xref: /linux/block/bfq-iosched.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. In more detail, BFQ
53  * behaves this way if the low_latency parameter is set (default
54  * configuration). This feature enables BFQ to provide applications in
55  * these classes with a very low latency.
56  *
57  * To implement this feature, BFQ constantly tries to detect whether
58  * the I/O requests in a bfq_queue come from an interactive or a soft
59  * real-time application. For brevity, in these cases, the queue is
60  * said to be interactive or soft real-time. In both cases, BFQ
61  * privileges the service of the queue, over that of non-interactive
62  * and non-soft-real-time queues. This privileging is performed,
63  * mainly, by raising the weight of the queue. So, for brevity, we
64  * call just weight-raising periods the time periods during which a
65  * queue is privileged, because deemed interactive or soft real-time.
66  *
67  * The detection of soft real-time queues/applications is described in
68  * detail in the comments on the function
69  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70  * interactive queue works as follows: a queue is deemed interactive
71  * if it is constantly non empty only for a limited time interval,
72  * after which it does become empty. The queue may be deemed
73  * interactive again (for a limited time), if it restarts being
74  * constantly non empty, provided that this happens only after the
75  * queue has remained empty for a given minimum idle time.
76  *
77  * By default, BFQ computes automatically the above maximum time
78  * interval, i.e., the time interval after which a constantly
79  * non-empty queue stops being deemed interactive. Since a queue is
80  * weight-raised while it is deemed interactive, this maximum time
81  * interval happens to coincide with the (maximum) duration of the
82  * weight-raising for interactive queues.
83  *
84  * Finally, BFQ also features additional heuristics for
85  * preserving both a low latency and a high throughput on NCQ-capable,
86  * rotational or flash-based devices, and to get the job done quickly
87  * for applications consisting in many I/O-bound processes.
88  *
89  * NOTE: if the main or only goal, with a given device, is to achieve
90  * the maximum-possible throughput at all times, then do switch off
91  * all low-latency heuristics for that device, by setting low_latency
92  * to 0.
93  *
94  * BFQ is described in [1], where also a reference to the initial,
95  * more theoretical paper on BFQ can be found. The interested reader
96  * can find in the latter paper full details on the main algorithm, as
97  * well as formulas of the guarantees and formal proofs of all the
98  * properties.  With respect to the version of BFQ presented in these
99  * papers, this implementation adds a few more heuristics, such as the
100  * ones that guarantee a low latency to interactive and soft real-time
101  * applications, and a hierarchical extension based on H-WF2Q+.
102  *
103  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105  * with O(log N) complexity derives from the one introduced with EEVDF
106  * in [3].
107  *
108  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109  *     Scheduler", Proceedings of the First Workshop on Mobile System
110  *     Technologies (MST-2015), May 2015.
111  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112  *
113  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115  *     Oct 1997.
116  *
117  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118  *
119  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120  *     First: A Flexible and Accurate Mechanism for Proportional Share
121  *     Resource Allocation", technical report.
122  *
123  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124  */
125 #include <linux/module.h>
126 #include <linux/slab.h>
127 #include <linux/blkdev.h>
128 #include <linux/cgroup.h>
129 #include <linux/elevator.h>
130 #include <linux/ktime.h>
131 #include <linux/rbtree.h>
132 #include <linux/ioprio.h>
133 #include <linux/sbitmap.h>
134 #include <linux/delay.h>
135 
136 #include "blk.h"
137 #include "blk-mq.h"
138 #include "blk-mq-tag.h"
139 #include "blk-mq-sched.h"
140 #include "bfq-iosched.h"
141 #include "blk-wbt.h"
142 
143 #define BFQ_BFQQ_FNS(name)						\
144 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
145 {									\
146 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
147 }									\
148 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
149 {									\
150 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
151 }									\
152 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
153 {									\
154 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
155 }
156 
157 BFQ_BFQQ_FNS(just_created);
158 BFQ_BFQQ_FNS(busy);
159 BFQ_BFQQ_FNS(wait_request);
160 BFQ_BFQQ_FNS(non_blocking_wait_rq);
161 BFQ_BFQQ_FNS(fifo_expire);
162 BFQ_BFQQ_FNS(has_short_ttime);
163 BFQ_BFQQ_FNS(sync);
164 BFQ_BFQQ_FNS(IO_bound);
165 BFQ_BFQQ_FNS(in_large_burst);
166 BFQ_BFQQ_FNS(coop);
167 BFQ_BFQQ_FNS(split_coop);
168 BFQ_BFQQ_FNS(softrt_update);
169 #undef BFQ_BFQQ_FNS						\
170 
171 /* Expiration time of sync (0) and async (1) requests, in ns. */
172 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173 
174 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175 static const int bfq_back_max = 16 * 1024;
176 
177 /* Penalty of a backwards seek, in number of sectors. */
178 static const int bfq_back_penalty = 2;
179 
180 /* Idling period duration, in ns. */
181 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182 
183 /* Minimum number of assigned budgets for which stats are safe to compute. */
184 static const int bfq_stats_min_budgets = 194;
185 
186 /* Default maximum budget values, in sectors and number of requests. */
187 static const int bfq_default_max_budget = 16 * 1024;
188 
189 /*
190  * When a sync request is dispatched, the queue that contains that
191  * request, and all the ancestor entities of that queue, are charged
192  * with the number of sectors of the request. In constrast, if the
193  * request is async, then the queue and its ancestor entities are
194  * charged with the number of sectors of the request, multiplied by
195  * the factor below. This throttles the bandwidth for async I/O,
196  * w.r.t. to sync I/O, and it is done to counter the tendency of async
197  * writes to steal I/O throughput to reads.
198  *
199  * The current value of this parameter is the result of a tuning with
200  * several hardware and software configurations. We tried to find the
201  * lowest value for which writes do not cause noticeable problems to
202  * reads. In fact, the lower this parameter, the stabler I/O control,
203  * in the following respect.  The lower this parameter is, the less
204  * the bandwidth enjoyed by a group decreases
205  * - when the group does writes, w.r.t. to when it does reads;
206  * - when other groups do reads, w.r.t. to when they do writes.
207  */
208 static const int bfq_async_charge_factor = 3;
209 
210 /* Default timeout values, in jiffies, approximating CFQ defaults. */
211 const int bfq_timeout = HZ / 8;
212 
213 /*
214  * Time limit for merging (see comments in bfq_setup_cooperator). Set
215  * to the slowest value that, in our tests, proved to be effective in
216  * removing false positives, while not causing true positives to miss
217  * queue merging.
218  *
219  * As can be deduced from the low time limit below, queue merging, if
220  * successful, happens at the very beggining of the I/O of the involved
221  * cooperating processes, as a consequence of the arrival of the very
222  * first requests from each cooperator.  After that, there is very
223  * little chance to find cooperators.
224  */
225 static const unsigned long bfq_merge_time_limit = HZ/10;
226 
227 static struct kmem_cache *bfq_pool;
228 
229 /* Below this threshold (in ns), we consider thinktime immediate. */
230 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
231 
232 /* hw_tag detection: parallel requests threshold and min samples needed. */
233 #define BFQ_HW_QUEUE_THRESHOLD	4
234 #define BFQ_HW_QUEUE_SAMPLES	32
235 
236 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
237 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
238 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
239 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
240 
241 /* Min number of samples required to perform peak-rate update */
242 #define BFQ_RATE_MIN_SAMPLES	32
243 /* Min observation time interval required to perform a peak-rate update (ns) */
244 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
245 /* Target observation time interval for a peak-rate update (ns) */
246 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
247 
248 /*
249  * Shift used for peak-rate fixed precision calculations.
250  * With
251  * - the current shift: 16 positions
252  * - the current type used to store rate: u32
253  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
254  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
255  * the range of rates that can be stored is
256  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
257  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
258  * [15, 65G] sectors/sec
259  * Which, assuming a sector size of 512B, corresponds to a range of
260  * [7.5K, 33T] B/sec
261  */
262 #define BFQ_RATE_SHIFT		16
263 
264 /*
265  * When configured for computing the duration of the weight-raising
266  * for interactive queues automatically (see the comments at the
267  * beginning of this file), BFQ does it using the following formula:
268  * duration = (ref_rate / r) * ref_wr_duration,
269  * where r is the peak rate of the device, and ref_rate and
270  * ref_wr_duration are two reference parameters.  In particular,
271  * ref_rate is the peak rate of the reference storage device (see
272  * below), and ref_wr_duration is about the maximum time needed, with
273  * BFQ and while reading two files in parallel, to load typical large
274  * applications on the reference device (see the comments on
275  * max_service_from_wr below, for more details on how ref_wr_duration
276  * is obtained).  In practice, the slower/faster the device at hand
277  * is, the more/less it takes to load applications with respect to the
278  * reference device.  Accordingly, the longer/shorter BFQ grants
279  * weight raising to interactive applications.
280  *
281  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
282  * depending on whether the device is rotational or non-rotational.
283  *
284  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
285  * are the reference values for a rotational device, whereas
286  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
287  * non-rotational device. The reference rates are not the actual peak
288  * rates of the devices used as a reference, but slightly lower
289  * values. The reason for using slightly lower values is that the
290  * peak-rate estimator tends to yield slightly lower values than the
291  * actual peak rate (it can yield the actual peak rate only if there
292  * is only one process doing I/O, and the process does sequential
293  * I/O).
294  *
295  * The reference peak rates are measured in sectors/usec, left-shifted
296  * by BFQ_RATE_SHIFT.
297  */
298 static int ref_rate[2] = {14000, 33000};
299 /*
300  * To improve readability, a conversion function is used to initialize
301  * the following array, which entails that the array can be
302  * initialized only in a function.
303  */
304 static int ref_wr_duration[2];
305 
306 /*
307  * BFQ uses the above-detailed, time-based weight-raising mechanism to
308  * privilege interactive tasks. This mechanism is vulnerable to the
309  * following false positives: I/O-bound applications that will go on
310  * doing I/O for much longer than the duration of weight
311  * raising. These applications have basically no benefit from being
312  * weight-raised at the beginning of their I/O. On the opposite end,
313  * while being weight-raised, these applications
314  * a) unjustly steal throughput to applications that may actually need
315  * low latency;
316  * b) make BFQ uselessly perform device idling; device idling results
317  * in loss of device throughput with most flash-based storage, and may
318  * increase latencies when used purposelessly.
319  *
320  * BFQ tries to reduce these problems, by adopting the following
321  * countermeasure. To introduce this countermeasure, we need first to
322  * finish explaining how the duration of weight-raising for
323  * interactive tasks is computed.
324  *
325  * For a bfq_queue deemed as interactive, the duration of weight
326  * raising is dynamically adjusted, as a function of the estimated
327  * peak rate of the device, so as to be equal to the time needed to
328  * execute the 'largest' interactive task we benchmarked so far. By
329  * largest task, we mean the task for which each involved process has
330  * to do more I/O than for any of the other tasks we benchmarked. This
331  * reference interactive task is the start-up of LibreOffice Writer,
332  * and in this task each process/bfq_queue needs to have at most ~110K
333  * sectors transferred.
334  *
335  * This last piece of information enables BFQ to reduce the actual
336  * duration of weight-raising for at least one class of I/O-bound
337  * applications: those doing sequential or quasi-sequential I/O. An
338  * example is file copy. In fact, once started, the main I/O-bound
339  * processes of these applications usually consume the above 110K
340  * sectors in much less time than the processes of an application that
341  * is starting, because these I/O-bound processes will greedily devote
342  * almost all their CPU cycles only to their target,
343  * throughput-friendly I/O operations. This is even more true if BFQ
344  * happens to be underestimating the device peak rate, and thus
345  * overestimating the duration of weight raising. But, according to
346  * our measurements, once transferred 110K sectors, these processes
347  * have no right to be weight-raised any longer.
348  *
349  * Basing on the last consideration, BFQ ends weight-raising for a
350  * bfq_queue if the latter happens to have received an amount of
351  * service at least equal to the following constant. The constant is
352  * set to slightly more than 110K, to have a minimum safety margin.
353  *
354  * This early ending of weight-raising reduces the amount of time
355  * during which interactive false positives cause the two problems
356  * described at the beginning of these comments.
357  */
358 static const unsigned long max_service_from_wr = 120000;
359 
360 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
361 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
362 
363 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
364 {
365 	return bic->bfqq[is_sync];
366 }
367 
368 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
369 {
370 	bic->bfqq[is_sync] = bfqq;
371 }
372 
373 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
374 {
375 	return bic->icq.q->elevator->elevator_data;
376 }
377 
378 /**
379  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
380  * @icq: the iocontext queue.
381  */
382 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
383 {
384 	/* bic->icq is the first member, %NULL will convert to %NULL */
385 	return container_of(icq, struct bfq_io_cq, icq);
386 }
387 
388 /**
389  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
390  * @bfqd: the lookup key.
391  * @ioc: the io_context of the process doing I/O.
392  * @q: the request queue.
393  */
394 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
395 					struct io_context *ioc,
396 					struct request_queue *q)
397 {
398 	if (ioc) {
399 		unsigned long flags;
400 		struct bfq_io_cq *icq;
401 
402 		spin_lock_irqsave(&q->queue_lock, flags);
403 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
404 		spin_unlock_irqrestore(&q->queue_lock, flags);
405 
406 		return icq;
407 	}
408 
409 	return NULL;
410 }
411 
412 /*
413  * Scheduler run of queue, if there are requests pending and no one in the
414  * driver that will restart queueing.
415  */
416 void bfq_schedule_dispatch(struct bfq_data *bfqd)
417 {
418 	if (bfqd->queued != 0) {
419 		bfq_log(bfqd, "schedule dispatch");
420 		blk_mq_run_hw_queues(bfqd->queue, true);
421 	}
422 }
423 
424 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
425 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
426 
427 #define bfq_sample_valid(samples)	((samples) > 80)
428 
429 /*
430  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
431  * We choose the request that is closesr to the head right now.  Distance
432  * behind the head is penalized and only allowed to a certain extent.
433  */
434 static struct request *bfq_choose_req(struct bfq_data *bfqd,
435 				      struct request *rq1,
436 				      struct request *rq2,
437 				      sector_t last)
438 {
439 	sector_t s1, s2, d1 = 0, d2 = 0;
440 	unsigned long back_max;
441 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
442 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
443 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
444 
445 	if (!rq1 || rq1 == rq2)
446 		return rq2;
447 	if (!rq2)
448 		return rq1;
449 
450 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
451 		return rq1;
452 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
453 		return rq2;
454 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
455 		return rq1;
456 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
457 		return rq2;
458 
459 	s1 = blk_rq_pos(rq1);
460 	s2 = blk_rq_pos(rq2);
461 
462 	/*
463 	 * By definition, 1KiB is 2 sectors.
464 	 */
465 	back_max = bfqd->bfq_back_max * 2;
466 
467 	/*
468 	 * Strict one way elevator _except_ in the case where we allow
469 	 * short backward seeks which are biased as twice the cost of a
470 	 * similar forward seek.
471 	 */
472 	if (s1 >= last)
473 		d1 = s1 - last;
474 	else if (s1 + back_max >= last)
475 		d1 = (last - s1) * bfqd->bfq_back_penalty;
476 	else
477 		wrap |= BFQ_RQ1_WRAP;
478 
479 	if (s2 >= last)
480 		d2 = s2 - last;
481 	else if (s2 + back_max >= last)
482 		d2 = (last - s2) * bfqd->bfq_back_penalty;
483 	else
484 		wrap |= BFQ_RQ2_WRAP;
485 
486 	/* Found required data */
487 
488 	/*
489 	 * By doing switch() on the bit mask "wrap" we avoid having to
490 	 * check two variables for all permutations: --> faster!
491 	 */
492 	switch (wrap) {
493 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
494 		if (d1 < d2)
495 			return rq1;
496 		else if (d2 < d1)
497 			return rq2;
498 
499 		if (s1 >= s2)
500 			return rq1;
501 		else
502 			return rq2;
503 
504 	case BFQ_RQ2_WRAP:
505 		return rq1;
506 	case BFQ_RQ1_WRAP:
507 		return rq2;
508 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
509 	default:
510 		/*
511 		 * Since both rqs are wrapped,
512 		 * start with the one that's further behind head
513 		 * (--> only *one* back seek required),
514 		 * since back seek takes more time than forward.
515 		 */
516 		if (s1 <= s2)
517 			return rq1;
518 		else
519 			return rq2;
520 	}
521 }
522 
523 /*
524  * Async I/O can easily starve sync I/O (both sync reads and sync
525  * writes), by consuming all tags. Similarly, storms of sync writes,
526  * such as those that sync(2) may trigger, can starve sync reads.
527  * Limit depths of async I/O and sync writes so as to counter both
528  * problems.
529  */
530 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
531 {
532 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
533 
534 	if (op_is_sync(op) && !op_is_write(op))
535 		return;
536 
537 	data->shallow_depth =
538 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
539 
540 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
541 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
542 			data->shallow_depth);
543 }
544 
545 static struct bfq_queue *
546 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
547 		     sector_t sector, struct rb_node **ret_parent,
548 		     struct rb_node ***rb_link)
549 {
550 	struct rb_node **p, *parent;
551 	struct bfq_queue *bfqq = NULL;
552 
553 	parent = NULL;
554 	p = &root->rb_node;
555 	while (*p) {
556 		struct rb_node **n;
557 
558 		parent = *p;
559 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
560 
561 		/*
562 		 * Sort strictly based on sector. Smallest to the left,
563 		 * largest to the right.
564 		 */
565 		if (sector > blk_rq_pos(bfqq->next_rq))
566 			n = &(*p)->rb_right;
567 		else if (sector < blk_rq_pos(bfqq->next_rq))
568 			n = &(*p)->rb_left;
569 		else
570 			break;
571 		p = n;
572 		bfqq = NULL;
573 	}
574 
575 	*ret_parent = parent;
576 	if (rb_link)
577 		*rb_link = p;
578 
579 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
580 		(unsigned long long)sector,
581 		bfqq ? bfqq->pid : 0);
582 
583 	return bfqq;
584 }
585 
586 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
587 {
588 	return bfqq->service_from_backlogged > 0 &&
589 		time_is_before_jiffies(bfqq->first_IO_time +
590 				       bfq_merge_time_limit);
591 }
592 
593 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
594 {
595 	struct rb_node **p, *parent;
596 	struct bfq_queue *__bfqq;
597 
598 	if (bfqq->pos_root) {
599 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
600 		bfqq->pos_root = NULL;
601 	}
602 
603 	/*
604 	 * bfqq cannot be merged any longer (see comments in
605 	 * bfq_setup_cooperator): no point in adding bfqq into the
606 	 * position tree.
607 	 */
608 	if (bfq_too_late_for_merging(bfqq))
609 		return;
610 
611 	if (bfq_class_idle(bfqq))
612 		return;
613 	if (!bfqq->next_rq)
614 		return;
615 
616 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
617 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
618 			blk_rq_pos(bfqq->next_rq), &parent, &p);
619 	if (!__bfqq) {
620 		rb_link_node(&bfqq->pos_node, parent, p);
621 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
622 	} else
623 		bfqq->pos_root = NULL;
624 }
625 
626 /*
627  * Tell whether there are active queues with different weights or
628  * active groups.
629  */
630 static bool bfq_varied_queue_weights_or_active_groups(struct bfq_data *bfqd)
631 {
632 	/*
633 	 * For queue weights to differ, queue_weights_tree must contain
634 	 * at least two nodes.
635 	 */
636 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
637 		(bfqd->queue_weights_tree.rb_node->rb_left ||
638 		 bfqd->queue_weights_tree.rb_node->rb_right)
639 #ifdef CONFIG_BFQ_GROUP_IOSCHED
640 	       ) ||
641 		(bfqd->num_groups_with_pending_reqs > 0
642 #endif
643 	       );
644 }
645 
646 /*
647  * The following function returns true if every queue must receive the
648  * same share of the throughput (this condition is used when deciding
649  * whether idling may be disabled, see the comments in the function
650  * bfq_better_to_idle()).
651  *
652  * Such a scenario occurs when:
653  * 1) all active queues have the same weight,
654  * 2) all active groups at the same level in the groups tree have the same
655  *    weight,
656  * 3) all active groups at the same level in the groups tree have the same
657  *    number of children.
658  *
659  * Unfortunately, keeping the necessary state for evaluating exactly
660  * the last two symmetry sub-conditions above would be quite complex
661  * and time consuming.  Therefore this function evaluates, instead,
662  * only the following stronger two sub-conditions, for which it is
663  * much easier to maintain the needed state:
664  * 1) all active queues have the same weight,
665  * 2) there are no active groups.
666  * In particular, the last condition is always true if hierarchical
667  * support or the cgroups interface are not enabled, thus no state
668  * needs to be maintained in this case.
669  */
670 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
671 {
672 	return !bfq_varied_queue_weights_or_active_groups(bfqd);
673 }
674 
675 /*
676  * If the weight-counter tree passed as input contains no counter for
677  * the weight of the input queue, then add that counter; otherwise just
678  * increment the existing counter.
679  *
680  * Note that weight-counter trees contain few nodes in mostly symmetric
681  * scenarios. For example, if all queues have the same weight, then the
682  * weight-counter tree for the queues may contain at most one node.
683  * This holds even if low_latency is on, because weight-raised queues
684  * are not inserted in the tree.
685  * In most scenarios, the rate at which nodes are created/destroyed
686  * should be low too.
687  */
688 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
689 			  struct rb_root *root)
690 {
691 	struct bfq_entity *entity = &bfqq->entity;
692 	struct rb_node **new = &(root->rb_node), *parent = NULL;
693 
694 	/*
695 	 * Do not insert if the queue is already associated with a
696 	 * counter, which happens if:
697 	 *   1) a request arrival has caused the queue to become both
698 	 *      non-weight-raised, and hence change its weight, and
699 	 *      backlogged; in this respect, each of the two events
700 	 *      causes an invocation of this function,
701 	 *   2) this is the invocation of this function caused by the
702 	 *      second event. This second invocation is actually useless,
703 	 *      and we handle this fact by exiting immediately. More
704 	 *      efficient or clearer solutions might possibly be adopted.
705 	 */
706 	if (bfqq->weight_counter)
707 		return;
708 
709 	while (*new) {
710 		struct bfq_weight_counter *__counter = container_of(*new,
711 						struct bfq_weight_counter,
712 						weights_node);
713 		parent = *new;
714 
715 		if (entity->weight == __counter->weight) {
716 			bfqq->weight_counter = __counter;
717 			goto inc_counter;
718 		}
719 		if (entity->weight < __counter->weight)
720 			new = &((*new)->rb_left);
721 		else
722 			new = &((*new)->rb_right);
723 	}
724 
725 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
726 				       GFP_ATOMIC);
727 
728 	/*
729 	 * In the unlucky event of an allocation failure, we just
730 	 * exit. This will cause the weight of queue to not be
731 	 * considered in bfq_varied_queue_weights_or_active_groups,
732 	 * which, in its turn, causes the scenario to be deemed
733 	 * wrongly symmetric in case bfqq's weight would have been
734 	 * the only weight making the scenario asymmetric.  On the
735 	 * bright side, no unbalance will however occur when bfqq
736 	 * becomes inactive again (the invocation of this function
737 	 * is triggered by an activation of queue).  In fact,
738 	 * bfq_weights_tree_remove does nothing if
739 	 * !bfqq->weight_counter.
740 	 */
741 	if (unlikely(!bfqq->weight_counter))
742 		return;
743 
744 	bfqq->weight_counter->weight = entity->weight;
745 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
746 	rb_insert_color(&bfqq->weight_counter->weights_node, root);
747 
748 inc_counter:
749 	bfqq->weight_counter->num_active++;
750 }
751 
752 /*
753  * Decrement the weight counter associated with the queue, and, if the
754  * counter reaches 0, remove the counter from the tree.
755  * See the comments to the function bfq_weights_tree_add() for considerations
756  * about overhead.
757  */
758 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
759 			       struct bfq_queue *bfqq,
760 			       struct rb_root *root)
761 {
762 	if (!bfqq->weight_counter)
763 		return;
764 
765 	bfqq->weight_counter->num_active--;
766 	if (bfqq->weight_counter->num_active > 0)
767 		goto reset_entity_pointer;
768 
769 	rb_erase(&bfqq->weight_counter->weights_node, root);
770 	kfree(bfqq->weight_counter);
771 
772 reset_entity_pointer:
773 	bfqq->weight_counter = NULL;
774 }
775 
776 /*
777  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
778  * of active groups for each queue's inactive parent entity.
779  */
780 void bfq_weights_tree_remove(struct bfq_data *bfqd,
781 			     struct bfq_queue *bfqq)
782 {
783 	struct bfq_entity *entity = bfqq->entity.parent;
784 
785 	__bfq_weights_tree_remove(bfqd, bfqq,
786 				  &bfqd->queue_weights_tree);
787 
788 	for_each_entity(entity) {
789 		struct bfq_sched_data *sd = entity->my_sched_data;
790 
791 		if (sd->next_in_service || sd->in_service_entity) {
792 			/*
793 			 * entity is still active, because either
794 			 * next_in_service or in_service_entity is not
795 			 * NULL (see the comments on the definition of
796 			 * next_in_service for details on why
797 			 * in_service_entity must be checked too).
798 			 *
799 			 * As a consequence, its parent entities are
800 			 * active as well, and thus this loop must
801 			 * stop here.
