xref: /linux/block/bfq-wf2q.c (revision 5ee46bfbb65fd971b734c3972ea9cc123fc869d1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
4  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
5  * scheduler schedules generic entities. The latter can represent
6  * either single bfq queues (associated with processes) or groups of
7  * bfq queues (associated with cgroups).
8  */
9 #include "bfq-iosched.h"
10 
11 /**
12  * bfq_gt - compare two timestamps.
13  * @a: first ts.
14  * @b: second ts.
15  *
16  * Return @a > @b, dealing with wrapping correctly.
17  */
18 static int bfq_gt(u64 a, u64 b)
19 {
20 	return (s64)(a - b) > 0;
21 }
22 
23 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
24 {
25 	struct rb_node *node = tree->rb_node;
26 
27 	return rb_entry(node, struct bfq_entity, rb_node);
28 }
29 
30 static unsigned int bfq_class_idx(struct bfq_entity *entity)
31 {
32 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
33 
34 	return bfqq ? bfqq->ioprio_class - 1 :
35 		BFQ_DEFAULT_GRP_CLASS - 1;
36 }
37 
38 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
39 {
40 	return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
41 		bfqd->busy_queues[2];
42 }
43 
44 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
45 						 bool expiration);
46 
47 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
48 
49 /**
50  * bfq_update_next_in_service - update sd->next_in_service
51  * @sd: sched_data for which to perform the update.
52  * @new_entity: if not NULL, pointer to the entity whose activation,
53  *		requeueing or repositioning triggered the invocation of
54  *		this function.
55  * @expiration: id true, this function is being invoked after the
56  *             expiration of the in-service entity
57  *
58  * This function is called to update sd->next_in_service, which, in
59  * its turn, may change as a consequence of the insertion or
60  * extraction of an entity into/from one of the active trees of
61  * sd. These insertions/extractions occur as a consequence of
62  * activations/deactivations of entities, with some activations being
63  * 'true' activations, and other activations being requeueings (i.e.,
64  * implementing the second, requeueing phase of the mechanism used to
65  * reposition an entity in its active tree; see comments on
66  * __bfq_activate_entity and __bfq_requeue_entity for details). In
67  * both the last two activation sub-cases, new_entity points to the
68  * just activated or requeued entity.
69  *
70  * Returns true if sd->next_in_service changes in such a way that
71  * entity->parent may become the next_in_service for its parent
72  * entity.
73  */
74 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
75 				       struct bfq_entity *new_entity,
76 				       bool expiration)
77 {
78 	struct bfq_entity *next_in_service = sd->next_in_service;
79 	bool parent_sched_may_change = false;
80 	bool change_without_lookup = false;
81 
82 	/*
83 	 * If this update is triggered by the activation, requeueing
84 	 * or repositioning of an entity that does not coincide with
85 	 * sd->next_in_service, then a full lookup in the active tree
86 	 * can be avoided. In fact, it is enough to check whether the
87 	 * just-modified entity has the same priority as
88 	 * sd->next_in_service, is eligible and has a lower virtual
89 	 * finish time than sd->next_in_service. If this compound
90 	 * condition holds, then the new entity becomes the new
91 	 * next_in_service. Otherwise no change is needed.
92 	 */
93 	if (new_entity && new_entity != sd->next_in_service) {
94 		/*
95 		 * Flag used to decide whether to replace
96 		 * sd->next_in_service with new_entity. Tentatively
97 		 * set to true, and left as true if
98 		 * sd->next_in_service is NULL.
99 		 */
100 		change_without_lookup = true;
101 
102 		/*
103 		 * If there is already a next_in_service candidate
104 		 * entity, then compare timestamps to decide whether
105 		 * to replace sd->service_tree with new_entity.
106 		 */
107 		if (next_in_service) {
108 			unsigned int new_entity_class_idx =
109 				bfq_class_idx(new_entity);
110 			struct bfq_service_tree *st =
111 				sd->service_tree + new_entity_class_idx;
112 
113 			change_without_lookup =
114 				(new_entity_class_idx ==
115 				 bfq_class_idx(next_in_service)
116 				 &&
117 				 !bfq_gt(new_entity->start, st->vtime)
118 				 &&
119 				 bfq_gt(next_in_service->finish,
120 					new_entity->finish));
121 		}
122 
123 		if (change_without_lookup)
124 			next_in_service = new_entity;
125 	}
126 
127 	if (!change_without_lookup) /* lookup needed */
128 		next_in_service = bfq_lookup_next_entity(sd, expiration);
129 
130 	if (next_in_service) {
131 		bool new_budget_triggers_change =
132 			bfq_update_parent_budget(next_in_service);
133 
134 		parent_sched_may_change = !sd->next_in_service ||
135 			new_budget_triggers_change;
136 	}
137 
138 	sd->next_in_service = next_in_service;
139 
140 	return parent_sched_may_change;
141 }
142 
143 #ifdef CONFIG_BFQ_GROUP_IOSCHED
144 
145 /*
146  * Returns true if this budget changes may let next_in_service->parent
147  * become the next_in_service entity for its parent entity.
148  */
149 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
150 {
151 	struct bfq_entity *bfqg_entity;
152 	struct bfq_group *bfqg;
153 	struct bfq_sched_data *group_sd;
154 	bool ret = false;
155 
156 	group_sd = next_in_service->sched_data;
157 
158 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
159 	/*
160 	 * bfq_group's my_entity field is not NULL only if the group
161 	 * is not the root group. We must not touch the root entity
162 	 * as it must never become an in-service entity.
163 	 */
164 	bfqg_entity = bfqg->my_entity;
165 	if (bfqg_entity) {
166 		if (bfqg_entity->budget > next_in_service->budget)
167 			ret = true;
168 		bfqg_entity->budget = next_in_service->budget;
169 	}
170 
171 	return ret;
172 }
173 
174 /*
175  * This function tells whether entity stops being a candidate for next
176  * service, according to the restrictive definition of the field
177  * next_in_service. In particular, this function is invoked for an
178  * entity that is about to be set in service.
179  *
180  * If entity is a queue, then the entity is no longer a candidate for
181  * next service according to the that definition, because entity is
182  * about to become the in-service queue. This function then returns
183  * true if entity is a queue.
184  *
185  * In contrast, entity could still be a candidate for next service if
186  * it is not a queue, and has more than one active child. In fact,
187  * even if one of its children is about to be set in service, other
188  * active children may still be the next to serve, for the parent
189  * entity, even according to the above definition. As a consequence, a
190  * non-queue entity is not a candidate for next-service only if it has
191  * only one active child. And only if this condition holds, then this
192  * function returns true for a non-queue entity.
193  */
194 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
195 {
196 	struct bfq_group *bfqg;
197 
198 	if (bfq_entity_to_bfqq(entity))
199 		return true;
200 
201 	bfqg = container_of(entity, struct bfq_group, entity);
202 
203 	/*
204 	 * The field active_entities does not always contain the
205 	 * actual number of active children entities: it happens to
206 	 * not account for the in-service entity in case the latter is
207 	 * removed from its active tree (which may get done after
208 	 * invoking the function bfq_no_longer_next_in_service in
209 	 * bfq_get_next_queue). Fortunately, here, i.e., while
210 	 * bfq_no_longer_next_in_service is not yet completed in
211 	 * bfq_get_next_queue, bfq_active_extract has not yet been
212 	 * invoked, and thus active_entities still coincides with the
213 	 * actual number of active entities.
