xref: /linux/block/bfq-wf2q.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
4  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
5  * scheduler schedules generic entities. The latter can represent
6  * either single bfq queues (associated with processes) or groups of
7  * bfq queues (associated with cgroups).
8  */
9 #include "bfq-iosched.h"
10 
11 /**
12  * bfq_gt - compare two timestamps.
13  * @a: first ts.
14  * @b: second ts.
15  *
16  * Return @a > @b, dealing with wrapping correctly.
17  */
18 static int bfq_gt(u64 a, u64 b)
19 {
20 	return (s64)(a - b) > 0;
21 }
22 
23 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
24 {
25 	struct rb_node *node = tree->rb_node;
26 
27 	return rb_entry(node, struct bfq_entity, rb_node);
28 }
29 
30 static unsigned int bfq_class_idx(struct bfq_entity *entity)
31 {
32 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
33 
34 	return bfqq ? bfqq->ioprio_class - 1 :
35 		BFQ_DEFAULT_GRP_CLASS - 1;
36 }
37 
38 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
39 {
40 	return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
41 		bfqd->busy_queues[2];
42 }
43 
44 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
45 						 bool expiration);
46 
47 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
48 
49 /**
50  * bfq_update_next_in_service - update sd->next_in_service
51  * @sd: sched_data for which to perform the update.
52  * @new_entity: if not NULL, pointer to the entity whose activation,
53  *		requeueing or repositioning triggered the invocation of
54  *		this function.
55  * @expiration: id true, this function is being invoked after the
56  *             expiration of the in-service entity
57  *
58  * This function is called to update sd->next_in_service, which, in
59  * its turn, may change as a consequence of the insertion or
60  * extraction of an entity into/from one of the active trees of
61  * sd. These insertions/extractions occur as a consequence of
62  * activations/deactivations of entities, with some activations being
63  * 'true' activations, and other activations being requeueings (i.e.,
64  * implementing the second, requeueing phase of the mechanism used to
65  * reposition an entity in its active tree; see comments on
66  * __bfq_activate_entity and __bfq_requeue_entity for details). In
67  * both the last two activation sub-cases, new_entity points to the
68  * just activated or requeued entity.
69  *
70  * Returns true if sd->next_in_service changes in such a way that
71  * entity->parent may become the next_in_service for its parent
72  * entity.
73  */
74 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
75 				       struct bfq_entity *new_entity,
76 				       bool expiration)
77 {
78 	struct bfq_entity *next_in_service = sd->next_in_service;
79 	bool parent_sched_may_change = false;
80 	bool change_without_lookup = false;
81 
82 	/*
83 	 * If this update is triggered by the activation, requeueing
84 	 * or repositioning of an entity that does not coincide with
85 	 * sd->next_in_service, then a full lookup in the active tree
86 	 * can be avoided. In fact, it is enough to check whether the
87 	 * just-modified entity has the same priority as
88 	 * sd->next_in_service, is eligible and has a lower virtual
89 	 * finish time than sd->next_in_service. If this compound
90 	 * condition holds, then the new entity becomes the new
91 	 * next_in_service. Otherwise no change is needed.
92 	 */
93 	if (new_entity && new_entity != sd->next_in_service) {
94 		/*
95 		 * Flag used to decide whether to replace
96 		 * sd->next_in_service with new_entity. Tentatively
97 		 * set to true, and left as true if
98 		 * sd->next_in_service is NULL.
99 		 */
100 		change_without_lookup = true;
101 
102 		/*
103 		 * If there is already a next_in_service candidate
104 		 * entity, then compare timestamps to decide whether
105 		 * to replace sd->service_tree with new_entity.
106 		 */
107 		if (next_in_service) {
108 			unsigned int new_entity_class_idx =
109 				bfq_class_idx(new_entity);
110 			struct bfq_service_tree *st =
111 				sd->service_tree + new_entity_class_idx;
112 
113 			change_without_lookup =
114 				(new_entity_class_idx ==
115 				 bfq_class_idx(next_in_service)
116 				 &&
117 				 !bfq_gt(new_entity->start, st->vtime)
118 				 &&
119 				 bfq_gt(next_in_service->finish,
120 					new_entity->finish));
121 		}
122 
123 		if (change_without_lookup)
124 			next_in_service = new_entity;
125 	}
126 
127 	if (!change_without_lookup) /* lookup needed */
128 		next_in_service = bfq_lookup_next_entity(sd, expiration);
129 
130 	if (next_in_service) {
131 		bool new_budget_triggers_change =
132 			bfq_update_parent_budget(next_in_service);
133 
134 		parent_sched_may_change = !sd->next_in_service ||
135 			new_budget_triggers_change;
136 	}
137 
138 	sd->next_in_service = next_in_service;
139 
140 	if (!next_in_service)
141 		return parent_sched_may_change;
142 
143 	return parent_sched_may_change;
144 }
145 
146 #ifdef CONFIG_BFQ_GROUP_IOSCHED
147 
148 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
149 {
150 	struct bfq_entity *group_entity = bfqq->entity.parent;
151 
152 	if (!group_entity)
153 		group_entity = &bfqq->bfqd->root_group->entity;
154 
155 	return container_of(group_entity, struct bfq_group, entity);
156 }
157 
158 /*
159  * Returns true if this budget changes may let next_in_service->parent
160  * become the next_in_service entity for its parent entity.
161  */
162 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
163 {
164 	struct bfq_entity *bfqg_entity;
165 	struct bfq_group *bfqg;
166 	struct bfq_sched_data *group_sd;
167 	bool ret = false;
168 
169 	group_sd = next_in_service->sched_data;
170 
171 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
172 	/*
173 	 * bfq_group's my_entity field is not NULL only if the group
174 	 * is not the root group. We must not touch the root entity
175 	 * as it must never become an in-service entity.
176 	 */
177 	bfqg_entity = bfqg->my_entity;
178 	if (bfqg_entity) {
179 		if (bfqg_entity->budget > next_in_service->budget)
180 			ret = true;
181 		bfqg_entity->budget = next_in_service->budget;
182 	}
183 
184 	return ret;
185 }
186 
187 /*
188  * This function tells whether entity stops being a candidate for next
189  * service, according to the restrictive definition of the field
190  * next_in_service. In particular, this function is invoked for an
191  * entity that is about to be set in service.
192  *
193  * If entity is a queue, then the entity is no longer a candidate for
194  * next service according to the that definition, because entity is
195  * about to become the in-service queue. This function then returns
196  * true if entity is a queue.
197  *
198  * In contrast, entity could still be a candidate for next service if
199  * it is not a queue, and has more than one active child. In fact,
200  * even if one of its children is about to be set in service, other
201  * active children may still be the next to serve, for the parent
202  * entity, even according to the above definition. As a consequence, a
203  * non-queue entity is not a candidate for next-service only if it has
204  * only one active child. And only if this condition holds, then this
205  * function returns true for a non-queue entity.
206  */
207 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
208 {
209 	struct bfq_group *bfqg;
210 
211 	if (bfq_entity_to_bfqq(entity))
212 		return true;
213 
214 	bfqg = container_of(entity, struct bfq_group, entity);
215 
216 	/*
217 	 * The field active_entities does not always contain the
218 	 * actual number of active children entities: it happens to
219 	 * not account for the in-service entity in case the latter is
220 	 * removed from its active tree (which may get done after
221 	 * invoking the function bfq_no_longer_next_in_service in
222 	 * bfq_get_next_queue). Fortunately, here, i.e., while
223 	 * bfq_no_longer_next_in_service is not yet completed in
224 	 * bfq_get_next_queue, bfq_active_extract has not yet been
225 	 * invoked, and thus active_entities still coincides with the
226 	 * actual number of active entities.
