
1551 	if (!in_serv_entity->on_st)
1552 		bfq_put_queue(in_serv_bfqq);
1553 }
1554 
1555 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1556 			 bool ins_into_idle_tree, bool expiration)
1557 {
1558 	struct bfq_entity *entity = &bfqq->entity;
1559 
1560 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1561 }
1562 
1563 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1564 {
1565 	struct bfq_entity *entity = &bfqq->entity;
1566 
1567 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1568 				    false);
1569 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1570 }
1571 
1572 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1573 {
1574 	struct bfq_entity *entity = &bfqq->entity;
1575 
1576 	bfq_activate_requeue_entity(entity, false,
1577 				    bfqq == bfqd->in_service_queue);
1578 }
1579 
1580 /*
1581  * Called when the bfqq no longer has requests pending, remove it from
1582  * the service tree. As a special case, it can be invoked during an
1583  * expiration.
1584  */
1585 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1586 		       bool expiration)
1587 {
1588 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1589 
1590 	bfq_clear_bfqq_busy(bfqq);
1591 
1592 	bfqd->busy_queues--;
1593 
1594 	if (!bfqq->dispatched)
1595 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
1596 					&bfqd->queue_weights_tree);
1597 
1598 	if (bfqq->wr_coeff > 1)
1599 		bfqd->wr_busy_queues--;
1600 
1601 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1602 
1603 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1604 }
1605 
1606 /*
1607  * Called when an inactive queue receives a new request.
1608  */
1609 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1610 {
1611 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1612 
1613 	bfq_activate_bfqq(bfqd, bfqq);
1614 
1615 	bfq_mark_bfqq_busy(bfqq);
1616 	bfqd->busy_queues++;
1617 
1618 	if (!bfqq->dispatched)
1619 		if (bfqq->wr_coeff == 1)
1620 			bfq_weights_tree_add(bfqd, &bfqq->entity,
1621 					     &bfqd->queue_weights_tree);
1622 
1623 	if (bfqq->wr_coeff > 1)
1624 		bfqd->wr_busy_queues++;
1625 }
1626