214 	 */
215 	if (bfqg->active_entities == 1)
216 		return true;
217 
218 	return false;
219 }
220 
221 #else /* CONFIG_BFQ_GROUP_IOSCHED */
222 
223 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
224 {
225 	return false;
226 }
227 
228 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
229 {
230 	return true;
231 }
232 
233 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
234 
235 /*
236  * Shift for timestamp calculations.  This actually limits the maximum
237  * service allowed in one timestamp delta (small shift values increase it),
238  * the maximum total weight that can be used for the queues in the system
239  * (big shift values increase it), and the period of virtual time
240  * wraparounds.
241  */
242 #define WFQ_SERVICE_SHIFT	22
243 
244 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
245 {
246 	struct bfq_queue *bfqq = NULL;
247 
248 	if (!entity->my_sched_data)
249 		bfqq = container_of(entity, struct bfq_queue, entity);
250 
251 	return bfqq;
252 }
253 
254 
255 /**
256  * bfq_delta - map service into the virtual time domain.
257  * @service: amount of service.
258  * @weight: scale factor (weight of an entity or weight sum).
259  */
260 static u64 bfq_delta(unsigned long service, unsigned long weight)
261 {
262 	return div64_ul((u64)service << WFQ_SERVICE_SHIFT, weight);
263 }
264 
265 /**
266  * bfq_calc_finish - assign the finish time to an entity.
267  * @entity: the entity to act upon.
268  * @service: the service to be charged to the entity.
269  */
270 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
271 {
272 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
273 
274 	entity->finish = entity->start +
275 		bfq_delta(service, entity->weight);
276 
277 	if (bfqq) {
278 		bfq_log_bfqq(bfqq->bfqd, bfqq,
279 			"calc_finish: serv %lu, w %d",
280 			service, entity->weight);
281 		bfq_log_bfqq(bfqq->bfqd, bfqq,
282 			"calc_finish: start %llu, finish %llu, delta %llu",
283 			entity->start, entity->finish,
284 			bfq_delta(service, entity->weight));
285 	}
286 }
287 
288 /**
289  * bfq_entity_of - get an entity from a node.
290  * @node: the node field of the entity.
291  *
292  * Convert a node pointer to the relative entity.  This is used only
293  * to simplify the logic of some functions and not as the generic
294  * conversion mechanism because, e.g., in the tree walking functions,
295  * the check for a %NULL value would be redundant.
296  */
297 struct bfq_entity *bfq_entity_of(struct rb_node *node)
298 {
299 	struct bfq_entity *entity = NULL;
300 
301 	if (node)
302 		entity = rb_entry(node, struct bfq_entity, rb_node);
303 
304 	return entity;
305 }
306 
307 /**
308  * bfq_extract - remove an entity from a tree.
309  * @root: the tree root.
310  * @entity: the entity to remove.
311  */
312 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
313 {
314 	entity->tree = NULL;
315 	rb_erase(&entity->rb_node, root);
316 }
317 
318 /**
319  * bfq_idle_extract - extract an entity from the idle tree.
320  * @st: the service tree of the owning @entity.
321  * @entity: the entity being removed.
322  */
323 static void bfq_idle_extract(struct bfq_service_tree *st,
324 			     struct bfq_entity *entity)
325 {
326 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
327 	struct rb_node *next;
328 
329 	if (entity == st->first_idle) {
330 		next = rb_next(&entity->rb_node);
331 		st->first_idle = bfq_entity_of(next);
332 	}
333 
334 	if (entity == st->last_idle) {
335 		next = rb_prev(&entity->rb_node);
336 		st->last_idle = bfq_entity_of(next);
337 	}
338 
339 	bfq_extract(&st->idle, entity);
340 
341 	if (bfqq)
342 		list_del(&bfqq->bfqq_list);
343 }
344 
345 /**
346  * bfq_insert - generic tree insertion.
347  * @root: tree root.
348  * @entity: entity to insert.
349  *
350  * This is used for the idle and the active tree, since they are both
351  * ordered by finish time.
352  */
353 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
354 {
355 	struct bfq_entity *entry;
356 	struct rb_node **node = &root->rb_node;
357 	struct rb_node *parent = NULL;
358 
359 	while (*node) {
360 		parent = *node;
361 		entry = rb_entry(parent, struct bfq_entity, rb_node);
362 
363 		if (bfq_gt(entry->finish, entity->finish))
364 			node = &parent->rb_left;
365 		else
366 			node = &parent->rb_right;
367 	}
368 
369 	rb_link_node(&entity->rb_node, parent, node);
370 	rb_insert_color(&entity->rb_node, root);
371 
372 	entity->tree = root;
373 }
374 
375 /**
376  * bfq_update_min - update the min_start field of a entity.
377  * @entity: the entity to update.
378  * @node: one of its children.
379  *
380  * This function is called when @entity may store an invalid value for
381  * min_start due to updates to the active tree.  The function  assumes
382  * that the subtree rooted at @node (which may be its left or its right
383  * child) has a valid min_start value.
384  */
385 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
386 {
387 	struct bfq_entity *child;
388 
389 	if (node) {
390 		child = rb_entry(node, struct bfq_entity, rb_node);
391 		if (bfq_gt(entity->min_start, child->min_start))
392 			entity->min_start = child->min_start;
393 	}
394 }
395 
396 /**
397  * bfq_update_active_node - recalculate min_start.
398  * @node: the node to update.
399  *
400  * @node may have changed position or one of its children may have moved,
401  * this function updates its min_start value.  The left and right subtrees
402  * are assumed to hold a correct min_start value.
403  */
404 static void bfq_update_active_node(struct rb_node *node)
405 {
406 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
407 
408 	entity->min_start = entity->start;
409 	bfq_update_min(entity, node->rb_right);
410 	bfq_update_min(entity, node->rb_left);
411 }
412 
413 /**
414  * bfq_update_active_tree - update min_start for the whole active tree.
415  * @node: the starting node.
416  *
417  * @node must be the deepest modified node after an update.  This function
418  * updates its min_start using the values held by its children, assuming
419  * that they did not change, and then updates all the nodes that may have
420  * changed in the path to the root.  The only nodes that may have changed
421  * are the ones in the path or their siblings.
422  */
423 static void bfq_update_active_tree(struct rb_node *node)
424 {
425 	struct rb_node *parent;
426 
427 up:
428 	bfq_update_active_node(node);
429 
430 	parent = rb_parent(node);
431 	if (!parent)
432 		return;
433 
434 	if (node == parent->rb_left && parent->rb_right)
435 		bfq_update_active_node(parent->rb_right);
436 	else if (parent->rb_left)
437 		bfq_update_active_node(parent->rb_left);
438 
439 	node = parent;
440 	goto up;
441 }
442 
443 /**
444  * bfq_active_insert - insert an entity in the active tree of its
445  *                     group/device.
446  * @st: the service tree of the entity.
447  * @entity: the entity being inserted.
448  *
449  * The active tree is ordered by finish time, but an extra key is kept
450  * per each node, containing the minimum value for the start times of
451  * its children (and the node itself), so it's possible to search for
452  * the eligible node with the lowest finish time in logarithmic time.
