xref: /linux/block/bfq-iosched.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 #include <linux/backing-dev.h>
127 
128 #include <trace/events/block.h>
129 
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
368 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
369 
370 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
371 {
372 	return bic->bfqq[is_sync];
373 }
374 
375 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
376 
377 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
378 {
379 	/*
380 	 * If bfqq != NULL, then a non-stable queue merge between
381 	 * bic->bfqq and bfqq is happening here. This causes troubles
382 	 * in the following case: bic->bfqq has also been scheduled
383 	 * for a possible stable merge with bic->stable_merge_bfqq,
384 	 * and bic->stable_merge_bfqq == bfqq happens to
385 	 * hold. Troubles occur because bfqq may then undergo a split,
386 	 * thereby becoming eligible for a stable merge. Yet, if
387 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
388 	 * would be stably merged with itself. To avoid this anomaly,
389 	 * we cancel the stable merge if
390 	 * bic->stable_merge_bfqq == bfqq.
391 	 */
392 	bic->bfqq[is_sync] = bfqq;
393 
394 	if (bfqq && bic->stable_merge_bfqq == bfqq) {
395 		/*
396 		 * Actually, these same instructions are executed also
397 		 * in bfq_setup_cooperator, in case of abort or actual
398 		 * execution of a stable merge. We could avoid
399 		 * repeating these instructions there too, but if we
400 		 * did so, we would nest even more complexity in this
401 		 * function.
402 		 */
403 		bfq_put_stable_ref(bic->stable_merge_bfqq);
404 
405 		bic->stable_merge_bfqq = NULL;
406 	}
407 }
408 
409 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
410 {
411 	return bic->icq.q->elevator->elevator_data;
412 }
413 
414 /**
415  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
416  * @icq: the iocontext queue.
417  */
418 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
419 {
420 	/* bic->icq is the first member, %NULL will convert to %NULL */
421 	return container_of(icq, struct bfq_io_cq, icq);
422 }
423 
424 /**
425  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
426  * @bfqd: the lookup key.
427  * @ioc: the io_context of the process doing I/O.
428  * @q: the request queue.
429  */
430 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
431 					struct io_context *ioc,
432 					struct request_queue *q)
433 {
434 	if (ioc) {
435 		unsigned long flags;
436 		struct bfq_io_cq *icq;
437 
438 		spin_lock_irqsave(&q->queue_lock, flags);
439 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
440 		spin_unlock_irqrestore(&q->queue_lock, flags);
441 
442 		return icq;
443 	}
444 
445 	return NULL;
446 }
447 
448 /*
449  * Scheduler run of queue, if there are requests pending and no one in the
450  * driver that will restart queueing.
451  */
452 void bfq_schedule_dispatch(struct bfq_data *bfqd)
453 {
454 	if (bfqd->queued != 0) {
455 		bfq_log(bfqd, "schedule dispatch");
456 		blk_mq_run_hw_queues(bfqd->queue, true);
457 	}
458 }
459 
460 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
461 
462 #define bfq_sample_valid(samples)	((samples) > 80)
463 
464 /*
465  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
466  * We choose the request that is closer to the head right now.  Distance
467  * behind the head is penalized and only allowed to a certain extent.
468  */
469 static struct request *bfq_choose_req(struct bfq_data *bfqd,
470 				      struct request *rq1,
471 				      struct request *rq2,
472 				      sector_t last)
473 {
474 	sector_t s1, s2, d1 = 0, d2 = 0;
475 	unsigned long back_max;
476 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
477 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
478 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
479 
480 	if (!rq1 || rq1 == rq2)
481 		return rq2;
482 	if (!rq2)
483 		return rq1;
484 
485 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
486 		return rq1;
487 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
488 		return rq2;
489 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
490 		return rq1;
491 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
492 		return rq2;
493 
494 	s1 = blk_rq_pos(rq1);
495 	s2 = blk_rq_pos(rq2);
496 
497 	/*
498 	 * By definition, 1KiB is 2 sectors.
499 	 */
500 	back_max = bfqd->bfq_back_max * 2;
501 
502 	/*
503 	 * Strict one way elevator _except_ in the case where we allow
504 	 * short backward seeks which are biased as twice the cost of a
505 	 * similar forward seek.
506 	 */
507 	if (s1 >= last)
508 		d1 = s1 - last;
509 	else if (s1 + back_max >= last)
510 		d1 = (last - s1) * bfqd->bfq_back_penalty;
511 	else
512 		wrap |= BFQ_RQ1_WRAP;
513 
514 	if (s2 >= last)
515 		d2 = s2 - last;
516 	else if (s2 + back_max >= last)
517 		d2 = (last - s2) * bfqd->bfq_back_penalty;
518 	else
519 		wrap |= BFQ_RQ2_WRAP;
520 
521 	/* Found required data */
522 
523 	/*
524 	 * By doing switch() on the bit mask "wrap" we avoid having to
525 	 * check two variables for all permutations: --> faster!
526 	 */
527 	switch (wrap) {
528 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
529 		if (d1 < d2)
530 			return rq1;
531 		else if (d2 < d1)
532 			return rq2;
533 
534 		if (s1 >= s2)
535 			return rq1;
536 		else
537 			return rq2;
538 
539 	case BFQ_RQ2_WRAP:
540 		return rq1;
541 	case BFQ_RQ1_WRAP:
542 		return rq2;
543 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
544 	default:
545 		/*
546 		 * Since both rqs are wrapped,
547 		 * start with the one that's further behind head
548 		 * (--> only *one* back seek required),
549 		 * since back seek takes more time than forward.
550 		 */
551 		if (s1 <= s2)
552 			return rq1;
553 		else
554 			return rq2;
555 	}
556 }
557 
558 /*
559  * Async I/O can easily starve sync I/O (both sync reads and sync
560  * writes), by consuming all tags. Similarly, storms of sync writes,
561  * such as those that sync(2) may trigger, can starve sync reads.
562  * Limit depths of async I/O and sync writes so as to counter both
563  * problems.
564  */
565 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
566 {
567 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
568 
569 	if (op_is_sync(op) && !op_is_write(op))
570 		return;
571 
572 	data->shallow_depth =
573 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
574 
575 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
576 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
577 			data->shallow_depth);
578 }
579 
580 static struct bfq_queue *
581 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
582 		     sector_t sector, struct rb_node **ret_parent,
583 		     struct rb_node ***rb_link)
584 {
585 	struct rb_node **p, *parent;
586 	struct bfq_queue *bfqq = NULL;
587 
588 	parent = NULL;
589 	p = &root->rb_node;
590 	while (*p) {
591 		struct rb_node **n;
592 
593 		parent = *p;
594 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
595 
596 		/*
597 		 * Sort strictly based on sector. Smallest to the left,
598 		 * largest to the right.
599 		 */
600 		if (sector > blk_rq_pos(bfqq->next_rq))
601 			n = &(*p)->rb_right;
602 		else if (sector < blk_rq_pos(bfqq->next_rq))
603 			n = &(*p)->rb_left;
604 		else
605 			break;
606 		p = n;
607 		bfqq = NULL;
608 	}
609 
610 	*ret_parent = parent;
611 	if (rb_link)
612 		*rb_link = p;
613 
614 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
615 		(unsigned long long)sector,
616 		bfqq ? bfqq->pid : 0);
617 
618 	return bfqq;
619 }
620 
621 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
622 {
623 	return bfqq->service_from_backlogged > 0 &&
624 		time_is_before_jiffies(bfqq->first_IO_time +
625 				       bfq_merge_time_limit);
626 }
627 
628 /*
629  * The following function is not marked as __cold because it is
630  * actually cold, but for the same performance goal described in the
631  * comments on the likely() at the beginning of
632  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
633  * execution time for the case where this function is not invoked, we
634  * had to add an unlikely() in each involved if().
635  */
636 void __cold
637 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
638 {
639 	struct rb_node **p, *parent;
640 	struct bfq_queue *__bfqq;
641 
642 	if (bfqq->pos_root) {
643 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
644 		bfqq->pos_root = NULL;
645 	}
646 
647 	/* oom_bfqq does not participate in queue merging */
648 	if (bfqq == &bfqd->oom_bfqq)
649 		return;
650 
651 	/*
652 	 * bfqq cannot be merged any longer (see comments in
653 	 * bfq_setup_cooperator): no point in adding bfqq into the
654 	 * position tree.
655 	 */
656 	if (bfq_too_late_for_merging(bfqq))
657 		return;
658 
659 	if (bfq_class_idle(bfqq))
660 		return;
661 	if (!bfqq->next_rq)
662 		return;
663 
664 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
665 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
666 			blk_rq_pos(bfqq->next_rq), &parent, &p);
667 	if (!__bfqq) {
668 		rb_link_node(&bfqq->pos_node, parent, p);
669 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
670 	} else
671 		bfqq->pos_root = NULL;
672 }
673 
674 /*
675  * The following function returns false either if every active queue
676  * must receive the same share of the throughput (symmetric scenario),
677  * or, as a special case, if bfqq must receive a share of the
678  * throughput lower than or equal to the share that every other active
679  * queue must receive.  If bfqq does sync I/O, then these are the only
680  * two cases where bfqq happens to be guaranteed its share of the
681  * throughput even if I/O dispatching is not plugged when bfqq remains
682  * temporarily empty (for more details, see the comments in the
683  * function bfq_better_to_idle()). For this reason, the return value
684  * of this function is used to check whether I/O-dispatch plugging can
685  * be avoided.
686  *
687  * The above first case (symmetric scenario) occurs when:
688  * 1) all active queues have the same weight,
689  * 2) all active queues belong to the same I/O-priority class,
690  * 3) all active groups at the same level in the groups tree have the same
691  *    weight,
692  * 4) all active groups at the same level in the groups tree have the same
693  *    number of children.
694  *
695  * Unfortunately, keeping the necessary state for evaluating exactly
696  * the last two symmetry sub-conditions above would be quite complex
697  * and time consuming. Therefore this function evaluates, instead,
698  * only the following stronger three sub-conditions, for which it is
699  * much easier to maintain the needed state:
700  * 1) all active queues have the same weight,
701  * 2) all active queues belong to the same I/O-priority class,
702  * 3) there are no active groups.
703  * In particular, the last condition is always true if hierarchical
704  * support or the cgroups interface are not enabled, thus no state
705  * needs to be maintained in this case.
706  */
707 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
708 				   struct bfq_queue *bfqq)
709 {
710 	bool smallest_weight = bfqq &&
711 		bfqq->weight_counter &&
712 		bfqq->weight_counter ==
713 		container_of(
714 			rb_first_cached(&bfqd->queue_weights_tree),
715 			struct bfq_weight_counter,
716 			weights_node);
717 
718 	/*
719 	 * For queue weights to differ, queue_weights_tree must contain
720 	 * at least two nodes.
721 	 */
722 	bool varied_queue_weights = !smallest_weight &&
723 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
724 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
725 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
726 
727 	bool multiple_classes_busy =
728 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
729 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
730 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
731 
732 	return varied_queue_weights || multiple_classes_busy
733 #ifdef CONFIG_BFQ_GROUP_IOSCHED
734 	       || bfqd->num_groups_with_pending_reqs > 0
735 #endif
736 		;
737 }
738 
739 /*
740  * If the weight-counter tree passed as input contains no counter for
741  * the weight of the input queue, then add that counter; otherwise just
742  * increment the existing counter.
743  *
744  * Note that weight-counter trees contain few nodes in mostly symmetric
745  * scenarios. For example, if all queues have the same weight, then the
746  * weight-counter tree for the queues may contain at most one node.
747  * This holds even if low_latency is on, because weight-raised queues
748  * are not inserted in the tree.
749  * In most scenarios, the rate at which nodes are created/destroyed
750  * should be low too.
751  */
752 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
753 			  struct rb_root_cached *root)
754 {
755 	struct bfq_entity *entity = &bfqq->entity;
756 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
757 	bool leftmost = true;
758 
759 	/*
760 	 * Do not insert if the queue is already associated with a
761 	 * counter, which happens if:
762 	 *   1) a request arrival has caused the queue to become both
763 	 *      non-weight-raised, and hence change its weight, and
764 	 *      backlogged; in this respect, each of the two events
765 	 *      causes an invocation of this function,
766 	 *   2) this is the invocation of this function caused by the
767 	 *      second event. This second invocation is actually useless,
768 	 *      and we handle this fact by exiting immediately. More
769 	 *      efficient or clearer solutions might possibly be adopted.
770 	 */
771 	if (bfqq->weight_counter)
772 		return;
773 
774 	while (*new) {
775 		struct bfq_weight_counter *__counter = container_of(*new,
776 						struct bfq_weight_counter,
777 						weights_node);
778 		parent = *new;
779 
780 		if (entity->weight == __counter->weight) {
781 			bfqq->weight_counter = __counter;
782 			goto inc_counter;
783 		}
784 		if (entity->weight < __counter->weight)
785 			new = &((*new)->rb_left);
786 		else {
787 			new = &((*new)->rb_right);
788 			leftmost = false;
789 		}
790 	}
791 
792 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
793 				       GFP_ATOMIC);
794 
795 	/*
796 	 * In the unlucky event of an allocation failure, we just
797 	 * exit. This will cause the weight of queue to not be
798 	 * considered in bfq_asymmetric_scenario, which, in its turn,
799 	 * causes the scenario to be deemed wrongly symmetric in case
800 	 * bfqq's weight would have been the only weight making the
801 	 * scenario asymmetric.  On the bright side, no unbalance will
802 	 * however occur when bfqq becomes inactive again (the
803 	 * invocation of this function is triggered by an activation
804 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
805 	 * if !bfqq->weight_counter.
806 	 */
807 	if (unlikely(!bfqq->weight_counter))
808 		return;
809 
810 	bfqq->weight_counter->weight = entity->weight;
811 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
812 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
813 				leftmost);
814 
815 inc_counter:
816 	bfqq->weight_counter->num_active++;
817 	bfqq->ref++;
818 }
819 
820 /*
821  * Decrement the weight counter associated with the queue, and, if the
822  * counter reaches 0, remove the counter from the tree.
823  * See the comments to the function bfq_weights_tree_add() for considerations
824  * about overhead.
825  */
826 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
827 			       struct bfq_queue *bfqq,
828 			       struct rb_root_cached *root)
829 {
830 	if (!bfqq->weight_counter)
831 		return;
832 
833 	bfqq->weight_counter->num_active--;
834 	if (bfqq->weight_counter->num_active > 0)
835 		goto reset_entity_pointer;
836 
837 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
838 	kfree(bfqq->weight_counter);
839 
840 reset_entity_pointer:
841 	bfqq->weight_counter = NULL;
842 	bfq_put_queue(bfqq);
843 }
844 
845 /*
846  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
847  * of active groups for each queue's inactive parent entity.
848  */
849 void bfq_weights_tree_remove(struct bfq_data *bfqd,
850 			     struct bfq_queue *bfqq)
851 {
852 	struct bfq_entity *entity = bfqq->entity.parent;
853 
854 	for_each_entity(entity) {
855 		struct bfq_sched_data *sd = entity->my_sched_data;
856 
857 		if (sd->next_in_service || sd->in_service_entity) {
858 			/*
859 			 * entity is still active, because either
860 			 * next_in_service or in_service_entity is not
861 			 * NULL (see the comments on the definition of
862 			 * next_in_service for details on why
863 			 * in_service_entity must be checked too).