227 	 */
228 	if (bfqg->active_entities == 1)
229 		return true;
230 
231 	return false;
232 }
233 
234 #else /* CONFIG_BFQ_GROUP_IOSCHED */
235 
236 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
237 {
238 	return bfqq->bfqd->root_group;
239 }
240 
241 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
242 {
243 	return false;
244 }
245 
246 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
247 {
248 	return true;
249 }
250 
251 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
252 
253 /*
254  * Shift for timestamp calculations.  This actually limits the maximum
255  * service allowed in one timestamp delta (small shift values increase it),
256  * the maximum total weight that can be used for the queues in the system
257  * (big shift values increase it), and the period of virtual time
258  * wraparounds.
259  */
260 #define WFQ_SERVICE_SHIFT	22
261 
262 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
263 {
264 	struct bfq_queue *bfqq = NULL;
265 
266 	if (!entity->my_sched_data)
267 		bfqq = container_of(entity, struct bfq_queue, entity);
268 
269 	return bfqq;
270 }
271 
272 
273 /**
274  * bfq_delta - map service into the virtual time domain.
275  * @service: amount of service.
276  * @weight: scale factor (weight of an entity or weight sum).
277  */
278 static u64 bfq_delta(unsigned long service, unsigned long weight)
279 {
280 	return div64_ul((u64)service << WFQ_SERVICE_SHIFT, weight);
281 }
282 
283 /**
284  * bfq_calc_finish - assign the finish time to an entity.
285  * @entity: the entity to act upon.
286  * @service: the service to be charged to the entity.
287  */
288 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
289 {
290 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
291 
292 	entity->finish = entity->start +
293 		bfq_delta(service, entity->weight);
294 
295 	if (bfqq) {
296 		bfq_log_bfqq(bfqq->bfqd, bfqq,
297 			"calc_finish: serv %lu, w %d",
298 			service, entity->weight);
299 		bfq_log_bfqq(bfqq->bfqd, bfqq,
300 			"calc_finish: start %llu, finish %llu, delta %llu",
301 			entity->start, entity->finish,
302 			bfq_delta(service, entity->weight));
303 	}
304 }
305 
306 /**
307  * bfq_entity_of - get an entity from a node.
308  * @node: the node field of the entity.
309  *
310  * Convert a node pointer to the relative entity.  This is used only
311  * to simplify the logic of some functions and not as the generic
312  * conversion mechanism because, e.g., in the tree walking functions,
313  * the check for a %NULL value would be redundant.
314  */
315 struct bfq_entity *bfq_entity_of(struct rb_node *node)
316 {
317 	struct bfq_entity *entity = NULL;
318 
319 	if (node)
320 		entity = rb_entry(node, struct bfq_entity, rb_node);
321 
322 	return entity;
323 }
324 
325 /**
326  * bfq_extract - remove an entity from a tree.
327  * @root: the tree root.
328  * @entity: the entity to remove.
329  */
330 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
331 {
332 	entity->tree = NULL;
333 	rb_erase(&entity->rb_node, root);
334 }
335 
336 /**
337  * bfq_idle_extract - extract an entity from the idle tree.
338  * @st: the service tree of the owning @entity.
339  * @entity: the entity being removed.
340  */
341 static void bfq_idle_extract(struct bfq_service_tree *st,
342 			     struct bfq_entity *entity)
343 {
344 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
345 	struct rb_node *next;
346 
347 	if (entity == st->first_idle) {
348 		next = rb_next(&entity->rb_node);
349 		st->first_idle = bfq_entity_of(next);
350 	}
351 
352 	if (entity == st->last_idle) {
353 		next = rb_prev(&entity->rb_node);
354 		st->last_idle = bfq_entity_of(next);
355 	}
356 
357 	bfq_extract(&st->idle, entity);
358 
359 	if (bfqq)
360 		list_del(&bfqq->bfqq_list);
361 }
362 
363 /**
364  * bfq_insert - generic tree insertion.
365  * @root: tree root.
366  * @entity: entity to insert.
367  *
368  * This is used for the idle and the active tree, since they are both
369  * ordered by finish time.
370  */
371 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
372 {
373 	struct bfq_entity *entry;
374 	struct rb_node **node = &root->rb_node;
375 	struct rb_node *parent = NULL;
376 
377 	while (*node) {
378 		parent = *node;
379 		entry = rb_entry(parent, struct bfq_entity, rb_node);
380 
381 		if (bfq_gt(entry->finish, entity->finish))
382 			node = &parent->rb_left;
383 		else
384 			node = &parent->rb_right;
385 	}
386 
387 	rb_link_node(&entity->rb_node, parent, node);
388 	rb_insert_color(&entity->rb_node, root);
389 
390 	entity->tree = root;
391 }
392 
393 /**
394  * bfq_update_min - update the min_start field of a entity.
395  * @entity: the entity to update.
396  * @node: one of its children.
397  *
398  * This function is called when @entity may store an invalid value for
399  * min_start due to updates to the active tree.  The function  assumes
400  * that the subtree rooted at @node (which may be its left or its right
401  * child) has a valid min_start value.
402  */
403 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
404 {
405 	struct bfq_entity *child;
406 
407 	if (node) {
408 		child = rb_entry(node, struct bfq_entity, rb_node);
409 		if (bfq_gt(entity->min_start, child->min_start))
410 			entity->min_start = child->min_start;
411 	}
412 }
413 
414 /**
415  * bfq_update_active_node - recalculate min_start.
416  * @node: the node to update.
417  *
418  * @node may have changed position or one of its children may have moved,
419  * this function updates its min_start value.  The left and right subtrees
420  * are assumed to hold a correct min_start value.
421  */
422 static void bfq_update_active_node(struct rb_node *node)
423 {
424 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
425 
426 	entity->min_start = entity->start;
427 	bfq_update_min(entity, node->rb_right);
428 	bfq_update_min(entity, node->rb_left);
429 }
430 
431 /**
432  * bfq_update_active_tree - update min_start for the whole active tree.
433  * @node: the starting node.
434  *
435  * @node must be the deepest modified node after an update.  This function
436  * updates its min_start using the values held by its children, assuming
437  * that they did not change, and then updates all the nodes that may have
438  * changed in the path to the root.  The only nodes that may have changed
439  * are the ones in the path or their siblings.
440  */
441 static void bfq_update_active_tree(struct rb_node *node)
442 {
443 	struct rb_node *parent;
444 
445 up:
446 	bfq_update_active_node(node);
447 
448 	parent = rb_parent(node);
449 	if (!parent)
450 		return;
451 
452 	if (node == parent->rb_left && parent->rb_right)
453 		bfq_update_active_node(parent->rb_right);
454 	else if (parent->rb_left)
455 		bfq_update_active_node(parent->rb_left);
456 
457 	node = parent;
458 	goto up;
459 }
460 
461 /**
462  * bfq_active_insert - insert an entity in the active tree of its
463  *                     group/device.
464  * @st: the service tree of the entity.
465  * @entity: the entity being inserted.