453  */
454 static void bfq_active_insert(struct bfq_service_tree *st,
455 			      struct bfq_entity *entity)
456 {
457 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
458 	struct rb_node *node = &entity->rb_node;
459 #ifdef CONFIG_BFQ_GROUP_IOSCHED
460 	struct bfq_sched_data *sd = NULL;
461 	struct bfq_group *bfqg = NULL;
462 	struct bfq_data *bfqd = NULL;
463 #endif
464 
465 	bfq_insert(&st->active, entity);
466 
467 	if (node->rb_left)
468 		node = node->rb_left;
469 	else if (node->rb_right)
470 		node = node->rb_right;
471 
472 	bfq_update_active_tree(node);
473 
474 #ifdef CONFIG_BFQ_GROUP_IOSCHED
475 	sd = entity->sched_data;
476 	bfqg = container_of(sd, struct bfq_group, sched_data);
477 	bfqd = (struct bfq_data *)bfqg->bfqd;
478 #endif
479 	if (bfqq)
480 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
481 #ifdef CONFIG_BFQ_GROUP_IOSCHED
482 	if (bfqg != bfqd->root_group)
483 		bfqg->active_entities++;
484 #endif
485 }
486 
487 /**
488  * bfq_ioprio_to_weight - calc a weight from an ioprio.
489  * @ioprio: the ioprio value to convert.
490  */
491 unsigned short bfq_ioprio_to_weight(int ioprio)
492 {
493 	return (IOPRIO_NR_LEVELS - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
494 }
495 
496 /**
497  * bfq_weight_to_ioprio - calc an ioprio from a weight.
498  * @weight: the weight value to convert.
499  *
500  * To preserve as much as possible the old only-ioprio user interface,
501  * 0 is used as an escape ioprio value for weights (numerically) equal or
502  * larger than IOPRIO_NR_LEVELS * BFQ_WEIGHT_CONVERSION_COEFF.
503  */
504 static unsigned short bfq_weight_to_ioprio(int weight)
505 {
506 	return max_t(int, 0,
507 		     IOPRIO_NR_LEVELS - weight / BFQ_WEIGHT_CONVERSION_COEFF);
508 }
509 
510 static void bfq_get_entity(struct bfq_entity *entity)
511 {
512 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
513 
514 	if (bfqq) {
515 		bfqq->ref++;
516 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
517 			     bfqq, bfqq->ref);
518 	}
519 }
520 
521 /**
522  * bfq_find_deepest - find the deepest node that an extraction can modify.
523  * @node: the node being removed.
524  *
525  * Do the first step of an extraction in an rb tree, looking for the
526  * node that will replace @node, and returning the deepest node that
527  * the following modifications to the tree can touch.  If @node is the
528  * last node in the tree return %NULL.
529  */
530 static struct rb_node *bfq_find_deepest(struct rb_node *node)
531 {
532 	struct rb_node *deepest;
533 
534 	if (!node->rb_right && !node->rb_left)
535 		deepest = rb_parent(node);
536 	else if (!node->rb_right)
537 		deepest = node->rb_left;
538 	else if (!node->rb_left)
539 		deepest = node->rb_right;
540 	else {
541 		deepest = rb_next(node);
542 		if (deepest->rb_right)
543 			deepest = deepest->rb_right;
544 		else if (rb_parent(deepest) != node)
545 			deepest = rb_parent(deepest);
546 	}
547 
548 	return deepest;
549 }
550 
551 /**
552  * bfq_active_extract - remove an entity from the active tree.
553  * @st: the service_tree containing the tree.
554  * @entity: the entity being removed.
555  */
556 static void bfq_active_extract(struct bfq_service_tree *st,
557 			       struct bfq_entity *entity)
558 {
559 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
560 	struct rb_node *node;
561 #ifdef CONFIG_BFQ_GROUP_IOSCHED
562 	struct bfq_sched_data *sd = NULL;
563 	struct bfq_group *bfqg = NULL;
564 	struct bfq_data *bfqd = NULL;
565 #endif
566 
567 	node = bfq_find_deepest(&entity->rb_node);
568 	bfq_extract(&st->active, entity);
569 
570 	if (node)
571 		bfq_update_active_tree(node);
572 
573 #ifdef CONFIG_BFQ_GROUP_IOSCHED
574 	sd = entity->sched_data;
575 	bfqg = container_of(sd, struct bfq_group, sched_data);
576 	bfqd = (struct bfq_data *)bfqg->bfqd;
577 #endif
578 	if (bfqq)
579 		list_del(&bfqq->bfqq_list);
580 #ifdef CONFIG_BFQ_GROUP_IOSCHED
581 	if (bfqg != bfqd->root_group)
582 		bfqg->active_entities--;
583 #endif
584 }
585 
586 /**
587  * bfq_idle_insert - insert an entity into the idle tree.
588  * @st: the service tree containing the tree.
589  * @entity: the entity to insert.
590  */
591 static void bfq_idle_insert(struct bfq_service_tree *st,
592 			    struct bfq_entity *entity)
593 {
594 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
595 	struct bfq_entity *first_idle = st->first_idle;
596 	struct bfq_entity *last_idle = st->last_idle;
597 
598 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
599 		st->first_idle = entity;
600 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
601 		st->last_idle = entity;
602 
603 	bfq_insert(&st->idle, entity);
604 
605 	if (bfqq)
606 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
607 }
608 
609 /**
610  * bfq_forget_entity - do not consider entity any longer for scheduling
611  * @st: the service tree.
612  * @entity: the entity being removed.
613  * @is_in_service: true if entity is currently the in-service entity.
614  *
615  * Forget everything about @entity. In addition, if entity represents
616  * a queue, and the latter is not in service, then release the service
617  * reference to the queue (the one taken through bfq_get_entity). In
618  * fact, in this case, there is really no more service reference to
619  * the queue, as the latter is also outside any service tree. If,
620  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
621  * will take care of putting the reference when the queue finally
622  * stops being served.
623  */
624 static void bfq_forget_entity(struct bfq_service_tree *st,
625 			      struct bfq_entity *entity,
626 			      bool is_in_service)
627 {
628 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
629 
630 	entity->on_st_or_in_serv = false;
631 	st->wsum -= entity->weight;
632 	if (bfqq && !is_in_service)
633 		bfq_put_queue(bfqq);
634 }
635 
636 /**
637  * bfq_put_idle_entity - release the idle tree ref of an entity.
638  * @st: service tree for the entity.
639  * @entity: the entity being released.
640  */
641 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
642 {
643 	bfq_idle_extract(st, entity);
644 	bfq_forget_entity(st, entity,
645 			  entity == entity->sched_data->in_service_entity);
646 }
647 
648 /**
649  * bfq_forget_idle - update the idle tree if necessary.
650  * @st: the service tree to act upon.
651  *
652  * To preserve the global O(log N) complexity we only remove one entry here;
653  * as the idle tree will not grow indefinitely this can be done safely.
654  */
655 static void bfq_forget_idle(struct bfq_service_tree *st)
656 {
657 	struct bfq_entity *first_idle = st->first_idle;
658 	struct bfq_entity *last_idle = st->last_idle;
659 
660 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
661 	    !bfq_gt(last_idle->finish, st->vtime)) {
662 		/*
663 		 * Forget the whole idle tree, increasing the vtime past
664 		 * the last finish time of idle entities.