864 			 *
865 			 * As a consequence, its parent entities are
866 			 * active as well, and thus this loop must
867 			 * stop here.
868 			 */
869 			break;
870 		}
871 
872 		/*
873 		 * The decrement of num_groups_with_pending_reqs is
874 		 * not performed immediately upon the deactivation of
875 		 * entity, but it is delayed to when it also happens
876 		 * that the first leaf descendant bfqq of entity gets
877 		 * all its pending requests completed. The following
878 		 * instructions perform this delayed decrement, if
879 		 * needed. See the comments on
880 		 * num_groups_with_pending_reqs for details.
881 		 */
882 		if (entity->in_groups_with_pending_reqs) {
883 			entity->in_groups_with_pending_reqs = false;
884 			bfqd->num_groups_with_pending_reqs--;
885 		}
886 	}
887 
888 	/*
889 	 * Next function is invoked last, because it causes bfqq to be
890 	 * freed if the following holds: bfqq is not in service and
891 	 * has no dispatched request. DO NOT use bfqq after the next
892 	 * function invocation.
893 	 */
894 	__bfq_weights_tree_remove(bfqd, bfqq,
895 				  &bfqd->queue_weights_tree);
896 }
897 
898 /*
899  * Return expired entry, or NULL to just start from scratch in rbtree.
900  */
901 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
902 				      struct request *last)
903 {
904 	struct request *rq;
905 
906 	if (bfq_bfqq_fifo_expire(bfqq))
907 		return NULL;
908 
909 	bfq_mark_bfqq_fifo_expire(bfqq);
910 
911 	rq = rq_entry_fifo(bfqq->fifo.next);
912 
913 	if (rq == last || ktime_get_ns() < rq->fifo_time)
914 		return NULL;
915 
916 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
917 	return rq;
918 }
919 
920 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
921 					struct bfq_queue *bfqq,
922 					struct request *last)
923 {
924 	struct rb_node *rbnext = rb_next(&last->rb_node);
925 	struct rb_node *rbprev = rb_prev(&last->rb_node);
926 	struct request *next, *prev = NULL;
927 
928 	/* Follow expired path, else get first next available. */
929 	next = bfq_check_fifo(bfqq, last);
930 	if (next)
931 		return next;
932 
933 	if (rbprev)
934 		prev = rb_entry_rq(rbprev);
935 
936 	if (rbnext)
937 		next = rb_entry_rq(rbnext);
938 	else {
939 		rbnext = rb_first(&bfqq->sort_list);
940 		if (rbnext && rbnext != &last->rb_node)
941 			next = rb_entry_rq(rbnext);
942 	}
943 
944 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
945 }
946 
947 /* see the definition of bfq_async_charge_factor for details */
948 static unsigned long bfq_serv_to_charge(struct request *rq,
949 					struct bfq_queue *bfqq)
950 {
951 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
952 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
953 		return blk_rq_sectors(rq);
954 
955 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
956 }
957 
958 /**
959  * bfq_updated_next_req - update the queue after a new next_rq selection.
960  * @bfqd: the device data the queue belongs to.
961  * @bfqq: the queue to update.
962  *
963  * If the first request of a queue changes we make sure that the queue
964  * has enough budget to serve at least its first request (if the
965  * request has grown).  We do this because if the queue has not enough
966  * budget for its first request, it has to go through two dispatch
967  * rounds to actually get it dispatched.
968  */
969 static void bfq_updated_next_req(struct bfq_data *bfqd,
970 				 struct bfq_queue *bfqq)
971 {
972 	struct bfq_entity *entity = &bfqq->entity;
973 	struct request *next_rq = bfqq->next_rq;
974 	unsigned long new_budget;
975 
976 	if (!next_rq)
977 		return;
978 
979 	if (bfqq == bfqd->in_service_queue)
980 		/*
981 		 * In order not to break guarantees, budgets cannot be
982 		 * changed after an entity has been selected.
983 		 */
984 		return;
985 
986 	new_budget = max_t(unsigned long,
987 			   max_t(unsigned long, bfqq->max_budget,
988 				 bfq_serv_to_charge(next_rq, bfqq)),
989 			   entity->service);
990 	if (entity->budget != new_budget) {
991 		entity->budget = new_budget;
992 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
993 					 new_budget);
994 		bfq_requeue_bfqq(bfqd, bfqq, false);
995 	}
996 }
997 
998 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
999 {
1000 	u64 dur;
1001 
1002 	if (bfqd->bfq_wr_max_time > 0)
1003 		return bfqd->bfq_wr_max_time;
1004 
1005 	dur = bfqd->rate_dur_prod;
1006 	do_div(dur, bfqd->peak_rate);
1007 
1008 	/*
1009 	 * Limit duration between 3 and 25 seconds. The upper limit
1010 	 * has been conservatively set after the following worst case:
1011 	 * on a QEMU/KVM virtual machine
1012 	 * - running in a slow PC
1013 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1014 	 * - serving a heavy I/O workload, such as the sequential reading
1015 	 *   of several files
1016 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1017 	 *
1018 	 * As for higher values than that accommodating the above bad
1019 	 * scenario, tests show that higher values would often yield
1020 	 * the opposite of the desired result, i.e., would worsen
1021 	 * responsiveness by allowing non-interactive applications to
1022 	 * preserve weight raising for too long.
1023 	 *
1024 	 * On the other end, lower values than 3 seconds make it
1025 	 * difficult for most interactive tasks to complete their jobs
1026 	 * before weight-raising finishes.
1027 	 */
1028 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1029 }
1030 
1031 /* switch back from soft real-time to interactive weight raising */
1032 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1033 					  struct bfq_data *bfqd)
1034 {
1035 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1036 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1037 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1038 }
1039 
1040 static void
1041 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1042 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1043 {
1044 	unsigned int old_wr_coeff = 1;
1045 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1046 
1047 	if (bic->saved_has_short_ttime)
1048 		bfq_mark_bfqq_has_short_ttime(bfqq);
1049 	else
1050 		bfq_clear_bfqq_has_short_ttime(bfqq);
1051 
1052 	if (bic->saved_IO_bound)
1053 		bfq_mark_bfqq_IO_bound(bfqq);
1054 	else
1055 		bfq_clear_bfqq_IO_bound(bfqq);
1056 
1057 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1058 	bfqq->inject_limit = bic->saved_inject_limit;
1059 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1060 
1061 	bfqq->entity.new_weight = bic->saved_weight;
1062 	bfqq->ttime = bic->saved_ttime;
1063 	bfqq->io_start_time = bic->saved_io_start_time;
1064 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1065 	/*
1066 	 * Restore weight coefficient only if low_latency is on
1067 	 */
1068 	if (bfqd->low_latency) {
1069 		old_wr_coeff = bfqq->wr_coeff;
1070 		bfqq->wr_coeff = bic->saved_wr_coeff;
1071 	}
1072 	bfqq->service_from_wr = bic->saved_service_from_wr;
1073 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1074 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1075 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1076 
1077 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1078 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1079 				   bfqq->wr_cur_max_time))) {
1080 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1081 		    !bfq_bfqq_in_large_burst(bfqq) &&
1082 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1083 					     bfq_wr_duration(bfqd))) {
1084 			switch_back_to_interactive_wr(bfqq, bfqd);
1085 		} else {
1086 			bfqq->wr_coeff = 1;
1087 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1088 				     "resume state: switching off wr");
1089 		}
1090 	}
1091 
1092 	/* make sure weight will be updated, however we got here */
1093 	bfqq->entity.prio_changed = 1;
1094 
1095 	if (likely(!busy))
1096 		return;
1097 
1098 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1099 		bfqd->wr_busy_queues++;
1100 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1101 		bfqd->wr_busy_queues--;
1102 }
1103 
1104 static int bfqq_process_refs(struct bfq_queue *bfqq)
1105 {
1106 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1107 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1108 }
1109 
1110 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1111 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1112 {
1113 	struct bfq_queue *item;
1114 	struct hlist_node *n;
1115 
1116 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1117 		hlist_del_init(&item->burst_list_node);
1118 
1119 	/*
1120 	 * Start the creation of a new burst list only if there is no
1121 	 * active queue. See comments on the conditional invocation of
1122 	 * bfq_handle_burst().
1123 	 */
1124 	if (bfq_tot_busy_queues(bfqd) == 0) {
1125 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1126 		bfqd->burst_size = 1;
1127 	} else
1128 		bfqd->burst_size = 0;
1129 
1130 	bfqd->burst_parent_entity = bfqq->entity.parent;
1131 }
1132 
1133 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1134 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1135 {
1136 	/* Increment burst size to take into account also bfqq */
1137 	bfqd->burst_size++;
1138 
1139 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1140 		struct bfq_queue *pos, *bfqq_item;
1141 		struct hlist_node *n;
1142 
1143 		/*
1144 		 * Enough queues have been activated shortly after each
1145 		 * other to consider this burst as large.
1146 		 */
1147 		bfqd->large_burst = true;
1148 
1149 		/*
1150 		 * We can now mark all queues in the burst list as
1151 		 * belonging to a large burst.
1152 		 */
1153 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1154 				     burst_list_node)
1155 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1156 		bfq_mark_bfqq_in_large_burst(bfqq);
1157 
1158 		/*
1159 		 * From now on, and until the current burst finishes, any
1160 		 * new queue being activated shortly after the last queue
1161 		 * was inserted in the burst can be immediately marked as
1162 		 * belonging to a large burst. So the burst list is not
1163 		 * needed any more. Remove it.
1164 		 */
1165 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1166 					  burst_list_node)
1167 			hlist_del_init(&pos->burst_list_node);
1168 	} else /*
1169 		* Burst not yet large: add bfqq to the burst list. Do
1170 		* not increment the ref counter for bfqq, because bfqq
1171 		* is removed from the burst list before freeing bfqq
1172 		* in put_queue.
1173 		*/
1174 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1175 }
1176 
1177 /*
1178  * If many queues belonging to the same group happen to be created
1179  * shortly after each other, then the processes associated with these
1180  * queues have typically a common goal. In particular, bursts of queue
1181  * creations are usually caused by services or applications that spawn
1182  * many parallel threads/processes. Examples are systemd during boot,
1183  * or git grep. To help these processes get their job done as soon as
1184  * possible, it is usually better to not grant either weight-raising
1185  * or device idling to their queues, unless these queues must be
1186  * protected from the I/O flowing through other active queues.
1187  *
1188  * In this comment we describe, firstly, the reasons why this fact
1189  * holds, and, secondly, the next function, which implements the main
1190  * steps needed to properly mark these queues so that they can then be
1191  * treated in a different way.
1192  *
1193  * The above services or applications benefit mostly from a high
1194  * throughput: the quicker the requests of the activated queues are
1195  * cumulatively served, the sooner the target job of these queues gets
1196  * completed. As a consequence, weight-raising any of these queues,
1197  * which also implies idling the device for it, is almost always
1198  * counterproductive, unless there are other active queues to isolate
1199  * these new queues from. If there no other active queues, then
1200  * weight-raising these new queues just lowers throughput in most
1201  * cases.
1202  *
1203  * On the other hand, a burst of queue creations may be caused also by
1204  * the start of an application that does not consist of a lot of
1205  * parallel I/O-bound threads. In fact, with a complex application,
1206  * several short processes may need to be executed to start-up the
1207  * application. In this respect, to start an application as quickly as
1208  * possible, the best thing to do is in any case to privilege the I/O
1209  * related to the application with respect to all other
1210  * I/O. Therefore, the best strategy to start as quickly as possible
1211  * an application that causes a burst of queue creations is to
1212  * weight-raise all the queues created during the burst. This is the
1213  * exact opposite of the best strategy for the other type of bursts.
1214  *
1215  * In the end, to take the best action for each of the two cases, the
1216  * two types of bursts need to be distinguished. Fortunately, this
1217  * seems relatively easy, by looking at the sizes of the bursts. In
1218  * particular, we found a threshold such that only bursts with a
1219  * larger size than that threshold are apparently caused by
1220  * services or commands such as systemd or git grep. For brevity,
1221  * hereafter we call just 'large' these bursts. BFQ *does not*
1222  * weight-raise queues whose creation occurs in a large burst. In
1223  * addition, for each of these queues BFQ performs or does not perform
1224  * idling depending on which choice boosts the throughput more. The
1225  * exact choice depends on the device and request pattern at
1226  * hand.
1227  *
1228  * Unfortunately, false positives may occur while an interactive task
1229  * is starting (e.g., an application is being started). The
1230  * consequence is that the queues associated with the task do not
1231  * enjoy weight raising as expected. Fortunately these false positives
1232  * are very rare. They typically occur if some service happens to
1233  * start doing I/O exactly when the interactive task starts.
1234  *
1235  * Turning back to the next function, it is invoked only if there are
1236  * no active queues (apart from active queues that would belong to the
1237  * same, possible burst bfqq would belong to), and it implements all
1238  * the steps needed to detect the occurrence of a large burst and to
1239  * properly mark all the queues belonging to it (so that they can then
1240  * be treated in a different way). This goal is achieved by
1241  * maintaining a "burst list" that holds, temporarily, the queues that
1242  * belong to the burst in progress. The list is then used to mark
1243  * these queues as belonging to a large burst if the burst does become
1244  * large. The main steps are the following.
1245  *
1246  * . when the very first queue is created, the queue is inserted into the
1247  *   list (as it could be the first queue in a possible burst)
1248  *
1249  * . if the current burst has not yet become large, and a queue Q that does
1250  *   not yet belong to the burst is activated shortly after the last time
1251  *   at which a new queue entered the burst list, then the function appends
1252  *   Q to the burst list
1253  *
1254  * . if, as a consequence of the previous step, the burst size reaches
1255  *   the large-burst threshold, then
1256  *
1257  *     . all the queues in the burst list are marked as belonging to a
1258  *       large burst
1259  *
1260  *     . the burst list is deleted; in fact, the burst list already served
1261  *       its purpose (keeping temporarily track of the queues in a burst,
1262  *       so as to be able to mark them as belonging to a large burst in the
1263  *       previous sub-step), and now is not needed any more
1264  *
1265  *     . the device enters a large-burst mode
1266  *
1267  * . if a queue Q that does not belong to the burst is created while
1268  *   the device is in large-burst mode and shortly after the last time
1269  *   at which a queue either entered the burst list or was marked as
1270  *   belonging to the current large burst, then Q is immediately marked
1271  *   as belonging to a large burst.
1272  *
1273  * . if a queue Q that does not belong to the burst is created a while
1274  *   later, i.e., not shortly after, than the last time at which a queue
1275  *   either entered the burst list or was marked as belonging to the
1276  *   current large burst, then the current burst is deemed as finished and:
1277  *
1278  *        . the large-burst mode is reset if set
1279  *
1280  *        . the burst list is emptied
1281  *
1282  *        . Q is inserted in the burst list, as Q may be the first queue
1283  *          in a possible new burst (then the burst list contains just Q
1284  *          after this step).