466  *
467  * The active tree is ordered by finish time, but an extra key is kept
468  * per each node, containing the minimum value for the start times of
469  * its children (and the node itself), so it's possible to search for
470  * the eligible node with the lowest finish time in logarithmic time.
471  */
472 static void bfq_active_insert(struct bfq_service_tree *st,
473 			      struct bfq_entity *entity)
474 {
475 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
476 	struct rb_node *node = &entity->rb_node;
477 #ifdef CONFIG_BFQ_GROUP_IOSCHED
478 	struct bfq_sched_data *sd = NULL;
479 	struct bfq_group *bfqg = NULL;
480 	struct bfq_data *bfqd = NULL;
481 #endif
482 
483 	bfq_insert(&st->active, entity);
484 
485 	if (node->rb_left)
486 		node = node->rb_left;
487 	else if (node->rb_right)
488 		node = node->rb_right;
489 
490 	bfq_update_active_tree(node);
491 
492 #ifdef CONFIG_BFQ_GROUP_IOSCHED
493 	sd = entity->sched_data;
494 	bfqg = container_of(sd, struct bfq_group, sched_data);
495 	bfqd = (struct bfq_data *)bfqg->bfqd;
496 #endif
497 	if (bfqq)
498 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
499 #ifdef CONFIG_BFQ_GROUP_IOSCHED
500 	if (bfqg != bfqd->root_group)
501 		bfqg->active_entities++;
502 #endif
503 }
504 
505 /**
506  * bfq_ioprio_to_weight - calc a weight from an ioprio.
507  * @ioprio: the ioprio value to convert.
508  */
509 unsigned short bfq_ioprio_to_weight(int ioprio)
510 {
511 	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
512 }
513 
514 /**
515  * bfq_weight_to_ioprio - calc an ioprio from a weight.
516  * @weight: the weight value to convert.
517  *
518  * To preserve as much as possible the old only-ioprio user interface,
519  * 0 is used as an escape ioprio value for weights (numerically) equal or
520  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
521  */
522 static unsigned short bfq_weight_to_ioprio(int weight)
523 {
524 	return max_t(int, 0,
525 		     IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
526 }
527 
528 static void bfq_get_entity(struct bfq_entity *entity)
529 {
530 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
531 
532 	if (bfqq) {
533 		bfqq->ref++;
534 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
535 			     bfqq, bfqq->ref);
536 	} else
537 		bfqg_and_blkg_get(container_of(entity, struct bfq_group,
538 					       entity));
539 }
540 
541 /**
542  * bfq_find_deepest - find the deepest node that an extraction can modify.
543  * @node: the node being removed.
544  *
545  * Do the first step of an extraction in an rb tree, looking for the
546  * node that will replace @node, and returning the deepest node that
547  * the following modifications to the tree can touch.  If @node is the
548  * last node in the tree return %NULL.
549  */
550 static struct rb_node *bfq_find_deepest(struct rb_node *node)
551 {
552 	struct rb_node *deepest;
553 
554 	if (!node->rb_right && !node->rb_left)
555 		deepest = rb_parent(node);
556 	else if (!node->rb_right)
557 		deepest = node->rb_left;
558 	else if (!node->rb_left)
559 		deepest = node->rb_right;
560 	else {
561 		deepest = rb_next(node);
562 		if (deepest->rb_right)
563 			deepest = deepest->rb_right;
564 		else if (rb_parent(deepest) != node)
565 			deepest = rb_parent(deepest);
566 	}
567 
568 	return deepest;
569 }
570 
571 /**
572  * bfq_active_extract - remove an entity from the active tree.
573  * @st: the service_tree containing the tree.
574  * @entity: the entity being removed.
575  */
576 static void bfq_active_extract(struct bfq_service_tree *st,
577 			       struct bfq_entity *entity)
578 {
579 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
580 	struct rb_node *node;
581 #ifdef CONFIG_BFQ_GROUP_IOSCHED
582 	struct bfq_sched_data *sd = NULL;
583 	struct bfq_group *bfqg = NULL;
584 	struct bfq_data *bfqd = NULL;
585 #endif
586 
587 	node = bfq_find_deepest(&entity->rb_node);
588 	bfq_extract(&st->active, entity);
589 
590 	if (node)
591 		bfq_update_active_tree(node);
592 
593 #ifdef CONFIG_BFQ_GROUP_IOSCHED
594 	sd = entity->sched_data;
595 	bfqg = container_of(sd, struct bfq_group, sched_data);
596 	bfqd = (struct bfq_data *)bfqg->bfqd;
597 #endif
598 	if (bfqq)
599 		list_del(&bfqq->bfqq_list);
600 #ifdef CONFIG_BFQ_GROUP_IOSCHED
601 	if (bfqg != bfqd->root_group)
602 		bfqg->active_entities--;
603 #endif
604 }
605 
606 /**
607  * bfq_idle_insert - insert an entity into the idle tree.
608  * @st: the service tree containing the tree.
609  * @entity: the entity to insert.
610  */
611 static void bfq_idle_insert(struct bfq_service_tree *st,
612 			    struct bfq_entity *entity)
613 {
614 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
615 	struct bfq_entity *first_idle = st->first_idle;
616 	struct bfq_entity *last_idle = st->last_idle;
617 
618 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
619 		st->first_idle = entity;
620 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
621 		st->last_idle = entity;
622 
623 	bfq_insert(&st->idle, entity);
624 
625 	if (bfqq)
626 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
627 }
628 
629 /**
630  * bfq_forget_entity - do not consider entity any longer for scheduling
631  * @st: the service tree.
632  * @entity: the entity being removed.
633  * @is_in_service: true if entity is currently the in-service entity.
634  *
635  * Forget everything about @entity. In addition, if entity represents
636  * a queue, and the latter is not in service, then release the service
637  * reference to the queue (the one taken through bfq_get_entity). In
638  * fact, in this case, there is really no more service reference to
639  * the queue, as the latter is also outside any service tree. If,
640  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
641  * will take care of putting the reference when the queue finally
642  * stops being served.
643  */
644 static void bfq_forget_entity(struct bfq_service_tree *st,
645 			      struct bfq_entity *entity,
646 			      bool is_in_service)
647 {
648 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
649 
650 	entity->on_st_or_in_serv = false;
651 	st->wsum -= entity->weight;
652 	if (is_in_service)
653 		return;
654 
655 	if (bfqq)
656 		bfq_put_queue(bfqq);
657 	else
658 		bfqg_and_blkg_put(container_of(entity, struct bfq_group,
659 					       entity));
660 }
661 
662 /**
663  * bfq_put_idle_entity - release the idle tree ref of an entity.
664  * @st: service tree for the entity.
665  * @entity: the entity being released.
666  */
667 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
668 {
669 	bfq_idle_extract(st, entity);
670 	bfq_forget_entity(st, entity,
671 			  entity == entity->sched_data->in_service_entity);
672 }
673 
674 /**
675  * bfq_forget_idle - update the idle tree if necessary.
676  * @st: the service tree to act upon.
677  *
678  * To preserve the global O(log N) complexity we only remove one entry here;
679  * as the idle tree will not grow indefinitely this can be done safely.