665 		 */
666 		st->vtime = last_idle->finish;
667 	}
668 
669 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
670 		bfq_put_idle_entity(st, first_idle);
671 }
672 
673 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
674 {
675 	struct bfq_sched_data *sched_data = entity->sched_data;
676 	unsigned int idx = bfq_class_idx(entity);
677 
678 	return sched_data->service_tree + idx;
679 }
680 
681 /*
682  * Update weight and priority of entity. If update_class_too is true,
683  * then update the ioprio_class of entity too.
684  *
685  * The reason why the update of ioprio_class is controlled through the
686  * last parameter is as follows. Changing the ioprio class of an
687  * entity implies changing the destination service trees for that
688  * entity. If such a change occurred when the entity is already on one
689  * of the service trees for its previous class, then the state of the
690  * entity would become more complex: none of the new possible service
691  * trees for the entity, according to bfq_entity_service_tree(), would
692  * match any of the possible service trees on which the entity
693  * is. Complex operations involving these trees, such as entity
694  * activations and deactivations, should take into account this
695  * additional complexity.  To avoid this issue, this function is
696  * invoked with update_class_too unset in the points in the code where
697  * entity may happen to be on some tree.
698  */
699 struct bfq_service_tree *
700 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
701 				struct bfq_entity *entity,
702 				bool update_class_too)
703 {
704 	struct bfq_service_tree *new_st = old_st;
705 
706 	if (entity->prio_changed) {
707 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
708 		unsigned int prev_weight, new_weight;
709 		struct bfq_data *bfqd = NULL;
710 		struct rb_root_cached *root;
711 #ifdef CONFIG_BFQ_GROUP_IOSCHED
712 		struct bfq_sched_data *sd;
713 		struct bfq_group *bfqg;
714 #endif
715 
716 		if (bfqq)
717 			bfqd = bfqq->bfqd;
718 #ifdef CONFIG_BFQ_GROUP_IOSCHED
719 		else {
720 			sd = entity->my_sched_data;
721 			bfqg = container_of(sd, struct bfq_group, sched_data);
722 			bfqd = (struct bfq_data *)bfqg->bfqd;
723 		}
724 #endif
725 
726 		/* Matches the smp_wmb() in bfq_group_set_weight. */
727 		smp_rmb();
728 		old_st->wsum -= entity->weight;
729 
730 		if (entity->new_weight != entity->orig_weight) {
731 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
732 			    entity->new_weight > BFQ_MAX_WEIGHT) {
733 				pr_crit("update_weight_prio: new_weight %d\n",
734 					entity->new_weight);
735 				if (entity->new_weight < BFQ_MIN_WEIGHT)
736 					entity->new_weight = BFQ_MIN_WEIGHT;
737 				else
738 					entity->new_weight = BFQ_MAX_WEIGHT;
739 			}
740 			entity->orig_weight = entity->new_weight;
741 			if (bfqq)
742 				bfqq->ioprio =
743 				  bfq_weight_to_ioprio(entity->orig_weight);
744 		}
745 
746 		if (bfqq && update_class_too)
747 			bfqq->ioprio_class = bfqq->new_ioprio_class;
748 
749 		/*
750 		 * Reset prio_changed only if the ioprio_class change
751 		 * is not pending any longer.
752 		 */
753 		if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
754 			entity->prio_changed = 0;
755 
756 		/*
757 		 * NOTE: here we may be changing the weight too early,
758 		 * this will cause unfairness.  The correct approach
759 		 * would have required additional complexity to defer
760 		 * weight changes to the proper time instants (i.e.,
761 		 * when entity->finish <= old_st->vtime).
762 		 */
763 		new_st = bfq_entity_service_tree(entity);
764 
765 		prev_weight = entity->weight;
766 		new_weight = entity->orig_weight *
767 			     (bfqq ? bfqq->wr_coeff : 1);
768 		/*
769 		 * If the weight of the entity changes, and the entity is a
770 		 * queue, remove the entity from its old weight counter (if
771 		 * there is a counter associated with the entity).
772 		 */
773 		if (prev_weight != new_weight && bfqq) {
774 			root = &bfqd->queue_weights_tree;
775 			__bfq_weights_tree_remove(bfqd, bfqq, root);
776 		}
777 		entity->weight = new_weight;
778 		/*
779 		 * Add the entity, if it is not a weight-raised queue,
780 		 * to the counter associated with its new weight.
781 		 */
782 		if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
783 			/* If we get here, root has been initialized. */
784 			bfq_weights_tree_add(bfqd, bfqq, root);
785 		}
786 
787 		new_st->wsum += entity->weight;
788 
789 		if (new_st != old_st)
790 			entity->start = new_st->vtime;
791 	}
792 
793 	return new_st;
794 }
795 
796 /**
797  * bfq_bfqq_served - update the scheduler status after selection for
798  *                   service.
799  * @bfqq: the queue being served.
800  * @served: bytes to transfer.
801  *
802  * NOTE: this can be optimized, as the timestamps of upper level entities
803  * are synchronized every time a new bfqq is selected for service.  By now,
804  * we keep it to better check consistency.
805  */
806 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
807 {
808 	struct bfq_entity *entity = &bfqq->entity;
809 	struct bfq_service_tree *st;
810 
811 	if (!bfqq->service_from_backlogged)
812 		bfqq->first_IO_time = jiffies;
813 
814 	if (bfqq->wr_coeff > 1)
815 		bfqq->service_from_wr += served;
816 
817 	bfqq->service_from_backlogged += served;
818 	for_each_entity(entity) {
819 		st = bfq_entity_service_tree(entity);
820 
821 		entity->service += served;
822 
823 		st->vtime += bfq_delta(served, st->wsum);
824 		bfq_forget_idle(st);
825 	}
826 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
827 }
828 
829 /**
830  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
831  *			  of the time interval during which bfqq has been in
832  *			  service.
833  * @bfqd: the device
834  * @bfqq: the queue that needs a service update.
835  * @time_ms: the amount of time during which the queue has received service
836  *
837  * If a queue does not consume its budget fast enough, then providing
838  * the queue with service fairness may impair throughput, more or less
839  * severely. For this reason, queues that consume their budget slowly
840  * are provided with time fairness instead of service fairness. This
841  * goal is achieved through the BFQ scheduling engine, even if such an
842  * engine works in the service, and not in the time domain. The trick
843  * is charging these queues with an inflated amount of service, equal
844  * to the amount of service that they would have received during their
845  * service slot if they had been fast, i.e., if their requests had
846  * been dispatched at a rate equal to the estimated peak rate.
847  *
848  * It is worth noting that time fairness can cause important
849  * distortions in terms of bandwidth distribution, on devices with
850  * internal queueing. The reason is that I/O requests dispatched
851  * during the service slot of a queue may be served after that service
852  * slot is finished, and may have a total processing time loosely
853  * correlated with the duration of the service slot. This is
854  * especially true for short service slots.
855  */
856 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
857 			  unsigned long time_ms)
858 {
859 	struct bfq_entity *entity = &bfqq->entity;
860 	unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
861 	unsigned long bounded_time_ms = min(time_ms, timeout_ms);
862 	int serv_to_charge_for_time =
863 		(bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
864 	int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
865 
866 	/* Increase budget to avoid inconsistencies */
867 	if (tot_serv_to_charge > entity->budget)
868 		entity->budget = tot_serv_to_charge;
869 
870 	bfq_bfqq_served(bfqq,
871 			max_t(int, 0, tot_serv_to_charge - entity->service));
872 }
873 
874 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
875 					struct bfq_service_tree *st,
876 					bool backshifted)
877 {
878 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
879 
880 	/*
881 	 * When this function is invoked, entity is not in any service
882 	 * tree, then it is safe to invoke next function with the last
883 	 * parameter set (see the comments on the function).