802 			 */
803 			break;
804 		}
805 
806 		/*
807 		 * The decrement of num_groups_with_pending_reqs is
808 		 * not performed immediately upon the deactivation of
809 		 * entity, but it is delayed to when it also happens
810 		 * that the first leaf descendant bfqq of entity gets
811 		 * all its pending requests completed. The following
812 		 * instructions perform this delayed decrement, if
813 		 * needed. See the comments on
814 		 * num_groups_with_pending_reqs for details.
815 		 */
816 		if (entity->in_groups_with_pending_reqs) {
817 			entity->in_groups_with_pending_reqs = false;
818 			bfqd->num_groups_with_pending_reqs--;
819 		}
820 	}
821 }
822 
823 /*
824  * Return expired entry, or NULL to just start from scratch in rbtree.
825  */
826 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
827 				      struct request *last)
828 {
829 	struct request *rq;
830 
831 	if (bfq_bfqq_fifo_expire(bfqq))
832 		return NULL;
833 
834 	bfq_mark_bfqq_fifo_expire(bfqq);
835 
836 	rq = rq_entry_fifo(bfqq->fifo.next);
837 
838 	if (rq == last || ktime_get_ns() < rq->fifo_time)
839 		return NULL;
840 
841 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
842 	return rq;
843 }
844 
845 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
846 					struct bfq_queue *bfqq,
847 					struct request *last)
848 {
849 	struct rb_node *rbnext = rb_next(&last->rb_node);
850 	struct rb_node *rbprev = rb_prev(&last->rb_node);
851 	struct request *next, *prev = NULL;
852 
853 	/* Follow expired path, else get first next available. */
854 	next = bfq_check_fifo(bfqq, last);
855 	if (next)
856 		return next;
857 
858 	if (rbprev)
859 		prev = rb_entry_rq(rbprev);
860 
861 	if (rbnext)
862 		next = rb_entry_rq(rbnext);
863 	else {
864 		rbnext = rb_first(&bfqq->sort_list);
865 		if (rbnext && rbnext != &last->rb_node)
866 			next = rb_entry_rq(rbnext);
867 	}
868 
869 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
870 }
871 
872 /* see the definition of bfq_async_charge_factor for details */
873 static unsigned long bfq_serv_to_charge(struct request *rq,
874 					struct bfq_queue *bfqq)
875 {
876 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
877 		return blk_rq_sectors(rq);
878 
879 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
880 }
881 
882 /**
883  * bfq_updated_next_req - update the queue after a new next_rq selection.
884  * @bfqd: the device data the queue belongs to.
885  * @bfqq: the queue to update.
886  *
887  * If the first request of a queue changes we make sure that the queue
888  * has enough budget to serve at least its first request (if the
889  * request has grown).  We do this because if the queue has not enough
890  * budget for its first request, it has to go through two dispatch
891  * rounds to actually get it dispatched.
892  */
893 static void bfq_updated_next_req(struct bfq_data *bfqd,
894 				 struct bfq_queue *bfqq)
895 {
896 	struct bfq_entity *entity = &bfqq->entity;
897 	struct request *next_rq = bfqq->next_rq;
898 	unsigned long new_budget;
899 
900 	if (!next_rq)
901 		return;
902 
903 	if (bfqq == bfqd->in_service_queue)
904 		/*
905 		 * In order not to break guarantees, budgets cannot be
906 		 * changed after an entity has been selected.
907 		 */
908 		return;
909 
910 	new_budget = max_t(unsigned long, bfqq->max_budget,
911 			   bfq_serv_to_charge(next_rq, bfqq));
912 	if (entity->budget != new_budget) {
913 		entity->budget = new_budget;
914 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
915 					 new_budget);
916 		bfq_requeue_bfqq(bfqd, bfqq, false);
917 	}
918 }
919 
920 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
921 {
922 	u64 dur;
923 
924 	if (bfqd->bfq_wr_max_time > 0)
925 		return bfqd->bfq_wr_max_time;
926 
927 	dur = bfqd->rate_dur_prod;
928 	do_div(dur, bfqd->peak_rate);
929 
930 	/*
931 	 * Limit duration between 3 and 25 seconds. The upper limit
932 	 * has been conservatively set after the following worst case:
933 	 * on a QEMU/KVM virtual machine
934 	 * - running in a slow PC
935 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
936 	 * - serving a heavy I/O workload, such as the sequential reading
937 	 *   of several files
938 	 * mplayer took 23 seconds to start, if constantly weight-raised.
939 	 *
940 	 * As for higher values than that accomodating the above bad
941 	 * scenario, tests show that higher values would often yield
942 	 * the opposite of the desired result, i.e., would worsen
943 	 * responsiveness by allowing non-interactive applications to
944 	 * preserve weight raising for too long.
945 	 *
946 	 * On the other end, lower values than 3 seconds make it
947 	 * difficult for most interactive tasks to complete their jobs
948 	 * before weight-raising finishes.
949 	 */
950 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
951 }
952 
953 /* switch back from soft real-time to interactive weight raising */
954 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
955 					  struct bfq_data *bfqd)
956 {
957 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
958 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
959 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
960 }
961 
962 static void
963 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
964 		      struct bfq_io_cq *bic, bool bfq_already_existing)
965 {
966 	unsigned int old_wr_coeff = bfqq->wr_coeff;
967 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
968 
969 	if (bic->saved_has_short_ttime)
970 		bfq_mark_bfqq_has_short_ttime(bfqq);
971 	else
972 		bfq_clear_bfqq_has_short_ttime(bfqq);
973 
974 	if (bic->saved_IO_bound)
975 		bfq_mark_bfqq_IO_bound(bfqq);
976 	else
977 		bfq_clear_bfqq_IO_bound(bfqq);
978 
979 	bfqq->ttime = bic->saved_ttime;
980 	bfqq->wr_coeff = bic->saved_wr_coeff;
981 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
982 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
983 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
984 
985 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
986 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
987 				   bfqq->wr_cur_max_time))) {
988 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
989 		    !bfq_bfqq_in_large_burst(bfqq) &&
990 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
991 					     bfq_wr_duration(bfqd))) {
992 			switch_back_to_interactive_wr(bfqq, bfqd);
993 		} else {
994 			bfqq->wr_coeff = 1;
995 			bfq_log_bfqq(bfqq->bfqd, bfqq,
996 				     "resume state: switching off wr");
997 		}
998 	}
999 
1000 	/* make sure weight will be updated, however we got here */
1001 	bfqq->entity.prio_changed = 1;
1002 
1003 	if (likely(!busy))
1004 		return;
1005 
1006 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1007 		bfqd->wr_busy_queues++;
1008 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1009 		bfqd->wr_busy_queues--;
1010 }
1011 
1012 static int bfqq_process_refs(struct bfq_queue *bfqq)
1013 {
1014 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
1015 }
1016 
1017 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1018 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1019 {
1020 	struct bfq_queue *item;
1021 	struct hlist_node *n;
1022 
1023 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1024 		hlist_del_init(&item->burst_list_node);
1025 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1026 	bfqd->burst_size = 1;
1027 	bfqd->burst_parent_entity = bfqq->entity.parent;
1028 }
1029 
1030 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1031 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1032 {
1033 	/* Increment burst size to take into account also bfqq */
1034 	bfqd->burst_size++;
1035 
1036 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1037 		struct bfq_queue *pos, *bfqq_item;
1038 		struct hlist_node *n;
1039 
1040 		/*
1041 		 * Enough queues have been activated shortly after each
1042 		 * other to consider this burst as large.
1043 		 */
1044 		bfqd->large_burst = true;
1045 
1046 		/*
1047 		 * We can now mark all queues in the burst list as
1048 		 * belonging to a large burst.
1049 		 */
1050 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1051 				     burst_list_node)
1052 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1053 		bfq_mark_bfqq_in_large_burst(bfqq);
1054 
1055 		/*
1056 		 * From now on, and until the current burst finishes, any
1057 		 * new queue being activated shortly after the last queue
1058 		 * was inserted in the burst can be immediately marked as
1059 		 * belonging to a large burst. So the burst list is not
1060 		 * needed any more. Remove it.
1061 		 */
1062 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1063 					  burst_list_node)
1064 			hlist_del_init(&pos->burst_list_node);
1065 	} else /*
1066 		* Burst not yet large: add bfqq to the burst list. Do
1067 		* not increment the ref counter for bfqq, because bfqq
1068 		* is removed from the burst list before freeing bfqq
1069 		* in put_queue.
1070 		*/
1071 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1072 }
1073 
1074 /*
1075  * If many queues belonging to the same group happen to be created
1076  * shortly after each other, then the processes associated with these
1077  * queues have typically a common goal. In particular, bursts of queue
1078  * creations are usually caused by services or applications that spawn
1079  * many parallel threads/processes. Examples are systemd during boot,
1080  * or git grep. To help these processes get their job done as soon as
1081  * possible, it is usually better to not grant either weight-raising
1082  * or device idling to their queues.
1083  *
1084  * In this comment we describe, firstly, the reasons why this fact
1085  * holds, and, secondly, the next function, which implements the main
1086  * steps needed to properly mark these queues so that they can then be
1087  * treated in a different way.
1088  *
1089  * The above services or applications benefit mostly from a high
1090  * throughput: the quicker the requests of the activated queues are
1091  * cumulatively served, the sooner the target job of these queues gets
1092  * completed. As a consequence, weight-raising any of these queues,
1093  * which also implies idling the device for it, is almost always
1094  * counterproductive. In most cases it just lowers throughput.
1095  *
1096  * On the other hand, a burst of queue creations may be caused also by
1097  * the start of an application that does not consist of a lot of
1098  * parallel I/O-bound threads. In fact, with a complex application,
1099  * several short processes may need to be executed to start-up the
1100  * application. In this respect, to start an application as quickly as
1101  * possible, the best thing to do is in any case to privilege the I/O
1102  * related to the application with respect to all other
1103  * I/O. Therefore, the best strategy to start as quickly as possible
1104  * an application that causes a burst of queue creations is to
1105  * weight-raise all the queues created during the burst. This is the
1106  * exact opposite of the best strategy for the other type of bursts.
1107  *
1108  * In the end, to take the best action for each of the two cases, the
1109  * two types of bursts need to be distinguished. Fortunately, this
1110  * seems relatively easy, by looking at the sizes of the bursts. In
1111  * particular, we found a threshold such that only bursts with a
1112  * larger size than that threshold are apparently caused by
1113  * services or commands such as systemd or git grep. For brevity,
1114  * hereafter we call just 'large' these bursts. BFQ *does not*
1115  * weight-raise queues whose creation occurs in a large burst. In
1116  * addition, for each of these queues BFQ performs or does not perform
1117  * idling depending on which choice boosts the throughput more. The
1118  * exact choice depends on the device and request pattern at
1119  * hand.
1120  *
1121  * Unfortunately, false positives may occur while an interactive task
1122  * is starting (e.g., an application is being started). The
1123  * consequence is that the queues associated with the task do not
1124  * enjoy weight raising as expected. Fortunately these false positives
1125  * are very rare. They typically occur if some service happens to
1126  * start doing I/O exactly when the interactive task starts.
1127  *
1128  * Turning back to the next function, it implements all the steps
1129  * needed to detect the occurrence of a large burst and to properly
1130  * mark all the queues belonging to it (so that they can then be
1131  * treated in a different way). This goal is achieved by maintaining a
1132  * "burst list" that holds, temporarily, the queues that belong to the
1133  * burst in progress. The list is then used to mark these queues as
1134  * belonging to a large burst if the burst does become large. The main
1135  * steps are the following.
1136  *
1137  * . when the very first queue is created, the queue is inserted into the
1138  *   list (as it could be the first queue in a possible burst)
1139  *
1140  * . if the current burst has not yet become large, and a queue Q that does
1141  *   not yet belong to the burst is activated shortly after the last time
1142  *   at which a new queue entered the burst list, then the function appends
1143  *   Q to the burst list
1144  *
1145  * . if, as a consequence of the previous step, the burst size reaches
1146  *   the large-burst threshold, then
1147  *
1148  *     . all the queues in the burst list are marked as belonging to a
1149  *       large burst
1150  *
1151  *     . the burst list is deleted; in fact, the burst list already served
1152  *       its purpose (keeping temporarily track of the queues in a burst,
1153  *       so as to be able to mark them as belonging to a large burst in the
1154  *       previous sub-step), and now is not needed any more
1155  *
1156  *     . the device enters a large-burst mode
1157  *
1158  * . if a queue Q that does not belong to the burst is created while
1159  *   the device is in large-burst mode and shortly after the last time
1160  *   at which a queue either entered the burst list or was marked as
1161  *   belonging to the current large burst, then Q is immediately marked
1162  *   as belonging to a large burst.
1163  *
1164  * . if a queue Q that does not belong to the burst is created a while
1165  *   later, i.e., not shortly after, than the last time at which a queue
1166  *   either entered the burst list or was marked as belonging to the
1167  *   current large burst, then the current burst is deemed as finished and:
1168  *
1169  *        . the large-burst mode is reset if set
1170  *
1171  *        . the burst list is emptied
1172  *
1173  *        . Q is inserted in the burst list, as Q may be the first queue
1174  *          in a possible new burst (then the burst list contains just Q
1175  *          after this step).
1176  */
1177 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1178 {
1179 	/*
1180 	 * If bfqq is already in the burst list or is part of a large
1181 	 * burst, or finally has just been split, then there is
1182 	 * nothing else to do.
1183 	 */
1184 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1185 	    bfq_bfqq_in_large_burst(bfqq) ||
1186 	    time_is_after_eq_jiffies(bfqq->split_time +
1187 				     msecs_to_jiffies(10)))
1188 		return;
1189 
1190 	/*
1191 	 * If bfqq's creation happens late enough, or bfqq belongs to
1192 	 * a different group than the burst group, then the current
1193 	 * burst is finished, and related data structures must be
1194 	 * reset.
1195 	 *
1196 	 * In this respect, consider the special case where bfqq is
1197 	 * the very first queue created after BFQ is selected for this
1198 	 * device. In this case, last_ins_in_burst and
1199 	 * burst_parent_entity are not yet significant when we get
1200 	 * here. But it is easy to verify that, whether or not the
1201 	 * following condition is true, bfqq will end up being
1202 	 * inserted into the burst list. In particular the list will
1203 	 * happen to contain only bfqq. And this is exactly what has
1204 	 * to happen, as bfqq may be the first queue of the first
1205 	 * burst.
1206 	 */
1207 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1208 	    bfqd->bfq_burst_interval) ||
1209 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1210 		bfqd->large_burst = false;
1211 		bfq_reset_burst_list(bfqd, bfqq);
1212 		goto end;
1213 	}
1214 
1215 	/*
1216 	 * If we get here, then bfqq is being activated shortly after the
1217 	 * last queue. So, if the current burst is also large, we can mark
1218 	 * bfqq as belonging to this large burst immediately.
1219 	 */
1220 	if (bfqd->large_burst) {
1221 		bfq_mark_bfqq_in_large_burst(bfqq);
1222 		goto end;
1223 	}
1224 
1225 	/*
1226 	 * If we get here, then a large-burst state has not yet been
1227 	 * reached, but bfqq is being activated shortly after the last
1228 	 * queue. Then we add bfqq to the burst.
1229 	 */
1230 	bfq_add_to_burst(bfqd, bfqq);
1231 end:
1232 	/*
1233 	 * At this point, bfqq either has been added to the current
1234 	 * burst or has caused the current burst to terminate and a
1235 	 * possible new burst to start. In particular, in the second
1236 	 * case, bfqq has become the first queue in the possible new
1237 	 * burst.  In both cases last_ins_in_burst needs to be moved
1238 	 * forward.
1239 	 */
1240 	bfqd->last_ins_in_burst = jiffies;
1241 }
1242 
1243 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1244 {
1245 	struct bfq_entity *entity = &bfqq->entity;
1246 
1247 	return entity->budget - entity->service;
1248 }
1249 
1250 /*
1251  * If enough samples have been computed, return the current max budget
1252  * stored in bfqd, which is dynamically updated according to the
1253  * estimated disk peak rate; otherwise return the default max budget
1254  */
1255 static int bfq_max_budget(struct bfq_data *bfqd)
1256 {
1257 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1258 		return bfq_default_max_budget;
1259 	else
1260 		return bfqd->bfq_max_budget;
1261 }
1262 
1263 /*
1264  * Return min budget, which is a fraction of the current or default
1265  * max budget (trying with 1/32)
1266  */
1267 static int bfq_min_budget(struct bfq_data *bfqd)
1268 {
1269 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1270 		return bfq_default_max_budget / 32;
1271 	else
1272 		return bfqd->bfq_max_budget / 32;
1273 }
1274 
1275 /*
1276  * The next function, invoked after the input queue bfqq switches from
1277  * idle to busy, updates the budget of bfqq. The function also tells
1278  * whether the in-service queue should be expired, by returning
1279  * true. The purpose of expiring the in-service queue is to give bfqq
1280  * the chance to possibly preempt the in-service queue, and the reason
1281  * for preempting the in-service queue is to achieve one of the two
1282  * goals below.
1283  *
1284  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1285  * expired because it has remained idle. In particular, bfqq may have
1286  * expired for one of the following two reasons:
1287  *
1288  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1289  *   and did not make it to issue a new request before its last
1290  *   request was served;
1291  *
1292  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1293  *   a new request before the expiration of the idling-time.
1294  *
1295  * Even if bfqq has expired for one of the above reasons, the process
1296  * associated with the queue may be however issuing requests greedily,
1297  * and thus be sensitive to the bandwidth it receives (bfqq may have
1298  * remained idle for other reasons: CPU high load, bfqq not enjoying
1299  * idling, I/O throttling somewhere in the path from the process to
1300  * the I/O scheduler, ...). But if, after every expiration for one of
1301  * the above two reasons, bfqq has to wait for the service of at least
1302  * one full budget of another queue before being served again, then
1303  * bfqq is likely to get a much lower bandwidth or resource time than
1304  * its reserved ones. To address this issue, two countermeasures need
1305  * to be taken.
1306  *
1307  * First, the budget and the timestamps of bfqq need to be updated in
1308  * a special way on bfqq reactivation: they need to be updated as if
1309  * bfqq did not remain idle and did not expire. In fact, if they are
1310  * computed as if bfqq expired and remained idle until reactivation,
1311  * then the process associated with bfqq is treated as if, instead of
1312  * being greedy, it stopped issuing requests when bfqq remained idle,
1313  * and restarts issuing requests only on this reactivation. In other
1314  * words, the scheduler does not help the process recover the "service
1315  * hole" between bfqq expiration and reactivation. As a consequence,
1316  * the process receives a lower bandwidth than its reserved one. In
1317  * contrast, to recover this hole, the budget must be updated as if
1318  * bfqq was not expired at all before this reactivation, i.e., it must
1319  * be set to the value of the remaining budget when bfqq was
1320  * expired. Along the same line, timestamps need to be assigned the
1321  * value they had the last time bfqq was selected for service, i.e.,
1322  * before last expiration. Thus timestamps need to be back-shifted
1323  * with respect to their normal computation (see [1] for more details
1324  * on this tricky aspect).
1325  *
1326  * Secondly, to allow the process to recover the hole, the in-service
1327  * queue must be expired too, to give bfqq the chance to preempt it
1328  * immediately. In fact, if bfqq has to wait for a full budget of the
1329  * in-service queue to be completed, then it may become impossible to
1330  * let the process recover the hole, even if the back-shifted
1331  * timestamps of bfqq are lower than those of the in-service queue. If
1332  * this happens for most or all of the holes, then the process may not
1333  * receive its reserved bandwidth. In this respect, it is worth noting
1334  * that, being the service of outstanding requests unpreemptible, a
1335  * little fraction of the holes may however be unrecoverable, thereby
1336  * causing a little loss of bandwidth.
1337  *
1338  * The last important point is detecting whether bfqq does need this
1339  * bandwidth recovery. In this respect, the next function deems the
1340  * process associated with bfqq greedy, and thus allows it to recover
1341  * the hole, if: 1) the process is waiting for the arrival of a new
1342  * request (which implies that bfqq expired for one of the above two
1343  * reasons), and 2) such a request has arrived soon. The first
1344  * condition is controlled through the flag non_blocking_wait_rq,
1345  * while the second through the flag arrived_in_time. If both
1346  * conditions hold, then the function computes the budget in the
1347  * above-described special way, and signals that the in-service queue
1348  * should be expired. Timestamp back-shifting is done later in
1349  * __bfq_activate_entity.
1350  *
1351  * 2. Reduce latency. Even if timestamps are not backshifted to let
1352  * the process associated with bfqq recover a service hole, bfqq may
1353  * however happen to have, after being (re)activated, a lower finish
1354  * timestamp than the in-service queue.	 That is, the next budget of
1355  * bfqq may have to be completed before the one of the in-service
1356  * queue. If this is the case, then preempting the in-service queue
1357  * allows this goal to be achieved, apart from the unpreemptible,
1358  * outstanding requests mentioned above.
1359  *
1360  * Unfortunately, regardless of which of the above two goals one wants
1361  * to achieve, service trees need first to be updated to know whether
1362  * the in-service queue must be preempted. To have service trees
1363  * correctly updated, the in-service queue must be expired and
1364  * rescheduled, and bfqq must be scheduled too. This is one of the
1365  * most costly operations (in future versions, the scheduling
1366  * mechanism may be re-designed in such a way to make it possible to
1367  * know whether preemption is needed without needing to update service
1368  * trees). In addition, queue preemptions almost always cause random
1369  * I/O, and thus loss of throughput. Because of these facts, the next
1370  * function adopts the following simple scheme to avoid both costly
1371  * operations and too frequent preemptions: it requests the expiration
1372  * of the in-service queue (unconditionally) only for queues that need
1373  * to recover a hole, or that either are weight-raised or deserve to
1374  * be weight-raised.
1375  */
1376 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1377 						struct bfq_queue *bfqq,
1378 						bool arrived_in_time,
1379 						bool wr_or_deserves_wr)
1380 {
1381 	struct bfq_entity *entity = &bfqq->entity;
1382 
1383 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1384 		/*
1385 		 * We do not clear the flag non_blocking_wait_rq here, as
1386 		 * the latter is used in bfq_activate_bfqq to signal
1387 		 * that timestamps need to be back-shifted (and is
1388 		 * cleared right after).
1389 		 */
1390 
1391 		/*
1392 		 * In next assignment we rely on that either
1393 		 * entity->service or entity->budget are not updated
1394 		 * on expiration if bfqq is empty (see
1395 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1396 		 * remain unchanged after such an expiration, and the
1397 		 * following statement therefore assigns to
1398 		 * entity->budget the remaining budget on such an
1399 		 * expiration.
1400 		 */
1401 		entity->budget = min_t(unsigned long,
1402 				       bfq_bfqq_budget_left(bfqq),
1403 				       bfqq->max_budget);
1404 
1405 		/*
1406 		 * At this point, we have used entity->service to get
1407 		 * the budget left (needed for updating
1408 		 * entity->budget). Thus we finally can, and have to,
1409 		 * reset entity->service. The latter must be reset
1410 		 * because bfqq would otherwise be charged again for
1411 		 * the service it has received during its previous
1412 		 * service slot(s).
1413 		 */
1414 		entity->service = 0;
1415 
1416 		return true;
1417 	}
1418 
1419 	/*
1420 	 * We can finally complete expiration, by setting service to 0.
1421 	 */
1422 	entity->service = 0;
1423 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1424 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1425 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1426 	return wr_or_deserves_wr;
1427 }
1428 
1429 /*
1430  * Return the farthest past time instant according to jiffies
1431  * macros.
1432  */
1433 static unsigned long bfq_smallest_from_now(void)
1434 {
1435 	return jiffies - MAX_JIFFY_OFFSET;
1436 }
1437 
1438 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1439 					     struct bfq_queue *bfqq,
1440 					     unsigned int old_wr_coeff,
1441 					     bool wr_or_deserves_wr,
1442 					     bool interactive,
1443 					     bool in_burst,
1444 					     bool soft_rt)
1445 {
1446 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1447 		/* start a weight-raising period */
1448 		if (interactive) {
1449 			bfqq->service_from_wr = 0;
1450 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1451 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1452 		} else {
1453 			/*
1454 			 * No interactive weight raising in progress
1455 			 * here: assign minus infinity to
1456 			 * wr_start_at_switch_to_srt, to make sure
1457 			 * that, at the end of the soft-real-time
1458 			 * weight raising periods that is starting
1459 			 * now, no interactive weight-raising period
1460 			 * may be wrongly considered as still in
1461 			 * progress (and thus actually started by
1462 			 * mistake).
1463 			 */
1464 			bfqq->wr_start_at_switch_to_srt =
1465 				bfq_smallest_from_now();
1466 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1467 				BFQ_SOFTRT_WEIGHT_FACTOR;
1468 			bfqq->wr_cur_max_time =
1469 				bfqd->bfq_wr_rt_max_time;
1470 		}
1471 
1472 		/*
1473 		 * If needed, further reduce budget to make sure it is
1474 		 * close to bfqq's backlog, so as to reduce the
1475 		 * scheduling-error component due to a too large
1476 		 * budget. Do not care about throughput consequences,
1477 		 * but only about latency. Finally, do not assign a
1478 		 * too small budget either, to avoid increasing
1479 		 * latency by causing too frequent expirations.