680  */
681 static void bfq_forget_idle(struct bfq_service_tree *st)
682 {
683 	struct bfq_entity *first_idle = st->first_idle;
684 	struct bfq_entity *last_idle = st->last_idle;
685 
686 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
687 	    !bfq_gt(last_idle->finish, st->vtime)) {
688 		/*
689 		 * Forget the whole idle tree, increasing the vtime past
690 		 * the last finish time of idle entities.
691 		 */
692 		st->vtime = last_idle->finish;
693 	}
694 
695 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
696 		bfq_put_idle_entity(st, first_idle);
697 }
698 
699 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
700 {
701 	struct bfq_sched_data *sched_data = entity->sched_data;
702 	unsigned int idx = bfq_class_idx(entity);
703 
704 	return sched_data->service_tree + idx;
705 }
706 
707 /*
708  * Update weight and priority of entity. If update_class_too is true,
709  * then update the ioprio_class of entity too.
710  *
711  * The reason why the update of ioprio_class is controlled through the
712  * last parameter is as follows. Changing the ioprio class of an
713  * entity implies changing the destination service trees for that
714  * entity. If such a change occurred when the entity is already on one
715  * of the service trees for its previous class, then the state of the
716  * entity would become more complex: none of the new possible service
717  * trees for the entity, according to bfq_entity_service_tree(), would
718  * match any of the possible service trees on which the entity
719  * is. Complex operations involving these trees, such as entity
720  * activations and deactivations, should take into account this
721  * additional complexity.  To avoid this issue, this function is
722  * invoked with update_class_too unset in the points in the code where
723  * entity may happen to be on some tree.
724  */
725 struct bfq_service_tree *
726 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
727 				struct bfq_entity *entity,
728 				bool update_class_too)
729 {
730 	struct bfq_service_tree *new_st = old_st;
731 
732 	if (entity->prio_changed) {
733 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
734 		unsigned int prev_weight, new_weight;
735 		struct bfq_data *bfqd = NULL;
736 		struct rb_root_cached *root;
737 #ifdef CONFIG_BFQ_GROUP_IOSCHED
738 		struct bfq_sched_data *sd;
739 		struct bfq_group *bfqg;
740 #endif
741 
742 		if (bfqq)
743 			bfqd = bfqq->bfqd;
744 #ifdef CONFIG_BFQ_GROUP_IOSCHED
745 		else {
746 			sd = entity->my_sched_data;
747 			bfqg = container_of(sd, struct bfq_group, sched_data);
748 			bfqd = (struct bfq_data *)bfqg->bfqd;
749 		}
750 #endif
751 
752 		/* Matches the smp_wmb() in bfq_group_set_weight. */
753 		smp_rmb();
754 		old_st->wsum -= entity->weight;
755 
756 		if (entity->new_weight != entity->orig_weight) {
757 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
758 			    entity->new_weight > BFQ_MAX_WEIGHT) {
759 				pr_crit("update_weight_prio: new_weight %d\n",
760 					entity->new_weight);
761 				if (entity->new_weight < BFQ_MIN_WEIGHT)
762 					entity->new_weight = BFQ_MIN_WEIGHT;
763 				else
764 					entity->new_weight = BFQ_MAX_WEIGHT;
765 			}
766 			entity->orig_weight = entity->new_weight;
767 			if (bfqq)
768 				bfqq->ioprio =
769 				  bfq_weight_to_ioprio(entity->orig_weight);
770 		}
771 
772 		if (bfqq && update_class_too)
773 			bfqq->ioprio_class = bfqq->new_ioprio_class;
774 
775 		/*
776 		 * Reset prio_changed only if the ioprio_class change
777 		 * is not pending any longer.
778 		 */
779 		if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
780 			entity->prio_changed = 0;
781 
782 		/*
783 		 * NOTE: here we may be changing the weight too early,
784 		 * this will cause unfairness.  The correct approach
785 		 * would have required additional complexity to defer
786 		 * weight changes to the proper time instants (i.e.,
787 		 * when entity->finish <= old_st->vtime).
788 		 */
789 		new_st = bfq_entity_service_tree(entity);
790 
791 		prev_weight = entity->weight;
792 		new_weight = entity->orig_weight *
793 			     (bfqq ? bfqq->wr_coeff : 1);
794 		/*
795 		 * If the weight of the entity changes, and the entity is a
796 		 * queue, remove the entity from its old weight counter (if
797 		 * there is a counter associated with the entity).
798 		 */
799 		if (prev_weight != new_weight && bfqq) {
800 			root = &bfqd->queue_weights_tree;
801 			__bfq_weights_tree_remove(bfqd, bfqq, root);
802 		}
803 		entity->weight = new_weight;
804 		/*
805 		 * Add the entity, if it is not a weight-raised queue,
806 		 * to the counter associated with its new weight.
807 		 */
808 		if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
809 			/* If we get here, root has been initialized. */
810 			bfq_weights_tree_add(bfqd, bfqq, root);
811 		}
812 
813 		new_st->wsum += entity->weight;
814 
815 		if (new_st != old_st)
816 			entity->start = new_st->vtime;
817 	}
818 
819 	return new_st;
820 }
821 
822 /**
823  * bfq_bfqq_served - update the scheduler status after selection for
824  *                   service.
825  * @bfqq: the queue being served.
826  * @served: bytes to transfer.
827  *
828  * NOTE: this can be optimized, as the timestamps of upper level entities
829  * are synchronized every time a new bfqq is selected for service.  By now,
830  * we keep it to better check consistency.
831  */
832 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
833 {
834 	struct bfq_entity *entity = &bfqq->entity;
835 	struct bfq_service_tree *st;
836 
837 	if (!bfqq->service_from_backlogged)
838 		bfqq->first_IO_time = jiffies;
839 
840 	if (bfqq->wr_coeff > 1)
841 		bfqq->service_from_wr += served;
842 
843 	bfqq->service_from_backlogged += served;
844 	for_each_entity(entity) {
845 		st = bfq_entity_service_tree(entity);
846 
847 		entity->service += served;
848 
849 		st->vtime += bfq_delta(served, st->wsum);
850 		bfq_forget_idle(st);
851 	}
852 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
853 }
854 
855 /**
856  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
857  *			  of the time interval during which bfqq has been in
858  *			  service.
859  * @bfqd: the device
860  * @bfqq: the queue that needs a service update.
861  * @time_ms: the amount of time during which the queue has received service
862  *
863  * If a queue does not consume its budget fast enough, then providing
864  * the queue with service fairness may impair throughput, more or less
865  * severely. For this reason, queues that consume their budget slowly
866  * are provided with time fairness instead of service fairness. This
867  * goal is achieved through the BFQ scheduling engine, even if such an
868  * engine works in the service, and not in the time domain. The trick
869  * is charging these queues with an inflated amount of service, equal
870  * to the amount of service that they would have received during their
871  * service slot if they had been fast, i.e., if their requests had
872  * been dispatched at a rate equal to the estimated peak rate.
873  *
874  * It is worth noting that time fairness can cause important
875  * distortions in terms of bandwidth distribution, on devices with
876  * internal queueing. The reason is that I/O requests dispatched
877  * during the service slot of a queue may be served after that service
878  * slot is finished, and may have a total processing time loosely
879  * correlated with the duration of the service slot. This is
880  * especially true for short service slots.