884 	 */
885 	st = __bfq_entity_update_weight_prio(st, entity, true);
886 	bfq_calc_finish(entity, entity->budget);
887 
888 	/*
889 	 * If some queues enjoy backshifting for a while, then their
890 	 * (virtual) finish timestamps may happen to become lower and
891 	 * lower than the system virtual time.	In particular, if
892 	 * these queues often happen to be idle for short time
893 	 * periods, and during such time periods other queues with
894 	 * higher timestamps happen to be busy, then the backshifted
895 	 * timestamps of the former queues can become much lower than
896 	 * the system virtual time. In fact, to serve the queues with
897 	 * higher timestamps while the ones with lower timestamps are
898 	 * idle, the system virtual time may be pushed-up to much
899 	 * higher values than the finish timestamps of the idle
900 	 * queues. As a consequence, the finish timestamps of all new
901 	 * or newly activated queues may end up being much larger than
902 	 * those of lucky queues with backshifted timestamps. The
903 	 * latter queues may then monopolize the device for a lot of
904 	 * time. This would simply break service guarantees.
905 	 *
906 	 * To reduce this problem, push up a little bit the
907 	 * backshifted timestamps of the queue associated with this
908 	 * entity (only a queue can happen to have the backshifted
909 	 * flag set): just enough to let the finish timestamp of the
910 	 * queue be equal to the current value of the system virtual
911 	 * time. This may introduce a little unfairness among queues
912 	 * with backshifted timestamps, but it does not break
913 	 * worst-case fairness guarantees.
914 	 *
915 	 * As a special case, if bfqq is weight-raised, push up
916 	 * timestamps much less, to keep very low the probability that
917 	 * this push up causes the backshifted finish timestamps of
918 	 * weight-raised queues to become higher than the backshifted
919 	 * finish timestamps of non weight-raised queues.
920 	 */
921 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
922 		unsigned long delta = st->vtime - entity->finish;
923 
924 		if (bfqq)
925 			delta /= bfqq->wr_coeff;
926 
927 		entity->start += delta;
928 		entity->finish += delta;
929 	}
930 
931 	bfq_active_insert(st, entity);
932 }
933 
934 /**
935  * __bfq_activate_entity - handle activation of entity.
936  * @entity: the entity being activated.
937  * @non_blocking_wait_rq: true if entity was waiting for a request
938  *
939  * Called for a 'true' activation, i.e., if entity is not active and
940  * one of its children receives a new request.
941  *
942  * Basically, this function updates the timestamps of entity and
943  * inserts entity into its active tree, after possibly extracting it
944  * from its idle tree.
945  */
946 static void __bfq_activate_entity(struct bfq_entity *entity,
947 				  bool non_blocking_wait_rq)
948 {
949 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
950 	bool backshifted = false;
951 	unsigned long long min_vstart;
952 
953 	/* See comments on bfq_fqq_update_budg_for_activation */
954 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
955 		backshifted = true;
956 		min_vstart = entity->finish;
957 	} else
958 		min_vstart = st->vtime;
959 
960 	if (entity->tree == &st->idle) {
961 		/*
962 		 * Must be on the idle tree, bfq_idle_extract() will
963 		 * check for that.
964 		 */
965 		bfq_idle_extract(st, entity);
966 		entity->start = bfq_gt(min_vstart, entity->finish) ?
967 			min_vstart : entity->finish;
968 	} else {
969 		/*
970 		 * The finish time of the entity may be invalid, and
971 		 * it is in the past for sure, otherwise the queue
972 		 * would have been on the idle tree.
973 		 */
974 		entity->start = min_vstart;
975 		st->wsum += entity->weight;
976 		/*
977 		 * entity is about to be inserted into a service tree,
978 		 * and then set in service: get a reference to make
979 		 * sure entity does not disappear until it is no
980 		 * longer in service or scheduled for service.
981 		 */
982 		bfq_get_entity(entity);
983 
984 		entity->on_st_or_in_serv = true;
985 	}
986 
987 #ifdef CONFIG_BFQ_GROUP_IOSCHED
988 	if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
989 		struct bfq_group *bfqg =
990 			container_of(entity, struct bfq_group, entity);
991 		struct bfq_data *bfqd = bfqg->bfqd;
992 
993 		if (!entity->in_groups_with_pending_reqs) {
994 			entity->in_groups_with_pending_reqs = true;
995 			bfqd->num_groups_with_pending_reqs++;
996 		}
997 	}
998 #endif
999 
1000 	bfq_update_fin_time_enqueue(entity, st, backshifted);
1001 }
1002 
1003 /**
1004  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1005  * @entity: the entity being requeued or repositioned.
1006  *
1007  * Requeueing is needed if this entity stops being served, which
1008  * happens if a leaf descendant entity has expired. On the other hand,
1009  * repositioning is needed if the next_inservice_entity for the child
1010  * entity has changed. See the comments inside the function for
1011  * details.
1012  *
1013  * Basically, this function: 1) removes entity from its active tree if
1014  * present there, 2) updates the timestamps of entity and 3) inserts
1015  * entity back into its active tree (in the new, right position for
1016  * the new values of the timestamps).
1017  */
1018 static void __bfq_requeue_entity(struct bfq_entity *entity)
1019 {
1020 	struct bfq_sched_data *sd = entity->sched_data;
1021 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1022 
1023 	if (entity == sd->in_service_entity) {
1024 		/*
1025 		 * We are requeueing the current in-service entity,
1026 		 * which may have to be done for one of the following
1027 		 * reasons:
1028 		 * - entity represents the in-service queue, and the
1029 		 *   in-service queue is being requeued after an
1030 		 *   expiration;
1031 		 * - entity represents a group, and its budget has
1032 		 *   changed because one of its child entities has
1033 		 *   just been either activated or requeued for some
1034 		 *   reason; the timestamps of the entity need then to
1035 		 *   be updated, and the entity needs to be enqueued
1036 		 *   or repositioned accordingly.
1037 		 *
1038 		 * In particular, before requeueing, the start time of
1039 		 * the entity must be moved forward to account for the
1040 		 * service that the entity has received while in
1041 		 * service. This is done by the next instructions. The
1042 		 * finish time will then be updated according to this
1043 		 * new value of the start time, and to the budget of
1044 		 * the entity.
1045 		 */
1046 		bfq_calc_finish(entity, entity->service);
1047 		entity->start = entity->finish;
1048 		/*
1049 		 * In addition, if the entity had more than one child
1050 		 * when set in service, then it was not extracted from
1051 		 * the active tree. This implies that the position of
1052 		 * the entity in the active tree may need to be
1053 		 * changed now, because we have just updated the start
1054 		 * time of the entity, and we will update its finish
1055 		 * time in a moment (the requeueing is then, more
1056 		 * precisely, a repositioning in this case). To
1057 		 * implement this repositioning, we: 1) dequeue the
1058 		 * entity here, 2) update the finish time and requeue
1059 		 * the entity according to the new timestamps below.