1285  */
1286 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1287 {
1288 	/*
1289 	 * If bfqq is already in the burst list or is part of a large
1290 	 * burst, or finally has just been split, then there is
1291 	 * nothing else to do.
1292 	 */
1293 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1294 	    bfq_bfqq_in_large_burst(bfqq) ||
1295 	    time_is_after_eq_jiffies(bfqq->split_time +
1296 				     msecs_to_jiffies(10)))
1297 		return;
1298 
1299 	/*
1300 	 * If bfqq's creation happens late enough, or bfqq belongs to
1301 	 * a different group than the burst group, then the current
1302 	 * burst is finished, and related data structures must be
1303 	 * reset.
1304 	 *
1305 	 * In this respect, consider the special case where bfqq is
1306 	 * the very first queue created after BFQ is selected for this
1307 	 * device. In this case, last_ins_in_burst and
1308 	 * burst_parent_entity are not yet significant when we get
1309 	 * here. But it is easy to verify that, whether or not the
1310 	 * following condition is true, bfqq will end up being
1311 	 * inserted into the burst list. In particular the list will
1312 	 * happen to contain only bfqq. And this is exactly what has
1313 	 * to happen, as bfqq may be the first queue of the first
1314 	 * burst.
1315 	 */
1316 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1317 	    bfqd->bfq_burst_interval) ||
1318 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1319 		bfqd->large_burst = false;
1320 		bfq_reset_burst_list(bfqd, bfqq);
1321 		goto end;
1322 	}
1323 
1324 	/*
1325 	 * If we get here, then bfqq is being activated shortly after the
1326 	 * last queue. So, if the current burst is also large, we can mark
1327 	 * bfqq as belonging to this large burst immediately.
1328 	 */
1329 	if (bfqd->large_burst) {
1330 		bfq_mark_bfqq_in_large_burst(bfqq);
1331 		goto end;
1332 	}
1333 
1334 	/*
1335 	 * If we get here, then a large-burst state has not yet been
1336 	 * reached, but bfqq is being activated shortly after the last
1337 	 * queue. Then we add bfqq to the burst.
1338 	 */
1339 	bfq_add_to_burst(bfqd, bfqq);
1340 end:
1341 	/*
1342 	 * At this point, bfqq either has been added to the current
1343 	 * burst or has caused the current burst to terminate and a
1344 	 * possible new burst to start. In particular, in the second
1345 	 * case, bfqq has become the first queue in the possible new
1346 	 * burst.  In both cases last_ins_in_burst needs to be moved
1347 	 * forward.
1348 	 */
1349 	bfqd->last_ins_in_burst = jiffies;
1350 }
1351 
1352 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1353 {
1354 	struct bfq_entity *entity = &bfqq->entity;
1355 
1356 	return entity->budget - entity->service;
1357 }
1358 
1359 /*
1360  * If enough samples have been computed, return the current max budget
1361  * stored in bfqd, which is dynamically updated according to the
1362  * estimated disk peak rate; otherwise return the default max budget
1363  */
1364 static int bfq_max_budget(struct bfq_data *bfqd)
1365 {
1366 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1367 		return bfq_default_max_budget;
1368 	else
1369 		return bfqd->bfq_max_budget;
1370 }
1371 
1372 /*
1373  * Return min budget, which is a fraction of the current or default
1374  * max budget (trying with 1/32)
1375  */
1376 static int bfq_min_budget(struct bfq_data *bfqd)
1377 {
1378 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1379 		return bfq_default_max_budget / 32;
1380 	else
1381 		return bfqd->bfq_max_budget / 32;
1382 }
1383 
1384 /*
1385  * The next function, invoked after the input queue bfqq switches from
1386  * idle to busy, updates the budget of bfqq. The function also tells
1387  * whether the in-service queue should be expired, by returning
1388  * true. The purpose of expiring the in-service queue is to give bfqq
1389  * the chance to possibly preempt the in-service queue, and the reason
1390  * for preempting the in-service queue is to achieve one of the two
1391  * goals below.
1392  *
1393  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1394  * expired because it has remained idle. In particular, bfqq may have
1395  * expired for one of the following two reasons:
1396  *
1397  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1398  *   and did not make it to issue a new request before its last
1399  *   request was served;
1400  *
1401  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1402  *   a new request before the expiration of the idling-time.
1403  *
1404  * Even if bfqq has expired for one of the above reasons, the process
1405  * associated with the queue may be however issuing requests greedily,
1406  * and thus be sensitive to the bandwidth it receives (bfqq may have
1407  * remained idle for other reasons: CPU high load, bfqq not enjoying
1408  * idling, I/O throttling somewhere in the path from the process to
1409  * the I/O scheduler, ...). But if, after every expiration for one of
1410  * the above two reasons, bfqq has to wait for the service of at least
1411  * one full budget of another queue before being served again, then
1412  * bfqq is likely to get a much lower bandwidth or resource time than
1413  * its reserved ones. To address this issue, two countermeasures need
1414  * to be taken.
1415  *
1416  * First, the budget and the timestamps of bfqq need to be updated in
1417  * a special way on bfqq reactivation: they need to be updated as if
1418  * bfqq did not remain idle and did not expire. In fact, if they are
1419  * computed as if bfqq expired and remained idle until reactivation,
1420  * then the process associated with bfqq is treated as if, instead of
1421  * being greedy, it stopped issuing requests when bfqq remained idle,
1422  * and restarts issuing requests only on this reactivation. In other
1423  * words, the scheduler does not help the process recover the "service
1424  * hole" between bfqq expiration and reactivation. As a consequence,
1425  * the process receives a lower bandwidth than its reserved one. In
1426  * contrast, to recover this hole, the budget must be updated as if
1427  * bfqq was not expired at all before this reactivation, i.e., it must
1428  * be set to the value of the remaining budget when bfqq was
1429  * expired. Along the same line, timestamps need to be assigned the
1430  * value they had the last time bfqq was selected for service, i.e.,
1431  * before last expiration. Thus timestamps need to be back-shifted
1432  * with respect to their normal computation (see [1] for more details
1433  * on this tricky aspect).
1434  *
1435  * Secondly, to allow the process to recover the hole, the in-service
1436  * queue must be expired too, to give bfqq the chance to preempt it
1437  * immediately. In fact, if bfqq has to wait for a full budget of the
1438  * in-service queue to be completed, then it may become impossible to
1439  * let the process recover the hole, even if the back-shifted
1440  * timestamps of bfqq are lower than those of the in-service queue. If
1441  * this happens for most or all of the holes, then the process may not
1442  * receive its reserved bandwidth. In this respect, it is worth noting
1443  * that, being the service of outstanding requests unpreemptible, a
1444  * little fraction of the holes may however be unrecoverable, thereby
1445  * causing a little loss of bandwidth.
1446  *
1447  * The last important point is detecting whether bfqq does need this
1448  * bandwidth recovery. In this respect, the next function deems the
1449  * process associated with bfqq greedy, and thus allows it to recover
1450  * the hole, if: 1) the process is waiting for the arrival of a new
1451  * request (which implies that bfqq expired for one of the above two
1452  * reasons), and 2) such a request has arrived soon. The first
1453  * condition is controlled through the flag non_blocking_wait_rq,
1454  * while the second through the flag arrived_in_time. If both
1455  * conditions hold, then the function computes the budget in the
1456  * above-described special way, and signals that the in-service queue
1457  * should be expired. Timestamp back-shifting is done later in
1458  * __bfq_activate_entity.
1459  *
1460  * 2. Reduce latency. Even if timestamps are not backshifted to let
1461  * the process associated with bfqq recover a service hole, bfqq may
1462  * however happen to have, after being (re)activated, a lower finish
1463  * timestamp than the in-service queue.	 That is, the next budget of
1464  * bfqq may have to be completed before the one of the in-service
1465  * queue. If this is the case, then preempting the in-service queue
1466  * allows this goal to be achieved, apart from the unpreemptible,
1467  * outstanding requests mentioned above.
1468  *
1469  * Unfortunately, regardless of which of the above two goals one wants
1470  * to achieve, service trees need first to be updated to know whether
1471  * the in-service queue must be preempted. To have service trees
1472  * correctly updated, the in-service queue must be expired and
1473  * rescheduled, and bfqq must be scheduled too. This is one of the
1474  * most costly operations (in future versions, the scheduling
1475  * mechanism may be re-designed in such a way to make it possible to
1476  * know whether preemption is needed without needing to update service
1477  * trees). In addition, queue preemptions almost always cause random
1478  * I/O, which may in turn cause loss of throughput. Finally, there may
1479  * even be no in-service queue when the next function is invoked (so,
1480  * no queue to compare timestamps with). Because of these facts, the
1481  * next function adopts the following simple scheme to avoid costly
1482  * operations, too frequent preemptions and too many dependencies on
1483  * the state of the scheduler: it requests the expiration of the
1484  * in-service queue (unconditionally) only for queues that need to
1485  * recover a hole. Then it delegates to other parts of the code the
1486  * responsibility of handling the above case 2.
1487  */
1488 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1489 						struct bfq_queue *bfqq,
1490 						bool arrived_in_time)
1491 {
1492 	struct bfq_entity *entity = &bfqq->entity;
1493 
1494 	/*
1495 	 * In the next compound condition, we check also whether there
1496 	 * is some budget left, because otherwise there is no point in
1497 	 * trying to go on serving bfqq with this same budget: bfqq
1498 	 * would be expired immediately after being selected for
1499 	 * service. This would only cause useless overhead.
1500 	 */
1501 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1502 	    bfq_bfqq_budget_left(bfqq) > 0) {
1503 		/*
1504 		 * We do not clear the flag non_blocking_wait_rq here, as
1505 		 * the latter is used in bfq_activate_bfqq to signal
1506 		 * that timestamps need to be back-shifted (and is
1507 		 * cleared right after).
1508 		 */
1509 
1510 		/*
1511 		 * In next assignment we rely on that either
1512 		 * entity->service or entity->budget are not updated
1513 		 * on expiration if bfqq is empty (see
1514 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1515 		 * remain unchanged after such an expiration, and the
1516 		 * following statement therefore assigns to
1517 		 * entity->budget the remaining budget on such an
1518 		 * expiration.
1519 		 */
1520 		entity->budget = min_t(unsigned long,
1521 				       bfq_bfqq_budget_left(bfqq),
1522 				       bfqq->max_budget);
1523 
1524 		/*
1525 		 * At this point, we have used entity->service to get
1526 		 * the budget left (needed for updating
1527 		 * entity->budget). Thus we finally can, and have to,
1528 		 * reset entity->service. The latter must be reset
1529 		 * because bfqq would otherwise be charged again for
1530 		 * the service it has received during its previous
1531 		 * service slot(s).
1532 		 */
1533 		entity->service = 0;
1534 
1535 		return true;
1536 	}
1537 
1538 	/*
1539 	 * We can finally complete expiration, by setting service to 0.
1540 	 */
1541 	entity->service = 0;
1542 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1543 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1544 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1545 	return false;
1546 }
1547 
1548 /*
1549  * Return the farthest past time instant according to jiffies
1550  * macros.
1551  */
1552 static unsigned long bfq_smallest_from_now(void)
1553 {
1554 	return jiffies - MAX_JIFFY_OFFSET;
1555 }
1556 
1557 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1558 					     struct bfq_queue *bfqq,
1559 					     unsigned int old_wr_coeff,
1560 					     bool wr_or_deserves_wr,
1561 					     bool interactive,
1562 					     bool in_burst,
1563 					     bool soft_rt)
1564 {
1565 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1566 		/* start a weight-raising period */
1567 		if (interactive) {
1568 			bfqq->service_from_wr = 0;
1569 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1570 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1571 		} else {
1572 			/*
1573 			 * No interactive weight raising in progress
1574 			 * here: assign minus infinity to
1575 			 * wr_start_at_switch_to_srt, to make sure
1576 			 * that, at the end of the soft-real-time
1577 			 * weight raising periods that is starting
1578 			 * now, no interactive weight-raising period
1579 			 * may be wrongly considered as still in
1580 			 * progress (and thus actually started by
1581 			 * mistake).
1582 			 */
1583 			bfqq->wr_start_at_switch_to_srt =
1584 				bfq_smallest_from_now();
1585 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1586 				BFQ_SOFTRT_WEIGHT_FACTOR;
1587 			bfqq->wr_cur_max_time =
1588 				bfqd->bfq_wr_rt_max_time;
1589 		}
1590 
1591 		/*
1592 		 * If needed, further reduce budget to make sure it is
1593 		 * close to bfqq's backlog, so as to reduce the
1594 		 * scheduling-error component due to a too large
1595 		 * budget. Do not care about throughput consequences,
1596 		 * but only about latency. Finally, do not assign a
1597 		 * too small budget either, to avoid increasing
1598 		 * latency by causing too frequent expirations.
1599 		 */
1600 		bfqq->entity.budget = min_t(unsigned long,
1601 					    bfqq->entity.budget,
1602 					    2 * bfq_min_budget(bfqd));
1603 	} else if (old_wr_coeff > 1) {
1604 		if (interactive) { /* update wr coeff and duration */
1605 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1606 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1607 		} else if (in_burst)
1608 			bfqq->wr_coeff = 1;
1609 		else if (soft_rt) {
1610 			/*
1611 			 * The application is now or still meeting the
1612 			 * requirements for being deemed soft rt.  We
1613 			 * can then correctly and safely (re)charge
1614 			 * the weight-raising duration for the
1615 			 * application with the weight-raising
1616 			 * duration for soft rt applications.
1617 			 *
1618 			 * In particular, doing this recharge now, i.e.,
1619 			 * before the weight-raising period for the
1620 			 * application finishes, reduces the probability
1621 			 * of the following negative scenario:
1622 			 * 1) the weight of a soft rt application is
1623 			 *    raised at startup (as for any newly
1624 			 *    created application),
1625 			 * 2) since the application is not interactive,
1626 			 *    at a certain time weight-raising is
1627 			 *    stopped for the application,
1628 			 * 3) at that time the application happens to
1629 			 *    still have pending requests, and hence
1630 			 *    is destined to not have a chance to be
1631 			 *    deemed soft rt before these requests are
1632 			 *    completed (see the comments to the
1633 			 *    function bfq_bfqq_softrt_next_start()
1634 			 *    for details on soft rt detection),
1635 			 * 4) these pending requests experience a high
1636 			 *    latency because the application is not
1637 			 *    weight-raised while they are pending.
1638 			 */
1639 			if (bfqq->wr_cur_max_time !=
1640 				bfqd->bfq_wr_rt_max_time) {
1641 				bfqq->wr_start_at_switch_to_srt =
1642 					bfqq->last_wr_start_finish;
1643 
1644 				bfqq->wr_cur_max_time =
1645 					bfqd->bfq_wr_rt_max_time;
1646 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1647 					BFQ_SOFTRT_WEIGHT_FACTOR;
1648 			}
1649 			bfqq->last_wr_start_finish = jiffies;
1650 		}
1651 	}
1652 }
1653 
1654 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1655 					struct bfq_queue *bfqq)
1656 {
1657 	return bfqq->dispatched == 0 &&
1658 		time_is_before_jiffies(
1659 			bfqq->budget_timeout +
1660 			bfqd->bfq_wr_min_idle_time);
1661 }
1662 
1663 
1664 /*
1665  * Return true if bfqq is in a higher priority class, or has a higher
1666  * weight than the in-service queue.