1480 		 */
1481 		bfqq->entity.budget = min_t(unsigned long,
1482 					    bfqq->entity.budget,
1483 					    2 * bfq_min_budget(bfqd));
1484 	} else if (old_wr_coeff > 1) {
1485 		if (interactive) { /* update wr coeff and duration */
1486 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1487 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1488 		} else if (in_burst)
1489 			bfqq->wr_coeff = 1;
1490 		else if (soft_rt) {
1491 			/*
1492 			 * The application is now or still meeting the
1493 			 * requirements for being deemed soft rt.  We
1494 			 * can then correctly and safely (re)charge
1495 			 * the weight-raising duration for the
1496 			 * application with the weight-raising
1497 			 * duration for soft rt applications.
1498 			 *
1499 			 * In particular, doing this recharge now, i.e.,
1500 			 * before the weight-raising period for the
1501 			 * application finishes, reduces the probability
1502 			 * of the following negative scenario:
1503 			 * 1) the weight of a soft rt application is
1504 			 *    raised at startup (as for any newly
1505 			 *    created application),
1506 			 * 2) since the application is not interactive,
1507 			 *    at a certain time weight-raising is
1508 			 *    stopped for the application,
1509 			 * 3) at that time the application happens to
1510 			 *    still have pending requests, and hence
1511 			 *    is destined to not have a chance to be
1512 			 *    deemed soft rt before these requests are
1513 			 *    completed (see the comments to the
1514 			 *    function bfq_bfqq_softrt_next_start()
1515 			 *    for details on soft rt detection),
1516 			 * 4) these pending requests experience a high
1517 			 *    latency because the application is not
1518 			 *    weight-raised while they are pending.
1519 			 */
1520 			if (bfqq->wr_cur_max_time !=
1521 				bfqd->bfq_wr_rt_max_time) {
1522 				bfqq->wr_start_at_switch_to_srt =
1523 					bfqq->last_wr_start_finish;
1524 
1525 				bfqq->wr_cur_max_time =
1526 					bfqd->bfq_wr_rt_max_time;
1527 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1528 					BFQ_SOFTRT_WEIGHT_FACTOR;
1529 			}
1530 			bfqq->last_wr_start_finish = jiffies;
1531 		}
1532 	}
1533 }
1534 
1535 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1536 					struct bfq_queue *bfqq)
1537 {
1538 	return bfqq->dispatched == 0 &&
1539 		time_is_before_jiffies(
1540 			bfqq->budget_timeout +
1541 			bfqd->bfq_wr_min_idle_time);
1542 }
1543 
1544 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1545 					     struct bfq_queue *bfqq,
1546 					     int old_wr_coeff,
1547 					     struct request *rq,
1548 					     bool *interactive)
1549 {
1550 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1551 		bfqq_wants_to_preempt,
1552 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1553 		/*
1554 		 * See the comments on
1555 		 * bfq_bfqq_update_budg_for_activation for
1556 		 * details on the usage of the next variable.
1557 		 */
1558 		arrived_in_time =  ktime_get_ns() <=
1559 			bfqq->ttime.last_end_request +
1560 			bfqd->bfq_slice_idle * 3;
1561 
1562 
1563 	/*
1564 	 * bfqq deserves to be weight-raised if:
1565 	 * - it is sync,
1566 	 * - it does not belong to a large burst,
1567 	 * - it has been idle for enough time or is soft real-time,
1568 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1569 	 */
1570 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1571 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1572 		!in_burst &&
1573 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1574 		bfqq->dispatched == 0;
1575 	*interactive = !in_burst && idle_for_long_time;
1576 	wr_or_deserves_wr = bfqd->low_latency &&
1577 		(bfqq->wr_coeff > 1 ||
1578 		 (bfq_bfqq_sync(bfqq) &&
1579 		  bfqq->bic && (*interactive || soft_rt)));
1580 
1581 	/*
1582 	 * Using the last flag, update budget and check whether bfqq
1583 	 * may want to preempt the in-service queue.
1584 	 */
1585 	bfqq_wants_to_preempt =
1586 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1587 						    arrived_in_time,
1588 						    wr_or_deserves_wr);
1589 
1590 	/*
1591 	 * If bfqq happened to be activated in a burst, but has been
1592 	 * idle for much more than an interactive queue, then we
1593 	 * assume that, in the overall I/O initiated in the burst, the
1594 	 * I/O associated with bfqq is finished. So bfqq does not need
1595 	 * to be treated as a queue belonging to a burst
1596 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1597 	 * if set, and remove bfqq from the burst list if it's
1598 	 * there. We do not decrement burst_size, because the fact
1599 	 * that bfqq does not need to belong to the burst list any
1600 	 * more does not invalidate the fact that bfqq was created in
1601 	 * a burst.
1602 	 */
1603 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1604 	    idle_for_long_time &&
1605 	    time_is_before_jiffies(
1606 		    bfqq->budget_timeout +
1607 		    msecs_to_jiffies(10000))) {
1608 		hlist_del_init(&bfqq->burst_list_node);
1609 		bfq_clear_bfqq_in_large_burst(bfqq);
1610 	}
1611 
1612 	bfq_clear_bfqq_just_created(bfqq);
1613 
1614 
1615 	if (!bfq_bfqq_IO_bound(bfqq)) {
1616 		if (arrived_in_time) {
1617 			bfqq->requests_within_timer++;
1618 			if (bfqq->requests_within_timer >=
1619 			    bfqd->bfq_requests_within_timer)
1620 				bfq_mark_bfqq_IO_bound(bfqq);
1621 		} else
1622 			bfqq->requests_within_timer = 0;
1623 	}
1624 
1625 	if (bfqd->low_latency) {
1626 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1627 			/* wraparound */
1628 			bfqq->split_time =
1629 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1630 
1631 		if (time_is_before_jiffies(bfqq->split_time +
1632 					   bfqd->bfq_wr_min_idle_time)) {
1633 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1634 							 old_wr_coeff,
1635 							 wr_or_deserves_wr,
1636 							 *interactive,
1637 							 in_burst,
1638 							 soft_rt);
1639 
1640 			if (old_wr_coeff != bfqq->wr_coeff)
1641 				bfqq->entity.prio_changed = 1;
1642 		}
1643 	}
1644 
1645 	bfqq->last_idle_bklogged = jiffies;
1646 	bfqq->service_from_backlogged = 0;
1647 	bfq_clear_bfqq_softrt_update(bfqq);
1648 
1649 	bfq_add_bfqq_busy(bfqd, bfqq);
1650 
1651 	/*
1652 	 * Expire in-service queue only if preemption may be needed
1653 	 * for guarantees. In this respect, the function
1654 	 * next_queue_may_preempt just checks a simple, necessary
1655 	 * condition, and not a sufficient condition based on
1656 	 * timestamps. In fact, for the latter condition to be
1657 	 * evaluated, timestamps would need first to be updated, and
1658 	 * this operation is quite costly (see the comments on the
1659 	 * function bfq_bfqq_update_budg_for_activation).
1660 	 */
1661 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1662 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1663 	    next_queue_may_preempt(bfqd))
1664 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1665 				false, BFQQE_PREEMPTED);
1666 }
1667 
1668 static void bfq_add_request(struct request *rq)
1669 {
1670 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1671 	struct bfq_data *bfqd = bfqq->bfqd;
1672 	struct request *next_rq, *prev;
1673 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1674 	bool interactive = false;
1675 
1676 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1677 	bfqq->queued[rq_is_sync(rq)]++;
1678 	bfqd->queued++;
1679 
1680 	elv_rb_add(&bfqq->sort_list, rq);
1681 
1682 	/*
1683 	 * Check if this request is a better next-serve candidate.
1684 	 */
1685 	prev = bfqq->next_rq;
1686 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1687 	bfqq->next_rq = next_rq;
1688 
1689 	/*
1690 	 * Adjust priority tree position, if next_rq changes.
1691 	 */
1692 	if (prev != bfqq->next_rq)
1693 		bfq_pos_tree_add_move(bfqd, bfqq);
1694 
1695 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1696 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1697 						 rq, &interactive);
1698 	else {
1699 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1700 		    time_is_before_jiffies(
1701 				bfqq->last_wr_start_finish +
1702 				bfqd->bfq_wr_min_inter_arr_async)) {
1703 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1704 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1705 
1706 			bfqd->wr_busy_queues++;
1707 			bfqq->entity.prio_changed = 1;
1708 		}
1709 		if (prev != bfqq->next_rq)
1710 			bfq_updated_next_req(bfqd, bfqq);
1711 	}
1712 
1713 	/*
1714 	 * Assign jiffies to last_wr_start_finish in the following
1715 	 * cases:
1716 	 *
1717 	 * . if bfqq is not going to be weight-raised, because, for
1718 	 *   non weight-raised queues, last_wr_start_finish stores the
1719 	 *   arrival time of the last request; as of now, this piece
1720 	 *   of information is used only for deciding whether to
1721 	 *   weight-raise async queues
1722 	 *
1723 	 * . if bfqq is not weight-raised, because, if bfqq is now
1724 	 *   switching to weight-raised, then last_wr_start_finish
1725 	 *   stores the time when weight-raising starts
1726 	 *
1727 	 * . if bfqq is interactive, because, regardless of whether
1728 	 *   bfqq is currently weight-raised, the weight-raising
1729 	 *   period must start or restart (this case is considered
1730 	 *   separately because it is not detected by the above
1731 	 *   conditions, if bfqq is already weight-raised)
1732 	 *
1733 	 * last_wr_start_finish has to be updated also if bfqq is soft
1734 	 * real-time, because the weight-raising period is constantly
1735 	 * restarted on idle-to-busy transitions for these queues, but
1736 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1737 	 * needed.
1738 	 */
1739 	if (bfqd->low_latency &&
1740 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1741 		bfqq->last_wr_start_finish = jiffies;
1742 }
1743 
1744 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1745 					  struct bio *bio,
1746 					  struct request_queue *q)
1747 {
1748 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1749 
1750 
1751 	if (bfqq)
1752 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1753 
1754 	return NULL;
1755 }
1756 
1757 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1758 {
1759 	if (last_pos)
1760 		return abs(blk_rq_pos(rq) - last_pos);
1761 
1762 	return 0;
1763 }
1764 
1765 #if 0 /* Still not clear if we can do without next two functions */
1766 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1767 {
1768 	struct bfq_data *bfqd = q->elevator->elevator_data;
1769 
1770 	bfqd->rq_in_driver++;
1771 }
1772 
1773 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1774 {
1775 	struct bfq_data *bfqd = q->elevator->elevator_data;
1776 
1777 	bfqd->rq_in_driver--;
1778 }
1779 #endif
1780 
1781 static void bfq_remove_request(struct request_queue *q,
1782 			       struct request *rq)
1783 {
1784 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1785 	struct bfq_data *bfqd = bfqq->bfqd;
1786 	const int sync = rq_is_sync(rq);
1787 
1788 	if (bfqq->next_rq == rq) {
1789 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1790 		bfq_updated_next_req(bfqd, bfqq);
1791 	}
1792 
1793 	if (rq->queuelist.prev != &rq->queuelist)
1794 		list_del_init(&rq->queuelist);
1795 	bfqq->queued[sync]--;
1796 	bfqd->queued--;
1797 	elv_rb_del(&bfqq->sort_list, rq);
1798 
1799 	elv_rqhash_del(q, rq);
1800 	if (q->last_merge == rq)
1801 		q->last_merge = NULL;
1802 
1803 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1804 		bfqq->next_rq = NULL;
1805 
1806 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1807 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1808 			/*
1809 			 * bfqq emptied. In normal operation, when
1810 			 * bfqq is empty, bfqq->entity.service and
1811 			 * bfqq->entity.budget must contain,
1812 			 * respectively, the service received and the
1813 			 * budget used last time bfqq emptied. These
1814 			 * facts do not hold in this case, as at least
1815 			 * this last removal occurred while bfqq is
1816 			 * not in service. To avoid inconsistencies,
1817 			 * reset both bfqq->entity.service and
1818 			 * bfqq->entity.budget, if bfqq has still a
1819 			 * process that may issue I/O requests to it.
1820 			 */
1821 			bfqq->entity.budget = bfqq->entity.service = 0;
1822 		}
1823 
1824 		/*
1825 		 * Remove queue from request-position tree as it is empty.
1826 		 */
1827 		if (bfqq->pos_root) {
1828 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1829 			bfqq->pos_root = NULL;
1830 		}
1831 	} else {
1832 		bfq_pos_tree_add_move(bfqd, bfqq);
1833 	}
1834 
1835 	if (rq->cmd_flags & REQ_META)
1836 		bfqq->meta_pending--;
1837 
1838 }
1839 
1840 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1841 {
1842 	struct request_queue *q = hctx->queue;
1843 	struct bfq_data *bfqd = q->elevator->elevator_data;
1844 	struct request *free = NULL;
1845 	/*
1846 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1847 	 * store its return value for later use, to avoid nesting
1848 	 * queue_lock inside the bfqd->lock. We assume that the bic
1849 	 * returned by bfq_bic_lookup does not go away before
1850 	 * bfqd->lock is taken.
1851 	 */
1852 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1853 	bool ret;
1854 
1855 	spin_lock_irq(&bfqd->lock);
1856 
1857 	if (bic)
1858 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1859 	else
1860 		bfqd->bio_bfqq = NULL;
1861 	bfqd->bio_bic = bic;
1862 
1863 	ret = blk_mq_sched_try_merge(q, bio, &free);
1864 
1865 	if (free)
1866 		blk_mq_free_request(free);
1867 	spin_unlock_irq(&bfqd->lock);
1868 
1869 	return ret;
1870 }
1871 
1872 static int bfq_request_merge(struct request_queue *q, struct request **req,
1873 			     struct bio *bio)
1874 {
1875 	struct bfq_data *bfqd = q->elevator->elevator_data;
1876 	struct request *__rq;
1877 
1878 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1879 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1880 		*req = __rq;
1881 		return ELEVATOR_FRONT_MERGE;
1882 	}
1883 
1884 	return ELEVATOR_NO_MERGE;
1885 }
1886 
1887 static struct bfq_queue *bfq_init_rq(struct request *rq);
1888 
1889 static void bfq_request_merged(struct request_queue *q, struct request *req,
1890 			       enum elv_merge type)
1891 {
1892 	if (type == ELEVATOR_FRONT_MERGE &&
1893 	    rb_prev(&req->rb_node) &&
1894 	    blk_rq_pos(req) <
1895 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1896 				    struct request, rb_node))) {
1897 		struct bfq_queue *bfqq = bfq_init_rq(req);
1898 		struct bfq_data *bfqd = bfqq->bfqd;
1899 		struct request *prev, *next_rq;
1900 
1901 		/* Reposition request in its sort_list */
1902 		elv_rb_del(&bfqq->sort_list, req);
1903 		elv_rb_add(&bfqq->sort_list, req);
1904 
1905 		/* Choose next request to be served for bfqq */
1906 		prev = bfqq->next_rq;
1907 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1908 					 bfqd->last_position);
1909 		bfqq->next_rq = next_rq;
1910 		/*
1911 		 * If next_rq changes, update both the queue's budget to
1912 		 * fit the new request and the queue's position in its
1913 		 * rq_pos_tree.
1914 		 */
1915 		if (prev != bfqq->next_rq) {
1916 			bfq_updated_next_req(bfqd, bfqq);
1917 			bfq_pos_tree_add_move(bfqd, bfqq);
1918 		}
1919 	}
1920 }
1921 
1922 /*
1923  * This function is called to notify the scheduler that the requests
1924  * rq and 'next' have been merged, with 'next' going away.  BFQ
1925  * exploits this hook to address the following issue: if 'next' has a
1926  * fifo_time lower that rq, then the fifo_time of rq must be set to
1927  * the value of 'next', to not forget the greater age of 'next'.
1928  *
1929  * NOTE: in this function we assume that rq is in a bfq_queue, basing
1930  * on that rq is picked from the hash table q->elevator->hash, which,
1931  * in its turn, is filled only with I/O requests present in
1932  * bfq_queues, while BFQ is in use for the request queue q. In fact,
1933  * the function that fills this hash table (elv_rqhash_add) is called
1934  * only by bfq_insert_request.
1935  */
1936 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1937 				struct request *next)
1938 {
1939 	struct bfq_queue *bfqq = bfq_init_rq(rq),
1940 		*next_bfqq = bfq_init_rq(next);
1941 
1942 	/*
1943 	 * If next and rq belong to the same bfq_queue and next is older
1944 	 * than rq, then reposition rq in the fifo (by substituting next
1945 	 * with rq). Otherwise, if next and rq belong to different
1946 	 * bfq_queues, never reposition rq: in fact, we would have to
1947 	 * reposition it with respect to next's position in its own fifo,
1948 	 * which would most certainly be too expensive with respect to
1949 	 * the benefits.
1950 	 */
1951 	if (bfqq == next_bfqq &&
1952 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1953 	    next->fifo_time < rq->fifo_time) {
1954 		list_del_init(&rq->queuelist);
1955 		list_replace_init(&next->queuelist, &rq->queuelist);
1956 		rq->fifo_time = next->fifo_time;
1957 	}
1958 
1959 	if (bfqq->next_rq == next)
1960 		bfqq->next_rq = rq;
1961 
1962 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1963 }
1964 
1965 /* Must be called with bfqq != NULL */
1966 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1967 {
1968 	if (bfq_bfqq_busy(bfqq))
1969 		bfqq->bfqd->wr_busy_queues--;
1970 	bfqq->wr_coeff = 1;
1971 	bfqq->wr_cur_max_time = 0;
1972 	bfqq->last_wr_start_finish = jiffies;
1973 	/*
1974 	 * Trigger a weight change on the next invocation of
1975 	 * __bfq_entity_update_weight_prio.
1976 	 */
1977 	bfqq->entity.prio_changed = 1;
1978 }
1979 
1980 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1981 			     struct bfq_group *bfqg)
1982 {
1983 	int i, j;
1984 
1985 	for (i = 0; i < 2; i++)
1986 		for (j = 0; j < IOPRIO_BE_NR; j++)
1987 			if (bfqg->async_bfqq[i][j])
1988 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1989 	if (bfqg->async_idle_bfqq)
1990 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1991 }
1992 
1993 static void bfq_end_wr(struct bfq_data *bfqd)
1994 {
1995 	struct bfq_queue *bfqq;
1996 
1997 	spin_lock_irq(&bfqd->lock);
1998 
1999 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2000 		bfq_bfqq_end_wr(bfqq);
2001 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2002 		bfq_bfqq_end_wr(bfqq);
2003 	bfq_end_wr_async(bfqd);
2004 
2005 	spin_unlock_irq(&bfqd->lock);
2006 }
2007 
2008 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2009 {
2010 	if (request)
2011 		return blk_rq_pos(io_struct);
2012 	else
2013 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2014 }
2015 
2016 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2017 				  sector_t sector)
2018 {
2019 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2020 	       BFQQ_CLOSE_THR;
2021 }
2022 
2023 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2024 					 struct bfq_queue *bfqq,
2025 					 sector_t sector)
2026 {
2027 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2028 	struct rb_node *parent, *node;
2029 	struct bfq_queue *__bfqq;
2030 
2031 	if (RB_EMPTY_ROOT(root))
2032 		return NULL;
2033 
2034 	/*
2035 	 * First, if we find a request starting at the end of the last
2036 	 * request, choose it.
2037 	 */
2038 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2039 	if (__bfqq)
2040 		return __bfqq;
2041 
2042 	/*
2043 	 * If the exact sector wasn't found, the parent of the NULL leaf
2044 	 * will contain the closest sector (rq_pos_tree sorted by
2045 	 * next_request position).
2046 	 */
2047 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2048 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2049 		return __bfqq;
2050 
2051 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2052 		node = rb_next(&__bfqq->pos_node);
2053 	else
2054 		node = rb_prev(&__bfqq->pos_node);
2055 	if (!node)
2056 		return NULL;
2057 
2058 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2059 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2060 		return __bfqq;
2061 
2062 	return NULL;
2063 }
2064 
2065 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2066 						   struct bfq_queue *cur_bfqq,
2067 						   sector_t sector)
2068 {
2069 	struct bfq_queue *bfqq;
2070 
2071 	/*
2072 	 * We shall notice if some of the queues are cooperating,
2073 	 * e.g., working closely on the same area of the device. In
2074 	 * that case, we can group them together and: 1) don't waste
2075 	 * time idling, and 2) serve the union of their requests in
2076 	 * the best possible order for throughput.
2077 	 */
2078 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2079 	if (!bfqq || bfqq == cur_bfqq)
2080 		return NULL;
2081 
2082 	return bfqq;
2083 }
2084 
2085 static struct bfq_queue *
2086 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2087 {
2088 	int process_refs, new_process_refs;
2089 	struct bfq_queue *__bfqq;
2090 
2091 	/*
2092 	 * If there are no process references on the new_bfqq, then it is
2093 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2094 	 * may have dropped their last reference (not just their last process
2095 	 * reference).
2096 	 */
2097 	if (!bfqq_process_refs(new_bfqq))
2098 		return NULL;
2099 
2100 	/* Avoid a circular list and skip interim queue merges. */
2101 	while ((__bfqq = new_bfqq->new_bfqq)) {
2102 		if (__bfqq == bfqq)
2103 			return NULL;
2104 		new_bfqq = __bfqq;
2105 	}
2106 
2107 	process_refs = bfqq_process_refs(bfqq);
2108 	new_process_refs = bfqq_process_refs(new_bfqq);
2109 	/*
2110 	 * If the process for the bfqq has gone away, there is no
2111 	 * sense in merging the queues.
2112 	 */
2113 	if (process_refs == 0 || new_process_refs == 0)
2114 		return NULL;
2115 
2116 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2117 		new_bfqq->pid);
2118 
2119 	/*
2120 	 * Merging is just a redirection: the requests of the process
2121 	 * owning one of the two queues are redirected to the other queue.
2122 	 * The latter queue, in its turn, is set as shared if this is the
2123 	 * first time that the requests of some process are redirected to
2124 	 * it.
2125 	 *
2126 	 * We redirect bfqq to new_bfqq and not the opposite, because
2127 	 * we are in the context of the process owning bfqq, thus we
2128 	 * have the io_cq of this process. So we can immediately
2129 	 * configure this io_cq to redirect the requests of the
2130 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2131 	 * not available any more (new_bfqq->bic == NULL).
2132 	 *
2133 	 * Anyway, even in case new_bfqq coincides with the in-service
2134 	 * queue, redirecting requests the in-service queue is the
2135 	 * best option, as we feed the in-service queue with new
2136 	 * requests close to the last request served and, by doing so,
2137 	 * are likely to increase the throughput.
2138 	 */
2139 	bfqq->new_bfqq = new_bfqq;
2140 	new_bfqq->ref += process_refs;
2141 	return new_bfqq;
2142 }
2143 
2144 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2145 					struct bfq_queue *new_bfqq)
2146 {
2147 	if (bfq_too_late_for_merging(new_bfqq))
2148 		return false;
2149 
2150 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2151 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2152 		return false;
2153 
2154 	/*
2155 	 * If either of the queues has already been detected as seeky,
2156 	 * then merging it with the other queue is unlikely to lead to
2157 	 * sequential I/O.
2158 	 */
2159 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2160 		return false;
2161 
2162 	/*
2163 	 * Interleaved I/O is known to be done by (some) applications
2164 	 * only for reads, so it does not make sense to merge async
2165 	 * queues.
2166 	 */
2167 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2168 		return false;
2169 
2170 	return true;
2171 }
2172 
2173 /*
2174  * Attempt to schedule a merge of bfqq with the currently in-service
2175  * queue or with a close queue among the scheduled queues.  Return
2176  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2177  * structure otherwise.
2178  *
2179  * The OOM queue is not allowed to participate to cooperation: in fact, since
2180  * the requests temporarily redirected to the OOM queue could be redirected
2181  * again to dedicated queues at any time, the state needed to correctly
2182  * handle merging with the OOM queue would be quite complex and expensive
2183  * to maintain. Besides, in such a critical condition as an out of memory,
2184  * the benefits of queue merging may be little relevant, or even negligible.
2185  *
2186  * WARNING: queue merging may impair fairness among non-weight raised
2187  * queues, for at least two reasons: 1) the original weight of a
2188  * merged queue may change during the merged state, 2) even being the
2189  * weight the same, a merged queue may be bloated with many more
2190  * requests than the ones produced by its originally-associated
2191  * process.
2192  */
2193 static struct bfq_queue *
2194 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2195 		     void *io_struct, bool request)
2196 {
2197 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2198 
2199 	/*
2200 	 * Prevent bfqq from being merged if it has been created too
2201 	 * long ago. The idea is that true cooperating processes, and
2202 	 * thus their associated bfq_queues, are supposed to be
2203 	 * created shortly after each other. This is the case, e.g.,
2204 	 * for KVM/QEMU and dump I/O threads. Basing on this
2205 	 * assumption, the following filtering greatly reduces the
2206 	 * probability that two non-cooperating processes, which just
2207 	 * happen to do close I/O for some short time interval, have
2208 	 * their queues merged by mistake.
2209 	 */
2210 	if (bfq_too_late_for_merging(bfqq))
2211 		return NULL;
2212 
2213 	if (bfqq->new_bfqq)
2214 		return bfqq->new_bfqq;
2215 
2216 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2217 		return NULL;
2218 
2219 	/* If there is only one backlogged queue, don't search. */
2220 	if (bfqd->busy_queues == 1)
2221 		return NULL;
2222 
2223 	in_service_bfqq = bfqd->in_service_queue;
2224 
2225 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2226 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2227 	    bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2228 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2229 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2230 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2231 		if (new_bfqq)
2232 			return new_bfqq;
2233 	}
2234 	/*
2235 	 * Check whether there is a cooperator among currently scheduled
2236 	 * queues. The only thing we need is that the bio/request is not
2237 	 * NULL, as we need it to establish whether a cooperator exists.