1060 		 */
1061 		if (entity->tree)
1062 			bfq_active_extract(st, entity);
1063 	} else { /* The entity is already active, and not in service */
1064 		/*
1065 		 * In this case, this function gets called only if the
1066 		 * next_in_service entity below this entity has
1067 		 * changed, and this change has caused the budget of
1068 		 * this entity to change, which, finally implies that
1069 		 * the finish time of this entity must be
1070 		 * updated. Such an update may cause the scheduling,
1071 		 * i.e., the position in the active tree, of this
1072 		 * entity to change. We handle this change by: 1)
1073 		 * dequeueing the entity here, 2) updating the finish
1074 		 * time and requeueing the entity according to the new
1075 		 * timestamps below. This is the same approach as the
1076 		 * non-extracted-entity sub-case above.
1077 		 */
1078 		bfq_active_extract(st, entity);
1079 	}
1080 
1081 	bfq_update_fin_time_enqueue(entity, st, false);
1082 }
1083 
1084 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1085 					  struct bfq_sched_data *sd,
1086 					  bool non_blocking_wait_rq)
1087 {
1088 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1089 
1090 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1091 		 /*
1092 		  * in service or already queued on the active tree,
1093 		  * requeue or reposition
1094 		  */
1095 		__bfq_requeue_entity(entity);
1096 	else
1097 		/*
1098 		 * Not in service and not queued on its active tree:
1099 		 * the activity is idle and this is a true activation.
1100 		 */
1101 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1102 }
1103 
1104 
1105 /**
1106  * bfq_activate_requeue_entity - activate or requeue an entity representing a
1107  *				 bfq_queue, and activate, requeue or reposition
1108  *				 all ancestors for which such an update becomes
1109  *				 necessary.
1110  * @entity: the entity to activate.
1111  * @non_blocking_wait_rq: true if this entity was waiting for a request
1112  * @requeue: true if this is a requeue, which implies that bfqq is
1113  *	     being expired; thus ALL its ancestors stop being served and must
1114  *	     therefore be requeued
1115  * @expiration: true if this function is being invoked in the expiration path
1116  *             of the in-service queue
1117  */
1118 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1119 					bool non_blocking_wait_rq,
1120 					bool requeue, bool expiration)
1121 {
1122 	struct bfq_sched_data *sd;
1123 
1124 	for_each_entity(entity) {
1125 		sd = entity->sched_data;
1126 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1127 
1128 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1129 		    !requeue)
1130 			break;
1131 	}
1132 }
1133 
1134 /**
1135  * __bfq_deactivate_entity - update sched_data and service trees for
1136  * entity, so as to represent entity as inactive
1137  * @entity: the entity being deactivated.
1138  * @ins_into_idle_tree: if false, the entity will not be put into the
1139  *			idle tree.
1140  *
1141  * If necessary and allowed, puts entity into the idle tree. NOTE:
1142  * entity may be on no tree if in service.
1143  */
1144 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1145 {
1146 	struct bfq_sched_data *sd = entity->sched_data;
1147 	struct bfq_service_tree *st;
1148 	bool is_in_service;
1149 
1150 	if (!entity->on_st_or_in_serv) /*
1151 					* entity never activated, or
1152 					* already inactive
1153 					*/
1154 		return false;
1155 
1156 	/*
1157 	 * If we get here, then entity is active, which implies that
1158 	 * bfq_group_set_parent has already been invoked for the group
1159 	 * represented by entity. Therefore, the field
1160 	 * entity->sched_data has been set, and we can safely use it.
1161 	 */
1162 	st = bfq_entity_service_tree(entity);
1163 	is_in_service = entity == sd->in_service_entity;
1164 
1165 	bfq_calc_finish(entity, entity->service);
1166 
1167 	if (is_in_service)
1168 		sd->in_service_entity = NULL;
1169 	else
1170 		/*
1171 		 * Non in-service entity: nobody will take care of
1172 		 * resetting its service counter on expiration. Do it
1173 		 * now.
1174 		 */
1175 		entity->service = 0;
1176 
1177 	if (entity->tree == &st->active)
1178 		bfq_active_extract(st, entity);
1179 	else if (!is_in_service && entity->tree == &st->idle)
1180 		bfq_idle_extract(st, entity);
1181 
1182 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1183 		bfq_forget_entity(st, entity, is_in_service);
1184 	else
1185 		bfq_idle_insert(st, entity);
1186 
1187 	return true;
1188 }
1189 
1190 /**
1191  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1192  * @entity: the entity to deactivate.
1193  * @ins_into_idle_tree: true if the entity can be put into the idle tree
1194  * @expiration: true if this function is being invoked in the expiration path
1195  *             of the in-service queue
1196  */
1197 static void bfq_deactivate_entity(struct bfq_entity *entity,
1198 				  bool ins_into_idle_tree,
1199 				  bool expiration)
1200 {
1201 	struct bfq_sched_data *sd;
1202 	struct bfq_entity *parent = NULL;
1203 
1204 	for_each_entity_safe(entity, parent) {
1205 		sd = entity->sched_data;
1206 
1207 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1208 			/*
1209 			 * entity is not in any tree any more, so
1210 			 * this deactivation is a no-op, and there is
1211 			 * nothing to change for upper-level entities
1212 			 * (in case of expiration, this can never
1213 			 * happen).
1214 			 */
1215 			return;
1216 		}
1217 
1218 		if (sd->next_in_service == entity)
1219 			/*
1220 			 * entity was the next_in_service entity,
1221 			 * then, since entity has just been
1222 			 * deactivated, a new one must be found.
1223 			 */
1224 			bfq_update_next_in_service(sd, NULL, expiration);
1225 
1226 		if (sd->next_in_service || sd->in_service_entity) {
1227 			/*
1228 			 * The parent entity is still active, because
1229 			 * either next_in_service or in_service_entity
1230 			 * is not NULL. So, no further upwards
1231 			 * deactivation must be performed.  Yet,
1232 			 * next_in_service has changed.	Then the
1233 			 * schedule does need to be updated upwards.
1234 			 *
1235 			 * NOTE If in_service_entity is not NULL, then
1236 			 * next_in_service may happen to be NULL,
1237 			 * although the parent entity is evidently
1238 			 * active. This happens if 1) the entity
1239 			 * pointed by in_service_entity is the only
1240 			 * active entity in the parent entity, and 2)
1241 			 * according to the definition of
1242 			 * next_in_service, the in_service_entity
1243 			 * cannot be considered as
1244 			 * next_in_service. See the comments on the
1245 			 * definition of next_in_service for details.
1246 			 */
1247 			break;
1248 		}
1249 
1250 		/*
1251 		 * If we get here, then the parent is no more
1252 		 * backlogged and we need to propagate the
1253 		 * deactivation upwards. Thus let the loop go on.
1254 		 */
1255 
1256 		/*
1257 		 * Also let parent be queued into the idle tree on
1258 		 * deactivation, to preserve service guarantees, and
1259 		 * assuming that who invoked this function does not
1260 		 * need parent entities too to be removed completely.
1261 		 */
1262 		ins_into_idle_tree = true;
1263 	}
1264 
1265 	/*
1266 	 * If the deactivation loop is fully executed, then there are
1267 	 * no more entities to touch and next loop is not executed at
1268 	 * all. Otherwise, requeue remaining entities if they are
1269 	 * about to stop receiving service, or reposition them if this
1270 	 * is not the case.