1667  */
1668 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1669 					    struct bfq_queue *in_serv_bfqq)
1670 {
1671 	int bfqq_weight, in_serv_weight;
1672 
1673 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1674 		return true;
1675 
1676 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1677 		bfqq_weight = bfqq->entity.weight;
1678 		in_serv_weight = in_serv_bfqq->entity.weight;
1679 	} else {
1680 		if (bfqq->entity.parent)
1681 			bfqq_weight = bfqq->entity.parent->weight;
1682 		else
1683 			bfqq_weight = bfqq->entity.weight;
1684 		if (in_serv_bfqq->entity.parent)
1685 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1686 		else
1687 			in_serv_weight = in_serv_bfqq->entity.weight;
1688 	}
1689 
1690 	return bfqq_weight > in_serv_weight;
1691 }
1692 
1693 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1694 
1695 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1696 					     struct bfq_queue *bfqq,
1697 					     int old_wr_coeff,
1698 					     struct request *rq,
1699 					     bool *interactive)
1700 {
1701 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1702 		bfqq_wants_to_preempt,
1703 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1704 		/*
1705 		 * See the comments on
1706 		 * bfq_bfqq_update_budg_for_activation for
1707 		 * details on the usage of the next variable.
1708 		 */
1709 		arrived_in_time =  ktime_get_ns() <=
1710 			bfqq->ttime.last_end_request +
1711 			bfqd->bfq_slice_idle * 3;
1712 
1713 
1714 	/*
1715 	 * bfqq deserves to be weight-raised if:
1716 	 * - it is sync,
1717 	 * - it does not belong to a large burst,
1718 	 * - it has been idle for enough time or is soft real-time,
1719 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1720 	 * - has a default weight (otherwise we assume the user wanted
1721 	 *   to control its weight explicitly)
1722 	 */
1723 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1724 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1725 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1726 		!in_burst &&
1727 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1728 		bfqq->dispatched == 0 &&
1729 		bfqq->entity.new_weight == 40;
1730 	*interactive = !in_burst && idle_for_long_time &&
1731 		bfqq->entity.new_weight == 40;
1732 	wr_or_deserves_wr = bfqd->low_latency &&
1733 		(bfqq->wr_coeff > 1 ||
1734 		 (bfq_bfqq_sync(bfqq) &&
1735 		  bfqq->bic && (*interactive || soft_rt)));
1736 
1737 	/*
1738 	 * Using the last flag, update budget and check whether bfqq
1739 	 * may want to preempt the in-service queue.
1740 	 */
1741 	bfqq_wants_to_preempt =
1742 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1743 						    arrived_in_time);
1744 
1745 	/*
1746 	 * If bfqq happened to be activated in a burst, but has been
1747 	 * idle for much more than an interactive queue, then we
1748 	 * assume that, in the overall I/O initiated in the burst, the
1749 	 * I/O associated with bfqq is finished. So bfqq does not need
1750 	 * to be treated as a queue belonging to a burst
1751 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1752 	 * if set, and remove bfqq from the burst list if it's
1753 	 * there. We do not decrement burst_size, because the fact
1754 	 * that bfqq does not need to belong to the burst list any
1755 	 * more does not invalidate the fact that bfqq was created in
1756 	 * a burst.
1757 	 */
1758 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1759 	    idle_for_long_time &&
1760 	    time_is_before_jiffies(
1761 		    bfqq->budget_timeout +
1762 		    msecs_to_jiffies(10000))) {
1763 		hlist_del_init(&bfqq->burst_list_node);
1764 		bfq_clear_bfqq_in_large_burst(bfqq);
1765 	}
1766 
1767 	bfq_clear_bfqq_just_created(bfqq);
1768 
1769 	if (bfqd->low_latency) {
1770 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1771 			/* wraparound */
1772 			bfqq->split_time =
1773 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1774 
1775 		if (time_is_before_jiffies(bfqq->split_time +
1776 					   bfqd->bfq_wr_min_idle_time)) {
1777 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1778 							 old_wr_coeff,
1779 							 wr_or_deserves_wr,
1780 							 *interactive,
1781 							 in_burst,
1782 							 soft_rt);
1783 
1784 			if (old_wr_coeff != bfqq->wr_coeff)
1785 				bfqq->entity.prio_changed = 1;
1786 		}
1787 	}
1788 
1789 	bfqq->last_idle_bklogged = jiffies;
1790 	bfqq->service_from_backlogged = 0;
1791 	bfq_clear_bfqq_softrt_update(bfqq);
1792 
1793 	bfq_add_bfqq_busy(bfqd, bfqq);
1794 
1795 	/*
1796 	 * Expire in-service queue if preemption may be needed for
1797 	 * guarantees or throughput. As for guarantees, we care
1798 	 * explicitly about two cases. The first is that bfqq has to
1799 	 * recover a service hole, as explained in the comments on
1800 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1801 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1802 	 * carry time-critical I/O, then bfqq's bandwidth is less
1803 	 * important than that of queues that carry time-critical I/O.
1804 	 * So, as a further constraint, we consider this case only if
1805 	 * bfqq is at least as weight-raised, i.e., at least as time
1806 	 * critical, as the in-service queue.
1807 	 *
1808 	 * The second case is that bfqq is in a higher priority class,
1809 	 * or has a higher weight than the in-service queue. If this
1810 	 * condition does not hold, we don't care because, even if
1811 	 * bfqq does not start to be served immediately, the resulting
1812 	 * delay for bfqq's I/O is however lower or much lower than
1813 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1814 	 *
1815 	 * In both cases, preemption is needed only if, according to
1816 	 * the timestamps of both bfqq and of the in-service queue,
1817 	 * bfqq actually is the next queue to serve. So, to reduce
1818 	 * useless preemptions, the return value of
1819 	 * next_queue_may_preempt() is considered in the next compound
1820 	 * condition too. Yet next_queue_may_preempt() just checks a
1821 	 * simple, necessary condition for bfqq to be the next queue
1822 	 * to serve. In fact, to evaluate a sufficient condition, the
1823 	 * timestamps of the in-service queue would need to be
1824 	 * updated, and this operation is quite costly (see the
1825 	 * comments on bfq_bfqq_update_budg_for_activation()).
1826 	 *
1827 	 * As for throughput, we ask bfq_better_to_idle() whether we
1828 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1829 	 * says no, then plugging is not needed any longer, either to
1830 	 * boost throughput or to perserve service guarantees. Then
1831 	 * the best option is to stop plugging I/O, as not doing so
1832 	 * would certainly lower throughput. We may end up in this
1833 	 * case if: (1) upon a dispatch attempt, we detected that it
1834 	 * was better to plug I/O dispatch, and to wait for a new
1835 	 * request to arrive for the currently in-service queue, but
1836 	 * (2) this switch of bfqq to busy changes the scenario.
1837 	 */
1838 	if (bfqd->in_service_queue &&
1839 	    ((bfqq_wants_to_preempt &&
1840 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1841 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1842 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1843 	    next_queue_may_preempt(bfqd))
1844 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1845 				false, BFQQE_PREEMPTED);
1846 }
1847 
1848 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1849 				   struct bfq_queue *bfqq)
1850 {
1851 	/* invalidate baseline total service time */
1852 	bfqq->last_serv_time_ns = 0;
1853 
1854 	/*
1855 	 * Reset pointer in case we are waiting for
1856 	 * some request completion.
1857 	 */
1858 	bfqd->waited_rq = NULL;
1859 
1860 	/*
1861 	 * If bfqq has a short think time, then start by setting the
1862 	 * inject limit to 0 prudentially, because the service time of
1863 	 * an injected I/O request may be higher than the think time
1864 	 * of bfqq, and therefore, if one request was injected when
1865 	 * bfqq remains empty, this injected request might delay the
1866 	 * service of the next I/O request for bfqq significantly. In
1867 	 * case bfqq can actually tolerate some injection, then the
1868 	 * adaptive update will however raise the limit soon. This
1869 	 * lucky circumstance holds exactly because bfqq has a short
1870 	 * think time, and thus, after remaining empty, is likely to
1871 	 * get new I/O enqueued---and then completed---before being
1872 	 * expired. This is the very pattern that gives the
1873 	 * limit-update algorithm the chance to measure the effect of
1874 	 * injection on request service times, and then to update the
1875 	 * limit accordingly.
1876 	 *
1877 	 * However, in the following special case, the inject limit is
1878 	 * left to 1 even if the think time is short: bfqq's I/O is
1879 	 * synchronized with that of some other queue, i.e., bfqq may
1880 	 * receive new I/O only after the I/O of the other queue is
1881 	 * completed. Keeping the inject limit to 1 allows the
1882 	 * blocking I/O to be served while bfqq is in service. And
1883 	 * this is very convenient both for bfqq and for overall
1884 	 * throughput, as explained in detail in the comments in
1885 	 * bfq_update_has_short_ttime().
1886 	 *
1887 	 * On the opposite end, if bfqq has a long think time, then
1888 	 * start directly by 1, because:
1889 	 * a) on the bright side, keeping at most one request in
1890 	 * service in the drive is unlikely to cause any harm to the
1891 	 * latency of bfqq's requests, as the service time of a single
1892 	 * request is likely to be lower than the think time of bfqq;
1893 	 * b) on the downside, after becoming empty, bfqq is likely to
1894 	 * expire before getting its next request. With this request
1895 	 * arrival pattern, it is very hard to sample total service
1896 	 * times and update the inject limit accordingly (see comments
1897 	 * on bfq_update_inject_limit()). So the limit is likely to be
1898 	 * never, or at least seldom, updated.  As a consequence, by
1899 	 * setting the limit to 1, we avoid that no injection ever
1900 	 * occurs with bfqq. On the downside, this proactive step
1901 	 * further reduces chances to actually compute the baseline
1902 	 * total service time. Thus it reduces chances to execute the
1903 	 * limit-update algorithm and possibly raise the limit to more
1904 	 * than 1.
1905 	 */
1906 	if (bfq_bfqq_has_short_ttime(bfqq))
1907 		bfqq->inject_limit = 0;
1908 	else
1909 		bfqq->inject_limit = 1;
1910 
1911 	bfqq->decrease_time_jif = jiffies;
1912 }
1913 
1914 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
1915 {
1916 	u64 tot_io_time = now_ns - bfqq->io_start_time;
1917 
1918 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
1919 		bfqq->tot_idle_time +=
1920 			now_ns - bfqq->ttime.last_end_request;
1921 
1922 	if (unlikely(bfq_bfqq_just_created(bfqq)))
1923 		return;
1924 
1925 	/*
1926 	 * Must be busy for at least about 80% of the time to be
1927 	 * considered I/O bound.
1928 	 */
1929 	if (bfqq->tot_idle_time * 5 > tot_io_time)
1930 		bfq_clear_bfqq_IO_bound(bfqq);
1931 	else
1932 		bfq_mark_bfqq_IO_bound(bfqq);
1933 
1934 	/*
1935 	 * Keep an observation window of at most 200 ms in the past
1936 	 * from now.
1937 	 */
1938 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
1939 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
1940 		bfqq->tot_idle_time >>= 1;
1941 	}
1942 }
1943 
1944 /*
1945  * Detect whether bfqq's I/O seems synchronized with that of some
1946  * other queue, i.e., whether bfqq, after remaining empty, happens to
1947  * receive new I/O only right after some I/O request of the other
1948  * queue has been completed. We call waker queue the other queue, and
1949  * we assume, for simplicity, that bfqq may have at most one waker
1950  * queue.
1951  *
1952  * A remarkable throughput boost can be reached by unconditionally
1953  * injecting the I/O of the waker queue, every time a new
1954  * bfq_dispatch_request happens to be invoked while I/O is being
1955  * plugged for bfqq.  In addition to boosting throughput, this
1956  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
1957  * bfqq. Note that these same results may be achieved with the general
1958  * injection mechanism, but less effectively. For details on this
1959  * aspect, see the comments on the choice of the queue for injection
1960  * in bfq_select_queue().
1961  *
1962  * Turning back to the detection of a waker queue, a queue Q is deemed
1963  * as a waker queue for bfqq if, for three consecutive times, bfqq
1964  * happens to become non empty right after a request of Q has been
1965  * completed. In particular, on the first time, Q is tentatively set
1966  * as a candidate waker queue, while on the third consecutive time
1967  * that Q is detected, the field waker_bfqq is set to Q, to confirm
1968  * that Q is a waker queue for bfqq. These detection steps are
1969  * performed only if bfqq has a long think time, so as to make it more
1970  * likely that bfqq's I/O is actually being blocked by a
1971  * synchronization. This last filter, plus the above three-times
1972  * requirement, make false positives less likely.
1973  *
1974  * NOTE
1975  *
1976  * The sooner a waker queue is detected, the sooner throughput can be
1977  * boosted by injecting I/O from the waker queue. Fortunately,
1978  * detection is likely to be actually fast, for the following
1979  * reasons. While blocked by synchronization, bfqq has a long think
1980  * time. This implies that bfqq's inject limit is at least equal to 1
1981  * (see the comments in bfq_update_inject_limit()). So, thanks to
1982  * injection, the waker queue is likely to be served during the very
1983  * first I/O-plugging time interval for bfqq. This triggers the first
1984  * step of the detection mechanism. Thanks again to injection, the
1985  * candidate waker queue is then likely to be confirmed no later than
1986  * during the next I/O-plugging interval for bfqq.
1987  *
1988  * ISSUE
1989  *
1990  * On queue merging all waker information is lost.
1991  */
1992 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1993 			    u64 now_ns)
1994 {
1995 	if (!bfqd->last_completed_rq_bfqq ||
1996 	    bfqd->last_completed_rq_bfqq == bfqq ||
1997 	    bfq_bfqq_has_short_ttime(bfqq) ||
1998 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
1999 	    bfqd->last_completed_rq_bfqq == bfqq->waker_bfqq)
2000 		return;
2001 
2002 	if (bfqd->last_completed_rq_bfqq !=
2003 	    bfqq->tentative_waker_bfqq) {
2004 		/*
2005 		 * First synchronization detected with a
2006 		 * candidate waker queue, or with a different
2007 		 * candidate waker queue from the current one.
2008 		 */
2009 		bfqq->tentative_waker_bfqq =
2010 			bfqd->last_completed_rq_bfqq;
2011 		bfqq->num_waker_detections = 1;
2012 	} else /* Same tentative waker queue detected again */
2013 		bfqq->num_waker_detections++;
2014 
2015 	if (bfqq->num_waker_detections == 3) {
2016 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2017 		bfqq->tentative_waker_bfqq = NULL;
2018 
2019 		/*
2020 		 * If the waker queue disappears, then
2021 		 * bfqq->waker_bfqq must be reset. To
2022 		 * this goal, we maintain in each
2023 		 * waker queue a list, woken_list, of
2024 		 * all the queues that reference the
2025 		 * waker queue through their
2026 		 * waker_bfqq pointer. When the waker
2027 		 * queue exits, the waker_bfqq pointer
2028 		 * of all the queues in the woken_list
2029 		 * is reset.