881  */
882 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
883 			  unsigned long time_ms)
884 {
885 	struct bfq_entity *entity = &bfqq->entity;
886 	unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
887 	unsigned long bounded_time_ms = min(time_ms, timeout_ms);
888 	int serv_to_charge_for_time =
889 		(bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
890 	int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
891 
892 	/* Increase budget to avoid inconsistencies */
893 	if (tot_serv_to_charge > entity->budget)
894 		entity->budget = tot_serv_to_charge;
895 
896 	bfq_bfqq_served(bfqq,
897 			max_t(int, 0, tot_serv_to_charge - entity->service));
898 }
899 
900 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
901 					struct bfq_service_tree *st,
902 					bool backshifted)
903 {
904 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
905 
906 	/*
907 	 * When this function is invoked, entity is not in any service
908 	 * tree, then it is safe to invoke next function with the last
909 	 * parameter set (see the comments on the function).
910 	 */
911 	st = __bfq_entity_update_weight_prio(st, entity, true);
912 	bfq_calc_finish(entity, entity->budget);
913 
914 	/*
915 	 * If some queues enjoy backshifting for a while, then their
916 	 * (virtual) finish timestamps may happen to become lower and
917 	 * lower than the system virtual time.	In particular, if
918 	 * these queues often happen to be idle for short time
919 	 * periods, and during such time periods other queues with
920 	 * higher timestamps happen to be busy, then the backshifted
921 	 * timestamps of the former queues can become much lower than
922 	 * the system virtual time. In fact, to serve the queues with
923 	 * higher timestamps while the ones with lower timestamps are
924 	 * idle, the system virtual time may be pushed-up to much
925 	 * higher values than the finish timestamps of the idle
926 	 * queues. As a consequence, the finish timestamps of all new
927 	 * or newly activated queues may end up being much larger than
928 	 * those of lucky queues with backshifted timestamps. The
929 	 * latter queues may then monopolize the device for a lot of
930 	 * time. This would simply break service guarantees.
931 	 *
932 	 * To reduce this problem, push up a little bit the
933 	 * backshifted timestamps of the queue associated with this
934 	 * entity (only a queue can happen to have the backshifted
935 	 * flag set): just enough to let the finish timestamp of the
936 	 * queue be equal to the current value of the system virtual
937 	 * time. This may introduce a little unfairness among queues
938 	 * with backshifted timestamps, but it does not break
939 	 * worst-case fairness guarantees.
940 	 *
941 	 * As a special case, if bfqq is weight-raised, push up
942 	 * timestamps much less, to keep very low the probability that
943 	 * this push up causes the backshifted finish timestamps of
944 	 * weight-raised queues to become higher than the backshifted
945 	 * finish timestamps of non weight-raised queues.
946 	 */
947 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
948 		unsigned long delta = st->vtime - entity->finish;
949 
950 		if (bfqq)
951 			delta /= bfqq->wr_coeff;
952 
953 		entity->start += delta;
954 		entity->finish += delta;
955 	}
956 
957 	bfq_active_insert(st, entity);
958 }
959 
960 /**
961  * __bfq_activate_entity - handle activation of entity.
962  * @entity: the entity being activated.
963  * @non_blocking_wait_rq: true if entity was waiting for a request
964  *
965  * Called for a 'true' activation, i.e., if entity is not active and
966  * one of its children receives a new request.
967  *
968  * Basically, this function updates the timestamps of entity and
969  * inserts entity into its active tree, after possibly extracting it
970  * from its idle tree.
971  */
972 static void __bfq_activate_entity(struct bfq_entity *entity,
973 				  bool non_blocking_wait_rq)
974 {
975 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
976 	bool backshifted = false;
977 	unsigned long long min_vstart;
978 
979 	/* See comments on bfq_fqq_update_budg_for_activation */
980 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
981 		backshifted = true;
982 		min_vstart = entity->finish;
983 	} else
984 		min_vstart = st->vtime;
985 
986 	if (entity->tree == &st->idle) {
987 		/*
988 		 * Must be on the idle tree, bfq_idle_extract() will
989 		 * check for that.
990 		 */
991 		bfq_idle_extract(st, entity);
992 		entity->start = bfq_gt(min_vstart, entity->finish) ?
993 			min_vstart : entity->finish;
994 	} else {
995 		/*
996 		 * The finish time of the entity may be invalid, and
997 		 * it is in the past for sure, otherwise the queue
998 		 * would have been on the idle tree.
999 		 */
1000 		entity->start = min_vstart;
1001 		st->wsum += entity->weight;
1002 		/*
1003 		 * entity is about to be inserted into a service tree,
1004 		 * and then set in service: get a reference to make
1005 		 * sure entity does not disappear until it is no
1006 		 * longer in service or scheduled for service.
1007 		 */
1008 		bfq_get_entity(entity);
1009 
1010 		entity->on_st_or_in_serv = true;
1011 	}
1012 
1013 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1014 	if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
1015 		struct bfq_group *bfqg =
1016 			container_of(entity, struct bfq_group, entity);
1017 		struct bfq_data *bfqd = bfqg->bfqd;
1018 
1019 		if (!entity->in_groups_with_pending_reqs) {
1020 			entity->in_groups_with_pending_reqs = true;
1021 			bfqd->num_groups_with_pending_reqs++;
1022 		}
1023 	}
1024 #endif
1025 
1026 	bfq_update_fin_time_enqueue(entity, st, backshifted);
1027 }
1028 
1029 /**
1030  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1031  * @entity: the entity being requeued or repositioned.
1032  *
1033  * Requeueing is needed if this entity stops being served, which
1034  * happens if a leaf descendant entity has expired. On the other hand,
1035  * repositioning is needed if the next_inservice_entity for the child
1036  * entity has changed. See the comments inside the function for
1037  * details.
1038  *
1039  * Basically, this function: 1) removes entity from its active tree if
1040  * present there, 2) updates the timestamps of entity and 3) inserts
1041  * entity back into its active tree (in the new, right position for
1042  * the new values of the timestamps).
1043  */
1044 static void __bfq_requeue_entity(struct bfq_entity *entity)
1045 {
1046 	struct bfq_sched_data *sd = entity->sched_data;
1047 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1048 
1049 	if (entity == sd->in_service_entity) {
1050 		/*
1051 		 * We are requeueing the current in-service entity,
1052 		 * which may have to be done for one of the following
1053 		 * reasons:
1054 		 * - entity represents the in-service queue, and the
1055 		 *   in-service queue is being requeued after an
1056 		 *   expiration;
1057 		 * - entity represents a group, and its budget has
1058 		 *   changed because one of its child entities has
1059 		 *   just been either activated or requeued for some
1060 		 *   reason; the timestamps of the entity need then to
1061 		 *   be updated, and the entity needs to be enqueued
1062 		 *   or repositioned accordingly.
1063 		 *
1064 		 * In particular, before requeueing, the start time of
1065 		 * the entity must be moved forward to account for the
1066 		 * service that the entity has received while in
1067 		 * service. This is done by the next instructions. The
1068 		 * finish time will then be updated according to this
1069 		 * new value of the start time, and to the budget of
1070 		 * the entity.
1071 		 */
1072 		bfq_calc_finish(entity, entity->service);
1073 		entity->start = entity->finish;
1074 		/*
1075 		 * In addition, if the entity had more than one child
1076 		 * when set in service, then it was not extracted from
1077 		 * the active tree. This implies that the position of
1078 		 * the entity in the active tree may need to be
1079 		 * changed now, because we have just updated the start
1080 		 * time of the entity, and we will update its finish
1081 		 * time in a moment (the requeueing is then, more
1082 		 * precisely, a repositioning in this case). To
1083 		 * implement this repositioning, we: 1) dequeue the
1084 		 * entity here, 2) update the finish time and requeue
1085 		 * the entity according to the new timestamps below.