2238 	 */
2239 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2240 			bfq_io_struct_pos(io_struct, request));
2241 
2242 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2243 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2244 		return bfq_setup_merge(bfqq, new_bfqq);
2245 
2246 	return NULL;
2247 }
2248 
2249 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2250 {
2251 	struct bfq_io_cq *bic = bfqq->bic;
2252 
2253 	/*
2254 	 * If !bfqq->bic, the queue is already shared or its requests
2255 	 * have already been redirected to a shared queue; both idle window
2256 	 * and weight raising state have already been saved. Do nothing.
2257 	 */
2258 	if (!bic)
2259 		return;
2260 
2261 	bic->saved_ttime = bfqq->ttime;
2262 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2263 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2264 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2265 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2266 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2267 		     !bfq_bfqq_in_large_burst(bfqq) &&
2268 		     bfqq->bfqd->low_latency)) {
2269 		/*
2270 		 * bfqq being merged right after being created: bfqq
2271 		 * would have deserved interactive weight raising, but
2272 		 * did not make it to be set in a weight-raised state,
2273 		 * because of this early merge.	Store directly the
2274 		 * weight-raising state that would have been assigned
2275 		 * to bfqq, so that to avoid that bfqq unjustly fails
2276 		 * to enjoy weight raising if split soon.
2277 		 */
2278 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2279 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2280 		bic->saved_last_wr_start_finish = jiffies;
2281 	} else {
2282 		bic->saved_wr_coeff = bfqq->wr_coeff;
2283 		bic->saved_wr_start_at_switch_to_srt =
2284 			bfqq->wr_start_at_switch_to_srt;
2285 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2286 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2287 	}
2288 }
2289 
2290 static void
2291 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2292 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2293 {
2294 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2295 		(unsigned long)new_bfqq->pid);
2296 	/* Save weight raising and idle window of the merged queues */
2297 	bfq_bfqq_save_state(bfqq);
2298 	bfq_bfqq_save_state(new_bfqq);
2299 	if (bfq_bfqq_IO_bound(bfqq))
2300 		bfq_mark_bfqq_IO_bound(new_bfqq);
2301 	bfq_clear_bfqq_IO_bound(bfqq);
2302 
2303 	/*
2304 	 * If bfqq is weight-raised, then let new_bfqq inherit
2305 	 * weight-raising. To reduce false positives, neglect the case
2306 	 * where bfqq has just been created, but has not yet made it
2307 	 * to be weight-raised (which may happen because EQM may merge
2308 	 * bfqq even before bfq_add_request is executed for the first
2309 	 * time for bfqq). Handling this case would however be very
2310 	 * easy, thanks to the flag just_created.
2311 	 */
2312 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2313 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2314 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2315 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2316 		new_bfqq->wr_start_at_switch_to_srt =
2317 			bfqq->wr_start_at_switch_to_srt;
2318 		if (bfq_bfqq_busy(new_bfqq))
2319 			bfqd->wr_busy_queues++;
2320 		new_bfqq->entity.prio_changed = 1;
2321 	}
2322 
2323 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2324 		bfqq->wr_coeff = 1;
2325 		bfqq->entity.prio_changed = 1;
2326 		if (bfq_bfqq_busy(bfqq))
2327 			bfqd->wr_busy_queues--;
2328 	}
2329 
2330 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2331 		     bfqd->wr_busy_queues);
2332 
2333 	/*
2334 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2335 	 */
2336 	bic_set_bfqq(bic, new_bfqq, 1);
2337 	bfq_mark_bfqq_coop(new_bfqq);
2338 	/*
2339 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2340 	 * set new_bfqq->bic to NULL. bfqq either:
2341 	 * - does not belong to any bic any more, and hence bfqq->bic must
2342 	 *   be set to NULL, or
2343 	 * - is a queue whose owning bics have already been redirected to a
2344 	 *   different queue, hence the queue is destined to not belong to
2345 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2346 	 *   assignment causes no harm).
2347 	 */
2348 	new_bfqq->bic = NULL;
2349 	bfqq->bic = NULL;
2350 	/* release process reference to bfqq */
2351 	bfq_put_queue(bfqq);
2352 }
2353 
2354 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2355 				struct bio *bio)
2356 {
2357 	struct bfq_data *bfqd = q->elevator->elevator_data;
2358 	bool is_sync = op_is_sync(bio->bi_opf);
2359 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2360 
2361 	/*
2362 	 * Disallow merge of a sync bio into an async request.
2363 	 */
2364 	if (is_sync && !rq_is_sync(rq))
2365 		return false;
2366 
2367 	/*
2368 	 * Lookup the bfqq that this bio will be queued with. Allow
2369 	 * merge only if rq is queued there.
2370 	 */
2371 	if (!bfqq)
2372 		return false;
2373 
2374 	/*
2375 	 * We take advantage of this function to perform an early merge
2376 	 * of the queues of possible cooperating processes.
2377 	 */
2378 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2379 	if (new_bfqq) {
2380 		/*
2381 		 * bic still points to bfqq, then it has not yet been
2382 		 * redirected to some other bfq_queue, and a queue
2383 		 * merge beween bfqq and new_bfqq can be safely
2384 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2385 		 * and bfqq can be put.
2386 		 */
2387 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2388 				new_bfqq);
2389 		/*
2390 		 * If we get here, bio will be queued into new_queue,
2391 		 * so use new_bfqq to decide whether bio and rq can be
2392 		 * merged.
2393 		 */
2394 		bfqq = new_bfqq;
2395 
2396 		/*
2397 		 * Change also bqfd->bio_bfqq, as
2398 		 * bfqd->bio_bic now points to new_bfqq, and
2399 		 * this function may be invoked again (and then may
2400 		 * use again bqfd->bio_bfqq).
2401 		 */
2402 		bfqd->bio_bfqq = bfqq;
2403 	}
2404 
2405 	return bfqq == RQ_BFQQ(rq);
2406 }
2407 
2408 /*
2409  * Set the maximum time for the in-service queue to consume its
2410  * budget. This prevents seeky processes from lowering the throughput.
2411  * In practice, a time-slice service scheme is used with seeky
2412  * processes.
2413  */
2414 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2415 				   struct bfq_queue *bfqq)
2416 {
2417 	unsigned int timeout_coeff;
2418 
2419 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2420 		timeout_coeff = 1;
2421 	else
2422 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2423 
2424 	bfqd->last_budget_start = ktime_get();
2425 
2426 	bfqq->budget_timeout = jiffies +
2427 		bfqd->bfq_timeout * timeout_coeff;
2428 }
2429 
2430 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2431 				       struct bfq_queue *bfqq)
2432 {
2433 	if (bfqq) {
2434 		bfq_clear_bfqq_fifo_expire(bfqq);
2435 
2436 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2437 
2438 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2439 		    bfqq->wr_coeff > 1 &&
2440 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2441 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2442 			/*
2443 			 * For soft real-time queues, move the start
2444 			 * of the weight-raising period forward by the
2445 			 * time the queue has not received any
2446 			 * service. Otherwise, a relatively long
2447 			 * service delay is likely to cause the
2448 			 * weight-raising period of the queue to end,
2449 			 * because of the short duration of the
2450 			 * weight-raising period of a soft real-time
2451 			 * queue.  It is worth noting that this move
2452 			 * is not so dangerous for the other queues,
2453 			 * because soft real-time queues are not
2454 			 * greedy.
2455 			 *
2456 			 * To not add a further variable, we use the
2457 			 * overloaded field budget_timeout to
2458 			 * determine for how long the queue has not
2459 			 * received service, i.e., how much time has
2460 			 * elapsed since the queue expired. However,
2461 			 * this is a little imprecise, because
2462 			 * budget_timeout is set to jiffies if bfqq
2463 			 * not only expires, but also remains with no
2464 			 * request.
2465 			 */
2466 			if (time_after(bfqq->budget_timeout,
2467 				       bfqq->last_wr_start_finish))
2468 				bfqq->last_wr_start_finish +=
2469 					jiffies - bfqq->budget_timeout;
2470 			else
2471 				bfqq->last_wr_start_finish = jiffies;
2472 		}
2473 
2474 		bfq_set_budget_timeout(bfqd, bfqq);
2475 		bfq_log_bfqq(bfqd, bfqq,
2476 			     "set_in_service_queue, cur-budget = %d",
2477 			     bfqq->entity.budget);
2478 	}
2479 
2480 	bfqd->in_service_queue = bfqq;
2481 }
2482 
2483 /*
2484  * Get and set a new queue for service.
2485  */
2486 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2487 {
2488 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2489 
2490 	__bfq_set_in_service_queue(bfqd, bfqq);
2491 	return bfqq;
2492 }
2493 
2494 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2495 {
2496 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2497 	u32 sl;
2498 
2499 	bfq_mark_bfqq_wait_request(bfqq);
2500 
2501 	/*
2502 	 * We don't want to idle for seeks, but we do want to allow
2503 	 * fair distribution of slice time for a process doing back-to-back
2504 	 * seeks. So allow a little bit of time for him to submit a new rq.
2505 	 */
2506 	sl = bfqd->bfq_slice_idle;
2507 	/*
2508 	 * Unless the queue is being weight-raised or the scenario is
2509 	 * asymmetric, grant only minimum idle time if the queue
2510 	 * is seeky. A long idling is preserved for a weight-raised
2511 	 * queue, or, more in general, in an asymmetric scenario,
2512 	 * because a long idling is needed for guaranteeing to a queue
2513 	 * its reserved share of the throughput (in particular, it is
2514 	 * needed if the queue has a higher weight than some other
2515 	 * queue).
2516 	 */
2517 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2518 	    bfq_symmetric_scenario(bfqd))
2519 		sl = min_t(u64, sl, BFQ_MIN_TT);
2520 
2521 	bfqd->last_idling_start = ktime_get();
2522 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2523 		      HRTIMER_MODE_REL);
2524 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2525 }
2526 
2527 /*
2528  * In autotuning mode, max_budget is dynamically recomputed as the
2529  * amount of sectors transferred in timeout at the estimated peak
2530  * rate. This enables BFQ to utilize a full timeslice with a full
2531  * budget, even if the in-service queue is served at peak rate. And
2532  * this maximises throughput with sequential workloads.
2533  */
2534 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2535 {
2536 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2537 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2538 }
2539 
2540 /*
2541  * Update parameters related to throughput and responsiveness, as a
2542  * function of the estimated peak rate. See comments on
2543  * bfq_calc_max_budget(), and on the ref_wr_duration array.
2544  */
2545 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2546 {
2547 	if (bfqd->bfq_user_max_budget == 0) {
2548 		bfqd->bfq_max_budget =
2549 			bfq_calc_max_budget(bfqd);
2550 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
2551 	}
2552 }
2553 
2554 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2555 				       struct request *rq)
2556 {
2557 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2558 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2559 		bfqd->peak_rate_samples = 1;
2560 		bfqd->sequential_samples = 0;
2561 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2562 			blk_rq_sectors(rq);
2563 	} else /* no new rq dispatched, just reset the number of samples */
2564 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2565 
2566 	bfq_log(bfqd,
2567 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2568 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2569 		bfqd->tot_sectors_dispatched);
2570 }
2571 
2572 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2573 {
2574 	u32 rate, weight, divisor;
2575 
2576 	/*
2577 	 * For the convergence property to hold (see comments on
2578 	 * bfq_update_peak_rate()) and for the assessment to be
2579 	 * reliable, a minimum number of samples must be present, and
2580 	 * a minimum amount of time must have elapsed. If not so, do
2581 	 * not compute new rate. Just reset parameters, to get ready
2582 	 * for a new evaluation attempt.
2583 	 */
2584 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2585 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2586 		goto reset_computation;
2587 
2588 	/*
2589 	 * If a new request completion has occurred after last
2590 	 * dispatch, then, to approximate the rate at which requests
2591 	 * have been served by the device, it is more precise to
2592 	 * extend the observation interval to the last completion.
2593 	 */
2594 	bfqd->delta_from_first =
2595 		max_t(u64, bfqd->delta_from_first,
2596 		      bfqd->last_completion - bfqd->first_dispatch);
2597 
2598 	/*
2599 	 * Rate computed in sects/usec, and not sects/nsec, for
2600 	 * precision issues.
2601 	 */
2602 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2603 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2604 
2605 	/*
2606 	 * Peak rate not updated if:
2607 	 * - the percentage of sequential dispatches is below 3/4 of the
2608 	 *   total, and rate is below the current estimated peak rate
2609 	 * - rate is unreasonably high (> 20M sectors/sec)
2610 	 */
2611 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2612 	     rate <= bfqd->peak_rate) ||
2613 		rate > 20<<BFQ_RATE_SHIFT)
2614 		goto reset_computation;
2615 
2616 	/*
2617 	 * We have to update the peak rate, at last! To this purpose,
2618 	 * we use a low-pass filter. We compute the smoothing constant
2619 	 * of the filter as a function of the 'weight' of the new
2620 	 * measured rate.
2621 	 *
2622 	 * As can be seen in next formulas, we define this weight as a
2623 	 * quantity proportional to how sequential the workload is,
2624 	 * and to how long the observation time interval is.
2625 	 *
2626 	 * The weight runs from 0 to 8. The maximum value of the
2627 	 * weight, 8, yields the minimum value for the smoothing
2628 	 * constant. At this minimum value for the smoothing constant,
2629 	 * the measured rate contributes for half of the next value of
2630 	 * the estimated peak rate.
2631 	 *
2632 	 * So, the first step is to compute the weight as a function
2633 	 * of how sequential the workload is. Note that the weight
2634 	 * cannot reach 9, because bfqd->sequential_samples cannot
2635 	 * become equal to bfqd->peak_rate_samples, which, in its
2636 	 * turn, holds true because bfqd->sequential_samples is not
2637 	 * incremented for the first sample.
2638 	 */
2639 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2640 
2641 	/*
2642 	 * Second step: further refine the weight as a function of the
2643 	 * duration of the observation interval.
2644 	 */
2645 	weight = min_t(u32, 8,
2646 		       div_u64(weight * bfqd->delta_from_first,
2647 			       BFQ_RATE_REF_INTERVAL));
2648 
2649 	/*
2650 	 * Divisor ranging from 10, for minimum weight, to 2, for
2651 	 * maximum weight.
2652 	 */
2653 	divisor = 10 - weight;
2654 
2655 	/*
2656 	 * Finally, update peak rate:
2657 	 *
2658 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2659 	 */
2660 	bfqd->peak_rate *= divisor-1;
2661 	bfqd->peak_rate /= divisor;
2662 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2663 
2664 	bfqd->peak_rate += rate;
2665 
2666 	/*
2667 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
2668 	 * the minimum representable values reported in the comments
2669 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2670 	 * divisions by zero where bfqd->peak_rate is used as a
2671 	 * divisor.
2672 	 */
2673 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2674 
2675 	update_thr_responsiveness_params(bfqd);
2676 
2677 reset_computation:
2678 	bfq_reset_rate_computation(bfqd, rq);
2679 }
2680 
2681 /*
2682  * Update the read/write peak rate (the main quantity used for
2683  * auto-tuning, see update_thr_responsiveness_params()).
2684  *
2685  * It is not trivial to estimate the peak rate (correctly): because of
2686  * the presence of sw and hw queues between the scheduler and the
2687  * device components that finally serve I/O requests, it is hard to
2688  * say exactly when a given dispatched request is served inside the
2689  * device, and for how long. As a consequence, it is hard to know
2690  * precisely at what rate a given set of requests is actually served
2691  * by the device.
2692  *
2693  * On the opposite end, the dispatch time of any request is trivially
2694  * available, and, from this piece of information, the "dispatch rate"
2695  * of requests can be immediately computed. So, the idea in the next
2696  * function is to use what is known, namely request dispatch times
2697  * (plus, when useful, request completion times), to estimate what is
2698  * unknown, namely in-device request service rate.
2699  *
2700  * The main issue is that, because of the above facts, the rate at
2701  * which a certain set of requests is dispatched over a certain time
2702  * interval can vary greatly with respect to the rate at which the
2703  * same requests are then served. But, since the size of any
2704  * intermediate queue is limited, and the service scheme is lossless
2705  * (no request is silently dropped), the following obvious convergence
2706  * property holds: the number of requests dispatched MUST become
2707  * closer and closer to the number of requests completed as the
2708  * observation interval grows. This is the key property used in
2709  * the next function to estimate the peak service rate as a function
2710  * of the observed dispatch rate. The function assumes to be invoked
2711  * on every request dispatch.
2712  */
2713 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2714 {
2715 	u64 now_ns = ktime_get_ns();
2716 
2717 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2718 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2719 			bfqd->peak_rate_samples);
2720 		bfq_reset_rate_computation(bfqd, rq);
2721 		goto update_last_values; /* will add one sample */
2722 	}
2723 
2724 	/*
2725 	 * Device idle for very long: the observation interval lasting
2726 	 * up to this dispatch cannot be a valid observation interval
2727 	 * for computing a new peak rate (similarly to the late-
2728 	 * completion event in bfq_completed_request()). Go to
2729 	 * update_rate_and_reset to have the following three steps
2730 	 * taken:
2731 	 * - close the observation interval at the last (previous)
2732 	 *   request dispatch or completion
2733 	 * - compute rate, if possible, for that observation interval
2734 	 * - start a new observation interval with this dispatch
2735 	 */
2736 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2737 	    bfqd->rq_in_driver == 0)
2738 		goto update_rate_and_reset;
2739 
2740 	/* Update sampling information */
2741 	bfqd->peak_rate_samples++;
2742 
2743 	if ((bfqd->rq_in_driver > 0 ||
2744 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2745 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2746 		bfqd->sequential_samples++;
2747 
2748 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2749 
2750 	/* Reset max observed rq size every 32 dispatches */
2751 	if (likely(bfqd->peak_rate_samples % 32))
2752 		bfqd->last_rq_max_size =
2753 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2754 	else
2755 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2756 
2757 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2758 
2759 	/* Target observation interval not yet reached, go on sampling */
2760 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2761 		goto update_last_values;
2762 
2763 update_rate_and_reset:
2764 	bfq_update_rate_reset(bfqd, rq);
2765 update_last_values:
2766 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2767 	bfqd->last_dispatch = now_ns;
2768 }
2769 
2770 /*
2771  * Remove request from internal lists.
2772  */
2773 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2774 {
2775 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2776 
2777 	/*
2778 	 * For consistency, the next instruction should have been
2779 	 * executed after removing the request from the queue and
2780 	 * dispatching it.  We execute instead this instruction before
2781 	 * bfq_remove_request() (and hence introduce a temporary
2782 	 * inconsistency), for efficiency.  In fact, should this
2783 	 * dispatch occur for a non in-service bfqq, this anticipated
2784 	 * increment prevents two counters related to bfqq->dispatched
2785 	 * from risking to be, first, uselessly decremented, and then
2786 	 * incremented again when the (new) value of bfqq->dispatched
2787 	 * happens to be taken into account.
2788 	 */
2789 	bfqq->dispatched++;
2790 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2791 
2792 	bfq_remove_request(q, rq);
2793 }
2794 
2795 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2796 {
2797 	/*
2798 	 * If this bfqq is shared between multiple processes, check
2799 	 * to make sure that those processes are still issuing I/Os
2800 	 * within the mean seek distance. If not, it may be time to
2801 	 * break the queues apart again.
2802 	 */
2803 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2804 		bfq_mark_bfqq_split_coop(bfqq);
2805 
2806 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2807 		if (bfqq->dispatched == 0)
2808 			/*
2809 			 * Overloading budget_timeout field to store
2810 			 * the time at which the queue remains with no
2811 			 * backlog and no outstanding request; used by
2812 			 * the weight-raising mechanism.
2813 			 */
2814 			bfqq->budget_timeout = jiffies;
2815 
2816 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2817 	} else {
2818 		bfq_requeue_bfqq(bfqd, bfqq, true);
2819 		/*
2820 		 * Resort priority tree of potential close cooperators.
2821 		 */
2822 		bfq_pos_tree_add_move(bfqd, bfqq);
2823 	}
2824 
2825 	/*
2826 	 * All in-service entities must have been properly deactivated
2827 	 * or requeued before executing the next function, which
2828 	 * resets all in-service entites as no more in service.
2829 	 */
2830 	__bfq_bfqd_reset_in_service(bfqd);
2831 }
2832 
2833 /**
2834  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2835  * @bfqd: device data.
2836  * @bfqq: queue to update.
2837  * @reason: reason for expiration.
2838  *
2839  * Handle the feedback on @bfqq budget at queue expiration.
2840  * See the body for detailed comments.
2841  */
2842 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2843 				     struct bfq_queue *bfqq,
2844 				     enum bfqq_expiration reason)
2845 {
2846 	struct request *next_rq;
2847 	int budget, min_budget;
2848 
2849 	min_budget = bfq_min_budget(bfqd);
2850 
2851 	if (bfqq->wr_coeff == 1)
2852 		budget = bfqq->max_budget;
2853 	else /*
2854 	      * Use a constant, low budget for weight-raised queues,
2855 	      * to help achieve a low latency. Keep it slightly higher
2856 	      * than the minimum possible budget, to cause a little
2857 	      * bit fewer expirations.
2858 	      */
2859 		budget = 2 * min_budget;
2860 
2861 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2862 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2863 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2864 		budget, bfq_min_budget(bfqd));
2865 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2866 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2867 
2868 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2869 		switch (reason) {
2870 		/*
2871 		 * Caveat: in all the following cases we trade latency
2872 		 * for throughput.
2873 		 */
2874 		case BFQQE_TOO_IDLE:
2875 			/*
2876 			 * This is the only case where we may reduce
2877 			 * the budget: if there is no request of the
2878 			 * process still waiting for completion, then
2879 			 * we assume (tentatively) that the timer has
2880 			 * expired because the batch of requests of
2881 			 * the process could have been served with a
2882 			 * smaller budget.  Hence, betting that
2883 			 * process will behave in the same way when it
2884 			 * becomes backlogged again, we reduce its
2885 			 * next budget.  As long as we guess right,
2886 			 * this budget cut reduces the latency
2887 			 * experienced by the process.
2888 			 *
2889 			 * However, if there are still outstanding
2890 			 * requests, then the process may have not yet
2891 			 * issued its next request just because it is
2892 			 * still waiting for the completion of some of
2893 			 * the still outstanding ones.  So in this
2894 			 * subcase we do not reduce its budget, on the
2895 			 * contrary we increase it to possibly boost
2896 			 * the throughput, as discussed in the
2897 			 * comments to the BUDGET_TIMEOUT case.
2898 			 */
2899 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2900 				budget = min(budget * 2, bfqd->bfq_max_budget);
2901 			else {
2902 				if (budget > 5 * min_budget)
2903 					budget -= 4 * min_budget;
2904 				else
2905 					budget = min_budget;
2906 			}
2907 			break;
2908 		case BFQQE_BUDGET_TIMEOUT:
2909 			/*
2910 			 * We double the budget here because it gives
2911 			 * the chance to boost the throughput if this
2912 			 * is not a seeky process (and has bumped into
2913 			 * this timeout because of, e.g., ZBR).
2914 			 */
2915 			budget = min(budget * 2, bfqd->bfq_max_budget);
2916 			break;
2917 		case BFQQE_BUDGET_EXHAUSTED:
2918 			/*
2919 			 * The process still has backlog, and did not
2920 			 * let either the budget timeout or the disk
2921 			 * idling timeout expire. Hence it is not
2922 			 * seeky, has a short thinktime and may be
2923 			 * happy with a higher budget too. So
2924 			 * definitely increase the budget of this good
2925 			 * candidate to boost the disk throughput.
2926 			 */
2927 			budget = min(budget * 4, bfqd->bfq_max_budget);
2928 			break;
2929 		case BFQQE_NO_MORE_REQUESTS:
2930 			/*
2931 			 * For queues that expire for this reason, it
2932 			 * is particularly important to keep the
2933 			 * budget close to the actual service they
2934 			 * need. Doing so reduces the timestamp
2935 			 * misalignment problem described in the
2936 			 * comments in the body of
2937 			 * __bfq_activate_entity. In fact, suppose
2938 			 * that a queue systematically expires for
2939 			 * BFQQE_NO_MORE_REQUESTS and presents a
2940 			 * new request in time to enjoy timestamp
2941 			 * back-shifting. The larger the budget of the
2942 			 * queue is with respect to the service the
2943 			 * queue actually requests in each service
2944 			 * slot, the more times the queue can be
2945 			 * reactivated with the same virtual finish
2946 			 * time. It follows that, even if this finish
2947 			 * time is pushed to the system virtual time
2948 			 * to reduce the consequent timestamp
2949 			 * misalignment, the queue unjustly enjoys for
2950 			 * many re-activations a lower finish time
2951 			 * than all newly activated queues.
2952 			 *
2953 			 * The service needed by bfqq is measured
2954 			 * quite precisely by bfqq->entity.service.
2955 			 * Since bfqq does not enjoy device idling,
2956 			 * bfqq->entity.service is equal to the number
2957 			 * of sectors that the process associated with
2958 			 * bfqq requested to read/write before waiting
2959 			 * for request completions, or blocking for
2960 			 * other reasons.