2030 		 *
2031 		 * In addition, if bfqq is already in
2032 		 * the woken_list of a waker queue,
2033 		 * then, before being inserted into
2034 		 * the woken_list of a new waker
2035 		 * queue, bfqq must be removed from
2036 		 * the woken_list of the old waker
2037 		 * queue.
2038 		 */
2039 		if (!hlist_unhashed(&bfqq->woken_list_node))
2040 			hlist_del_init(&bfqq->woken_list_node);
2041 		hlist_add_head(&bfqq->woken_list_node,
2042 			       &bfqd->last_completed_rq_bfqq->woken_list);
2043 	}
2044 }
2045 
2046 static void bfq_add_request(struct request *rq)
2047 {
2048 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2049 	struct bfq_data *bfqd = bfqq->bfqd;
2050 	struct request *next_rq, *prev;
2051 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2052 	bool interactive = false;
2053 	u64 now_ns = ktime_get_ns();
2054 
2055 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2056 	bfqq->queued[rq_is_sync(rq)]++;
2057 	bfqd->queued++;
2058 
2059 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
2060 		bfq_check_waker(bfqd, bfqq, now_ns);
2061 
2062 		/*
2063 		 * Periodically reset inject limit, to make sure that
2064 		 * the latter eventually drops in case workload
2065 		 * changes, see step (3) in the comments on
2066 		 * bfq_update_inject_limit().
2067 		 */
2068 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2069 					     msecs_to_jiffies(1000)))
2070 			bfq_reset_inject_limit(bfqd, bfqq);
2071 
2072 		/*
2073 		 * The following conditions must hold to setup a new
2074 		 * sampling of total service time, and then a new
2075 		 * update of the inject limit:
2076 		 * - bfqq is in service, because the total service
2077 		 *   time is evaluated only for the I/O requests of
2078 		 *   the queues in service;
2079 		 * - this is the right occasion to compute or to
2080 		 *   lower the baseline total service time, because
2081 		 *   there are actually no requests in the drive,
2082 		 *   or
2083 		 *   the baseline total service time is available, and
2084 		 *   this is the right occasion to compute the other
2085 		 *   quantity needed to update the inject limit, i.e.,
2086 		 *   the total service time caused by the amount of
2087 		 *   injection allowed by the current value of the
2088 		 *   limit. It is the right occasion because injection
2089 		 *   has actually been performed during the service
2090 		 *   hole, and there are still in-flight requests,
2091 		 *   which are very likely to be exactly the injected
2092 		 *   requests, or part of them;
2093 		 * - the minimum interval for sampling the total
2094 		 *   service time and updating the inject limit has
2095 		 *   elapsed.
2096 		 */
2097 		if (bfqq == bfqd->in_service_queue &&
2098 		    (bfqd->rq_in_driver == 0 ||
2099 		     (bfqq->last_serv_time_ns > 0 &&
2100 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2101 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2102 					      msecs_to_jiffies(10))) {
2103 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2104 			/*
2105 			 * Start the state machine for measuring the
2106 			 * total service time of rq: setting
2107 			 * wait_dispatch will cause bfqd->waited_rq to
2108 			 * be set when rq will be dispatched.
2109 			 */
2110 			bfqd->wait_dispatch = true;
2111 			/*
2112 			 * If there is no I/O in service in the drive,
2113 			 * then possible injection occurred before the
2114 			 * arrival of rq will not affect the total
2115 			 * service time of rq. So the injection limit
2116 			 * must not be updated as a function of such
2117 			 * total service time, unless new injection
2118 			 * occurs before rq is completed. To have the
2119 			 * injection limit updated only in the latter
2120 			 * case, reset rqs_injected here (rqs_injected
2121 			 * will be set in case injection is performed
2122 			 * on bfqq before rq is completed).
2123 			 */
2124 			if (bfqd->rq_in_driver == 0)
2125 				bfqd->rqs_injected = false;
2126 		}
2127 	}
2128 
2129 	if (bfq_bfqq_sync(bfqq))
2130 		bfq_update_io_intensity(bfqq, now_ns);
2131 
2132 	elv_rb_add(&bfqq->sort_list, rq);
2133 
2134 	/*
2135 	 * Check if this request is a better next-serve candidate.
2136 	 */
2137 	prev = bfqq->next_rq;
2138 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2139 	bfqq->next_rq = next_rq;
2140 
2141 	/*
2142 	 * Adjust priority tree position, if next_rq changes.
2143 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2144 	 */
2145 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2146 		bfq_pos_tree_add_move(bfqd, bfqq);
2147 
2148 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2149 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2150 						 rq, &interactive);
2151 	else {
2152 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2153 		    time_is_before_jiffies(
2154 				bfqq->last_wr_start_finish +
2155 				bfqd->bfq_wr_min_inter_arr_async)) {
2156 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2157 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2158 
2159 			bfqd->wr_busy_queues++;
2160 			bfqq->entity.prio_changed = 1;
2161 		}
2162 		if (prev != bfqq->next_rq)
2163 			bfq_updated_next_req(bfqd, bfqq);
2164 	}
2165 
2166 	/*
2167 	 * Assign jiffies to last_wr_start_finish in the following
2168 	 * cases:
2169 	 *
2170 	 * . if bfqq is not going to be weight-raised, because, for
2171 	 *   non weight-raised queues, last_wr_start_finish stores the
2172 	 *   arrival time of the last request; as of now, this piece
2173 	 *   of information is used only for deciding whether to
2174 	 *   weight-raise async queues
2175 	 *
2176 	 * . if bfqq is not weight-raised, because, if bfqq is now
2177 	 *   switching to weight-raised, then last_wr_start_finish
2178 	 *   stores the time when weight-raising starts
2179 	 *
2180 	 * . if bfqq is interactive, because, regardless of whether
2181 	 *   bfqq is currently weight-raised, the weight-raising
2182 	 *   period must start or restart (this case is considered
2183 	 *   separately because it is not detected by the above
2184 	 *   conditions, if bfqq is already weight-raised)
2185 	 *
2186 	 * last_wr_start_finish has to be updated also if bfqq is soft
2187 	 * real-time, because the weight-raising period is constantly
2188 	 * restarted on idle-to-busy transitions for these queues, but
2189 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2190 	 * needed.
2191 	 */
2192 	if (bfqd->low_latency &&
2193 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2194 		bfqq->last_wr_start_finish = jiffies;
2195 }
2196 
2197 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2198 					  struct bio *bio,
2199 					  struct request_queue *q)
2200 {
2201 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2202 
2203 
2204 	if (bfqq)
2205 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2206 
2207 	return NULL;
2208 }
2209 
2210 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2211 {
2212 	if (last_pos)
2213 		return abs(blk_rq_pos(rq) - last_pos);
2214 
2215 	return 0;
2216 }
2217 
2218 #if 0 /* Still not clear if we can do without next two functions */
2219 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2220 {
2221 	struct bfq_data *bfqd = q->elevator->elevator_data;
2222 
2223 	bfqd->rq_in_driver++;
2224 }
2225 
2226 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2227 {
2228 	struct bfq_data *bfqd = q->elevator->elevator_data;
2229 
2230 	bfqd->rq_in_driver--;
2231 }
2232 #endif
2233 
2234 static void bfq_remove_request(struct request_queue *q,
2235 			       struct request *rq)
2236 {
2237 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2238 	struct bfq_data *bfqd = bfqq->bfqd;
2239 	const int sync = rq_is_sync(rq);
2240 
2241 	if (bfqq->next_rq == rq) {
2242 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2243 		bfq_updated_next_req(bfqd, bfqq);
2244 	}
2245 
2246 	if (rq->queuelist.prev != &rq->queuelist)
2247 		list_del_init(&rq->queuelist);
2248 	bfqq->queued[sync]--;
2249 	bfqd->queued--;
2250 	elv_rb_del(&bfqq->sort_list, rq);
2251 
2252 	elv_rqhash_del(q, rq);
2253 	if (q->last_merge == rq)
2254 		q->last_merge = NULL;
2255 
2256 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2257 		bfqq->next_rq = NULL;
2258 
2259 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2260 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2261 			/*
2262 			 * bfqq emptied. In normal operation, when
2263 			 * bfqq is empty, bfqq->entity.service and
2264 			 * bfqq->entity.budget must contain,
2265 			 * respectively, the service received and the
2266 			 * budget used last time bfqq emptied. These
2267 			 * facts do not hold in this case, as at least
2268 			 * this last removal occurred while bfqq is
2269 			 * not in service. To avoid inconsistencies,
2270 			 * reset both bfqq->entity.service and
2271 			 * bfqq->entity.budget, if bfqq has still a
2272 			 * process that may issue I/O requests to it.
2273 			 */
2274 			bfqq->entity.budget = bfqq->entity.service = 0;
2275 		}
2276 
2277 		/*
2278 		 * Remove queue from request-position tree as it is empty.
2279 		 */
2280 		if (bfqq->pos_root) {
2281 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2282 			bfqq->pos_root = NULL;
2283 		}
2284 	} else {
2285 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2286 		if (unlikely(!bfqd->nonrot_with_queueing))
2287 			bfq_pos_tree_add_move(bfqd, bfqq);
2288 	}
2289 
2290 	if (rq->cmd_flags & REQ_META)
2291 		bfqq->meta_pending--;
2292 
2293 }
2294 
2295 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2296 		unsigned int nr_segs)
2297 {
2298 	struct bfq_data *bfqd = q->elevator->elevator_data;
2299 	struct request *free = NULL;
2300 	/*
2301 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2302 	 * store its return value for later use, to avoid nesting
2303 	 * queue_lock inside the bfqd->lock. We assume that the bic
2304 	 * returned by bfq_bic_lookup does not go away before
2305 	 * bfqd->lock is taken.
2306 	 */
2307 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2308 	bool ret;
2309 
2310 	spin_lock_irq(&bfqd->lock);
2311 
2312 	if (bic)
2313 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2314 	else
2315 		bfqd->bio_bfqq = NULL;
2316 	bfqd->bio_bic = bic;
2317 
2318 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2319 
2320 	if (free)
2321 		blk_mq_free_request(free);
2322 	spin_unlock_irq(&bfqd->lock);
2323 
2324 	return ret;
2325 }
2326 
2327 static int bfq_request_merge(struct request_queue *q, struct request **req,
2328 			     struct bio *bio)
2329 {
2330 	struct bfq_data *bfqd = q->elevator->elevator_data;
2331 	struct request *__rq;
2332 
2333 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2334 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2335 		*req = __rq;
2336 		return ELEVATOR_FRONT_MERGE;
2337 	}
2338 
2339 	return ELEVATOR_NO_MERGE;
2340 }
2341 
2342 static struct bfq_queue *bfq_init_rq(struct request *rq);
2343 
2344 static void bfq_request_merged(struct request_queue *q, struct request *req,
2345 			       enum elv_merge type)
2346 {
2347 	if (type == ELEVATOR_FRONT_MERGE &&
2348 	    rb_prev(&req->rb_node) &&
2349 	    blk_rq_pos(req) <
2350 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2351 				    struct request, rb_node))) {
2352 		struct bfq_queue *bfqq = bfq_init_rq(req);
2353 		struct bfq_data *bfqd;
2354 		struct request *prev, *next_rq;
2355 
2356 		if (!bfqq)
2357 			return;
2358 
2359 		bfqd = bfqq->bfqd;
2360 
2361 		/* Reposition request in its sort_list */
2362 		elv_rb_del(&bfqq->sort_list, req);
2363 		elv_rb_add(&bfqq->sort_list, req);
2364 
2365 		/* Choose next request to be served for bfqq */
2366 		prev = bfqq->next_rq;
2367 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2368 					 bfqd->last_position);
2369 		bfqq->next_rq = next_rq;
2370 		/*
2371 		 * If next_rq changes, update both the queue's budget to
2372 		 * fit the new request and the queue's position in its
2373 		 * rq_pos_tree.
2374 		 */
2375 		if (prev != bfqq->next_rq) {
2376 			bfq_updated_next_req(bfqd, bfqq);
2377 			/*
2378 			 * See comments on bfq_pos_tree_add_move() for
2379 			 * the unlikely().
2380 			 */
2381 			if (unlikely(!bfqd->nonrot_with_queueing))
2382 				bfq_pos_tree_add_move(bfqd, bfqq);
2383 		}
2384 	}
2385 }
2386 
2387 /*
2388  * This function is called to notify the scheduler that the requests
2389  * rq and 'next' have been merged, with 'next' going away.  BFQ
2390  * exploits this hook to address the following issue: if 'next' has a
2391  * fifo_time lower that rq, then the fifo_time of rq must be set to
2392  * the value of 'next', to not forget the greater age of 'next'.
2393  *
2394  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2395  * on that rq is picked from the hash table q->elevator->hash, which,
2396  * in its turn, is filled only with I/O requests present in
2397  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2398  * the function that fills this hash table (elv_rqhash_add) is called
2399  * only by bfq_insert_request.
2400  */
2401 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2402 				struct request *next)
2403 {
2404 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2405 		*next_bfqq = bfq_init_rq(next);
2406 
2407 	if (!bfqq)
2408 		return;
2409 
2410 	/*
2411 	 * If next and rq belong to the same bfq_queue and next is older
2412 	 * than rq, then reposition rq in the fifo (by substituting next
2413 	 * with rq). Otherwise, if next and rq belong to different
2414 	 * bfq_queues, never reposition rq: in fact, we would have to
2415 	 * reposition it with respect to next's position in its own fifo,
2416 	 * which would most certainly be too expensive with respect to
2417 	 * the benefits.
2418 	 */
2419 	if (bfqq == next_bfqq &&
2420 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2421 	    next->fifo_time < rq->fifo_time) {
2422 		list_del_init(&rq->queuelist);
2423 		list_replace_init(&next->queuelist, &rq->queuelist);
2424 		rq->fifo_time = next->fifo_time;
2425 	}
2426 
2427 	if (bfqq->next_rq == next)
2428 		bfqq->next_rq = rq;
2429 
2430 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2431 }
2432 
2433 /* Must be called with bfqq != NULL */
2434 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2435 {
2436 	/*
2437 	 * If bfqq has been enjoying interactive weight-raising, then
2438 	 * reset soft_rt_next_start. We do it for the following
2439 	 * reason. bfqq may have been conveying the I/O needed to load
2440 	 * a soft real-time application. Such an application actually
2441 	 * exhibits a soft real-time I/O pattern after it finishes
2442 	 * loading, and finally starts doing its job. But, if bfqq has
2443 	 * been receiving a lot of bandwidth so far (likely to happen
2444 	 * on a fast device), then soft_rt_next_start now contains a
2445 	 * high value that. So, without this reset, bfqq would be
2446 	 * prevented from being possibly considered as soft_rt for a
2447 	 * very long time.