1086 		 */
1087 		if (entity->tree)
1088 			bfq_active_extract(st, entity);
1089 	} else { /* The entity is already active, and not in service */
1090 		/*
1091 		 * In this case, this function gets called only if the
1092 		 * next_in_service entity below this entity has
1093 		 * changed, and this change has caused the budget of
1094 		 * this entity to change, which, finally implies that
1095 		 * the finish time of this entity must be
1096 		 * updated. Such an update may cause the scheduling,
1097 		 * i.e., the position in the active tree, of this
1098 		 * entity to change. We handle this change by: 1)
1099 		 * dequeueing the entity here, 2) updating the finish
1100 		 * time and requeueing the entity according to the new
1101 		 * timestamps below. This is the same approach as the
1102 		 * non-extracted-entity sub-case above.
1103 		 */
1104 		bfq_active_extract(st, entity);
1105 	}
1106 
1107 	bfq_update_fin_time_enqueue(entity, st, false);
1108 }
1109 
1110 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1111 					  struct bfq_sched_data *sd,
1112 					  bool non_blocking_wait_rq)
1113 {
1114 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1115 
1116 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1117 		 /*
1118 		  * in service or already queued on the active tree,
1119 		  * requeue or reposition
1120 		  */
1121 		__bfq_requeue_entity(entity);
1122 	else
1123 		/*
1124 		 * Not in service and not queued on its active tree:
1125 		 * the activity is idle and this is a true activation.
1126 		 */
1127 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1128 }
1129 
1130 
1131 /**
1132  * bfq_activate_requeue_entity - activate or requeue an entity representing a
1133  *				 bfq_queue, and activate, requeue or reposition
1134  *				 all ancestors for which such an update becomes
1135  *				 necessary.
1136  * @entity: the entity to activate.
1137  * @non_blocking_wait_rq: true if this entity was waiting for a request
1138  * @requeue: true if this is a requeue, which implies that bfqq is
1139  *	     being expired; thus ALL its ancestors stop being served and must
1140  *	     therefore be requeued
1141  * @expiration: true if this function is being invoked in the expiration path
1142  *             of the in-service queue
1143  */
1144 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1145 					bool non_blocking_wait_rq,
1146 					bool requeue, bool expiration)
1147 {
1148 	struct bfq_sched_data *sd;
1149 
1150 	for_each_entity(entity) {
1151 		sd = entity->sched_data;
1152 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1153 
1154 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1155 		    !requeue)
1156 			break;
1157 	}
1158 }
1159 
1160 /**
1161  * __bfq_deactivate_entity - update sched_data and service trees for
1162  * entity, so as to represent entity as inactive
1163  * @entity: the entity being deactivated.
1164  * @ins_into_idle_tree: if false, the entity will not be put into the
1165  *			idle tree.
1166  *
1167  * If necessary and allowed, puts entity into the idle tree. NOTE:
1168  * entity may be on no tree if in service.
1169  */
1170 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1171 {
1172 	struct bfq_sched_data *sd = entity->sched_data;
1173 	struct bfq_service_tree *st;
1174 	bool is_in_service;
1175 
1176 	if (!entity->on_st_or_in_serv) /*
1177 					* entity never activated, or
1178 					* already inactive
1179 					*/
1180 		return false;
1181 
1182 	/*
1183 	 * If we get here, then entity is active, which implies that
1184 	 * bfq_group_set_parent has already been invoked for the group
1185 	 * represented by entity. Therefore, the field
1186 	 * entity->sched_data has been set, and we can safely use it.
1187 	 */
1188 	st = bfq_entity_service_tree(entity);
1189 	is_in_service = entity == sd->in_service_entity;
1190 
1191 	bfq_calc_finish(entity, entity->service);
1192 
1193 	if (is_in_service)
1194 		sd->in_service_entity = NULL;
1195 	else
1196 		/*
1197 		 * Non in-service entity: nobody will take care of
1198 		 * resetting its service counter on expiration. Do it
1199 		 * now.
1200 		 */
1201 		entity->service = 0;
1202 
1203 	if (entity->tree == &st->active)
1204 		bfq_active_extract(st, entity);
1205 	else if (!is_in_service && entity->tree == &st->idle)
1206 		bfq_idle_extract(st, entity);
1207 
1208 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1209 		bfq_forget_entity(st, entity, is_in_service);
1210 	else
1211 		bfq_idle_insert(st, entity);
1212 
1213 	return true;
1214 }
1215 
1216 /**
1217  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1218  * @entity: the entity to deactivate.
1219  * @ins_into_idle_tree: true if the entity can be put into the idle tree
1220  * @expiration: true if this function is being invoked in the expiration path
1221  *             of the in-service queue
1222  */
1223 static void bfq_deactivate_entity(struct bfq_entity *entity,
1224 				  bool ins_into_idle_tree,
1225 				  bool expiration)
1226 {
1227 	struct bfq_sched_data *sd;
1228 	struct bfq_entity *parent = NULL;
1229 
1230 	for_each_entity_safe(entity, parent) {
1231 		sd = entity->sched_data;
1232 
1233 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1234 			/*
1235 			 * entity is not in any tree any more, so
1236 			 * this deactivation is a no-op, and there is
1237 			 * nothing to change for upper-level entities
1238 			 * (in case of expiration, this can never
1239 			 * happen).
1240 			 */
1241 			return;
1242 		}
1243 
1244 		if (sd->next_in_service == entity)
1245 			/*
1246 			 * entity was the next_in_service entity,
1247 			 * then, since entity has just been
1248 			 * deactivated, a new one must be found.
1249 			 */
1250 			bfq_update_next_in_service(sd, NULL, expiration);
1251 
1252 		if (sd->next_in_service || sd->in_service_entity) {
1253 			/*
1254 			 * The parent entity is still active, because
1255 			 * either next_in_service or in_service_entity
1256 			 * is not NULL. So, no further upwards
1257 			 * deactivation must be performed.  Yet,
1258 			 * next_in_service has changed.	Then the
1259 			 * schedule does need to be updated upwards.
1260 			 *
1261 			 * NOTE If in_service_entity is not NULL, then
1262 			 * next_in_service may happen to be NULL,
1263 			 * although the parent entity is evidently
1264 			 * active. This happens if 1) the entity
1265 			 * pointed by in_service_entity is the only
1266 			 * active entity in the parent entity, and 2)
1267 			 * according to the definition of
1268 			 * next_in_service, the in_service_entity
1269 			 * cannot be considered as
1270 			 * next_in_service. See the comments on the
1271 			 * definition of next_in_service for details.
1272 			 */
1273 			break;
1274 		}
1275 
1276 		/*
1277 		 * If we get here, then the parent is no more
1278 		 * backlogged and we need to propagate the
1279 		 * deactivation upwards. Thus let the loop go on.
1280 		 */
1281 
1282 		/*
1283 		 * Also let parent be queued into the idle tree on
1284 		 * deactivation, to preserve service guarantees, and
1285 		 * assuming that who invoked this function does not
1286 		 * need parent entities too to be removed completely.