2961 			 */
2962 			budget = max_t(int, bfqq->entity.service, min_budget);
2963 			break;
2964 		default:
2965 			return;
2966 		}
2967 	} else if (!bfq_bfqq_sync(bfqq)) {
2968 		/*
2969 		 * Async queues get always the maximum possible
2970 		 * budget, as for them we do not care about latency
2971 		 * (in addition, their ability to dispatch is limited
2972 		 * by the charging factor).
2973 		 */
2974 		budget = bfqd->bfq_max_budget;
2975 	}
2976 
2977 	bfqq->max_budget = budget;
2978 
2979 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2980 	    !bfqd->bfq_user_max_budget)
2981 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2982 
2983 	/*
2984 	 * If there is still backlog, then assign a new budget, making
2985 	 * sure that it is large enough for the next request.  Since
2986 	 * the finish time of bfqq must be kept in sync with the
2987 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
2988 	 * update.
2989 	 *
2990 	 * If there is no backlog, then no need to update the budget;
2991 	 * it will be updated on the arrival of a new request.
2992 	 */
2993 	next_rq = bfqq->next_rq;
2994 	if (next_rq)
2995 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2996 					    bfq_serv_to_charge(next_rq, bfqq));
2997 
2998 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2999 			next_rq ? blk_rq_sectors(next_rq) : 0,
3000 			bfqq->entity.budget);
3001 }
3002 
3003 /*
3004  * Return true if the process associated with bfqq is "slow". The slow
3005  * flag is used, in addition to the budget timeout, to reduce the
3006  * amount of service provided to seeky processes, and thus reduce
3007  * their chances to lower the throughput. More details in the comments
3008  * on the function bfq_bfqq_expire().
3009  *
3010  * An important observation is in order: as discussed in the comments
3011  * on the function bfq_update_peak_rate(), with devices with internal
3012  * queues, it is hard if ever possible to know when and for how long
3013  * an I/O request is processed by the device (apart from the trivial
3014  * I/O pattern where a new request is dispatched only after the
3015  * previous one has been completed). This makes it hard to evaluate
3016  * the real rate at which the I/O requests of each bfq_queue are
3017  * served.  In fact, for an I/O scheduler like BFQ, serving a
3018  * bfq_queue means just dispatching its requests during its service
3019  * slot (i.e., until the budget of the queue is exhausted, or the
3020  * queue remains idle, or, finally, a timeout fires). But, during the
3021  * service slot of a bfq_queue, around 100 ms at most, the device may
3022  * be even still processing requests of bfq_queues served in previous
3023  * service slots. On the opposite end, the requests of the in-service
3024  * bfq_queue may be completed after the service slot of the queue
3025  * finishes.
3026  *
3027  * Anyway, unless more sophisticated solutions are used
3028  * (where possible), the sum of the sizes of the requests dispatched
3029  * during the service slot of a bfq_queue is probably the only
3030  * approximation available for the service received by the bfq_queue
3031  * during its service slot. And this sum is the quantity used in this
3032  * function to evaluate the I/O speed of a process.
3033  */
3034 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3035 				 bool compensate, enum bfqq_expiration reason,
3036 				 unsigned long *delta_ms)
3037 {
3038 	ktime_t delta_ktime;
3039 	u32 delta_usecs;
3040 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3041 
3042 	if (!bfq_bfqq_sync(bfqq))
3043 		return false;
3044 
3045 	if (compensate)
3046 		delta_ktime = bfqd->last_idling_start;
3047 	else
3048 		delta_ktime = ktime_get();
3049 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3050 	delta_usecs = ktime_to_us(delta_ktime);
3051 
3052 	/* don't use too short time intervals */
3053 	if (delta_usecs < 1000) {
3054 		if (blk_queue_nonrot(bfqd->queue))
3055 			 /*
3056 			  * give same worst-case guarantees as idling
3057 			  * for seeky
3058 			  */
3059 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3060 		else /* charge at least one seek */
3061 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3062 
3063 		return slow;
3064 	}
3065 
3066 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3067 
3068 	/*
3069 	 * Use only long (> 20ms) intervals to filter out excessive
3070 	 * spikes in service rate estimation.
3071 	 */
3072 	if (delta_usecs > 20000) {
3073 		/*
3074 		 * Caveat for rotational devices: processes doing I/O
3075 		 * in the slower disk zones tend to be slow(er) even
3076 		 * if not seeky. In this respect, the estimated peak
3077 		 * rate is likely to be an average over the disk
3078 		 * surface. Accordingly, to not be too harsh with
3079 		 * unlucky processes, a process is deemed slow only if
3080 		 * its rate has been lower than half of the estimated
3081 		 * peak rate.
3082 		 */
3083 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3084 	}
3085 
3086 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3087 
3088 	return slow;
3089 }
3090 
3091 /*
3092  * To be deemed as soft real-time, an application must meet two
3093  * requirements. First, the application must not require an average
3094  * bandwidth higher than the approximate bandwidth required to playback or
3095  * record a compressed high-definition video.
3096  * The next function is invoked on the completion of the last request of a
3097  * batch, to compute the next-start time instant, soft_rt_next_start, such
3098  * that, if the next request of the application does not arrive before
3099  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3100  *
3101  * The second requirement is that the request pattern of the application is
3102  * isochronous, i.e., that, after issuing a request or a batch of requests,
3103  * the application stops issuing new requests until all its pending requests
3104  * have been completed. After that, the application may issue a new batch,
3105  * and so on.
3106  * For this reason the next function is invoked to compute
3107  * soft_rt_next_start only for applications that meet this requirement,
3108  * whereas soft_rt_next_start is set to infinity for applications that do
3109  * not.
3110  *
3111  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3112  * happen to meet, occasionally or systematically, both the above
3113  * bandwidth and isochrony requirements. This may happen at least in
3114  * the following circumstances. First, if the CPU load is high. The
3115  * application may stop issuing requests while the CPUs are busy
3116  * serving other processes, then restart, then stop again for a while,
3117  * and so on. The other circumstances are related to the storage
3118  * device: the storage device is highly loaded or reaches a low-enough
3119  * throughput with the I/O of the application (e.g., because the I/O
3120  * is random and/or the device is slow). In all these cases, the
3121  * I/O of the application may be simply slowed down enough to meet
3122  * the bandwidth and isochrony requirements. To reduce the probability
3123  * that greedy applications are deemed as soft real-time in these
3124  * corner cases, a further rule is used in the computation of
3125  * soft_rt_next_start: the return value of this function is forced to
3126  * be higher than the maximum between the following two quantities.
3127  *
3128  * (a) Current time plus: (1) the maximum time for which the arrival
3129  *     of a request is waited for when a sync queue becomes idle,
3130  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3131  *     postpone for a moment the reason for adding a few extra
3132  *     jiffies; we get back to it after next item (b).  Lower-bounding
3133  *     the return value of this function with the current time plus
3134  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3135  *     because the latter issue their next request as soon as possible
3136  *     after the last one has been completed. In contrast, a soft
3137  *     real-time application spends some time processing data, after a
3138  *     batch of its requests has been completed.
3139  *
3140  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3141  *     above, greedy applications may happen to meet both the
3142  *     bandwidth and isochrony requirements under heavy CPU or
3143  *     storage-device load. In more detail, in these scenarios, these
3144  *     applications happen, only for limited time periods, to do I/O
3145  *     slowly enough to meet all the requirements described so far,
3146  *     including the filtering in above item (a). These slow-speed
3147  *     time intervals are usually interspersed between other time
3148  *     intervals during which these applications do I/O at a very high
3149  *     speed. Fortunately, exactly because of the high speed of the
3150  *     I/O in the high-speed intervals, the values returned by this
3151  *     function happen to be so high, near the end of any such
3152  *     high-speed interval, to be likely to fall *after* the end of
3153  *     the low-speed time interval that follows. These high values are
3154  *     stored in bfqq->soft_rt_next_start after each invocation of
3155  *     this function. As a consequence, if the last value of
3156  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3157  *     next value that this function may return, then, from the very
3158  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3159  *     likely to be constantly kept so high that any I/O request
3160  *     issued during the low-speed interval is considered as arriving
3161  *     to soon for the application to be deemed as soft
3162  *     real-time. Then, in the high-speed interval that follows, the
3163  *     application will not be deemed as soft real-time, just because
3164  *     it will do I/O at a high speed. And so on.
3165  *
3166  * Getting back to the filtering in item (a), in the following two
3167  * cases this filtering might be easily passed by a greedy
3168  * application, if the reference quantity was just
3169  * bfqd->bfq_slice_idle:
3170  * 1) HZ is so low that the duration of a jiffy is comparable to or
3171  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3172  *    devices with HZ=100. The time granularity may be so coarse
3173  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3174  *    is rather lower than the exact value.
3175  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3176  *    for a while, then suddenly 'jump' by several units to recover the lost
3177  *    increments. This seems to happen, e.g., inside virtual machines.
3178  * To address this issue, in the filtering in (a) we do not use as a
3179  * reference time interval just bfqd->bfq_slice_idle, but
3180  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3181  * minimum number of jiffies for which the filter seems to be quite
3182  * precise also in embedded systems and KVM/QEMU virtual machines.
3183  */
3184 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3185 						struct bfq_queue *bfqq)
3186 {
3187 	return max3(bfqq->soft_rt_next_start,
3188 		    bfqq->last_idle_bklogged +
3189 		    HZ * bfqq->service_from_backlogged /
3190 		    bfqd->bfq_wr_max_softrt_rate,
3191 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3192 }
3193 
3194 static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
3195 {
3196 	return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3197 		blk_queue_nonrot(bfqq->bfqd->queue) &&
3198 		bfqq->bfqd->hw_tag;
3199 }
3200 
3201 /**
3202  * bfq_bfqq_expire - expire a queue.
3203  * @bfqd: device owning the queue.
3204  * @bfqq: the queue to expire.
3205  * @compensate: if true, compensate for the time spent idling.
3206  * @reason: the reason causing the expiration.
3207  *
3208  * If the process associated with bfqq does slow I/O (e.g., because it
3209  * issues random requests), we charge bfqq with the time it has been
3210  * in service instead of the service it has received (see
3211  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3212  * a consequence, bfqq will typically get higher timestamps upon
3213  * reactivation, and hence it will be rescheduled as if it had
3214  * received more service than what it has actually received. In the
3215  * end, bfqq receives less service in proportion to how slowly its
3216  * associated process consumes its budgets (and hence how seriously it
3217  * tends to lower the throughput). In addition, this time-charging
3218  * strategy guarantees time fairness among slow processes. In
3219  * contrast, if the process associated with bfqq is not slow, we
3220  * charge bfqq exactly with the service it has received.
3221  *
3222  * Charging time to the first type of queues and the exact service to
3223  * the other has the effect of using the WF2Q+ policy to schedule the
3224  * former on a timeslice basis, without violating service domain
3225  * guarantees among the latter.
3226  */
3227 void bfq_bfqq_expire(struct bfq_data *bfqd,
3228 		     struct bfq_queue *bfqq,
3229 		     bool compensate,
3230 		     enum bfqq_expiration reason)
3231 {
3232 	bool slow;
3233 	unsigned long delta = 0;
3234 	struct bfq_entity *entity = &bfqq->entity;
3235 	int ref;
3236 
3237 	/*
3238 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3239 	 */
3240 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3241 
3242 	/*
3243 	 * As above explained, charge slow (typically seeky) and
3244 	 * timed-out queues with the time and not the service
3245 	 * received, to favor sequential workloads.
3246 	 *
3247 	 * Processes doing I/O in the slower disk zones will tend to
3248 	 * be slow(er) even if not seeky. Therefore, since the
3249 	 * estimated peak rate is actually an average over the disk
3250 	 * surface, these processes may timeout just for bad luck. To
3251 	 * avoid punishing them, do not charge time to processes that
3252 	 * succeeded in consuming at least 2/3 of their budget. This
3253 	 * allows BFQ to preserve enough elasticity to still perform
3254 	 * bandwidth, and not time, distribution with little unlucky
3255 	 * or quasi-sequential processes.
3256 	 */
3257 	if (bfqq->wr_coeff == 1 &&
3258 	    (slow ||
3259 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3260 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3261 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3262 
3263 	if (reason == BFQQE_TOO_IDLE &&
3264 	    entity->service <= 2 * entity->budget / 10)
3265 		bfq_clear_bfqq_IO_bound(bfqq);
3266 
3267 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3268 		bfqq->last_wr_start_finish = jiffies;
3269 
3270 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3271 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3272 		/*
3273 		 * If we get here, and there are no outstanding
3274 		 * requests, then the request pattern is isochronous
3275 		 * (see the comments on the function
3276 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3277 		 * soft_rt_next_start. If, instead, the queue still
3278 		 * has outstanding requests, then we have to wait for
3279 		 * the completion of all the outstanding requests to
3280 		 * discover whether the request pattern is actually
3281 		 * isochronous.
3282 		 */
3283 		if (bfqq->dispatched == 0)
3284 			bfqq->soft_rt_next_start =
3285 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3286 		else {
3287 			/*
3288 			 * Schedule an update of soft_rt_next_start to when
3289 			 * the task may be discovered to be isochronous.
3290 			 */
3291 			bfq_mark_bfqq_softrt_update(bfqq);
3292 		}
3293 	}
3294 
3295 	bfq_log_bfqq(bfqd, bfqq,
3296 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3297 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3298 
3299 	/*
3300 	 * Increase, decrease or leave budget unchanged according to
3301 	 * reason.
3302 	 */
3303 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3304 	ref = bfqq->ref;
3305 	__bfq_bfqq_expire(bfqd, bfqq);
3306 
3307 	if (ref == 1) /* bfqq is gone, no more actions on it */
3308 		return;
3309 
3310 	bfqq->injected_service = 0;
3311 
3312 	/* mark bfqq as waiting a request only if a bic still points to it */
3313 	if (!bfq_bfqq_busy(bfqq) &&
3314 	    reason != BFQQE_BUDGET_TIMEOUT &&
3315 	    reason != BFQQE_BUDGET_EXHAUSTED) {
3316 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3317 		/*
3318 		 * Not setting service to 0, because, if the next rq
3319 		 * arrives in time, the queue will go on receiving
3320 		 * service with this same budget (as if it never expired)
3321 		 */
3322 	} else
3323 		entity->service = 0;
3324 
3325 	/*
3326 	 * Reset the received-service counter for every parent entity.
3327 	 * Differently from what happens with bfqq->entity.service,
3328 	 * the resetting of this counter never needs to be postponed
3329 	 * for parent entities. In fact, in case bfqq may have a
3330 	 * chance to go on being served using the last, partially
3331 	 * consumed budget, bfqq->entity.service needs to be kept,
3332 	 * because if bfqq then actually goes on being served using
3333 	 * the same budget, the last value of bfqq->entity.service is
3334 	 * needed to properly decrement bfqq->entity.budget by the
3335 	 * portion already consumed. In contrast, it is not necessary
3336 	 * to keep entity->service for parent entities too, because
3337 	 * the bubble up of the new value of bfqq->entity.budget will
3338 	 * make sure that the budgets of parent entities are correct,
3339 	 * even in case bfqq and thus parent entities go on receiving
3340 	 * service with the same budget.
3341 	 */
3342 	entity = entity->parent;
3343 	for_each_entity(entity)
3344 		entity->service = 0;
3345 }
3346 
3347 /*
3348  * Budget timeout is not implemented through a dedicated timer, but
3349  * just checked on request arrivals and completions, as well as on
3350  * idle timer expirations.
3351  */
3352 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3353 {
3354 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3355 }
3356 
3357 /*
3358  * If we expire a queue that is actively waiting (i.e., with the
3359  * device idled) for the arrival of a new request, then we may incur
3360  * the timestamp misalignment problem described in the body of the
3361  * function __bfq_activate_entity. Hence we return true only if this
3362  * condition does not hold, or if the queue is slow enough to deserve
3363  * only to be kicked off for preserving a high throughput.
3364  */
3365 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3366 {
3367 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3368 		"may_budget_timeout: wait_request %d left %d timeout %d",
3369 		bfq_bfqq_wait_request(bfqq),
3370 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3371 		bfq_bfqq_budget_timeout(bfqq));
3372 
3373 	return (!bfq_bfqq_wait_request(bfqq) ||
3374 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3375 		&&
3376 		bfq_bfqq_budget_timeout(bfqq);
3377 }
3378 
3379 /*
3380  * For a queue that becomes empty, device idling is allowed only if
3381  * this function returns true for the queue. As a consequence, since
3382  * device idling plays a critical role in both throughput boosting and
3383  * service guarantees, the return value of this function plays a
3384  * critical role in both these aspects as well.
3385  *
3386  * In a nutshell, this function returns true only if idling is
3387  * beneficial for throughput or, even if detrimental for throughput,
3388  * idling is however necessary to preserve service guarantees (low
3389  * latency, desired throughput distribution, ...). In particular, on
3390  * NCQ-capable devices, this function tries to return false, so as to
3391  * help keep the drives' internal queues full, whenever this helps the
3392  * device boost the throughput without causing any service-guarantee
3393  * issue.
3394  *
3395  * In more detail, the return value of this function is obtained by,
3396  * first, computing a number of boolean variables that take into
3397  * account throughput and service-guarantee issues, and, then,
3398  * combining these variables in a logical expression. Most of the
3399  * issues taken into account are not trivial. We discuss these issues
3400  * individually while introducing the variables.
3401  */
3402 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3403 {
3404 	struct bfq_data *bfqd = bfqq->bfqd;
3405 	bool rot_without_queueing =
3406 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3407 		bfqq_sequential_and_IO_bound,
3408 		idling_boosts_thr, idling_boosts_thr_without_issues,
3409 		idling_needed_for_service_guarantees,
3410 		asymmetric_scenario;
3411 
3412 	if (bfqd->strict_guarantees)
3413 		return true;
3414 
3415 	/*
3416 	 * Idling is performed only if slice_idle > 0. In addition, we
3417 	 * do not idle if
3418 	 * (a) bfqq is async
3419 	 * (b) bfqq is in the idle io prio class: in this case we do
3420 	 * not idle because we want to minimize the bandwidth that
3421 	 * queues in this class can steal to higher-priority queues
3422 	 */
3423 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3424 	    bfq_class_idle(bfqq))
3425 		return false;
3426 
3427 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3428 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3429 
3430 	/*
3431 	 * The next variable takes into account the cases where idling
3432 	 * boosts the throughput.
3433 	 *
3434 	 * The value of the variable is computed considering, first, that
3435 	 * idling is virtually always beneficial for the throughput if:
3436 	 * (a) the device is not NCQ-capable and rotational, or
3437 	 * (b) regardless of the presence of NCQ, the device is rotational and
3438 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3439 	 * (c) regardless of whether it is rotational, the device is
3440 	 *     not NCQ-capable and the request pattern for bfqq is
3441 	 *     I/O-bound and sequential.
3442 	 *
3443 	 * Secondly, and in contrast to the above item (b), idling an
3444 	 * NCQ-capable flash-based device would not boost the
3445 	 * throughput even with sequential I/O; rather it would lower
3446 	 * the throughput in proportion to how fast the device
3447 	 * is. Accordingly, the next variable is true if any of the
3448 	 * above conditions (a), (b) or (c) is true, and, in
3449 	 * particular, happens to be false if bfqd is an NCQ-capable
3450 	 * flash-based device.
3451 	 */
3452 	idling_boosts_thr = rot_without_queueing ||
3453 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3454 		 bfqq_sequential_and_IO_bound);
3455 
3456 	/*
3457 	 * The value of the next variable,
3458 	 * idling_boosts_thr_without_issues, is equal to that of
3459 	 * idling_boosts_thr, unless a special case holds. In this
3460 	 * special case, described below, idling may cause problems to
3461 	 * weight-raised queues.
3462 	 *
3463 	 * When the request pool is saturated (e.g., in the presence
3464 	 * of write hogs), if the processes associated with
3465 	 * non-weight-raised queues ask for requests at a lower rate,
3466 	 * then processes associated with weight-raised queues have a
3467 	 * higher probability to get a request from the pool
3468 	 * immediately (or at least soon) when they need one. Thus
3469 	 * they have a higher probability to actually get a fraction
3470 	 * of the device throughput proportional to their high
3471 	 * weight. This is especially true with NCQ-capable drives,
3472 	 * which enqueue several requests in advance, and further
3473 	 * reorder internally-queued requests.
3474 	 *
3475 	 * For this reason, we force to false the value of
3476 	 * idling_boosts_thr_without_issues if there are weight-raised
3477 	 * busy queues. In this case, and if bfqq is not weight-raised,
3478 	 * this guarantees that the device is not idled for bfqq (if,
3479 	 * instead, bfqq is weight-raised, then idling will be
3480 	 * guaranteed by another variable, see below). Combined with
3481 	 * the timestamping rules of BFQ (see [1] for details), this
3482 	 * behavior causes bfqq, and hence any sync non-weight-raised
3483 	 * queue, to get a lower number of requests served, and thus
3484 	 * to ask for a lower number of requests from the request
3485 	 * pool, before the busy weight-raised queues get served
3486 	 * again. This often mitigates starvation problems in the
3487 	 * presence of heavy write workloads and NCQ, thereby
3488 	 * guaranteeing a higher application and system responsiveness
3489 	 * in these hostile scenarios.
3490 	 */
3491 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3492 		bfqd->wr_busy_queues == 0;
3493 
3494 	/*
3495 	 * There is then a case where idling must be performed not
3496 	 * for throughput concerns, but to preserve service
3497 	 * guarantees.
3498 	 *
3499 	 * To introduce this case, we can note that allowing the drive
3500 	 * to enqueue more than one request at a time, and hence
3501 	 * delegating de facto final scheduling decisions to the
3502 	 * drive's internal scheduler, entails loss of control on the
3503 	 * actual request service order. In particular, the critical
3504 	 * situation is when requests from different processes happen
3505 	 * to be present, at the same time, in the internal queue(s)
3506 	 * of the drive. In such a situation, the drive, by deciding
3507 	 * the service order of the internally-queued requests, does
3508 	 * determine also the actual throughput distribution among
3509 	 * these processes. But the drive typically has no notion or
3510 	 * concern about per-process throughput distribution, and
3511 	 * makes its decisions only on a per-request basis. Therefore,
3512 	 * the service distribution enforced by the drive's internal
3513 	 * scheduler is likely to coincide with the desired
3514 	 * device-throughput distribution only in a completely
3515 	 * symmetric scenario where:
3516 	 * (i)  each of these processes must get the same throughput as
3517 	 *      the others;
3518 	 * (ii) the I/O of each process has the same properties, in
3519 	 *      terms of locality (sequential or random), direction
3520 	 *      (reads or writes), request sizes, greediness
3521 	 *      (from I/O-bound to sporadic), and so on.
3522 	 * In fact, in such a scenario, the drive tends to treat
3523 	 * the requests of each of these processes in about the same
3524 	 * way as the requests of the others, and thus to provide
3525 	 * each of these processes with about the same throughput
3526 	 * (which is exactly the desired throughput distribution). In
3527 	 * contrast, in any asymmetric scenario, device idling is
3528 	 * certainly needed to guarantee that bfqq receives its
3529 	 * assigned fraction of the device throughput (see [1] for
3530 	 * details).
3531 	 * The problem is that idling may significantly reduce
3532 	 * throughput with certain combinations of types of I/O and
3533 	 * devices. An important example is sync random I/O, on flash
3534 	 * storage with command queueing. So, unless bfqq falls in the
3535 	 * above cases where idling also boosts throughput, it would
3536 	 * be important to check conditions (i) and (ii) accurately,
3537 	 * so as to avoid idling when not strictly needed for service
3538 	 * guarantees.
3539 	 *
3540 	 * Unfortunately, it is extremely difficult to thoroughly
3541 	 * check condition (ii). And, in case there are active groups,
3542 	 * it becomes very difficult to check condition (i) too. In
3543 	 * fact, if there are active groups, then, for condition (i)
3544 	 * to become false, it is enough that an active group contains
3545 	 * more active processes or sub-groups than some other active
3546 	 * group. More precisely, for condition (i) to hold because of
3547 	 * such a group, it is not even necessary that the group is
3548 	 * (still) active: it is sufficient that, even if the group
3549 	 * has become inactive, some of its descendant processes still
3550 	 * have some request already dispatched but still waiting for
3551 	 * completion. In fact, requests have still to be guaranteed
3552 	 * their share of the throughput even after being
3553 	 * dispatched. In this respect, it is easy to show that, if a
3554 	 * group frequently becomes inactive while still having
3555 	 * in-flight requests, and if, when this happens, the group is
3556 	 * not considered in the calculation of whether the scenario
3557 	 * is asymmetric, then the group may fail to be guaranteed its
3558 	 * fair share of the throughput (basically because idling may
3559 	 * not be performed for the descendant processes of the group,
3560 	 * but it had to be).  We address this issue with the
3561 	 * following bi-modal behavior, implemented in the function
3562 	 * bfq_symmetric_scenario().
3563 	 *
3564 	 * If there are groups with requests waiting for completion
3565 	 * (as commented above, some of these groups may even be
3566 	 * already inactive), then the scenario is tagged as
3567 	 * asymmetric, conservatively, without checking any of the
3568 	 * conditions (i) and (ii). So the device is idled for bfqq.
3569 	 * This behavior matches also the fact that groups are created
3570 	 * exactly if controlling I/O is a primary concern (to
3571 	 * preserve bandwidth and latency guarantees).