2448 	 */
2449 
2450 	if (bfqq->wr_cur_max_time !=
2451 	    bfqq->bfqd->bfq_wr_rt_max_time)
2452 		bfqq->soft_rt_next_start = jiffies;
2453 
2454 	if (bfq_bfqq_busy(bfqq))
2455 		bfqq->bfqd->wr_busy_queues--;
2456 	bfqq->wr_coeff = 1;
2457 	bfqq->wr_cur_max_time = 0;
2458 	bfqq->last_wr_start_finish = jiffies;
2459 	/*
2460 	 * Trigger a weight change on the next invocation of
2461 	 * __bfq_entity_update_weight_prio.
2462 	 */
2463 	bfqq->entity.prio_changed = 1;
2464 }
2465 
2466 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2467 			     struct bfq_group *bfqg)
2468 {
2469 	int i, j;
2470 
2471 	for (i = 0; i < 2; i++)
2472 		for (j = 0; j < IOPRIO_BE_NR; j++)
2473 			if (bfqg->async_bfqq[i][j])
2474 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2475 	if (bfqg->async_idle_bfqq)
2476 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2477 }
2478 
2479 static void bfq_end_wr(struct bfq_data *bfqd)
2480 {
2481 	struct bfq_queue *bfqq;
2482 
2483 	spin_lock_irq(&bfqd->lock);
2484 
2485 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2486 		bfq_bfqq_end_wr(bfqq);
2487 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2488 		bfq_bfqq_end_wr(bfqq);
2489 	bfq_end_wr_async(bfqd);
2490 
2491 	spin_unlock_irq(&bfqd->lock);
2492 }
2493 
2494 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2495 {
2496 	if (request)
2497 		return blk_rq_pos(io_struct);
2498 	else
2499 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2500 }
2501 
2502 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2503 				  sector_t sector)
2504 {
2505 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2506 	       BFQQ_CLOSE_THR;
2507 }
2508 
2509 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2510 					 struct bfq_queue *bfqq,
2511 					 sector_t sector)
2512 {
2513 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2514 	struct rb_node *parent, *node;
2515 	struct bfq_queue *__bfqq;
2516 
2517 	if (RB_EMPTY_ROOT(root))
2518 		return NULL;
2519 
2520 	/*
2521 	 * First, if we find a request starting at the end of the last
2522 	 * request, choose it.
2523 	 */
2524 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2525 	if (__bfqq)
2526 		return __bfqq;
2527 
2528 	/*
2529 	 * If the exact sector wasn't found, the parent of the NULL leaf
2530 	 * will contain the closest sector (rq_pos_tree sorted by
2531 	 * next_request position).
2532 	 */
2533 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2534 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2535 		return __bfqq;
2536 
2537 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2538 		node = rb_next(&__bfqq->pos_node);
2539 	else
2540 		node = rb_prev(&__bfqq->pos_node);
2541 	if (!node)
2542 		return NULL;
2543 
2544 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2545 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2546 		return __bfqq;
2547 
2548 	return NULL;
2549 }
2550 
2551 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2552 						   struct bfq_queue *cur_bfqq,
2553 						   sector_t sector)
2554 {
2555 	struct bfq_queue *bfqq;
2556 
2557 	/*
2558 	 * We shall notice if some of the queues are cooperating,
2559 	 * e.g., working closely on the same area of the device. In
2560 	 * that case, we can group them together and: 1) don't waste
2561 	 * time idling, and 2) serve the union of their requests in
2562 	 * the best possible order for throughput.
2563 	 */
2564 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2565 	if (!bfqq || bfqq == cur_bfqq)
2566 		return NULL;
2567 
2568 	return bfqq;
2569 }
2570 
2571 static struct bfq_queue *
2572 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2573 {
2574 	int process_refs, new_process_refs;
2575 	struct bfq_queue *__bfqq;
2576 
2577 	/*
2578 	 * If there are no process references on the new_bfqq, then it is
2579 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2580 	 * may have dropped their last reference (not just their last process
2581 	 * reference).
2582 	 */
2583 	if (!bfqq_process_refs(new_bfqq))
2584 		return NULL;
2585 
2586 	/* Avoid a circular list and skip interim queue merges. */
2587 	while ((__bfqq = new_bfqq->new_bfqq)) {
2588 		if (__bfqq == bfqq)
2589 			return NULL;
2590 		new_bfqq = __bfqq;
2591 	}
2592 
2593 	process_refs = bfqq_process_refs(bfqq);
2594 	new_process_refs = bfqq_process_refs(new_bfqq);
2595 	/*
2596 	 * If the process for the bfqq has gone away, there is no
2597 	 * sense in merging the queues.
2598 	 */
2599 	if (process_refs == 0 || new_process_refs == 0)
2600 		return NULL;
2601 
2602 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2603 		new_bfqq->pid);
2604 
2605 	/*
2606 	 * Merging is just a redirection: the requests of the process
2607 	 * owning one of the two queues are redirected to the other queue.
2608 	 * The latter queue, in its turn, is set as shared if this is the
2609 	 * first time that the requests of some process are redirected to
2610 	 * it.
2611 	 *
2612 	 * We redirect bfqq to new_bfqq and not the opposite, because
2613 	 * we are in the context of the process owning bfqq, thus we
2614 	 * have the io_cq of this process. So we can immediately
2615 	 * configure this io_cq to redirect the requests of the
2616 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2617 	 * not available any more (new_bfqq->bic == NULL).
2618 	 *
2619 	 * Anyway, even in case new_bfqq coincides with the in-service
2620 	 * queue, redirecting requests the in-service queue is the
2621 	 * best option, as we feed the in-service queue with new
2622 	 * requests close to the last request served and, by doing so,
2623 	 * are likely to increase the throughput.
2624 	 */
2625 	bfqq->new_bfqq = new_bfqq;
2626 	new_bfqq->ref += process_refs;
2627 	return new_bfqq;
2628 }
2629 
2630 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2631 					struct bfq_queue *new_bfqq)
2632 {
2633 	if (bfq_too_late_for_merging(new_bfqq))
2634 		return false;
2635 
2636 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2637 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2638 		return false;
2639 
2640 	/*
2641 	 * If either of the queues has already been detected as seeky,
2642 	 * then merging it with the other queue is unlikely to lead to
2643 	 * sequential I/O.
2644 	 */
2645 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2646 		return false;
2647 
2648 	/*
2649 	 * Interleaved I/O is known to be done by (some) applications
2650 	 * only for reads, so it does not make sense to merge async
2651 	 * queues.
2652 	 */
2653 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2654 		return false;
2655 
2656 	return true;
2657 }
2658 
2659 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2660 					     struct bfq_queue *bfqq);
2661 
2662 /*
2663  * Attempt to schedule a merge of bfqq with the currently in-service
2664  * queue or with a close queue among the scheduled queues.  Return
2665  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2666  * structure otherwise.
2667  *
2668  * The OOM queue is not allowed to participate to cooperation: in fact, since
2669  * the requests temporarily redirected to the OOM queue could be redirected
2670  * again to dedicated queues at any time, the state needed to correctly
2671  * handle merging with the OOM queue would be quite complex and expensive
2672  * to maintain. Besides, in such a critical condition as an out of memory,
2673  * the benefits of queue merging may be little relevant, or even negligible.
2674  *
2675  * WARNING: queue merging may impair fairness among non-weight raised
2676  * queues, for at least two reasons: 1) the original weight of a
2677  * merged queue may change during the merged state, 2) even being the
2678  * weight the same, a merged queue may be bloated with many more
2679  * requests than the ones produced by its originally-associated
2680  * process.
2681  */
2682 static struct bfq_queue *
2683 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2684 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2685 {
2686 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2687 
2688 	/*
2689 	 * Check delayed stable merge for rotational or non-queueing
2690 	 * devs. For this branch to be executed, bfqq must not be
2691 	 * currently merged with some other queue (i.e., bfqq->bic
2692 	 * must be non null). If we considered also merged queues,
2693 	 * then we should also check whether bfqq has already been
2694 	 * merged with bic->stable_merge_bfqq. But this would be
2695 	 * costly and complicated.
2696 	 */
2697 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2698 		if (bic->stable_merge_bfqq &&
2699 		    !bfq_bfqq_just_created(bfqq) &&
2700 		    time_is_after_jiffies(bfqq->split_time +
2701 					  msecs_to_jiffies(200))) {
2702 			struct bfq_queue *stable_merge_bfqq =
2703 				bic->stable_merge_bfqq;
2704 			int proc_ref = min(bfqq_process_refs(bfqq),
2705 					   bfqq_process_refs(stable_merge_bfqq));
2706 
2707 			/* deschedule stable merge, because done or aborted here */
2708 			bfq_put_stable_ref(stable_merge_bfqq);
2709 
2710 			bic->stable_merge_bfqq = NULL;
2711 
2712 			if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2713 			    proc_ref > 0) {
2714 				/* next function will take at least one ref */
2715 				struct bfq_queue *new_bfqq =
2716 					bfq_setup_merge(bfqq, stable_merge_bfqq);
2717 
2718 				bic->stably_merged = true;
2719 				if (new_bfqq && new_bfqq->bic)
2720 					new_bfqq->bic->stably_merged = true;
2721 				return new_bfqq;
2722 			} else
2723 				return NULL;
2724 		}
2725 	}
2726 
2727 	/*
2728 	 * Do not perform queue merging if the device is non
2729 	 * rotational and performs internal queueing. In fact, such a
2730 	 * device reaches a high speed through internal parallelism
2731 	 * and pipelining. This means that, to reach a high
2732 	 * throughput, it must have many requests enqueued at the same
2733 	 * time. But, in this configuration, the internal scheduling
2734 	 * algorithm of the device does exactly the job of queue
2735 	 * merging: it reorders requests so as to obtain as much as
2736 	 * possible a sequential I/O pattern. As a consequence, with
2737 	 * the workload generated by processes doing interleaved I/O,
2738 	 * the throughput reached by the device is likely to be the
2739 	 * same, with and without queue merging.
2740 	 *
2741 	 * Disabling merging also provides a remarkable benefit in
2742 	 * terms of throughput. Merging tends to make many workloads
2743 	 * artificially more uneven, because of shared queues
2744 	 * remaining non empty for incomparably more time than
2745 	 * non-merged queues. This may accentuate workload
2746 	 * asymmetries. For example, if one of the queues in a set of
2747 	 * merged queues has a higher weight than a normal queue, then
2748 	 * the shared queue may inherit such a high weight and, by
2749 	 * staying almost always active, may force BFQ to perform I/O
2750 	 * plugging most of the time. This evidently makes it harder
2751 	 * for BFQ to let the device reach a high throughput.
2752 	 *
2753 	 * Finally, the likely() macro below is not used because one
2754 	 * of the two branches is more likely than the other, but to
2755 	 * have the code path after the following if() executed as
2756 	 * fast as possible for the case of a non rotational device
2757 	 * with queueing. We want it because this is the fastest kind
2758 	 * of device. On the opposite end, the likely() may lengthen
2759 	 * the execution time of BFQ for the case of slower devices
2760 	 * (rotational or at least without queueing). But in this case
2761 	 * the execution time of BFQ matters very little, if not at
2762 	 * all.
2763 	 */
2764 	if (likely(bfqd->nonrot_with_queueing))
2765 		return NULL;
2766 
2767 	/*
2768 	 * Prevent bfqq from being merged if it has been created too
2769 	 * long ago. The idea is that true cooperating processes, and
2770 	 * thus their associated bfq_queues, are supposed to be
2771 	 * created shortly after each other. This is the case, e.g.,
2772 	 * for KVM/QEMU and dump I/O threads. Basing on this
2773 	 * assumption, the following filtering greatly reduces the
2774 	 * probability that two non-cooperating processes, which just
2775 	 * happen to do close I/O for some short time interval, have
2776 	 * their queues merged by mistake.
2777 	 */
2778 	if (bfq_too_late_for_merging(bfqq))
2779 		return NULL;
2780 
2781 	if (bfqq->new_bfqq)
2782 		return bfqq->new_bfqq;
2783 
2784 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2785 		return NULL;
2786 
2787 	/* If there is only one backlogged queue, don't search. */
2788 	if (bfq_tot_busy_queues(bfqd) == 1)
2789 		return NULL;
2790 
2791 	in_service_bfqq = bfqd->in_service_queue;
2792 
2793 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2794 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2795 	    bfq_rq_close_to_sector(io_struct, request,
2796 				   bfqd->in_serv_last_pos) &&
2797 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2798 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2799 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2800 		if (new_bfqq)
2801 			return new_bfqq;
2802 	}
2803 	/*
2804 	 * Check whether there is a cooperator among currently scheduled
2805 	 * queues. The only thing we need is that the bio/request is not
2806 	 * NULL, as we need it to establish whether a cooperator exists.
2807 	 */
2808 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2809 			bfq_io_struct_pos(io_struct, request));
2810 
2811 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2812 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2813 		return bfq_setup_merge(bfqq, new_bfqq);
2814 
2815 	return NULL;
2816 }
2817 
2818 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2819 {
2820 	struct bfq_io_cq *bic = bfqq->bic;
2821 
2822 	/*
2823 	 * If !bfqq->bic, the queue is already shared or its requests
2824 	 * have already been redirected to a shared queue; both idle window
2825 	 * and weight raising state have already been saved. Do nothing.
2826 	 */
2827 	if (!bic)
2828 		return;
2829 
2830 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
2831 	bic->saved_inject_limit = bfqq->inject_limit;
2832 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
2833 
2834 	bic->saved_weight = bfqq->entity.orig_weight;
2835 	bic->saved_ttime = bfqq->ttime;
2836 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2837 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2838 	bic->saved_io_start_time = bfqq->io_start_time;
2839 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
2840 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2841 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2842 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2843 		     !bfq_bfqq_in_large_burst(bfqq) &&
2844 		     bfqq->bfqd->low_latency)) {
2845 		/*
2846 		 * bfqq being merged right after being created: bfqq
2847 		 * would have deserved interactive weight raising, but
2848 		 * did not make it to be set in a weight-raised state,
2849 		 * because of this early merge.	Store directly the
2850 		 * weight-raising state that would have been assigned
2851 		 * to bfqq, so that to avoid that bfqq unjustly fails
2852 		 * to enjoy weight raising if split soon.
2853 		 */
2854 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2855 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2856 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2857 		bic->saved_last_wr_start_finish = jiffies;
2858 	} else {
2859 		bic->saved_wr_coeff = bfqq->wr_coeff;
2860 		bic->saved_wr_start_at_switch_to_srt =
2861 			bfqq->wr_start_at_switch_to_srt;
2862 		bic->saved_service_from_wr = bfqq->service_from_wr;
2863 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2864 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2865 	}
2866 }
2867 
2868 
2869 static void
2870 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
2871 {
2872 	if (cur_bfqq->entity.parent &&
2873 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
2874 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
2875 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
2876 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
2877 }
2878 
2879 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2880 {
2881 	/*
2882 	 * To prevent bfqq's service guarantees from being violated,
2883 	 * bfqq may be left busy, i.e., queued for service, even if
2884 	 * empty (see comments in __bfq_bfqq_expire() for
2885 	 * details). But, if no process will send requests to bfqq any
2886 	 * longer, then there is no point in keeping bfqq queued for
2887 	 * service. In addition, keeping bfqq queued for service, but
2888 	 * with no process ref any longer, may have caused bfqq to be
2889 	 * freed when dequeued from service. But this is assumed to
2890 	 * never happen.