1271 	 */
1272 	entity = parent;
1273 	for_each_entity(entity) {
1274 		/*
1275 		 * Invoke __bfq_requeue_entity on entity, even if
1276 		 * already active, to requeue/reposition it in the
1277 		 * active tree (because sd->next_in_service has
1278 		 * changed)
1279 		 */
1280 		__bfq_requeue_entity(entity);
1281 
1282 		sd = entity->sched_data;
1283 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1284 		    !expiration)
1285 			/*
1286 			 * next_in_service unchanged or not causing
1287 			 * any change in entity->parent->sd, and no
1288 			 * requeueing needed for expiration: stop
1289 			 * here.
1290 			 */
1291 			break;
1292 	}
1293 }
1294 
1295 /**
1296  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1297  *                       if needed, to have at least one entity eligible.
1298  * @st: the service tree to act upon.
1299  *
1300  * Assumes that st is not empty.
1301  */
1302 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1303 {
1304 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1305 
1306 	if (bfq_gt(root_entity->min_start, st->vtime))
1307 		return root_entity->min_start;
1308 
1309 	return st->vtime;
1310 }
1311 
1312 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1313 {
1314 	if (new_value > st->vtime) {
1315 		st->vtime = new_value;
1316 		bfq_forget_idle(st);
1317 	}
1318 }
1319 
1320 /**
1321  * bfq_first_active_entity - find the eligible entity with
1322  *                           the smallest finish time
1323  * @st: the service tree to select from.
1324  * @vtime: the system virtual to use as a reference for eligibility
1325  *
1326  * This function searches the first schedulable entity, starting from the
1327  * root of the tree and going on the left every time on this side there is
1328  * a subtree with at least one eligible (start <= vtime) entity. The path on
1329  * the right is followed only if a) the left subtree contains no eligible
1330  * entities and b) no eligible entity has been found yet.
1331  */
1332 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1333 						  u64 vtime)
1334 {
1335 	struct bfq_entity *entry, *first = NULL;
1336 	struct rb_node *node = st->active.rb_node;
1337 
1338 	while (node) {
1339 		entry = rb_entry(node, struct bfq_entity, rb_node);
1340 left:
1341 		if (!bfq_gt(entry->start, vtime))
1342 			first = entry;
1343 
1344 		if (node->rb_left) {
1345 			entry = rb_entry(node->rb_left,
1346 					 struct bfq_entity, rb_node);
1347 			if (!bfq_gt(entry->min_start, vtime)) {
1348 				node = node->rb_left;
1349 				goto left;
1350 			}
1351 		}
1352 		if (first)
1353 			break;
1354 		node = node->rb_right;
1355 	}
1356 
1357 	return first;
1358 }
1359 
1360 /**
1361  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1362  * @st: the service tree.
1363  *
1364  * If there is no in-service entity for the sched_data st belongs to,
1365  * then return the entity that will be set in service if:
1366  * 1) the parent entity this st belongs to is set in service;
1367  * 2) no entity belonging to such parent entity undergoes a state change
1368  * that would influence the timestamps of the entity (e.g., becomes idle,
1369  * becomes backlogged, changes its budget, ...).
1370  *
1371  * In this first case, update the virtual time in @st too (see the
1372  * comments on this update inside the function).
1373  *
1374  * In contrast, if there is an in-service entity, then return the
1375  * entity that would be set in service if not only the above
1376  * conditions, but also the next one held true: the currently
1377  * in-service entity, on expiration,
1378  * 1) gets a finish time equal to the current one, or
1379  * 2) is not eligible any more, or
1380  * 3) is idle.
1381  */
1382 static struct bfq_entity *
1383 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1384 {
1385 	struct bfq_entity *entity;
1386 	u64 new_vtime;
1387 
1388 	if (RB_EMPTY_ROOT(&st->active))
1389 		return NULL;
1390 
1391 	/*
1392 	 * Get the value of the system virtual time for which at
1393 	 * least one entity is eligible.
1394 	 */
1395 	new_vtime = bfq_calc_vtime_jump(st);
1396 
1397 	/*
1398 	 * If there is no in-service entity for the sched_data this
1399 	 * active tree belongs to, then push the system virtual time
1400 	 * up to the value that guarantees that at least one entity is
1401 	 * eligible. If, instead, there is an in-service entity, then
1402 	 * do not make any such update, because there is already an
1403 	 * eligible entity, namely the in-service one (even if the
1404 	 * entity is not on st, because it was extracted when set in
1405 	 * service).
1406 	 */
1407 	if (!in_service)
1408 		bfq_update_vtime(st, new_vtime);
1409 
1410 	entity = bfq_first_active_entity(st, new_vtime);
1411 
1412 	return entity;
1413 }
1414 
1415 /**
1416  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1417  * @sd: the sched_data.
1418  * @expiration: true if we are on the expiration path of the in-service queue
1419  *
1420  * This function is invoked when there has been a change in the trees
1421  * for sd, and we need to know what is the new next entity to serve
1422  * after this change.
1423  */
1424 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1425 						 bool expiration)
1426 {
1427 	struct bfq_service_tree *st = sd->service_tree;
1428 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1429 	struct bfq_entity *entity = NULL;
1430 	int class_idx = 0;
1431 
1432 	/*
1433 	 * Choose from idle class, if needed to guarantee a minimum
1434 	 * bandwidth to this class (and if there is some active entity
1435 	 * in idle class). This should also mitigate
1436 	 * priority-inversion problems in case a low priority task is
1437 	 * holding file system resources.
1438 	 */
1439 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1440 				   BFQ_CL_IDLE_TIMEOUT)) {
1441 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1442 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1443 		/* About to be served if backlogged, or not yet backlogged */
1444 		sd->bfq_class_idle_last_service = jiffies;
1445 	}
1446 
1447 	/*
1448 	 * Find the next entity to serve for the highest-priority
1449 	 * class, unless the idle class needs to be served.
1450 	 */
1451 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1452 		/*
1453 		 * If expiration is true, then bfq_lookup_next_entity
1454 		 * is being invoked as a part of the expiration path
1455 		 * of the in-service queue. In this case, even if
1456 		 * sd->in_service_entity is not NULL,
1457 		 * sd->in_service_entity at this point is actually not
1458 		 * in service any more, and, if needed, has already
1459 		 * been properly queued or requeued into the right
1460 		 * tree. The reason why sd->in_service_entity is still
1461 		 * not NULL here, even if expiration is true, is that
1462 		 * sd->in_service_entity is reset as a last step in the
1463 		 * expiration path. So, if expiration is true, tell
1464 		 * __bfq_lookup_next_entity that there is no
1465 		 * sd->in_service_entity.
1466 		 */
1467 		entity = __bfq_lookup_next_entity(st + class_idx,
1468 						  sd->in_service_entity &&
1469 						  !expiration);
1470 
1471 		if (entity)
1472 			break;
1473 	}
1474 
1475 	if (!entity)
1476 		return NULL;
1477 
1478 	return entity;
1479 }
1480 
1481 bool next_queue_may_preempt(struct bfq_data *bfqd)
1482 {
1483 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1484 
1485 	return sd->next_in_service != sd->in_service_entity;
1486 }
1487 
1488 /*
1489  * Get next queue for service.
1490  */
1491 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1492 {
1493 	struct bfq_entity *entity = NULL;
1494 	struct bfq_sched_data *sd;
1495 	struct bfq_queue *bfqq;
1496 
1497 	if (bfq_tot_busy_queues(bfqd) == 0)
1498 		return NULL;
1499 
1500 	/*
1501 	 * Traverse the path from the root to the leaf entity to
1502 	 * serve. Set in service all the entities visited along the
1503 	 * way.