1287 		 */
1288 		ins_into_idle_tree = true;
1289 	}
1290 
1291 	/*
1292 	 * If the deactivation loop is fully executed, then there are
1293 	 * no more entities to touch and next loop is not executed at
1294 	 * all. Otherwise, requeue remaining entities if they are
1295 	 * about to stop receiving service, or reposition them if this
1296 	 * is not the case.
1297 	 */
1298 	entity = parent;
1299 	for_each_entity(entity) {
1300 		/*
1301 		 * Invoke __bfq_requeue_entity on entity, even if
1302 		 * already active, to requeue/reposition it in the
1303 		 * active tree (because sd->next_in_service has
1304 		 * changed)
1305 		 */
1306 		__bfq_requeue_entity(entity);
1307 
1308 		sd = entity->sched_data;
1309 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1310 		    !expiration)
1311 			/*
1312 			 * next_in_service unchanged or not causing
1313 			 * any change in entity->parent->sd, and no
1314 			 * requeueing needed for expiration: stop
1315 			 * here.
1316 			 */
1317 			break;
1318 	}
1319 }
1320 
1321 /**
1322  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1323  *                       if needed, to have at least one entity eligible.
1324  * @st: the service tree to act upon.
1325  *
1326  * Assumes that st is not empty.
1327  */
1328 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1329 {
1330 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1331 
1332 	if (bfq_gt(root_entity->min_start, st->vtime))
1333 		return root_entity->min_start;
1334 
1335 	return st->vtime;
1336 }
1337 
1338 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1339 {
1340 	if (new_value > st->vtime) {
1341 		st->vtime = new_value;
1342 		bfq_forget_idle(st);
1343 	}
1344 }
1345 
1346 /**
1347  * bfq_first_active_entity - find the eligible entity with
1348  *                           the smallest finish time
1349  * @st: the service tree to select from.
1350  * @vtime: the system virtual to use as a reference for eligibility
1351  *
1352  * This function searches the first schedulable entity, starting from the
1353  * root of the tree and going on the left every time on this side there is
1354  * a subtree with at least one eligible (start <= vtime) entity. The path on
1355  * the right is followed only if a) the left subtree contains no eligible
1356  * entities and b) no eligible entity has been found yet.
1357  */
1358 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1359 						  u64 vtime)
1360 {
1361 	struct bfq_entity *entry, *first = NULL;
1362 	struct rb_node *node = st->active.rb_node;
1363 
1364 	while (node) {
1365 		entry = rb_entry(node, struct bfq_entity, rb_node);
1366 left:
1367 		if (!bfq_gt(entry->start, vtime))
1368 			first = entry;
1369 
1370 		if (node->rb_left) {
1371 			entry = rb_entry(node->rb_left,
1372 					 struct bfq_entity, rb_node);
1373 			if (!bfq_gt(entry->min_start, vtime)) {
1374 				node = node->rb_left;
1375 				goto left;
1376 			}
1377 		}
1378 		if (first)
1379 			break;
1380 		node = node->rb_right;
1381 	}
1382 
1383 	return first;
1384 }
1385 
1386 /**
1387  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1388  * @st: the service tree.
1389  *
1390  * If there is no in-service entity for the sched_data st belongs to,
1391  * then return the entity that will be set in service if:
1392  * 1) the parent entity this st belongs to is set in service;
1393  * 2) no entity belonging to such parent entity undergoes a state change
1394  * that would influence the timestamps of the entity (e.g., becomes idle,
1395  * becomes backlogged, changes its budget, ...).
1396  *
1397  * In this first case, update the virtual time in @st too (see the
1398  * comments on this update inside the function).
1399  *
1400  * In contrast, if there is an in-service entity, then return the
1401  * entity that would be set in service if not only the above
1402  * conditions, but also the next one held true: the currently
1403  * in-service entity, on expiration,
1404  * 1) gets a finish time equal to the current one, or
1405  * 2) is not eligible any more, or
1406  * 3) is idle.
1407  */
1408 static struct bfq_entity *
1409 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1410 {
1411 	struct bfq_entity *entity;
1412 	u64 new_vtime;
1413 
1414 	if (RB_EMPTY_ROOT(&st->active))
1415 		return NULL;
1416 
1417 	/*
1418 	 * Get the value of the system virtual time for which at
1419 	 * least one entity is eligible.
1420 	 */
1421 	new_vtime = bfq_calc_vtime_jump(st);
1422 
1423 	/*
1424 	 * If there is no in-service entity for the sched_data this
1425 	 * active tree belongs to, then push the system virtual time
1426 	 * up to the value that guarantees that at least one entity is
1427 	 * eligible. If, instead, there is an in-service entity, then
1428 	 * do not make any such update, because there is already an
1429 	 * eligible entity, namely the in-service one (even if the
1430 	 * entity is not on st, because it was extracted when set in
1431 	 * service).
1432 	 */
1433 	if (!in_service)
1434 		bfq_update_vtime(st, new_vtime);
1435 
1436 	entity = bfq_first_active_entity(st, new_vtime);
1437 
1438 	return entity;
1439 }
1440 
1441 /**
1442  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1443  * @sd: the sched_data.
1444  * @expiration: true if we are on the expiration path of the in-service queue
1445  *
1446  * This function is invoked when there has been a change in the trees
1447  * for sd, and we need to know what is the new next entity to serve
1448  * after this change.
1449  */
1450 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1451 						 bool expiration)
1452 {
1453 	struct bfq_service_tree *st = sd->service_tree;
1454 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1455 	struct bfq_entity *entity = NULL;
1456 	int class_idx = 0;
1457 
1458 	/*
1459 	 * Choose from idle class, if needed to guarantee a minimum
1460 	 * bandwidth to this class (and if there is some active entity
1461 	 * in idle class). This should also mitigate
1462 	 * priority-inversion problems in case a low priority task is
1463 	 * holding file system resources.
1464 	 */
1465 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1466 				   BFQ_CL_IDLE_TIMEOUT)) {
1467 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1468 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1469 		/* About to be served if backlogged, or not yet backlogged */
1470 		sd->bfq_class_idle_last_service = jiffies;
1471 	}
1472 
1473 	/*
1474 	 * Find the next entity to serve for the highest-priority
1475 	 * class, unless the idle class needs to be served.
1476 	 */
1477 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1478 		/*
1479 		 * If expiration is true, then bfq_lookup_next_entity
1480 		 * is being invoked as a part of the expiration path
1481 		 * of the in-service queue. In this case, even if
1482 		 * sd->in_service_entity is not NULL,
1483 		 * sd->in_service_entity at this point is actually not
1484 		 * in service any more, and, if needed, has already
1485 		 * been properly queued or requeued into the right
1486 		 * tree. The reason why sd->in_service_entity is still
1487 		 * not NULL here, even if expiration is true, is that
1488 		 * sd->in_service_entity is reset as a last step in the
1489 		 * expiration path. So, if expiration is true, tell
1490 		 * __bfq_lookup_next_entity that there is no
1491 		 * sd->in_service_entity.
1492 		 */
1493 		entity = __bfq_lookup_next_entity(st + class_idx,
1494 						  sd->in_service_entity &&
1495 						  !expiration);
1496 
1497 		if (entity)
1498 			break;
1499 	}
1500 
1501 	if (!entity)
1502 		return NULL;
1503 
1504 	return entity;
1505 }
1506 
1507 bool next_queue_may_preempt(struct bfq_data *bfqd)
1508 {
1509 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1510 
1511 	return sd->next_in_service != sd->in_service_entity;
1512 }
1513 
1514 /*
1515  * Get next queue for service.