2891 	 */
2892 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2893 	    bfqq != bfqd->in_service_queue)
2894 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2895 
2896 	bfq_reassign_last_bfqq(bfqq, NULL);
2897 
2898 	bfq_put_queue(bfqq);
2899 }
2900 
2901 static void
2902 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2903 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2904 {
2905 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2906 		(unsigned long)new_bfqq->pid);
2907 	/* Save weight raising and idle window of the merged queues */
2908 	bfq_bfqq_save_state(bfqq);
2909 	bfq_bfqq_save_state(new_bfqq);
2910 	if (bfq_bfqq_IO_bound(bfqq))
2911 		bfq_mark_bfqq_IO_bound(new_bfqq);
2912 	bfq_clear_bfqq_IO_bound(bfqq);
2913 
2914 	/*
2915 	 * The processes associated with bfqq are cooperators of the
2916 	 * processes associated with new_bfqq. So, if bfqq has a
2917 	 * waker, then assume that all these processes will be happy
2918 	 * to let bfqq's waker freely inject I/O when they have no
2919 	 * I/O.
2920 	 */
2921 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
2922 	    bfqq->waker_bfqq != new_bfqq) {
2923 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
2924 		new_bfqq->tentative_waker_bfqq = NULL;
2925 
2926 		/*
2927 		 * If the waker queue disappears, then
2928 		 * new_bfqq->waker_bfqq must be reset. So insert
2929 		 * new_bfqq into the woken_list of the waker. See
2930 		 * bfq_check_waker for details.
2931 		 */
2932 		hlist_add_head(&new_bfqq->woken_list_node,
2933 			       &new_bfqq->waker_bfqq->woken_list);
2934 
2935 	}
2936 
2937 	/*
2938 	 * If bfqq is weight-raised, then let new_bfqq inherit
2939 	 * weight-raising. To reduce false positives, neglect the case
2940 	 * where bfqq has just been created, but has not yet made it
2941 	 * to be weight-raised (which may happen because EQM may merge
2942 	 * bfqq even before bfq_add_request is executed for the first
2943 	 * time for bfqq). Handling this case would however be very
2944 	 * easy, thanks to the flag just_created.
2945 	 */
2946 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2947 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2948 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2949 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2950 		new_bfqq->wr_start_at_switch_to_srt =
2951 			bfqq->wr_start_at_switch_to_srt;
2952 		if (bfq_bfqq_busy(new_bfqq))
2953 			bfqd->wr_busy_queues++;
2954 		new_bfqq->entity.prio_changed = 1;
2955 	}
2956 
2957 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2958 		bfqq->wr_coeff = 1;
2959 		bfqq->entity.prio_changed = 1;
2960 		if (bfq_bfqq_busy(bfqq))
2961 			bfqd->wr_busy_queues--;
2962 	}
2963 
2964 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2965 		     bfqd->wr_busy_queues);
2966 
2967 	/*
2968 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2969 	 */
2970 	bic_set_bfqq(bic, new_bfqq, 1);
2971 	bfq_mark_bfqq_coop(new_bfqq);
2972 	/*
2973 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2974 	 * set new_bfqq->bic to NULL. bfqq either:
2975 	 * - does not belong to any bic any more, and hence bfqq->bic must
2976 	 *   be set to NULL, or
2977 	 * - is a queue whose owning bics have already been redirected to a
2978 	 *   different queue, hence the queue is destined to not belong to
2979 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2980 	 *   assignment causes no harm).
2981 	 */
2982 	new_bfqq->bic = NULL;
2983 	/*
2984 	 * If the queue is shared, the pid is the pid of one of the associated
2985 	 * processes. Which pid depends on the exact sequence of merge events
2986 	 * the queue underwent. So printing such a pid is useless and confusing
2987 	 * because it reports a random pid between those of the associated
2988 	 * processes.
2989 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2990 	 * a pid in logging messages.
2991 	 */
2992 	new_bfqq->pid = -1;
2993 	bfqq->bic = NULL;
2994 
2995 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
2996 
2997 	bfq_release_process_ref(bfqd, bfqq);
2998 }
2999 
3000 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3001 				struct bio *bio)
3002 {
3003 	struct bfq_data *bfqd = q->elevator->elevator_data;
3004 	bool is_sync = op_is_sync(bio->bi_opf);
3005 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3006 
3007 	/*
3008 	 * Disallow merge of a sync bio into an async request.
3009 	 */
3010 	if (is_sync && !rq_is_sync(rq))
3011 		return false;
3012 
3013 	/*
3014 	 * Lookup the bfqq that this bio will be queued with. Allow
3015 	 * merge only if rq is queued there.
3016 	 */
3017 	if (!bfqq)
3018 		return false;
3019 
3020 	/*
3021 	 * We take advantage of this function to perform an early merge
3022 	 * of the queues of possible cooperating processes.
3023 	 */
3024 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3025 	if (new_bfqq) {
3026 		/*
3027 		 * bic still points to bfqq, then it has not yet been
3028 		 * redirected to some other bfq_queue, and a queue
3029 		 * merge between bfqq and new_bfqq can be safely
3030 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3031 		 * and bfqq can be put.
3032 		 */
3033 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3034 				new_bfqq);
3035 		/*
3036 		 * If we get here, bio will be queued into new_queue,
3037 		 * so use new_bfqq to decide whether bio and rq can be
3038 		 * merged.
3039 		 */
3040 		bfqq = new_bfqq;
3041 
3042 		/*
3043 		 * Change also bqfd->bio_bfqq, as
3044 		 * bfqd->bio_bic now points to new_bfqq, and
3045 		 * this function may be invoked again (and then may
3046 		 * use again bqfd->bio_bfqq).
3047 		 */
3048 		bfqd->bio_bfqq = bfqq;
3049 	}
3050 
3051 	return bfqq == RQ_BFQQ(rq);
3052 }
3053 
3054 /*
3055  * Set the maximum time for the in-service queue to consume its
3056  * budget. This prevents seeky processes from lowering the throughput.
3057  * In practice, a time-slice service scheme is used with seeky
3058  * processes.
3059  */
3060 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3061 				   struct bfq_queue *bfqq)
3062 {
3063 	unsigned int timeout_coeff;
3064 
3065 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3066 		timeout_coeff = 1;
3067 	else
3068 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3069 
3070 	bfqd->last_budget_start = ktime_get();
3071 
3072 	bfqq->budget_timeout = jiffies +
3073 		bfqd->bfq_timeout * timeout_coeff;
3074 }
3075 
3076 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3077 				       struct bfq_queue *bfqq)
3078 {
3079 	if (bfqq) {
3080 		bfq_clear_bfqq_fifo_expire(bfqq);
3081 
3082 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3083 
3084 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3085 		    bfqq->wr_coeff > 1 &&
3086 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3087 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3088 			/*
3089 			 * For soft real-time queues, move the start
3090 			 * of the weight-raising period forward by the
3091 			 * time the queue has not received any
3092 			 * service. Otherwise, a relatively long
3093 			 * service delay is likely to cause the
3094 			 * weight-raising period of the queue to end,
3095 			 * because of the short duration of the
3096 			 * weight-raising period of a soft real-time
3097 			 * queue.  It is worth noting that this move
3098 			 * is not so dangerous for the other queues,
3099 			 * because soft real-time queues are not
3100 			 * greedy.
3101 			 *
3102 			 * To not add a further variable, we use the
3103 			 * overloaded field budget_timeout to
3104 			 * determine for how long the queue has not
3105 			 * received service, i.e., how much time has
3106 			 * elapsed since the queue expired. However,
3107 			 * this is a little imprecise, because
3108 			 * budget_timeout is set to jiffies if bfqq
3109 			 * not only expires, but also remains with no
3110 			 * request.
3111 			 */
3112 			if (time_after(bfqq->budget_timeout,
3113 				       bfqq->last_wr_start_finish))
3114 				bfqq->last_wr_start_finish +=
3115 					jiffies - bfqq->budget_timeout;
3116 			else
3117 				bfqq->last_wr_start_finish = jiffies;
3118 		}
3119 
3120 		bfq_set_budget_timeout(bfqd, bfqq);
3121 		bfq_log_bfqq(bfqd, bfqq,
3122 			     "set_in_service_queue, cur-budget = %d",
3123 			     bfqq->entity.budget);
3124 	}
3125 
3126 	bfqd->in_service_queue = bfqq;
3127 	bfqd->in_serv_last_pos = 0;
3128 }
3129 
3130 /*
3131  * Get and set a new queue for service.
3132  */
3133 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3134 {
3135 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3136 
3137 	__bfq_set_in_service_queue(bfqd, bfqq);
3138 	return bfqq;
3139 }
3140 
3141 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3142 {
3143 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3144 	u32 sl;
3145 
3146 	bfq_mark_bfqq_wait_request(bfqq);
3147 
3148 	/*
3149 	 * We don't want to idle for seeks, but we do want to allow
3150 	 * fair distribution of slice time for a process doing back-to-back
3151 	 * seeks. So allow a little bit of time for him to submit a new rq.
3152 	 */
3153 	sl = bfqd->bfq_slice_idle;
3154 	/*
3155 	 * Unless the queue is being weight-raised or the scenario is
3156 	 * asymmetric, grant only minimum idle time if the queue
3157 	 * is seeky. A long idling is preserved for a weight-raised
3158 	 * queue, or, more in general, in an asymmetric scenario,
3159 	 * because a long idling is needed for guaranteeing to a queue
3160 	 * its reserved share of the throughput (in particular, it is
3161 	 * needed if the queue has a higher weight than some other
3162 	 * queue).
3163 	 */
3164 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3165 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3166 		sl = min_t(u64, sl, BFQ_MIN_TT);
3167 	else if (bfqq->wr_coeff > 1)
3168 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3169 
3170 	bfqd->last_idling_start = ktime_get();
3171 	bfqd->last_idling_start_jiffies = jiffies;
3172 
3173 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3174 		      HRTIMER_MODE_REL);
3175 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3176 }
3177 
3178 /*
3179  * In autotuning mode, max_budget is dynamically recomputed as the
3180  * amount of sectors transferred in timeout at the estimated peak
3181  * rate. This enables BFQ to utilize a full timeslice with a full
3182  * budget, even if the in-service queue is served at peak rate. And
3183  * this maximises throughput with sequential workloads.
3184  */
3185 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3186 {
3187 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3188 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3189 }
3190 
3191 /*
3192  * Update parameters related to throughput and responsiveness, as a
3193  * function of the estimated peak rate. See comments on
3194  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3195  */
3196 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3197 {
3198 	if (bfqd->bfq_user_max_budget == 0) {
3199 		bfqd->bfq_max_budget =
3200 			bfq_calc_max_budget(bfqd);
3201 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3202 	}
3203 }
3204 
3205 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3206 				       struct request *rq)
3207 {
3208 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3209 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3210 		bfqd->peak_rate_samples = 1;
3211 		bfqd->sequential_samples = 0;
3212 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3213 			blk_rq_sectors(rq);
3214 	} else /* no new rq dispatched, just reset the number of samples */
3215 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3216 
3217 	bfq_log(bfqd,
3218 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3219 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3220 		bfqd->tot_sectors_dispatched);
3221 }
3222 
3223 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3224 {
3225 	u32 rate, weight, divisor;
3226 
3227 	/*
3228 	 * For the convergence property to hold (see comments on
3229 	 * bfq_update_peak_rate()) and for the assessment to be
3230 	 * reliable, a minimum number of samples must be present, and
3231 	 * a minimum amount of time must have elapsed. If not so, do
3232 	 * not compute new rate. Just reset parameters, to get ready
3233 	 * for a new evaluation attempt.
3234 	 */
3235 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3236 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3237 		goto reset_computation;
3238 
3239 	/*
3240 	 * If a new request completion has occurred after last
3241 	 * dispatch, then, to approximate the rate at which requests
3242 	 * have been served by the device, it is more precise to
3243 	 * extend the observation interval to the last completion.
3244 	 */
3245 	bfqd->delta_from_first =
3246 		max_t(u64, bfqd->delta_from_first,
3247 		      bfqd->last_completion - bfqd->first_dispatch);
3248 
3249 	/*
3250 	 * Rate computed in sects/usec, and not sects/nsec, for
3251 	 * precision issues.
3252 	 */
3253 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3254 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3255 
3256 	/*
3257 	 * Peak rate not updated if:
3258 	 * - the percentage of sequential dispatches is below 3/4 of the
3259 	 *   total, and rate is below the current estimated peak rate
3260 	 * - rate is unreasonably high (> 20M sectors/sec)
3261 	 */
3262 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3263 	     rate <= bfqd->peak_rate) ||
3264 		rate > 20<<BFQ_RATE_SHIFT)
3265 		goto reset_computation;
3266 
3267 	/*
3268 	 * We have to update the peak rate, at last! To this purpose,
3269 	 * we use a low-pass filter. We compute the smoothing constant
3270 	 * of the filter as a function of the 'weight' of the new
3271 	 * measured rate.
3272 	 *
3273 	 * As can be seen in next formulas, we define this weight as a
3274 	 * quantity proportional to how sequential the workload is,
3275 	 * and to how long the observation time interval is.
3276 	 *
3277 	 * The weight runs from 0 to 8. The maximum value of the
3278 	 * weight, 8, yields the minimum value for the smoothing
3279 	 * constant. At this minimum value for the smoothing constant,
3280 	 * the measured rate contributes for half of the next value of
3281 	 * the estimated peak rate.
3282 	 *
3283 	 * So, the first step is to compute the weight as a function
3284 	 * of how sequential the workload is. Note that the weight
3285 	 * cannot reach 9, because bfqd->sequential_samples cannot
3286 	 * become equal to bfqd->peak_rate_samples, which, in its
3287 	 * turn, holds true because bfqd->sequential_samples is not
3288 	 * incremented for the first sample.
3289 	 */
3290 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3291 
3292 	/*
3293 	 * Second step: further refine the weight as a function of the
3294 	 * duration of the observation interval.
3295 	 */
3296 	weight = min_t(u32, 8,
3297 		       div_u64(weight * bfqd->delta_from_first,
3298 			       BFQ_RATE_REF_INTERVAL));
3299 
3300 	/*
3301 	 * Divisor ranging from 10, for minimum weight, to 2, for
3302 	 * maximum weight.
3303 	 */
3304 	divisor = 10 - weight;
3305 
3306 	/*
3307 	 * Finally, update peak rate:
3308 	 *
3309 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3310 	 */
3311 	bfqd->peak_rate *= divisor-1;
3312 	bfqd->peak_rate /= divisor;
3313 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3314 
3315 	bfqd->peak_rate += rate;
3316 
3317 	/*
3318 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3319 	 * the minimum representable values reported in the comments
3320 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3321 	 * divisions by zero where bfqd->peak_rate is used as a
3322 	 * divisor.