3572 	 *
3573 	 * On the opposite end, if there are no groups with requests
3574 	 * waiting for completion, then only condition (i) is actually
3575 	 * controlled, i.e., provided that condition (i) holds, idling
3576 	 * is not performed, regardless of whether condition (ii)
3577 	 * holds. In other words, only if condition (i) does not hold,
3578 	 * then idling is allowed, and the device tends to be
3579 	 * prevented from queueing many requests, possibly of several
3580 	 * processes. Since there are no groups with requests waiting
3581 	 * for completion, then, to control condition (i) it is enough
3582 	 * to check just whether all the queues with requests waiting
3583 	 * for completion also have the same weight.
3584 	 *
3585 	 * Not checking condition (ii) evidently exposes bfqq to the
3586 	 * risk of getting less throughput than its fair share.
3587 	 * However, for queues with the same weight, a further
3588 	 * mechanism, preemption, mitigates or even eliminates this
3589 	 * problem. And it does so without consequences on overall
3590 	 * throughput. This mechanism and its benefits are explained
3591 	 * in the next three paragraphs.
3592 	 *
3593 	 * Even if a queue, say Q, is expired when it remains idle, Q
3594 	 * can still preempt the new in-service queue if the next
3595 	 * request of Q arrives soon (see the comments on
3596 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3597 	 * groups have the same weight, this form of preemption,
3598 	 * combined with the hole-recovery heuristic described in the
3599 	 * comments on function bfq_bfqq_update_budg_for_activation,
3600 	 * are enough to preserve a correct bandwidth distribution in
3601 	 * the mid term, even without idling. In fact, even if not
3602 	 * idling allows the internal queues of the device to contain
3603 	 * many requests, and thus to reorder requests, we can rather
3604 	 * safely assume that the internal scheduler still preserves a
3605 	 * minimum of mid-term fairness.
3606 	 *
3607 	 * More precisely, this preemption-based, idleless approach
3608 	 * provides fairness in terms of IOPS, and not sectors per
3609 	 * second. This can be seen with a simple example. Suppose
3610 	 * that there are two queues with the same weight, but that
3611 	 * the first queue receives requests of 8 sectors, while the
3612 	 * second queue receives requests of 1024 sectors. In
3613 	 * addition, suppose that each of the two queues contains at
3614 	 * most one request at a time, which implies that each queue
3615 	 * always remains idle after it is served. Finally, after
3616 	 * remaining idle, each queue receives very quickly a new
3617 	 * request. It follows that the two queues are served
3618 	 * alternatively, preempting each other if needed. This
3619 	 * implies that, although both queues have the same weight,
3620 	 * the queue with large requests receives a service that is
3621 	 * 1024/8 times as high as the service received by the other
3622 	 * queue.
3623 	 *
3624 	 * The motivation for using preemption instead of idling (for
3625 	 * queues with the same weight) is that, by not idling,
3626 	 * service guarantees are preserved (completely or at least in
3627 	 * part) without minimally sacrificing throughput. And, if
3628 	 * there is no active group, then the primary expectation for
3629 	 * this device is probably a high throughput.
3630 	 *
3631 	 * We are now left only with explaining the additional
3632 	 * compound condition that is checked below for deciding
3633 	 * whether the scenario is asymmetric. To explain this
3634 	 * compound condition, we need to add that the function
3635 	 * bfq_symmetric_scenario checks the weights of only
3636 	 * non-weight-raised queues, for efficiency reasons (see
3637 	 * comments on bfq_weights_tree_add()). Then the fact that
3638 	 * bfqq is weight-raised is checked explicitly here. More
3639 	 * precisely, the compound condition below takes into account
3640 	 * also the fact that, even if bfqq is being weight-raised,
3641 	 * the scenario is still symmetric if all queues with requests
3642 	 * waiting for completion happen to be
3643 	 * weight-raised. Actually, we should be even more precise
3644 	 * here, and differentiate between interactive weight raising
3645 	 * and soft real-time weight raising.
3646 	 *
3647 	 * As a side note, it is worth considering that the above
3648 	 * device-idling countermeasures may however fail in the
3649 	 * following unlucky scenario: if idling is (correctly)
3650 	 * disabled in a time period during which all symmetry
3651 	 * sub-conditions hold, and hence the device is allowed to
3652 	 * enqueue many requests, but at some later point in time some
3653 	 * sub-condition stops to hold, then it may become impossible
3654 	 * to let requests be served in the desired order until all
3655 	 * the requests already queued in the device have been served.
3656 	 */
3657 	asymmetric_scenario = (bfqq->wr_coeff > 1 &&
3658 			       bfqd->wr_busy_queues < bfqd->busy_queues) ||
3659 		!bfq_symmetric_scenario(bfqd);
3660 
3661 	/*
3662 	 * Finally, there is a case where maximizing throughput is the
3663 	 * best choice even if it may cause unfairness toward
3664 	 * bfqq. Such a case is when bfqq became active in a burst of
3665 	 * queue activations. Queues that became active during a large
3666 	 * burst benefit only from throughput, as discussed in the
3667 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3668 	 * in a burst and not idling the device maximizes throughput,
3669 	 * then the device must no be idled, because not idling the
3670 	 * device provides bfqq and all other queues in the burst with
3671 	 * maximum benefit. Combining this and the above case, we can
3672 	 * now establish when idling is actually needed to preserve
3673 	 * service guarantees.
3674 	 */
3675 	idling_needed_for_service_guarantees =
3676 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3677 
3678 	/*
3679 	 * We have now all the components we need to compute the
3680 	 * return value of the function, which is true only if idling
3681 	 * either boosts the throughput (without issues), or is
3682 	 * necessary to preserve service guarantees.
3683 	 */
3684 	return idling_boosts_thr_without_issues ||
3685 		idling_needed_for_service_guarantees;
3686 }
3687 
3688 /*
3689  * If the in-service queue is empty but the function bfq_better_to_idle
3690  * returns true, then:
3691  * 1) the queue must remain in service and cannot be expired, and
3692  * 2) the device must be idled to wait for the possible arrival of a new
3693  *    request for the queue.
3694  * See the comments on the function bfq_better_to_idle for the reasons
3695  * why performing device idling is the best choice to boost the throughput
3696  * and preserve service guarantees when bfq_better_to_idle itself
3697  * returns true.
3698  */
3699 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3700 {
3701 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
3702 }
3703 
3704 static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
3705 {
3706 	struct bfq_queue *bfqq;
3707 
3708 	/*
3709 	 * A linear search; but, with a high probability, very few
3710 	 * steps are needed to find a candidate queue, i.e., a queue
3711 	 * with enough budget left for its next request. In fact:
3712 	 * - BFQ dynamically updates the budget of every queue so as
3713 	 *   to accommodate the expected backlog of the queue;
3714 	 * - if a queue gets all its requests dispatched as injected
3715 	 *   service, then the queue is removed from the active list
3716 	 *   (and re-added only if it gets new requests, but with
3717 	 *   enough budget for its new backlog).
3718 	 */
3719 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
3720 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
3721 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
3722 		    bfq_bfqq_budget_left(bfqq))
3723 			return bfqq;
3724 
3725 	return NULL;
3726 }
3727 
3728 /*
3729  * Select a queue for service.  If we have a current queue in service,
3730  * check whether to continue servicing it, or retrieve and set a new one.
3731  */
3732 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3733 {
3734 	struct bfq_queue *bfqq;
3735 	struct request *next_rq;
3736 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3737 
3738 	bfqq = bfqd->in_service_queue;
3739 	if (!bfqq)
3740 		goto new_queue;
3741 
3742 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3743 
3744 	/*
3745 	 * Do not expire bfqq for budget timeout if bfqq may be about
3746 	 * to enjoy device idling. The reason why, in this case, we
3747 	 * prevent bfqq from expiring is the same as in the comments
3748 	 * on the case where bfq_bfqq_must_idle() returns true, in
3749 	 * bfq_completed_request().
3750 	 */
3751 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3752 	    !bfq_bfqq_must_idle(bfqq))
3753 		goto expire;
3754 
3755 check_queue:
3756 	/*
3757 	 * This loop is rarely executed more than once. Even when it
3758 	 * happens, it is much more convenient to re-execute this loop
3759 	 * than to return NULL and trigger a new dispatch to get a
3760 	 * request served.
3761 	 */
3762 	next_rq = bfqq->next_rq;
3763 	/*
3764 	 * If bfqq has requests queued and it has enough budget left to
3765 	 * serve them, keep the queue, otherwise expire it.
3766 	 */
3767 	if (next_rq) {
3768 		if (bfq_serv_to_charge(next_rq, bfqq) >
3769 			bfq_bfqq_budget_left(bfqq)) {
3770 			/*
3771 			 * Expire the queue for budget exhaustion,
3772 			 * which makes sure that the next budget is
3773 			 * enough to serve the next request, even if
3774 			 * it comes from the fifo expired path.
3775 			 */
3776 			reason = BFQQE_BUDGET_EXHAUSTED;
3777 			goto expire;
3778 		} else {
3779 			/*
3780 			 * The idle timer may be pending because we may
3781 			 * not disable disk idling even when a new request
3782 			 * arrives.
3783 			 */
3784 			if (bfq_bfqq_wait_request(bfqq)) {
3785 				/*
3786 				 * If we get here: 1) at least a new request
3787 				 * has arrived but we have not disabled the
3788 				 * timer because the request was too small,
3789 				 * 2) then the block layer has unplugged
3790 				 * the device, causing the dispatch to be
3791 				 * invoked.
3792 				 *
3793 				 * Since the device is unplugged, now the
3794 				 * requests are probably large enough to
3795 				 * provide a reasonable throughput.
3796 				 * So we disable idling.
3797 				 */
3798 				bfq_clear_bfqq_wait_request(bfqq);
3799 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3800 			}
3801 			goto keep_queue;
3802 		}
3803 	}
3804 
3805 	/*
3806 	 * No requests pending. However, if the in-service queue is idling
3807 	 * for a new request, or has requests waiting for a completion and
3808 	 * may idle after their completion, then keep it anyway.
3809 	 *
3810 	 * Yet, to boost throughput, inject service from other queues if
3811 	 * possible.
3812 	 */
3813 	if (bfq_bfqq_wait_request(bfqq) ||
3814 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
3815 		if (bfq_bfqq_injectable(bfqq) &&
3816 		    bfqq->injected_service * bfqq->inject_coeff <
3817 		    bfqq->entity.service * 10)
3818 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
3819 		else
3820 			bfqq = NULL;
3821 
3822 		goto keep_queue;
3823 	}
3824 
3825 	reason = BFQQE_NO_MORE_REQUESTS;
3826 expire:
3827 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3828 new_queue:
3829 	bfqq = bfq_set_in_service_queue(bfqd);
3830 	if (bfqq) {
3831 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3832 		goto check_queue;
3833 	}
3834 keep_queue:
3835 	if (bfqq)
3836 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3837 	else
3838 		bfq_log(bfqd, "select_queue: no queue returned");
3839 
3840 	return bfqq;
3841 }
3842 
3843 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3844 {
3845 	struct bfq_entity *entity = &bfqq->entity;
3846 
3847 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3848 		bfq_log_bfqq(bfqd, bfqq,
3849 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3850 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3851 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3852 			bfqq->wr_coeff,
3853 			bfqq->entity.weight, bfqq->entity.orig_weight);
3854 
3855 		if (entity->prio_changed)
3856 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3857 
3858 		/*
3859 		 * If the queue was activated in a burst, or too much
3860 		 * time has elapsed from the beginning of this
3861 		 * weight-raising period, then end weight raising.
3862 		 */
3863 		if (bfq_bfqq_in_large_burst(bfqq))
3864 			bfq_bfqq_end_wr(bfqq);
3865 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3866 						bfqq->wr_cur_max_time)) {
3867 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3868 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3869 					       bfq_wr_duration(bfqd)))
3870 				bfq_bfqq_end_wr(bfqq);
3871 			else {
3872 				switch_back_to_interactive_wr(bfqq, bfqd);
3873 				bfqq->entity.prio_changed = 1;
3874 			}
3875 		}
3876 		if (bfqq->wr_coeff > 1 &&
3877 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3878 		    bfqq->service_from_wr > max_service_from_wr) {
3879 			/* see comments on max_service_from_wr */
3880 			bfq_bfqq_end_wr(bfqq);
3881 		}
3882 	}
3883 	/*
3884 	 * To improve latency (for this or other queues), immediately
3885 	 * update weight both if it must be raised and if it must be
3886 	 * lowered. Since, entity may be on some active tree here, and
3887 	 * might have a pending change of its ioprio class, invoke
3888 	 * next function with the last parameter unset (see the
3889 	 * comments on the function).
3890 	 */
3891 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3892 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3893 						entity, false);
3894 }
3895 
3896 /*
3897  * Dispatch next request from bfqq.
3898  */
3899 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3900 						 struct bfq_queue *bfqq)
3901 {
3902 	struct request *rq = bfqq->next_rq;
3903 	unsigned long service_to_charge;
3904 
3905 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3906 
3907 	bfq_bfqq_served(bfqq, service_to_charge);
3908 
3909 	bfq_dispatch_remove(bfqd->queue, rq);
3910 
3911 	if (bfqq != bfqd->in_service_queue) {
3912 		if (likely(bfqd->in_service_queue))
3913 			bfqd->in_service_queue->injected_service +=
3914 				bfq_serv_to_charge(rq, bfqq);
3915 
3916 		goto return_rq;
3917 	}
3918 
3919 	/*
3920 	 * If weight raising has to terminate for bfqq, then next
3921 	 * function causes an immediate update of bfqq's weight,
3922 	 * without waiting for next activation. As a consequence, on
3923 	 * expiration, bfqq will be timestamped as if has never been
3924 	 * weight-raised during this service slot, even if it has
3925 	 * received part or even most of the service as a
3926 	 * weight-raised queue. This inflates bfqq's timestamps, which
3927 	 * is beneficial, as bfqq is then more willing to leave the
3928 	 * device immediately to possible other weight-raised queues.
3929 	 */
3930 	bfq_update_wr_data(bfqd, bfqq);
3931 
3932 	/*
3933 	 * Expire bfqq, pretending that its budget expired, if bfqq
3934 	 * belongs to CLASS_IDLE and other queues are waiting for
3935 	 * service.
3936 	 */
3937 	if (!(bfqd->busy_queues > 1 && bfq_class_idle(bfqq)))
3938 		goto return_rq;
3939 
3940 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3941 
3942 return_rq:
3943 	return rq;
3944 }
3945 
3946 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3947 {
3948 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3949 
3950 	/*
3951 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3952 	 * most a call to dispatch for nothing
3953 	 */
3954 	return !list_empty_careful(&bfqd->dispatch) ||
3955 		bfqd->busy_queues > 0;
3956 }
3957 
3958 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3959 {
3960 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3961 	struct request *rq = NULL;
3962 	struct bfq_queue *bfqq = NULL;
3963 
3964 	if (!list_empty(&bfqd->dispatch)) {
3965 		rq = list_first_entry(&bfqd->dispatch, struct request,
3966 				      queuelist);
3967 		list_del_init(&rq->queuelist);
3968 
3969 		bfqq = RQ_BFQQ(rq);
3970 
3971 		if (bfqq) {
3972 			/*
3973 			 * Increment counters here, because this
3974 			 * dispatch does not follow the standard
3975 			 * dispatch flow (where counters are
3976 			 * incremented)
3977 			 */
3978 			bfqq->dispatched++;
3979 
3980 			goto inc_in_driver_start_rq;
3981 		}
3982 
3983 		/*
3984 		 * We exploit the bfq_finish_requeue_request hook to
3985 		 * decrement rq_in_driver, but
3986 		 * bfq_finish_requeue_request will not be invoked on
3987 		 * this request. So, to avoid unbalance, just start
3988 		 * this request, without incrementing rq_in_driver. As
3989 		 * a negative consequence, rq_in_driver is deceptively
3990 		 * lower than it should be while this request is in
3991 		 * service. This may cause bfq_schedule_dispatch to be
3992 		 * invoked uselessly.
3993 		 *
3994 		 * As for implementing an exact solution, the
3995 		 * bfq_finish_requeue_request hook, if defined, is
3996 		 * probably invoked also on this request. So, by
3997 		 * exploiting this hook, we could 1) increment
3998 		 * rq_in_driver here, and 2) decrement it in
3999 		 * bfq_finish_requeue_request. Such a solution would
4000 		 * let the value of the counter be always accurate,
4001 		 * but it would entail using an extra interface
4002 		 * function. This cost seems higher than the benefit,
4003 		 * being the frequency of non-elevator-private
4004 		 * requests very low.
4005 		 */
4006 		goto start_rq;
4007 	}
4008 
4009 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
4010 
4011 	if (bfqd->busy_queues == 0)
4012 		goto exit;
4013 
4014 	/*
4015 	 * Force device to serve one request at a time if
4016 	 * strict_guarantees is true. Forcing this service scheme is
4017 	 * currently the ONLY way to guarantee that the request
4018 	 * service order enforced by the scheduler is respected by a
4019 	 * queueing device. Otherwise the device is free even to make
4020 	 * some unlucky request wait for as long as the device
4021 	 * wishes.
4022 	 *
4023 	 * Of course, serving one request at at time may cause loss of
4024 	 * throughput.
4025 	 */
4026 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4027 		goto exit;
4028 
4029 	bfqq = bfq_select_queue(bfqd);
4030 	if (!bfqq)
4031 		goto exit;
4032 
4033 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4034 
4035 	if (rq) {
4036 inc_in_driver_start_rq:
4037 		bfqd->rq_in_driver++;
4038 start_rq:
4039 		rq->rq_flags |= RQF_STARTED;
4040 	}
4041 exit:
4042 	return rq;
4043 }
4044 
4045 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4046 static void bfq_update_dispatch_stats(struct request_queue *q,
4047 				      struct request *rq,
4048 				      struct bfq_queue *in_serv_queue,
4049 				      bool idle_timer_disabled)
4050 {
4051 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4052 
4053 	if (!idle_timer_disabled && !bfqq)
4054 		return;
4055 
4056 	/*
4057 	 * rq and bfqq are guaranteed to exist until this function
4058 	 * ends, for the following reasons. First, rq can be
4059 	 * dispatched to the device, and then can be completed and
4060 	 * freed, only after this function ends. Second, rq cannot be
4061 	 * merged (and thus freed because of a merge) any longer,
4062 	 * because it has already started. Thus rq cannot be freed
4063 	 * before this function ends, and, since rq has a reference to
4064 	 * bfqq, the same guarantee holds for bfqq too.
4065 	 *
4066 	 * In addition, the following queue lock guarantees that
4067 	 * bfqq_group(bfqq) exists as well.
4068 	 */
4069 	spin_lock_irq(&q->queue_lock);
4070 	if (idle_timer_disabled)
4071 		/*
4072 		 * Since the idle timer has been disabled,
4073 		 * in_serv_queue contained some request when
4074 		 * __bfq_dispatch_request was invoked above, which
4075 		 * implies that rq was picked exactly from
4076 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4077 		 * therefore guaranteed to exist because of the above
4078 		 * arguments.
4079 		 */
4080 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4081 	if (bfqq) {
4082 		struct bfq_group *bfqg = bfqq_group(bfqq);
4083 
4084 		bfqg_stats_update_avg_queue_size(bfqg);
4085 		bfqg_stats_set_start_empty_time(bfqg);
4086 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4087 	}
4088 	spin_unlock_irq(&q->queue_lock);
4089 }
4090 #else
4091 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4092 					     struct request *rq,
4093 					     struct bfq_queue *in_serv_queue,
4094 					     bool idle_timer_disabled) {}
4095 #endif
4096 
4097 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4098 {
4099 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4100 	struct request *rq;
4101 	struct bfq_queue *in_serv_queue;
4102 	bool waiting_rq, idle_timer_disabled;
4103 
4104 	spin_lock_irq(&bfqd->lock);
4105 
4106 	in_serv_queue = bfqd->in_service_queue;
4107 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4108 
4109 	rq = __bfq_dispatch_request(hctx);
4110 
4111 	idle_timer_disabled =
4112 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4113 
4114 	spin_unlock_irq(&bfqd->lock);
4115 
4116 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4117 				  idle_timer_disabled);
4118 
4119 	return rq;
4120 }
4121 
4122 /*
4123  * Task holds one reference to the queue, dropped when task exits.  Each rq
4124  * in-flight on this queue also holds a reference, dropped when rq is freed.
4125  *
4126  * Scheduler lock must be held here. Recall not to use bfqq after calling
4127  * this function on it.
4128  */
4129 void bfq_put_queue(struct bfq_queue *bfqq)
4130 {
4131 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4132 	struct bfq_group *bfqg = bfqq_group(bfqq);
4133 #endif
4134 
4135 	if (bfqq->bfqd)
4136 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4137 			     bfqq, bfqq->ref);
4138 
4139 	bfqq->ref--;
4140 	if (bfqq->ref)
4141 		return;
4142 
4143 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4144 		hlist_del_init(&bfqq->burst_list_node);
4145 		/*
4146 		 * Decrement also burst size after the removal, if the
4147 		 * process associated with bfqq is exiting, and thus
4148 		 * does not contribute to the burst any longer. This
4149 		 * decrement helps filter out false positives of large
4150 		 * bursts, when some short-lived process (often due to
4151 		 * the execution of commands by some service) happens
4152 		 * to start and exit while a complex application is
4153 		 * starting, and thus spawning several processes that
4154 		 * do I/O (and that *must not* be treated as a large
4155 		 * burst, see comments on bfq_handle_burst).
4156 		 *
4157 		 * In particular, the decrement is performed only if:
4158 		 * 1) bfqq is not a merged queue, because, if it is,
4159 		 * then this free of bfqq is not triggered by the exit
4160 		 * of the process bfqq is associated with, but exactly
4161 		 * by the fact that bfqq has just been merged.
4162 		 * 2) burst_size is greater than 0, to handle
4163 		 * unbalanced decrements. Unbalanced decrements may
4164 		 * happen in te following case: bfqq is inserted into
4165 		 * the current burst list--without incrementing
4166 		 * bust_size--because of a split, but the current
4167 		 * burst list is not the burst list bfqq belonged to
4168 		 * (see comments on the case of a split in
4169 		 * bfq_set_request).
4170 		 */
4171 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4172 			bfqq->bfqd->burst_size--;
4173 	}
4174 
4175 	kmem_cache_free(bfq_pool, bfqq);
4176 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4177 	bfqg_and_blkg_put(bfqg);
4178 #endif
4179 }
4180 
4181 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4182 {
4183 	struct bfq_queue *__bfqq, *next;
4184 
4185 	/*
4186 	 * If this queue was scheduled to merge with another queue, be
4187 	 * sure to drop the reference taken on that queue (and others in
4188 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4189 	 */
4190 	__bfqq = bfqq->new_bfqq;
4191 	while (__bfqq) {
4192 		if (__bfqq == bfqq)
4193 			break;
4194 		next = __bfqq->new_bfqq;
4195 		bfq_put_queue(__bfqq);
4196 		__bfqq = next;
4197 	}
4198 }
4199 
4200 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4201 {
4202 	if (bfqq == bfqd->in_service_queue) {
4203 		__bfq_bfqq_expire(bfqd, bfqq);
4204 		bfq_schedule_dispatch(bfqd);
4205 	}
4206 
4207 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4208 
4209 	bfq_put_cooperator(bfqq);
4210 
4211 	bfq_put_queue(bfqq); /* release process reference */
4212 }
4213 
4214 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4215 {
4216 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4217 	struct bfq_data *bfqd;
4218 
4219 	if (bfqq)
4220 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4221 
4222 	if (bfqq && bfqd) {
4223 		unsigned long flags;
4224 
4225 		spin_lock_irqsave(&bfqd->lock, flags);
4226 		bfq_exit_bfqq(bfqd, bfqq);
4227 		bic_set_bfqq(bic, NULL, is_sync);
4228 		spin_unlock_irqrestore(&bfqd->lock, flags);
4229 	}
4230 }
4231 
4232 static void bfq_exit_icq(struct io_cq *icq)
4233 {
4234 	struct bfq_io_cq *bic = icq_to_bic(icq);
4235 
4236 	bfq_exit_icq_bfqq(bic, true);
4237 	bfq_exit_icq_bfqq(bic, false);
4238 }
4239 
4240 /*
4241  * Update the entity prio values; note that the new values will not
4242  * be used until the next (re)activation.
4243  */
4244 static void
4245 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4246 {
4247 	struct task_struct *tsk = current;
4248 	int ioprio_class;
4249 	struct bfq_data *bfqd = bfqq->bfqd;
4250 
4251 	if (!bfqd)
4252 		return;
4253 
4254 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4255 	switch (ioprio_class) {
4256 	default:
4257 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4258 			"bfq: bad prio class %d\n", ioprio_class);
4259 		/* fall through */
4260 	case IOPRIO_CLASS_NONE:
4261 		/*
4262 		 * No prio set, inherit CPU scheduling settings.