1516  */
1517 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1518 {
1519 	struct bfq_entity *entity = NULL;
1520 	struct bfq_sched_data *sd;
1521 	struct bfq_queue *bfqq;
1522 
1523 	if (bfq_tot_busy_queues(bfqd) == 0)
1524 		return NULL;
1525 
1526 	/*
1527 	 * Traverse the path from the root to the leaf entity to
1528 	 * serve. Set in service all the entities visited along the
1529 	 * way.
1530 	 */
1531 	sd = &bfqd->root_group->sched_data;
1532 	for (; sd ; sd = entity->my_sched_data) {
1533 		/*
1534 		 * WARNING. We are about to set the in-service entity
1535 		 * to sd->next_in_service, i.e., to the (cached) value
1536 		 * returned by bfq_lookup_next_entity(sd) the last
1537 		 * time it was invoked, i.e., the last time when the
1538 		 * service order in sd changed as a consequence of the
1539 		 * activation or deactivation of an entity. In this
1540 		 * respect, if we execute bfq_lookup_next_entity(sd)
1541 		 * in this very moment, it may, although with low
1542 		 * probability, yield a different entity than that
1543 		 * pointed to by sd->next_in_service. This rare event
1544 		 * happens in case there was no CLASS_IDLE entity to
1545 		 * serve for sd when bfq_lookup_next_entity(sd) was
1546 		 * invoked for the last time, while there is now one
1547 		 * such entity.
1548 		 *
1549 		 * If the above event happens, then the scheduling of
1550 		 * such entity in CLASS_IDLE is postponed until the
1551 		 * service of the sd->next_in_service entity
1552 		 * finishes. In fact, when the latter is expired,
1553 		 * bfq_lookup_next_entity(sd) gets called again,
1554 		 * exactly to update sd->next_in_service.
1555 		 */
1556 
1557 		/* Make next_in_service entity become in_service_entity */
1558 		entity = sd->next_in_service;
1559 		sd->in_service_entity = entity;
1560 
1561 		/*
1562 		 * If entity is no longer a candidate for next
1563 		 * service, then it must be extracted from its active
1564 		 * tree, so as to make sure that it won't be
1565 		 * considered when computing next_in_service. See the
1566 		 * comments on the function
1567 		 * bfq_no_longer_next_in_service() for details.
1568 		 */
1569 		if (bfq_no_longer_next_in_service(entity))
1570 			bfq_active_extract(bfq_entity_service_tree(entity),
1571 					   entity);
1572 
1573 		/*
1574 		 * Even if entity is not to be extracted according to
1575 		 * the above check, a descendant entity may get
1576 		 * extracted in one of the next iterations of this
1577 		 * loop. Such an event could cause a change in
1578 		 * next_in_service for the level of the descendant
1579 		 * entity, and thus possibly back to this level.
1580 		 *
1581 		 * However, we cannot perform the resulting needed
1582 		 * update of next_in_service for this level before the
1583 		 * end of the whole loop, because, to know which is
1584 		 * the correct next-to-serve candidate entity for each
1585 		 * level, we need first to find the leaf entity to set
1586 		 * in service. In fact, only after we know which is
1587 		 * the next-to-serve leaf entity, we can discover
1588 		 * whether the parent entity of the leaf entity
1589 		 * becomes the next-to-serve, and so on.
1590 		 */
1591 	}
1592 
1593 	bfqq = bfq_entity_to_bfqq(entity);
1594 
1595 	/*
1596 	 * We can finally update all next-to-serve entities along the
1597 	 * path from the leaf entity just set in service to the root.
1598 	 */
1599 	for_each_entity(entity) {
1600 		struct bfq_sched_data *sd = entity->sched_data;
1601 
1602 		if (!bfq_update_next_in_service(sd, NULL, false))
1603 			break;
1604 	}
1605 
1606 	return bfqq;
1607 }
1608 
1609 /* returns true if the in-service queue gets freed */
1610 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1611 {
1612 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1613 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1614 	struct bfq_entity *entity = in_serv_entity;
1615 
1616 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1617 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1618 	bfqd->in_service_queue = NULL;
1619 
1620 	/*
1621 	 * When this function is called, all in-service entities have
1622 	 * been properly deactivated or requeued, so we can safely
1623 	 * execute the final step: reset in_service_entity along the
1624 	 * path from entity to the root.
1625 	 */
1626 	for_each_entity(entity)
1627 		entity->sched_data->in_service_entity = NULL;
1628 
1629 	/*
1630 	 * in_serv_entity is no longer in service, so, if it is in no
1631 	 * service tree either, then release the service reference to
1632 	 * the queue it represents (taken with bfq_get_entity).
1633 	 */
1634 	if (!in_serv_entity->on_st_or_in_serv) {
1635 		/*
1636 		 * If no process is referencing in_serv_bfqq any
1637 		 * longer, then the service reference may be the only
1638 		 * reference to the queue. If this is the case, then
1639 		 * bfqq gets freed here.
1640 		 */
1641 		int ref = in_serv_bfqq->ref;
1642 		bfq_put_queue(in_serv_bfqq);
1643 		if (ref == 1)
1644 			return true;
1645 	}
1646 
1647 	return false;
1648 }
1649 
1650 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1651 			 bool ins_into_idle_tree, bool expiration)
1652 {
1653 	struct bfq_entity *entity = &bfqq->entity;
1654 
1655 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1656 }
1657 
1658 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1659 {
1660 	struct bfq_entity *entity = &bfqq->entity;
1661 
1662 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1663 				    false, false);
1664 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1665 }
1666 
1667 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1668 		      bool expiration)
1669 {
1670 	struct bfq_entity *entity = &bfqq->entity;
1671 
1672 	bfq_activate_requeue_entity(entity, false,
1673 				    bfqq == bfqd->in_service_queue, expiration);
1674 }
1675 
1676 /*
1677  * Called when the bfqq no longer has requests pending, remove it from
1678  * the service tree. As a special case, it can be invoked during an
1679  * expiration.
1680  */
1681 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1682 		       bool expiration)
1683 {
1684 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1685 
1686 	bfq_clear_bfqq_busy(bfqq);
1687 
1688 	bfqd->busy_queues[bfqq->ioprio_class - 1]--;
1689 
1690 	if (bfqq->wr_coeff > 1)
1691 		bfqd->wr_busy_queues--;
1692 
1693 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1694 
1695 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1696 
1697 	if (!bfqq->dispatched)
1698 		bfq_weights_tree_remove(bfqd, bfqq);
1699 }
1700 
1701 /*
1702  * Called when an inactive queue receives a new request.
1703  */
1704 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1705 {
1706 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1707 
1708 	bfq_activate_bfqq(bfqd, bfqq);
1709 
1710 	bfq_mark_bfqq_busy(bfqq);
1711 	bfqd->busy_queues[bfqq->ioprio_class - 1]++;
1712 
1713 	if (!bfqq->dispatched)
1714 		if (bfqq->wr_coeff == 1)
1715 			bfq_weights_tree_add(bfqd, bfqq,
1716 					     &bfqd->queue_weights_tree);
1717 
1718 	if (bfqq->wr_coeff > 1)
1719 		bfqd->wr_busy_queues++;
1720 }
1721