1504 	 */
1505 	sd = &bfqd->root_group->sched_data;
1506 	for (; sd ; sd = entity->my_sched_data) {
1507 		/*
1508 		 * WARNING. We are about to set the in-service entity
1509 		 * to sd->next_in_service, i.e., to the (cached) value
1510 		 * returned by bfq_lookup_next_entity(sd) the last
1511 		 * time it was invoked, i.e., the last time when the
1512 		 * service order in sd changed as a consequence of the
1513 		 * activation or deactivation of an entity. In this
1514 		 * respect, if we execute bfq_lookup_next_entity(sd)
1515 		 * in this very moment, it may, although with low
1516 		 * probability, yield a different entity than that
1517 		 * pointed to by sd->next_in_service. This rare event
1518 		 * happens in case there was no CLASS_IDLE entity to
1519 		 * serve for sd when bfq_lookup_next_entity(sd) was
1520 		 * invoked for the last time, while there is now one
1521 		 * such entity.
1522 		 *
1523 		 * If the above event happens, then the scheduling of
1524 		 * such entity in CLASS_IDLE is postponed until the
1525 		 * service of the sd->next_in_service entity
1526 		 * finishes. In fact, when the latter is expired,
1527 		 * bfq_lookup_next_entity(sd) gets called again,
1528 		 * exactly to update sd->next_in_service.
1529 		 */
1530 
1531 		/* Make next_in_service entity become in_service_entity */
1532 		entity = sd->next_in_service;
1533 		sd->in_service_entity = entity;
1534 
1535 		/*
1536 		 * If entity is no longer a candidate for next
1537 		 * service, then it must be extracted from its active
1538 		 * tree, so as to make sure that it won't be
1539 		 * considered when computing next_in_service. See the
1540 		 * comments on the function
1541 		 * bfq_no_longer_next_in_service() for details.
1542 		 */
1543 		if (bfq_no_longer_next_in_service(entity))
1544 			bfq_active_extract(bfq_entity_service_tree(entity),
1545 					   entity);
1546 
1547 		/*
1548 		 * Even if entity is not to be extracted according to
1549 		 * the above check, a descendant entity may get
1550 		 * extracted in one of the next iterations of this
1551 		 * loop. Such an event could cause a change in
1552 		 * next_in_service for the level of the descendant
1553 		 * entity, and thus possibly back to this level.
1554 		 *
1555 		 * However, we cannot perform the resulting needed
1556 		 * update of next_in_service for this level before the
1557 		 * end of the whole loop, because, to know which is
1558 		 * the correct next-to-serve candidate entity for each
1559 		 * level, we need first to find the leaf entity to set
1560 		 * in service. In fact, only after we know which is
1561 		 * the next-to-serve leaf entity, we can discover
1562 		 * whether the parent entity of the leaf entity
1563 		 * becomes the next-to-serve, and so on.
1564 		 */
1565 	}
1566 
1567 	bfqq = bfq_entity_to_bfqq(entity);
1568 
1569 	/*
1570 	 * We can finally update all next-to-serve entities along the
1571 	 * path from the leaf entity just set in service to the root.
1572 	 */
1573 	for_each_entity(entity) {
1574 		struct bfq_sched_data *sd = entity->sched_data;
1575 
1576 		if (!bfq_update_next_in_service(sd, NULL, false))
1577 			break;
1578 	}
1579 
1580 	return bfqq;
1581 }
1582 
1583 /* returns true if the in-service queue gets freed */
1584 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1585 {
1586 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1587 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1588 	struct bfq_entity *entity = in_serv_entity;
1589 
1590 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1591 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1592 	bfqd->in_service_queue = NULL;
1593 
1594 	/*
1595 	 * When this function is called, all in-service entities have
1596 	 * been properly deactivated or requeued, so we can safely
1597 	 * execute the final step: reset in_service_entity along the
1598 	 * path from entity to the root.
1599 	 */
1600 	for_each_entity(entity)
1601 		entity->sched_data->in_service_entity = NULL;
1602 
1603 	/*
1604 	 * in_serv_entity is no longer in service, so, if it is in no
1605 	 * service tree either, then release the service reference to
1606 	 * the queue it represents (taken with bfq_get_entity).
1607 	 */
1608 	if (!in_serv_entity->on_st_or_in_serv) {
1609 		/*
1610 		 * If no process is referencing in_serv_bfqq any
1611 		 * longer, then the service reference may be the only
1612 		 * reference to the queue. If this is the case, then
1613 		 * bfqq gets freed here.
1614 		 */
1615 		int ref = in_serv_bfqq->ref;
1616 		bfq_put_queue(in_serv_bfqq);
1617 		if (ref == 1)
1618 			return true;
1619 	}
1620 
1621 	return false;
1622 }
1623 
1624 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1625 			 bool ins_into_idle_tree, bool expiration)
1626 {
1627 	struct bfq_entity *entity = &bfqq->entity;
1628 
1629 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1630 }
1631 
1632 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1633 {
1634 	struct bfq_entity *entity = &bfqq->entity;
1635 
1636 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1637 				    false, false);
1638 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1639 }
1640 
1641 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1642 		      bool expiration)
1643 {
1644 	struct bfq_entity *entity = &bfqq->entity;
1645 
1646 	bfq_activate_requeue_entity(entity, false,
1647 				    bfqq == bfqd->in_service_queue, expiration);
1648 }
1649 
1650 /*
1651  * Called when the bfqq no longer has requests pending, remove it from
1652  * the service tree. As a special case, it can be invoked during an
1653  * expiration.
1654  */
1655 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1656 		       bool expiration)
1657 {
1658 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1659 
1660 	bfq_clear_bfqq_busy(bfqq);
1661 
1662 	bfqd->busy_queues[bfqq->ioprio_class - 1]--;
1663 
1664 	if (bfqq->wr_coeff > 1)
1665 		bfqd->wr_busy_queues--;
1666 
1667 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1668 
1669 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1670 
1671 	if (!bfqq->dispatched)
1672 		bfq_weights_tree_remove(bfqd, bfqq);
1673 }
1674 
1675 /*
1676  * Called when an inactive queue receives a new request.
1677  */
1678 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1679 {
1680 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1681 
1682 	bfq_activate_bfqq(bfqd, bfqq);
1683 
1684 	bfq_mark_bfqq_busy(bfqq);
1685 	bfqd->busy_queues[bfqq->ioprio_class - 1]++;
1686 
1687 	if (!bfqq->dispatched)
1688 		if (bfqq->wr_coeff == 1)
1689 			bfq_weights_tree_add(bfqd, bfqq,
1690 					     &bfqd->queue_weights_tree);
1691 
1692 	if (bfqq->wr_coeff > 1)
1693 		bfqd->wr_busy_queues++;
1694 
1695 	/* Move bfqq to the head of the woken list of its waker */
1696 	if (!hlist_unhashed(&bfqq->woken_list_node) &&
1697 	    &bfqq->woken_list_node != bfqq->waker_bfqq->woken_list.first) {
1698 		hlist_del_init(&bfqq->woken_list_node);
1699 		hlist_add_head(&bfqq->woken_list_node,
1700 			       &bfqq->waker_bfqq->woken_list);
1701 	}
1702 }
1703