4263 		 */
4264 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4265 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4266 		break;
4267 	case IOPRIO_CLASS_RT:
4268 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4269 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4270 		break;
4271 	case IOPRIO_CLASS_BE:
4272 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4273 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4274 		break;
4275 	case IOPRIO_CLASS_IDLE:
4276 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4277 		bfqq->new_ioprio = 7;
4278 		break;
4279 	}
4280 
4281 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4282 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4283 			bfqq->new_ioprio);
4284 		bfqq->new_ioprio = IOPRIO_BE_NR;
4285 	}
4286 
4287 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4288 	bfqq->entity.prio_changed = 1;
4289 }
4290 
4291 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4292 				       struct bio *bio, bool is_sync,
4293 				       struct bfq_io_cq *bic);
4294 
4295 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4296 {
4297 	struct bfq_data *bfqd = bic_to_bfqd(bic);
4298 	struct bfq_queue *bfqq;
4299 	int ioprio = bic->icq.ioc->ioprio;
4300 
4301 	/*
4302 	 * This condition may trigger on a newly created bic, be sure to
4303 	 * drop the lock before returning.
4304 	 */
4305 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4306 		return;
4307 
4308 	bic->ioprio = ioprio;
4309 
4310 	bfqq = bic_to_bfqq(bic, false);
4311 	if (bfqq) {
4312 		/* release process reference on this queue */
4313 		bfq_put_queue(bfqq);
4314 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4315 		bic_set_bfqq(bic, bfqq, false);
4316 	}
4317 
4318 	bfqq = bic_to_bfqq(bic, true);
4319 	if (bfqq)
4320 		bfq_set_next_ioprio_data(bfqq, bic);
4321 }
4322 
4323 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4324 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
4325 {
4326 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
4327 	INIT_LIST_HEAD(&bfqq->fifo);
4328 	INIT_HLIST_NODE(&bfqq->burst_list_node);
4329 
4330 	bfqq->ref = 0;
4331 	bfqq->bfqd = bfqd;
4332 
4333 	if (bic)
4334 		bfq_set_next_ioprio_data(bfqq, bic);
4335 
4336 	if (is_sync) {
4337 		/*
4338 		 * No need to mark as has_short_ttime if in
4339 		 * idle_class, because no device idling is performed
4340 		 * for queues in idle class
4341 		 */
4342 		if (!bfq_class_idle(bfqq))
4343 			/* tentatively mark as has_short_ttime */
4344 			bfq_mark_bfqq_has_short_ttime(bfqq);
4345 		bfq_mark_bfqq_sync(bfqq);
4346 		bfq_mark_bfqq_just_created(bfqq);
4347 		/*
4348 		 * Aggressively inject a lot of service: up to 90%.
4349 		 * This coefficient remains constant during bfqq life,
4350 		 * but this behavior might be changed, after enough
4351 		 * testing and tuning.
4352 		 */
4353 		bfqq->inject_coeff = 1;
4354 	} else
4355 		bfq_clear_bfqq_sync(bfqq);
4356 
4357 	/* set end request to minus infinity from now */
4358 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4359 
4360 	bfq_mark_bfqq_IO_bound(bfqq);
4361 
4362 	bfqq->pid = pid;
4363 
4364 	/* Tentative initial value to trade off between thr and lat */
4365 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
4366 	bfqq->budget_timeout = bfq_smallest_from_now();
4367 
4368 	bfqq->wr_coeff = 1;
4369 	bfqq->last_wr_start_finish = jiffies;
4370 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
4371 	bfqq->split_time = bfq_smallest_from_now();
4372 
4373 	/*
4374 	 * To not forget the possibly high bandwidth consumed by a
4375 	 * process/queue in the recent past,
4376 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
4377 	 * to the current value of bfqq->soft_rt_next_start (see
4378 	 * comments on bfq_bfqq_softrt_next_start).  Set
4379 	 * soft_rt_next_start to now, to mean that bfqq has consumed
4380 	 * no bandwidth so far.
4381 	 */
4382 	bfqq->soft_rt_next_start = jiffies;
4383 
4384 	/* first request is almost certainly seeky */
4385 	bfqq->seek_history = 1;
4386 }
4387 
4388 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
4389 					       struct bfq_group *bfqg,
4390 					       int ioprio_class, int ioprio)
4391 {
4392 	switch (ioprio_class) {
4393 	case IOPRIO_CLASS_RT:
4394 		return &bfqg->async_bfqq[0][ioprio];
4395 	case IOPRIO_CLASS_NONE:
4396 		ioprio = IOPRIO_NORM;
4397 		/* fall through */
4398 	case IOPRIO_CLASS_BE:
4399 		return &bfqg->async_bfqq[1][ioprio];
4400 	case IOPRIO_CLASS_IDLE:
4401 		return &bfqg->async_idle_bfqq;
4402 	default:
4403 		return NULL;
4404 	}
4405 }
4406 
4407 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4408 				       struct bio *bio, bool is_sync,
4409 				       struct bfq_io_cq *bic)
4410 {
4411 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4412 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4413 	struct bfq_queue **async_bfqq = NULL;
4414 	struct bfq_queue *bfqq;
4415 	struct bfq_group *bfqg;
4416 
4417 	rcu_read_lock();
4418 
4419 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
4420 	if (!bfqg) {
4421 		bfqq = &bfqd->oom_bfqq;
4422 		goto out;
4423 	}
4424 
4425 	if (!is_sync) {
4426 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4427 						  ioprio);
4428 		bfqq = *async_bfqq;
4429 		if (bfqq)
4430 			goto out;
4431 	}
4432 
4433 	bfqq = kmem_cache_alloc_node(bfq_pool,
4434 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4435 				     bfqd->queue->node);
4436 
4437 	if (bfqq) {
4438 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4439 			      is_sync);
4440 		bfq_init_entity(&bfqq->entity, bfqg);
4441 		bfq_log_bfqq(bfqd, bfqq, "allocated");
4442 	} else {
4443 		bfqq = &bfqd->oom_bfqq;
4444 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4445 		goto out;
4446 	}
4447 
4448 	/*
4449 	 * Pin the queue now that it's allocated, scheduler exit will
4450 	 * prune it.
4451 	 */
4452 	if (async_bfqq) {
4453 		bfqq->ref++; /*
4454 			      * Extra group reference, w.r.t. sync
4455 			      * queue. This extra reference is removed
4456 			      * only if bfqq->bfqg disappears, to
4457 			      * guarantee that this queue is not freed
4458 			      * until its group goes away.
4459 			      */
4460 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4461 			     bfqq, bfqq->ref);
4462 		*async_bfqq = bfqq;
4463 	}
4464 
4465 out:
4466 	bfqq->ref++; /* get a process reference to this queue */
4467 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4468 	rcu_read_unlock();
4469 	return bfqq;
4470 }
4471 
4472 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4473 				    struct bfq_queue *bfqq)
4474 {
4475 	struct bfq_ttime *ttime = &bfqq->ttime;
4476 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4477 
4478 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4479 
4480 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4481 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4482 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4483 				     ttime->ttime_samples);
4484 }
4485 
4486 static void
4487 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4488 		       struct request *rq)
4489 {
4490 	bfqq->seek_history <<= 1;
4491 	bfqq->seek_history |=
4492 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4493 		(!blk_queue_nonrot(bfqd->queue) ||
4494 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4495 }
4496 
4497 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4498 				       struct bfq_queue *bfqq,
4499 				       struct bfq_io_cq *bic)
4500 {
4501 	bool has_short_ttime = true;
4502 
4503 	/*
4504 	 * No need to update has_short_ttime if bfqq is async or in
4505 	 * idle io prio class, or if bfq_slice_idle is zero, because
4506 	 * no device idling is performed for bfqq in this case.
4507 	 */
4508 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4509 	    bfqd->bfq_slice_idle == 0)
4510 		return;
4511 
4512 	/* Idle window just restored, statistics are meaningless. */
4513 	if (time_is_after_eq_jiffies(bfqq->split_time +
4514 				     bfqd->bfq_wr_min_idle_time))
4515 		return;
4516 
4517 	/* Think time is infinite if no process is linked to
4518 	 * bfqq. Otherwise check average think time to
4519 	 * decide whether to mark as has_short_ttime
4520 	 */
4521 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4522 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4523 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4524 		has_short_ttime = false;
4525 
4526 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4527 		     has_short_ttime);
4528 
4529 	if (has_short_ttime)
4530 		bfq_mark_bfqq_has_short_ttime(bfqq);
4531 	else
4532 		bfq_clear_bfqq_has_short_ttime(bfqq);
4533 }
4534 
4535 /*
4536  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4537  * something we should do about it.
4538  */
4539 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4540 			    struct request *rq)
4541 {
4542 	struct bfq_io_cq *bic = RQ_BIC(rq);
4543 
4544 	if (rq->cmd_flags & REQ_META)
4545 		bfqq->meta_pending++;
4546 
4547 	bfq_update_io_thinktime(bfqd, bfqq);
4548 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4549 	bfq_update_io_seektime(bfqd, bfqq, rq);
4550 
4551 	bfq_log_bfqq(bfqd, bfqq,
4552 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4553 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4554 
4555 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4556 
4557 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4558 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4559 				 blk_rq_sectors(rq) < 32;
4560 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4561 
4562 		/*
4563 		 * There is just this request queued: if the request
4564 		 * is small and the queue is not to be expired, then
4565 		 * just exit.
4566 		 *
4567 		 * In this way, if the device is being idled to wait
4568 		 * for a new request from the in-service queue, we
4569 		 * avoid unplugging the device and committing the
4570 		 * device to serve just a small request. On the
4571 		 * contrary, we wait for the block layer to decide
4572 		 * when to unplug the device: hopefully, new requests
4573 		 * will be merged to this one quickly, then the device
4574 		 * will be unplugged and larger requests will be
4575 		 * dispatched.
4576 		 */
4577 		if (small_req && !budget_timeout)
4578 			return;
4579 
4580 		/*
4581 		 * A large enough request arrived, or the queue is to
4582 		 * be expired: in both cases disk idling is to be
4583 		 * stopped, so clear wait_request flag and reset
4584 		 * timer.
4585 		 */
4586 		bfq_clear_bfqq_wait_request(bfqq);
4587 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4588 
4589 		/*
4590 		 * The queue is not empty, because a new request just
4591 		 * arrived. Hence we can safely expire the queue, in
4592 		 * case of budget timeout, without risking that the
4593 		 * timestamps of the queue are not updated correctly.
4594 		 * See [1] for more details.
4595 		 */
4596 		if (budget_timeout)
4597 			bfq_bfqq_expire(bfqd, bfqq, false,
4598 					BFQQE_BUDGET_TIMEOUT);
4599 	}
4600 }
4601 
4602 /* returns true if it causes the idle timer to be disabled */
4603 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4604 {
4605 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4606 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4607 	bool waiting, idle_timer_disabled = false;
4608 
4609 	if (new_bfqq) {
4610 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4611 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4612 		/*
4613 		 * Release the request's reference to the old bfqq
4614 		 * and make sure one is taken to the shared queue.
4615 		 */
4616 		new_bfqq->allocated++;
4617 		bfqq->allocated--;
4618 		new_bfqq->ref++;
4619 		/*
4620 		 * If the bic associated with the process
4621 		 * issuing this request still points to bfqq
4622 		 * (and thus has not been already redirected
4623 		 * to new_bfqq or even some other bfq_queue),
4624 		 * then complete the merge and redirect it to
4625 		 * new_bfqq.
4626 		 */
4627 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4628 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4629 					bfqq, new_bfqq);
4630 
4631 		bfq_clear_bfqq_just_created(bfqq);
4632 		/*
4633 		 * rq is about to be enqueued into new_bfqq,
4634 		 * release rq reference on bfqq
4635 		 */
4636 		bfq_put_queue(bfqq);
4637 		rq->elv.priv[1] = new_bfqq;
4638 		bfqq = new_bfqq;
4639 	}
4640 
4641 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
4642 	bfq_add_request(rq);
4643 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
4644 
4645 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4646 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4647 
4648 	bfq_rq_enqueued(bfqd, bfqq, rq);
4649 
4650 	return idle_timer_disabled;
4651 }
4652 
4653 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4654 static void bfq_update_insert_stats(struct request_queue *q,
4655 				    struct bfq_queue *bfqq,
4656 				    bool idle_timer_disabled,
4657 				    unsigned int cmd_flags)
4658 {
4659 	if (!bfqq)
4660 		return;
4661 
4662 	/*
4663 	 * bfqq still exists, because it can disappear only after
4664 	 * either it is merged with another queue, or the process it
4665 	 * is associated with exits. But both actions must be taken by
4666 	 * the same process currently executing this flow of
4667 	 * instructions.
4668 	 *
4669 	 * In addition, the following queue lock guarantees that
4670 	 * bfqq_group(bfqq) exists as well.
4671 	 */
4672 	spin_lock_irq(&q->queue_lock);
4673 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4674 	if (idle_timer_disabled)
4675 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4676 	spin_unlock_irq(&q->queue_lock);
4677 }
4678 #else
4679 static inline void bfq_update_insert_stats(struct request_queue *q,
4680 					   struct bfq_queue *bfqq,
4681 					   bool idle_timer_disabled,
4682 					   unsigned int cmd_flags) {}
4683 #endif
4684 
4685 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4686 			       bool at_head)
4687 {
4688 	struct request_queue *q = hctx->queue;
4689 	struct bfq_data *bfqd = q->elevator->elevator_data;
4690 	struct bfq_queue *bfqq;
4691 	bool idle_timer_disabled = false;
4692 	unsigned int cmd_flags;
4693 
4694 	spin_lock_irq(&bfqd->lock);
4695 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4696 		spin_unlock_irq(&bfqd->lock);
4697 		return;
4698 	}
4699 
4700 	spin_unlock_irq(&bfqd->lock);
4701 
4702 	blk_mq_sched_request_inserted(rq);
4703 
4704 	spin_lock_irq(&bfqd->lock);
4705 	bfqq = bfq_init_rq(rq);
4706 	if (at_head || blk_rq_is_passthrough(rq)) {
4707 		if (at_head)
4708 			list_add(&rq->queuelist, &bfqd->dispatch);
4709 		else
4710 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4711 	} else { /* bfqq is assumed to be non null here */
4712 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
4713 		/*
4714 		 * Update bfqq, because, if a queue merge has occurred
4715 		 * in __bfq_insert_request, then rq has been
4716 		 * redirected into a new queue.
4717 		 */
4718 		bfqq = RQ_BFQQ(rq);
4719 
4720 		if (rq_mergeable(rq)) {
4721 			elv_rqhash_add(q, rq);
4722 			if (!q->last_merge)
4723 				q->last_merge = rq;
4724 		}
4725 	}
4726 
4727 	/*
4728 	 * Cache cmd_flags before releasing scheduler lock, because rq
4729 	 * may disappear afterwards (for example, because of a request
4730 	 * merge).
4731 	 */
4732 	cmd_flags = rq->cmd_flags;
4733 
4734 	spin_unlock_irq(&bfqd->lock);
4735 
4736 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4737 				cmd_flags);
4738 }
4739 
4740 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4741 				struct list_head *list, bool at_head)
4742 {
4743 	while (!list_empty(list)) {
4744 		struct request *rq;
4745 
4746 		rq = list_first_entry(list, struct request, queuelist);
4747 		list_del_init(&rq->queuelist);
4748 		bfq_insert_request(hctx, rq, at_head);
4749 	}
4750 }
4751 
4752 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4753 {
4754 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4755 				       bfqd->rq_in_driver);
4756 
4757 	if (bfqd->hw_tag == 1)
4758 		return;
4759 
4760 	/*
4761 	 * This sample is valid if the number of outstanding requests
4762 	 * is large enough to allow a queueing behavior.  Note that the
4763 	 * sum is not exact, as it's not taking into account deactivated
4764 	 * requests.
4765 	 */
4766 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4767 		return;
4768 
4769 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4770 		return;
4771 
4772 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4773 	bfqd->max_rq_in_driver = 0;
4774 	bfqd->hw_tag_samples = 0;
4775 }
4776 
4777 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4778 {
4779 	u64 now_ns;
4780 	u32 delta_us;
4781 
4782 	bfq_update_hw_tag(bfqd);
4783 
4784 	bfqd->rq_in_driver--;
4785 	bfqq->dispatched--;
4786 
4787 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4788 		/*
4789 		 * Set budget_timeout (which we overload to store the
4790 		 * time at which the queue remains with no backlog and
4791 		 * no outstanding request; used by the weight-raising
4792 		 * mechanism).
4793 		 */
4794 		bfqq->budget_timeout = jiffies;
4795 
4796 		bfq_weights_tree_remove(bfqd, bfqq);
4797 	}
4798 
4799 	now_ns = ktime_get_ns();
4800 
4801 	bfqq->ttime.last_end_request = now_ns;
4802 
4803 	/*
4804 	 * Using us instead of ns, to get a reasonable precision in
4805 	 * computing rate in next check.
4806 	 */
4807 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4808 
4809 	/*
4810 	 * If the request took rather long to complete, and, according
4811 	 * to the maximum request size recorded, this completion latency
4812 	 * implies that the request was certainly served at a very low
4813 	 * rate (less than 1M sectors/sec), then the whole observation
4814 	 * interval that lasts up to this time instant cannot be a
4815 	 * valid time interval for computing a new peak rate.  Invoke
4816 	 * bfq_update_rate_reset to have the following three steps
4817 	 * taken:
4818 	 * - close the observation interval at the last (previous)
4819 	 *   request dispatch or completion
4820 	 * - compute rate, if possible, for that observation interval
4821 	 * - reset to zero samples, which will trigger a proper
4822 	 *   re-initialization of the observation interval on next
4823 	 *   dispatch
4824 	 */
4825 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4826 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4827 			1UL<<(BFQ_RATE_SHIFT - 10))
4828 		bfq_update_rate_reset(bfqd, NULL);
4829 	bfqd->last_completion = now_ns;
4830 
4831 	/*
4832 	 * If we are waiting to discover whether the request pattern
4833 	 * of the task associated with the queue is actually
4834 	 * isochronous, and both requisites for this condition to hold
4835 	 * are now satisfied, then compute soft_rt_next_start (see the
4836 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4837 	 * schedule this delayed check when bfqq expires, if it still
4838 	 * has in-flight requests.
4839 	 */
4840 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4841 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4842 		bfqq->soft_rt_next_start =
4843 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4844 
4845 	/*
4846 	 * If this is the in-service queue, check if it needs to be expired,
4847 	 * or if we want to idle in case it has no pending requests.
4848 	 */
4849 	if (bfqd->in_service_queue == bfqq) {
4850 		if (bfq_bfqq_must_idle(bfqq)) {
4851 			if (bfqq->dispatched == 0)
4852 				bfq_arm_slice_timer(bfqd);
4853 			/*
4854 			 * If we get here, we do not expire bfqq, even
4855 			 * if bfqq was in budget timeout or had no
4856 			 * more requests (as controlled in the next
4857 			 * conditional instructions). The reason for
4858 			 * not expiring bfqq is as follows.
4859 			 *
4860 			 * Here bfqq->dispatched > 0 holds, but
4861 			 * bfq_bfqq_must_idle() returned true. This
4862 			 * implies that, even if no request arrives
4863 			 * for bfqq before bfqq->dispatched reaches 0,
4864 			 * bfqq will, however, not be expired on the
4865 			 * completion event that causes bfqq->dispatch
4866 			 * to reach zero. In contrast, on this event,
4867 			 * bfqq will start enjoying device idling
4868 			 * (I/O-dispatch plugging).
4869 			 *
4870 			 * But, if we expired bfqq here, bfqq would
4871 			 * not have the chance to enjoy device idling
4872 			 * when bfqq->dispatched finally reaches
4873 			 * zero. This would expose bfqq to violation
4874 			 * of its reserved service guarantees.
4875 			 */
4876 			return;
4877 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4878 			bfq_bfqq_expire(bfqd, bfqq, false,
4879 					BFQQE_BUDGET_TIMEOUT);
4880 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4881 			 (bfqq->dispatched == 0 ||
4882 			  !bfq_better_to_idle(bfqq)))
4883 			bfq_bfqq_expire(bfqd, bfqq, false,
4884 					BFQQE_NO_MORE_REQUESTS);
4885 	}
4886 
4887 	if (!bfqd->rq_in_driver)
4888 		bfq_schedule_dispatch(bfqd);
4889 }
4890 
4891 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
4892 {
4893 	bfqq->allocated--;
4894 
4895 	bfq_put_queue(bfqq);
4896 }
4897 
4898 /*
4899  * Handle either a requeue or a finish for rq. The things to do are
4900  * the same in both cases: all references to rq are to be dropped. In
4901  * particular, rq is considered completed from the point of view of
4902  * the scheduler.
4903  */
4904 static void bfq_finish_requeue_request(struct request *rq)
4905 {
4906 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
4907 	struct bfq_data *bfqd;
4908 
4909 	/*
4910 	 * Requeue and finish hooks are invoked in blk-mq without
4911 	 * checking whether the involved request is actually still
4912 	 * referenced in the scheduler. To handle this fact, the
4913 	 * following two checks make this function exit in case of
4914 	 * spurious invocations, for which there is nothing to do.
4915 	 *
4916 	 * First, check whether rq has nothing to do with an elevator.
4917 	 */
4918 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
4919 		return;
4920 
4921 	/*
4922 	 * rq either is not associated with any icq, or is an already
4923 	 * requeued request that has not (yet) been re-inserted into
4924 	 * a bfq_queue.
4925 	 */
4926 	if (!rq->elv.icq || !bfqq)
4927 		return;
4928 
4929 	bfqd = bfqq->bfqd;
4930 
4931 	if (rq->rq_flags & RQF_STARTED)
4932 		bfqg_stats_update_completion(bfqq_group(bfqq),
4933 					     rq->start_time_ns,
4934 					     rq->io_start_time_ns,
4935 					     rq->cmd_flags);
4936 
4937 	if (likely(rq->rq_flags & RQF_STARTED)) {
4938 		unsigned long flags;
4939 
4940 		spin_lock_irqsave(&bfqd->lock, flags);
4941 
4942 		bfq_completed_request(bfqq, bfqd);
4943 		bfq_finish_requeue_request_body(bfqq);
4944 
4945 		spin_unlock_irqrestore(&bfqd->lock, flags);
4946 	} else {
4947 		/*
4948 		 * Request rq may be still/already in the scheduler,
4949 		 * in which case we need to remove it (this should
4950 		 * never happen in case of requeue). And we cannot
4951 		 * defer such a check and removal, to avoid
4952 		 * inconsistencies in the time interval from the end
4953 		 * of this function to the start of the deferred work.
4954 		 * This situation seems to occur only in process
4955 		 * context, as a consequence of a merge. In the
4956 		 * current version of the code, this implies that the
4957 		 * lock is held.
4958 		 */
4959 
4960 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
4961 			bfq_remove_request(rq->q, rq);
4962 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
4963 						    rq->cmd_flags);
4964 		}
4965 		bfq_finish_requeue_request_body(bfqq);
4966 	}
4967 
4968 	/*
4969 	 * Reset private fields. In case of a requeue, this allows
4970 	 * this function to correctly do nothing if it is spuriously
4971 	 * invoked again on this same request (see the check at the
4972 	 * beginning of the function). Probably, a better general
4973 	 * design would be to prevent blk-mq from invoking the requeue
4974 	 * or finish hooks of an elevator, for a request that is not
4975 	 * referred by that elevator.
4976 	 *
4977 	 * Resetting the following fields would break the
4978 	 * request-insertion logic if rq is re-inserted into a bfq
4979 	 * internal queue, without a re-preparation. Here we assume
4980 	 * that re-insertions of requeued requests, without
4981 	 * re-preparation, can happen only for pass_through or at_head
4982 	 * requests (which are not re-inserted into bfq internal
4983 	 * queues).
4984 	 */
4985 	rq->elv.priv[0] = NULL;
4986 	rq->elv.priv[1] = NULL;
4987 }
4988 
4989 /*
4990  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4991  * was the last process referring to that bfqq.
4992  */
4993 static struct bfq_queue *
4994 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4995 {
4996 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4997 
4998 	if (bfqq_process_refs(bfqq) == 1) {
4999 		bfqq->pid = current->pid;
5000 		bfq_clear_bfqq_coop(bfqq);
5001 		bfq_clear_bfqq_split_coop(bfqq);
5002 		return bfqq;
5003 	}
5004 
5005 	bic_set_bfqq(bic, NULL, 1);
5006 
5007 	bfq_put_cooperator(bfqq);
5008 
5009 	bfq_put_queue(bfqq);
5010 	return NULL;
5011 }
5012 
5013 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5014 						   struct bfq_io_cq *bic,
5015 						   struct bio *bio,
5016 						   bool split, bool is_sync,
5017 						   bool *new_queue)
5018 {
5019 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5020 
5021 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5022 		return bfqq;
5023 
5024 	if (new_queue)
5025 		*new_queue = true;
5026 
5027 	if (bfqq)
5028 		bfq_put_queue(bfqq);
5029 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5030 
5031 	bic_set_bfqq(bic, bfqq, is_sync);
5032 	if (split && is_sync) {
5033 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
5034 		    bic->saved_in_large_burst)
5035 			bfq_mark_bfqq_in_large_burst(bfqq);
5036 		else {
5037 			bfq_clear_bfqq_in_large_burst(bfqq);
5038 			if (bic->was_in_burst_list)
5039 				/*
5040 				 * If bfqq was in the current
5041 				 * burst list before being
5042 				 * merged, then we have to add
5043 				 * it back. And we do not need
5044 				 * to increase burst_size, as
5045 				 * we did not decrement
5046 				 * burst_size when we removed
5047 				 * bfqq from the burst list as
5048 				 * a consequence of a merge
5049 				 * (see comments in
5050 				 * bfq_put_queue). In this
5051 				 * respect, it would be rather
5052 				 * costly to know whether the
5053 				 * current burst list is still
5054 				 * the same burst list from
5055 				 * which bfqq was removed on
5056 				 * the merge. To avoid this
5057 				 * cost, if bfqq was in a
5058 				 * burst list, then we add
5059 				 * bfqq to the current burst
5060 				 * list without any further
5061 				 * check. This can cause
5062 				 * inappropriate insertions,
5063 				 * but rarely enough to not
5064 				 * harm the detection of large
5065 				 * bursts significantly.
5066 				 */
5067 				hlist_add_head(&bfqq->burst_list_node,
5068 					       &bfqd->burst_list);
5069 		}
5070 		bfqq->split_time = jiffies;
5071 	}
5072 
5073 	return bfqq;
5074 }
5075 
5076 /*
5077  * Only reset private fields. The actual request preparation will be
5078  * performed by bfq_init_rq, when rq is either inserted or merged. See
5079  * comments on bfq_init_rq for the reason behind this delayed
5080  * preparation.
5081  */
5082 static void bfq_prepare_request(struct request *rq, struct bio *bio)
5083 {
5084 	/*
5085 	 * Regardless of whether we have an icq attached, we have to
5086 	 * clear the scheduler pointers, as they might point to
5087 	 * previously allocated bic/bfqq structs.
5088 	 */
5089 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5090 }
5091 
5092 /*
5093  * If needed, init rq, allocate bfq data structures associated with
5094  * rq, and increment reference counters in the destination bfq_queue
5095  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5096  * not associated with any bfq_queue.
5097  *
5098  * This function is invoked by the functions that perform rq insertion
5099  * or merging. One may have expected the above preparation operations
5100  * to be performed in bfq_prepare_request, and not delayed to when rq
5101  * is inserted or merged. The rationale behind this delayed
5102  * preparation is that, after the prepare_request hook is invoked for
5103  * rq, rq may still be transformed into a request with no icq, i.e., a
5104  * request not associated with any queue. No bfq hook is invoked to
5105  * signal this tranformation. As a consequence, should these
5106  * preparation operations be performed when the prepare_request hook
5107  * is invoked, and should rq be transformed one moment later, bfq
5108  * would end up in an inconsistent state, because it would have
5109  * incremented some queue counters for an rq destined to
5110  * transformation, without any chance to correctly lower these
5111  * counters back. In contrast, no transformation can still happen for
5112  * rq after rq has been inserted or merged. So, it is safe to execute
5113  * these preparation operations when rq is finally inserted or merged.
5114  */
5115 static struct bfq_queue *bfq_init_rq(struct request *rq)
5116 {
5117 	struct request_queue *q = rq->q;
5118 	struct bio *bio = rq->bio;
5119 	struct bfq_data *bfqd = q->elevator->elevator_data;
5120 	struct bfq_io_cq *bic;
5121 	const int is_sync = rq_is_sync(rq);
5122 	struct bfq_queue *bfqq;
5123 	bool new_queue = false;
5124 	bool bfqq_already_existing = false, split = false;
5125 
5126 	if (unlikely(!rq->elv.icq))
5127 		return NULL;
5128 
5129 	/*
5130 	 * Assuming that elv.priv[1] is set only if everything is set
5131 	 * for this rq. This holds true, because this function is
5132 	 * invoked only for insertion or merging, and, after such
5133 	 * events, a request cannot be manipulated any longer before
5134 	 * being removed from bfq.
5135 	 */
5136 	if (rq->elv.priv[1])
5137 		return rq->elv.priv[1];
5138 
5139 	bic = icq_to_bic(rq->elv.icq);
5140 
5141 	bfq_check_ioprio_change(bic, bio);
5142 
5143 	bfq_bic_update_cgroup(bic, bio);
5144 
5145 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5146 					 &new_queue);
5147 
5148 	if (likely(!new_queue)) {
5149 		/* If the queue was seeky for too long, break it apart. */
5150 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5151 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
5152 
5153 			/* Update bic before losing reference to bfqq */
5154 			if (bfq_bfqq_in_large_burst(bfqq))
5155 				bic->saved_in_large_burst = true;
5156 
5157 			bfqq = bfq_split_bfqq(bic, bfqq);
5158 			split = true;
5159 
5160 			if (!bfqq)
5161 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5162 								 true, is_sync,
5163 								 NULL);
5164 			else
5165 				bfqq_already_existing = true;
5166 		}
5167 	}
5168 
5169 	bfqq->allocated++;
5170 	bfqq->ref++;
5171 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5172 		     rq, bfqq, bfqq->ref);
5173 
5174 	rq->elv.priv[0] = bic;
5175 	rq->elv.priv[1] = bfqq;
5176 
5177 	/*
5178 	 * If a bfq_queue has only one process reference, it is owned
5179 	 * by only this bic: we can then set bfqq->bic = bic. in
5180 	 * addition, if the queue has also just been split, we have to
5181 	 * resume its state.
5182 	 */
5183 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5184 		bfqq->bic = bic;
5185 		if (split) {
5186 			/*
5187 			 * The queue has just been split from a shared
5188 			 * queue: restore the idle window and the
5189 			 * possible weight raising period.
5190 			 */
5191 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
5192 					      bfqq_already_existing);
5193 		}
5194 	}
5195 
5196 	if (unlikely(bfq_bfqq_just_created(bfqq)))
5197 		bfq_handle_burst(bfqd, bfqq);
5198 
5199 	return bfqq;
5200 }
5201 
5202 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5203 {
5204 	struct bfq_data *bfqd = bfqq->bfqd;
5205 	enum bfqq_expiration reason;
5206 	unsigned long flags;
5207 
5208 	spin_lock_irqsave(&bfqd->lock, flags);
5209 	bfq_clear_bfqq_wait_request(bfqq);
5210 
5211 	if (bfqq != bfqd->in_service_queue) {
5212 		spin_unlock_irqrestore(&bfqd->lock, flags);
5213 		return;
5214 	}
5215 
5216 	if (bfq_bfqq_budget_timeout(bfqq))
5217 		/*
5218 		 * Also here the queue can be safely expired
5219 		 * for budget timeout without wasting
5220 		 * guarantees
5221 		 */
5222 		reason = BFQQE_BUDGET_TIMEOUT;
5223 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5224 		/*
5225 		 * The queue may not be empty upon timer expiration,
5226 		 * because we may not disable the timer when the
5227 		 * first request of the in-service queue arrives
5228 		 * during disk idling.
5229 		 */
5230 		reason = BFQQE_TOO_IDLE;
5231 	else
5232 		goto schedule_dispatch;
5233 
5234 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
5235 
5236 schedule_dispatch:
5237 	spin_unlock_irqrestore(&bfqd->lock, flags);
5238 	bfq_schedule_dispatch(bfqd);
5239 }
5240 
5241 /*
5242  * Handler of the expiration of the timer running if the in-service queue
5243  * is idling inside its time slice.
5244  */
5245 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5246 {
5247 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5248 					     idle_slice_timer);
5249 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5250 
5251 	/*
5252 	 * Theoretical race here: the in-service queue can be NULL or
5253 	 * different from the queue that was idling if a new request
5254 	 * arrives for the current queue and there is a full dispatch
5255 	 * cycle that changes the in-service queue.  This can hardly
5256 	 * happen, but in the worst case we just expire a queue too
5257 	 * early.
5258 	 */
5259 	if (bfqq)
5260 		bfq_idle_slice_timer_body(bfqq);
5261 
5262 	return HRTIMER_NORESTART;
5263 }
5264 
5265 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5266 				 struct bfq_queue **bfqq_ptr)
5267 {
5268 	struct bfq_queue *bfqq = *bfqq_ptr;
5269 
5270 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5271 	if (bfqq) {
5272 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5273 
5274 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5275 			     bfqq, bfqq->ref);
5276 		bfq_put_queue(bfqq);
5277 		*bfqq_ptr = NULL;
5278 	}
5279 }
5280 
5281 /*
5282  * Release all the bfqg references to its async queues.  If we are
5283  * deallocating the group these queues may still contain requests, so
5284  * we reparent them to the root cgroup (i.e., the only one that will
5285  * exist for sure until all the requests on a device are gone).
5286  */
5287 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5288 {
5289 	int i, j;
5290 
5291 	for (i = 0; i < 2; i++)
5292 		for (j = 0; j < IOPRIO_BE_NR; j++)
5293 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5294 
5295 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5296 }
5297 
5298 /*
5299  * See the comments on bfq_limit_depth for the purpose of
5300  * the depths set in the function. Return minimum shallow depth we'll use.
5301  */
5302 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5303 				      struct sbitmap_queue *bt)
5304 {
5305 	unsigned int i, j, min_shallow = UINT_MAX;
5306 
5307 	/*
5308 	 * In-word depths if no bfq_queue is being weight-raised:
5309 	 * leaving 25% of tags only for sync reads.
5310 	 *
5311 	 * In next formulas, right-shift the value
5312 	 * (1U<<bt->sb.shift), instead of computing directly
5313 	 * (1U<<(bt->sb.shift - something)), to be robust against
5314 	 * any possible value of bt->sb.shift, without having to
5315 	 * limit 'something'.
5316 	 */
5317 	/* no more than 50% of tags for async I/O */
5318 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
5319 	/*
5320 	 * no more than 75% of tags for sync writes (25% extra tags
5321 	 * w.r.t. async I/O, to prevent async I/O from starving sync
5322 	 * writes)
5323 	 */
5324 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
5325 
5326 	/*
5327 	 * In-word depths in case some bfq_queue is being weight-
5328 	 * raised: leaving ~63% of tags for sync reads. This is the
5329 	 * highest percentage for which, in our tests, application
5330 	 * start-up times didn't suffer from any regression due to tag
5331 	 * shortage.
5332 	 */
5333 	/* no more than ~18% of tags for async I/O */
5334 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
5335 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
5336 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
5337 
5338 	for (i = 0; i < 2; i++)
5339 		for (j = 0; j < 2; j++)
5340 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5341 
5342 	return min_shallow;
5343 }
5344 
5345 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5346 {
5347 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5348 	struct blk_mq_tags *tags = hctx->sched_tags;
5349 	unsigned int min_shallow;
5350 
5351 	min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5352 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
5353 	return 0;
5354 }
5355 
5356 static void bfq_exit_queue(struct elevator_queue *e)
5357 {
5358 	struct bfq_data *bfqd = e->elevator_data;
5359 	struct bfq_queue *bfqq, *n;
5360 
5361 	hrtimer_cancel(&bfqd->idle_slice_timer);
5362 
5363 	spin_lock_irq(&bfqd->lock);
5364 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5365 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5366 	spin_unlock_irq(&bfqd->lock);
5367 
5368 	hrtimer_cancel(&bfqd->idle_slice_timer);
5369 
5370 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5371 	/* release oom-queue reference to root group */
5372 	bfqg_and_blkg_put(bfqd->root_group);
5373 
5374 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5375 #else
5376 	spin_lock_irq(&bfqd->lock);
5377 	bfq_put_async_queues(bfqd, bfqd->root_group);
5378 	kfree(bfqd->root_group);
5379 	spin_unlock_irq(&bfqd->lock);
5380 #endif
5381 
5382 	kfree(bfqd);
5383 }
5384 
5385 static void bfq_init_root_group(struct bfq_group *root_group,
5386 				struct bfq_data *bfqd)
5387 {
5388 	int i;
5389 
5390 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5391 	root_group->entity.parent = NULL;
5392 	root_group->my_entity = NULL;
5393 	root_group->bfqd = bfqd;
5394 #endif
5395 	root_group->rq_pos_tree = RB_ROOT;
5396 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5397 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5398 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
5399 }
5400 
5401 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5402 {
5403 	struct bfq_data *bfqd;
5404 	struct elevator_queue *eq;
5405 
5406 	eq = elevator_alloc(q, e);
5407 	if (!eq)
5408 		return -ENOMEM;
5409 
5410 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5411 	if (!bfqd) {
5412 		kobject_put(&eq->kobj);
5413 		return -ENOMEM;
5414 	}
5415 	eq->elevator_data = bfqd;
5416 
5417 	spin_lock_irq(&q->queue_lock);
5418 	q->elevator = eq;
5419 	spin_unlock_irq(&q->queue_lock);
5420 
5421 	/*
5422 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5423 	 * Grab a permanent reference to it, so that the normal code flow
5424 	 * will not attempt to free it.
5425 	 */
5426 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5427 	bfqd->oom_bfqq.ref++;
5428 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5429 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5430 	bfqd->oom_bfqq.entity.new_weight =
5431 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5432 
5433 	/* oom_bfqq does not participate to bursts */
5434 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5435 
5436 	/*
5437 	 * Trigger weight initialization, according to ioprio, at the
5438 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5439 	 * class won't be changed any more.
5440 	 */
5441 	bfqd->oom_bfqq.entity.prio_changed = 1;
5442 
5443 	bfqd->queue = q;
5444 
5445 	INIT_LIST_HEAD(&bfqd->dispatch);
5446 
5447 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5448 		     HRTIMER_MODE_REL);
5449 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5450 
5451 	bfqd->queue_weights_tree = RB_ROOT;
5452 	bfqd->num_groups_with_pending_reqs = 0;
5453 
5454 	INIT_LIST_HEAD(&bfqd->active_list);
5455 	INIT_LIST_HEAD(&bfqd->idle_list);
5456 	INIT_HLIST_HEAD(&bfqd->burst_list);
5457 
5458 	bfqd->hw_tag = -1;
5459 
5460 	bfqd->bfq_max_budget = bfq_default_max_budget;
5461 
5462 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5463 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5464 	bfqd->bfq_back_max = bfq_back_max;
5465 	bfqd->bfq_back_penalty = bfq_back_penalty;
5466 	bfqd->bfq_slice_idle = bfq_slice_idle;
5467 	bfqd->bfq_timeout = bfq_timeout;
5468 
5469 	bfqd->bfq_requests_within_timer = 120;
5470 
5471 	bfqd->bfq_large_burst_thresh = 8;
5472 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5473 
5474 	bfqd->low_latency = true;
5475 
5476 	/*
5477 	 * Trade-off between responsiveness and fairness.
5478 	 */
5479 	bfqd->bfq_wr_coeff = 30;
5480 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
5481 	bfqd->bfq_wr_max_time = 0;
5482 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5483 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
5484 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
5485 					      * Approximate rate required
5486 					      * to playback or record a
5487 					      * high-definition compressed
5488 					      * video.
5489 					      */
5490 	bfqd->wr_busy_queues = 0;
5491 
5492 	/*
5493 	 * Begin by assuming, optimistically, that the device peak
5494 	 * rate is equal to 2/3 of the highest reference rate.
5495 	 */
5496 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5497 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5498 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
5499 
5500 	spin_lock_init(&bfqd->lock);
5501 
5502 	/*
5503 	 * The invocation of the next bfq_create_group_hierarchy
5504 	 * function is the head of a chain of function calls
5505 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5506 	 * blk_mq_freeze_queue) that may lead to the invocation of the
5507 	 * has_work hook function. For this reason,
5508 	 * bfq_create_group_hierarchy is invoked only after all
5509 	 * scheduler data has been initialized, apart from the fields
5510 	 * that can be initialized only after invoking
5511 	 * bfq_create_group_hierarchy. This, in particular, enables
5512 	 * has_work to correctly return false. Of course, to avoid
5513 	 * other inconsistencies, the blk-mq stack must then refrain
5514 	 * from invoking further scheduler hooks before this init
5515 	 * function is finished.
5516 	 */
5517 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5518 	if (!bfqd->root_group)
5519 		goto out_free;
5520 	bfq_init_root_group(bfqd->root_group, bfqd);
5521 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5522 
5523 	wbt_disable_default(q);
5524 	return 0;
5525 
5526 out_free:
5527 	kfree(bfqd);
5528 	kobject_put(&eq->kobj);
5529 	return -ENOMEM;
5530 }
5531 
5532 static void bfq_slab_kill(void)
5533 {
5534 	kmem_cache_destroy(bfq_pool);
5535 }
5536 
5537 static int __init bfq_slab_setup(void)
5538 {
5539 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
5540 	if (!bfq_pool)
5541 		return -ENOMEM;
5542 	return 0;
5543 }
5544 
5545 static ssize_t bfq_var_show(unsigned int var, char *page)
5546 {
5547 	return sprintf(page, "%u\n", var);
5548 }
5549 
5550 static int bfq_var_store(unsigned long *var, const char *page)
5551 {
5552 	unsigned long new_val;
5553 	int ret = kstrtoul(page, 10, &new_val);
5554 
5555 	if (ret)
5556 		return ret;
5557 	*var = new_val;
5558 	return 0;
5559 }
5560 
5561 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
5562 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5563 {									\
5564 	struct bfq_data *bfqd = e->elevator_data;			\
5565 	u64 __data = __VAR;						\
5566 	if (__CONV == 1)						\
5567 		__data = jiffies_to_msecs(__data);			\
5568 	else if (__CONV == 2)						\
5569 		__data = div_u64(__data, NSEC_PER_MSEC);		\
5570 	return bfq_var_show(__data, (page));				\
5571 }
5572 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5573 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5574 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5575 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5576 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5577 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5578 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5579 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
5580 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
5581 #undef SHOW_FUNCTION
5582 
5583 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
5584 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5585 {									\
5586 	struct bfq_data *bfqd = e->elevator_data;			\
5587 	u64 __data = __VAR;						\
5588 	__data = div_u64(__data, NSEC_PER_USEC);			\
5589 	return bfq_var_show(__data, (page));				\
5590 }
5591 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5592 #undef USEC_SHOW_FUNCTION
5593 
5594 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
5595 static ssize_t								\
5596 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
5597 {									\
5598 	struct bfq_data *bfqd = e->elevator_data;			\
5599 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5600 	int ret;							\
5601 									\
5602 	ret = bfq_var_store(&__data, (page));				\
5603 	if (ret)							\
5604 		return ret;						\
5605 	if (__data < __min)						\
5606 		__data = __min;						\
5607 	else if (__data > __max)					\
5608 		__data = __max;						\
5609 	if (__CONV == 1)						\
5610 		*(__PTR) = msecs_to_jiffies(__data);			\
5611 	else if (__CONV == 2)						\
5612 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
5613 	else								\
5614 		*(__PTR) = __data;					\
5615 	return count;							\
5616 }
5617 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5618 		INT_MAX, 2);
5619 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5620 		INT_MAX, 2);
5621 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5622 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5623 		INT_MAX, 0);
5624 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5625 #undef STORE_FUNCTION
5626 
5627 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
5628 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5629 {									\
5630 	struct bfq_data *bfqd = e->elevator_data;			\
5631 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5632 	int ret;							\
5633 									\
5634 	ret = bfq_var_store(&__data, (page));				\
5635 	if (ret)							\
5636 		return ret;						\
5637 	if (__data < __min)						\
5638 		__data = __min;						\
5639 	else if (__data > __max)					\
5640 		__data = __max;						\
5641 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
5642 	return count;							\
5643 }
5644 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5645 		    UINT_MAX);
5646 #undef USEC_STORE_FUNCTION
5647 
5648 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5649 				    const char *page, size_t count)
5650 {
5651 	struct bfq_data *bfqd = e->elevator_data;
5652 	unsigned long __data;
5653 	int ret;
5654 
5655 	ret = bfq_var_store(&__data, (page));
5656 	if (ret)
5657 		return ret;
5658 
5659 	if (__data == 0)
5660 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5661 	else {
5662 		if (__data > INT_MAX)
5663 			__data = INT_MAX;
5664 		bfqd->bfq_max_budget = __data;
5665 	}
5666 
5667 	bfqd->bfq_user_max_budget = __data;
5668 
5669 	return count;
5670 }
5671 
5672 /*
5673  * Leaving this name to preserve name compatibility with cfq
5674  * parameters, but this timeout is used for both sync and async.
5675  */
5676 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5677 				      const char *page, size_t count)
5678 {
5679 	struct bfq_data *bfqd = e->elevator_data;
5680 	unsigned long __data;
5681 	int ret;
5682 
5683 	ret = bfq_var_store(&__data, (page));
5684 	if (ret)
5685 		return ret;
5686 
5687 	if (__data < 1)
5688 		__data = 1;
5689 	else if (__data > INT_MAX)
5690 		__data = INT_MAX;
5691 
5692 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
5693 	if (bfqd->bfq_user_max_budget == 0)
5694 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5695 
5696 	return count;
5697 }
5698 
5699 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5700 				     const char *page, size_t count)
5701 {
5702 	struct bfq_data *bfqd = e->elevator_data;
5703 	unsigned long __data;
5704 	int ret;
5705 
5706 	ret = bfq_var_store(&__data, (page));
5707 	if (ret)
5708 		return ret;
5709 
5710 	if (__data > 1)
5711 		__data = 1;
5712 	if (!bfqd->strict_guarantees && __data == 1
5713 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5714 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5715 
5716 	bfqd->strict_guarantees = __data;
5717 
5718 	return count;
5719 }
5720 
5721 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5722 				     const char *page, size_t count)
5723 {
5724 	struct bfq_data *bfqd = e->elevator_data;
5725 	unsigned long __data;
5726 	int ret;
5727 
5728 	ret = bfq_var_store(&__data, (page));
5729 	if (ret)
5730 		return ret;
5731 
5732 	if (__data > 1)
5733 		__data = 1;
5734 	if (__data == 0 && bfqd->low_latency != 0)
5735 		bfq_end_wr(bfqd);
5736 	bfqd->low_latency = __data;
5737 
5738 	return count;
5739 }
5740 
5741 #define BFQ_ATTR(name) \
5742 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5743 
5744 static struct elv_fs_entry bfq_attrs[] = {
5745 	BFQ_ATTR(fifo_expire_sync),
5746 	BFQ_ATTR(fifo_expire_async),
5747 	BFQ_ATTR(back_seek_max),
5748 	BFQ_ATTR(back_seek_penalty),
5749 	BFQ_ATTR(slice_idle),
5750 	BFQ_ATTR(slice_idle_us),
5751 	BFQ_ATTR(max_budget),
5752 	BFQ_ATTR(timeout_sync),
5753 	BFQ_ATTR(strict_guarantees),
5754 	BFQ_ATTR(low_latency),
5755 	__ATTR_NULL
5756 };
5757 
5758 static struct elevator_type iosched_bfq_mq = {
5759 	.ops = {
5760 		.limit_depth		= bfq_limit_depth,
5761 		.prepare_request	= bfq_prepare_request,
5762 		.requeue_request        = bfq_finish_requeue_request,
5763 		.finish_request		= bfq_finish_requeue_request,
5764 		.exit_icq		= bfq_exit_icq,
5765 		.insert_requests	= bfq_insert_requests,
5766 		.dispatch_request	= bfq_dispatch_request,
5767 		.next_request		= elv_rb_latter_request,
5768 		.former_request		= elv_rb_former_request,
5769 		.allow_merge		= bfq_allow_bio_merge,
5770 		.bio_merge		= bfq_bio_merge,
5771 		.request_merge		= bfq_request_merge,
5772 		.requests_merged	= bfq_requests_merged,
5773 		.request_merged		= bfq_request_merged,
5774 		.has_work		= bfq_has_work,
5775 		.init_hctx		= bfq_init_hctx,
5776 		.init_sched		= bfq_init_queue,
5777 		.exit_sched		= bfq_exit_queue,
5778 	},
5779 
5780 	.icq_size =		sizeof(struct bfq_io_cq),
5781 	.icq_align =		__alignof__(struct bfq_io_cq),
5782 	.elevator_attrs =	bfq_attrs,
5783 	.elevator_name =	"bfq",
5784 	.elevator_owner =	THIS_MODULE,
5785 };
5786 MODULE_ALIAS("bfq-iosched");
5787 
5788 static int __init bfq_init(void)
5789 {
5790 	int ret;
5791 
5792 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5793 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5794 	if (ret)
5795 		return ret;
5796 #endif
5797 
5798 	ret = -ENOMEM;
5799 	if (bfq_slab_setup())
5800 		goto err_pol_unreg;
5801 
5802 	/*
5803 	 * Times to load large popular applications for the typical
5804 	 * systems installed on the reference devices (see the
5805 	 * comments before the definition of the next
5806 	 * array). Actually, we use slightly lower values, as the
5807 	 * estimated peak rate tends to be smaller than the actual
5808 	 * peak rate.  The reason for this last fact is that estimates
5809 	 * are computed over much shorter time intervals than the long
5810 	 * intervals typically used for benchmarking. Why? First, to
5811 	 * adapt more quickly to variations. Second, because an I/O
5812 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5813 	 * be run for a long time.
5814 	 */
5815 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5816 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5817 
5818 	ret = elv_register(&iosched_bfq_mq);
5819 	if (ret)
5820 		goto slab_kill;
5821 
5822 	return 0;
5823 
5824 slab_kill:
5825 	bfq_slab_kill();
5826 err_pol_unreg:
5827 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5828 	blkcg_policy_unregister(&blkcg_policy_bfq);
5829 #endif
5830 	return ret;
5831 }
5832 
5833 static void __exit bfq_exit(void)
5834 {
5835 	elv_unregister(&iosched_bfq_mq);
5836 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5837 	blkcg_policy_unregister(&blkcg_policy_bfq);
5838 #endif
5839 	bfq_slab_kill();
5840 }
5841 
5842 module_init(bfq_init);
5843 module_exit(bfq_exit);
5844 
5845 MODULE_AUTHOR("Paolo Valente");
5846 MODULE_LICENSE("GPL");
5847 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5848