3323 	 */
3324 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3325 
3326 	update_thr_responsiveness_params(bfqd);
3327 
3328 reset_computation:
3329 	bfq_reset_rate_computation(bfqd, rq);
3330 }
3331 
3332 /*
3333  * Update the read/write peak rate (the main quantity used for
3334  * auto-tuning, see update_thr_responsiveness_params()).
3335  *
3336  * It is not trivial to estimate the peak rate (correctly): because of
3337  * the presence of sw and hw queues between the scheduler and the
3338  * device components that finally serve I/O requests, it is hard to
3339  * say exactly when a given dispatched request is served inside the
3340  * device, and for how long. As a consequence, it is hard to know
3341  * precisely at what rate a given set of requests is actually served
3342  * by the device.
3343  *
3344  * On the opposite end, the dispatch time of any request is trivially
3345  * available, and, from this piece of information, the "dispatch rate"
3346  * of requests can be immediately computed. So, the idea in the next
3347  * function is to use what is known, namely request dispatch times
3348  * (plus, when useful, request completion times), to estimate what is
3349  * unknown, namely in-device request service rate.
3350  *
3351  * The main issue is that, because of the above facts, the rate at
3352  * which a certain set of requests is dispatched over a certain time
3353  * interval can vary greatly with respect to the rate at which the
3354  * same requests are then served. But, since the size of any
3355  * intermediate queue is limited, and the service scheme is lossless
3356  * (no request is silently dropped), the following obvious convergence
3357  * property holds: the number of requests dispatched MUST become
3358  * closer and closer to the number of requests completed as the
3359  * observation interval grows. This is the key property used in
3360  * the next function to estimate the peak service rate as a function
3361  * of the observed dispatch rate. The function assumes to be invoked
3362  * on every request dispatch.
3363  */
3364 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3365 {
3366 	u64 now_ns = ktime_get_ns();
3367 
3368 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3369 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3370 			bfqd->peak_rate_samples);
3371 		bfq_reset_rate_computation(bfqd, rq);
3372 		goto update_last_values; /* will add one sample */
3373 	}
3374 
3375 	/*
3376 	 * Device idle for very long: the observation interval lasting
3377 	 * up to this dispatch cannot be a valid observation interval
3378 	 * for computing a new peak rate (similarly to the late-
3379 	 * completion event in bfq_completed_request()). Go to
3380 	 * update_rate_and_reset to have the following three steps
3381 	 * taken:
3382 	 * - close the observation interval at the last (previous)
3383 	 *   request dispatch or completion
3384 	 * - compute rate, if possible, for that observation interval
3385 	 * - start a new observation interval with this dispatch
3386 	 */
3387 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3388 	    bfqd->rq_in_driver == 0)
3389 		goto update_rate_and_reset;
3390 
3391 	/* Update sampling information */
3392 	bfqd->peak_rate_samples++;
3393 
3394 	if ((bfqd->rq_in_driver > 0 ||
3395 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3396 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3397 		bfqd->sequential_samples++;
3398 
3399 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3400 
3401 	/* Reset max observed rq size every 32 dispatches */
3402 	if (likely(bfqd->peak_rate_samples % 32))
3403 		bfqd->last_rq_max_size =
3404 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3405 	else
3406 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3407 
3408 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3409 
3410 	/* Target observation interval not yet reached, go on sampling */
3411 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3412 		goto update_last_values;
3413 
3414 update_rate_and_reset:
3415 	bfq_update_rate_reset(bfqd, rq);
3416 update_last_values:
3417 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3418 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3419 		bfqd->in_serv_last_pos = bfqd->last_position;
3420 	bfqd->last_dispatch = now_ns;
3421 }
3422 
3423 /*
3424  * Remove request from internal lists.
3425  */
3426 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3427 {
3428 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3429 
3430 	/*
3431 	 * For consistency, the next instruction should have been
3432 	 * executed after removing the request from the queue and
3433 	 * dispatching it.  We execute instead this instruction before
3434 	 * bfq_remove_request() (and hence introduce a temporary
3435 	 * inconsistency), for efficiency.  In fact, should this
3436 	 * dispatch occur for a non in-service bfqq, this anticipated
3437 	 * increment prevents two counters related to bfqq->dispatched
3438 	 * from risking to be, first, uselessly decremented, and then
3439 	 * incremented again when the (new) value of bfqq->dispatched
3440 	 * happens to be taken into account.
3441 	 */
3442 	bfqq->dispatched++;
3443 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3444 
3445 	bfq_remove_request(q, rq);
3446 }
3447 
3448 /*
3449  * There is a case where idling does not have to be performed for
3450  * throughput concerns, but to preserve the throughput share of
3451  * the process associated with bfqq.
3452  *
3453  * To introduce this case, we can note that allowing the drive
3454  * to enqueue more than one request at a time, and hence
3455  * delegating de facto final scheduling decisions to the
3456  * drive's internal scheduler, entails loss of control on the
3457  * actual request service order. In particular, the critical
3458  * situation is when requests from different processes happen
3459  * to be present, at the same time, in the internal queue(s)
3460  * of the drive. In such a situation, the drive, by deciding
3461  * the service order of the internally-queued requests, does
3462  * determine also the actual throughput distribution among
3463  * these processes. But the drive typically has no notion or
3464  * concern about per-process throughput distribution, and
3465  * makes its decisions only on a per-request basis. Therefore,
3466  * the service distribution enforced by the drive's internal
3467  * scheduler is likely to coincide with the desired throughput
3468  * distribution only in a completely symmetric, or favorably
3469  * skewed scenario where:
3470  * (i-a) each of these processes must get the same throughput as
3471  *	 the others,
3472  * (i-b) in case (i-a) does not hold, it holds that the process
3473  *       associated with bfqq must receive a lower or equal
3474  *	 throughput than any of the other processes;
3475  * (ii)  the I/O of each process has the same properties, in
3476  *       terms of locality (sequential or random), direction
3477  *       (reads or writes), request sizes, greediness
3478  *       (from I/O-bound to sporadic), and so on;
3479 
3480  * In fact, in such a scenario, the drive tends to treat the requests
3481  * of each process in about the same way as the requests of the
3482  * others, and thus to provide each of these processes with about the
3483  * same throughput.  This is exactly the desired throughput
3484  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3485  * even more convenient distribution for (the process associated with)
3486  * bfqq.
3487  *
3488  * In contrast, in any asymmetric or unfavorable scenario, device
3489  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3490  * that bfqq receives its assigned fraction of the device throughput
3491  * (see [1] for details).
3492  *
3493  * The problem is that idling may significantly reduce throughput with
3494  * certain combinations of types of I/O and devices. An important
3495  * example is sync random I/O on flash storage with command
3496  * queueing. So, unless bfqq falls in cases where idling also boosts
3497  * throughput, it is important to check conditions (i-a), i(-b) and
3498  * (ii) accurately, so as to avoid idling when not strictly needed for
3499  * service guarantees.
3500  *
3501  * Unfortunately, it is extremely difficult to thoroughly check
3502  * condition (ii). And, in case there are active groups, it becomes
3503  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3504  * if there are active groups, then, for conditions (i-a) or (i-b) to
3505  * become false 'indirectly', it is enough that an active group
3506  * contains more active processes or sub-groups than some other active
3507  * group. More precisely, for conditions (i-a) or (i-b) to become
3508  * false because of such a group, it is not even necessary that the
3509  * group is (still) active: it is sufficient that, even if the group
3510  * has become inactive, some of its descendant processes still have
3511  * some request already dispatched but still waiting for
3512  * completion. In fact, requests have still to be guaranteed their
3513  * share of the throughput even after being dispatched. In this
3514  * respect, it is easy to show that, if a group frequently becomes
3515  * inactive while still having in-flight requests, and if, when this
3516  * happens, the group is not considered in the calculation of whether
3517  * the scenario is asymmetric, then the group may fail to be
3518  * guaranteed its fair share of the throughput (basically because
3519  * idling may not be performed for the descendant processes of the
3520  * group, but it had to be).  We address this issue with the following
3521  * bi-modal behavior, implemented in the function
3522  * bfq_asymmetric_scenario().
3523  *
3524  * If there are groups with requests waiting for completion
3525  * (as commented above, some of these groups may even be
3526  * already inactive), then the scenario is tagged as
3527  * asymmetric, conservatively, without checking any of the
3528  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3529  * This behavior matches also the fact that groups are created
3530  * exactly if controlling I/O is a primary concern (to
3531  * preserve bandwidth and latency guarantees).
3532  *
3533  * On the opposite end, if there are no groups with requests waiting
3534  * for completion, then only conditions (i-a) and (i-b) are actually
3535  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3536  * idling is not performed, regardless of whether condition (ii)
3537  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3538  * hold, then idling is allowed, and the device tends to be prevented
3539  * from queueing many requests, possibly of several processes. Since
3540  * there are no groups with requests waiting for completion, then, to
3541  * control conditions (i-a) and (i-b) it is enough to check just
3542  * whether all the queues with requests waiting for completion also
3543  * have the same weight.
3544  *
3545  * Not checking condition (ii) evidently exposes bfqq to the
3546  * risk of getting less throughput than its fair share.
3547  * However, for queues with the same weight, a further
3548  * mechanism, preemption, mitigates or even eliminates this
3549  * problem. And it does so without consequences on overall
3550  * throughput. This mechanism and its benefits are explained
3551  * in the next three paragraphs.
3552  *
3553  * Even if a queue, say Q, is expired when it remains idle, Q
3554  * can still preempt the new in-service queue if the next
3555  * request of Q arrives soon (see the comments on
3556  * bfq_bfqq_update_budg_for_activation). If all queues and
3557  * groups have the same weight, this form of preemption,
3558  * combined with the hole-recovery heuristic described in the
3559  * comments on function bfq_bfqq_update_budg_for_activation,
3560  * are enough to preserve a correct bandwidth distribution in
3561  * the mid term, even without idling. In fact, even if not
3562  * idling allows the internal queues of the device to contain
3563  * many requests, and thus to reorder requests, we can rather
3564  * safely assume that the internal scheduler still preserves a
3565  * minimum of mid-term fairness.
3566  *
3567  * More precisely, this preemption-based, idleless approach
3568  * provides fairness in terms of IOPS, and not sectors per
3569  * second. This can be seen with a simple example. Suppose
3570  * that there are two queues with the same weight, but that
3571  * the first queue receives requests of 8 sectors, while the
3572  * second queue receives requests of 1024 sectors. In
3573  * addition, suppose that each of the two queues contains at
3574  * most one request at a time, which implies that each queue
3575  * always remains idle after it is served. Finally, after
3576  * remaining idle, each queue receives very quickly a new
3577  * request. It follows that the two queues are served
3578  * alternatively, preempting each other if needed. This
3579  * implies that, although both queues have the same weight,
3580  * the queue with large requests receives a service that is
3581  * 1024/8 times as high as the service received by the other
3582  * queue.
3583  *
3584  * The motivation for using preemption instead of idling (for
3585  * queues with the same weight) is that, by not idling,
3586  * service guarantees are preserved (completely or at least in
3587  * part) without minimally sacrificing throughput. And, if
3588  * there is no active group, then the primary expectation for
3589  * this device is probably a high throughput.
3590  *
3591  * We are now left only with explaining the two sub-conditions in the
3592  * additional compound condition that is checked below for deciding
3593  * whether the scenario is asymmetric. To explain the first
3594  * sub-condition, we need to add that the function
3595  * bfq_asymmetric_scenario checks the weights of only
3596  * non-weight-raised queues, for efficiency reasons (see comments on
3597  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3598  * is checked explicitly here. More precisely, the compound condition
3599  * below takes into account also the fact that, even if bfqq is being
3600  * weight-raised, the scenario is still symmetric if all queues with
3601  * requests waiting for completion happen to be
3602  * weight-raised. Actually, we should be even more precise here, and
3603  * differentiate between interactive weight raising and soft real-time
3604  * weight raising.
3605  *
3606  * The second sub-condition checked in the compound condition is
3607  * whether there is a fair amount of already in-flight I/O not
3608  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3609  * following reason. The drive may decide to serve in-flight
3610  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3611  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3612  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3613  * basically uncontrolled amount of I/O from other queues may be
3614  * dispatched too, possibly causing the service of bfqq's I/O to be
3615  * delayed even longer in the drive. This problem gets more and more
3616  * serious as the speed and the queue depth of the drive grow,
3617  * because, as these two quantities grow, the probability to find no
3618  * queue busy but many requests in flight grows too. By contrast,
3619  * plugging I/O dispatching minimizes the delay induced by already
3620  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3621  * lose because of this delay.
3622  *
3623  * As a side note, it is worth considering that the above
3624  * device-idling countermeasures may however fail in the following
3625  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3626  * in a time period during which all symmetry sub-conditions hold, and
3627  * therefore the device is allowed to enqueue many requests, but at
3628  * some later point in time some sub-condition stops to hold, then it
3629  * may become impossible to make requests be served in the desired
3630  * order until all the requests already queued in the device have been
3631  * served. The last sub-condition commented above somewhat mitigates
3632  * this problem for weight-raised queues.
3633  *
3634  * However, as an additional mitigation for this problem, we preserve
3635  * plugging for a special symmetric case that may suddenly turn into
3636  * asymmetric: the case where only bfqq is busy. In this case, not
3637  * expiring bfqq does not cause any harm to any other queues in terms
3638  * of service guarantees. In contrast, it avoids the following unlucky
3639  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3640  * lower weight than bfqq becomes busy (or more queues), (3) the new
3641  * queue is served until a new request arrives for bfqq, (4) when bfqq
3642  * is finally served, there are so many requests of the new queue in
3643  * the drive that the pending requests for bfqq take a lot of time to
3644  * be served. In particular, event (2) may case even already
3645  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3646  * avoid this series of events, the scenario is preventively declared
3647  * as asymmetric also if bfqq is the only busy queues
3648  */
3649 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3650 						 struct bfq_queue *bfqq)
3651 {
3652 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3653 
3654 	/* No point in idling for bfqq if it won't get requests any longer */
3655 	if (unlikely(!bfqq_process_refs(bfqq)))
3656 		return false;
3657 
3658 	return (bfqq->wr_coeff > 1 &&
3659 		(bfqd->wr_busy_queues <
3660 		 tot_busy_queues ||
3661 		 bfqd->rq_in_driver >=
3662 		 bfqq->dispatched + 4)) ||
3663 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3664 		tot_busy_queues == 1;
3665 }
3666 
3667 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3668 			      enum bfqq_expiration reason)
3669 {
3670 	/*
3671 	 * If this bfqq is shared between multiple processes, check
3672 	 * to make sure that those processes are still issuing I/Os
3673 	 * within the mean seek distance. If not, it may be time to
3674 	 * break the queues apart again.
3675 	 */
3676 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3677 		bfq_mark_bfqq_split_coop(bfqq);
3678 
3679 	/*
3680 	 * Consider queues with a higher finish virtual time than
3681 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3682 	 * true, then bfqq's bandwidth would be violated if an
3683 	 * uncontrolled amount of I/O from these queues were
3684 	 * dispatched while bfqq is waiting for its new I/O to
3685 	 * arrive. This is exactly what may happen if this is a forced
3686 	 * expiration caused by a preemption attempt, and if bfqq is
3687 	 * not re-scheduled. To prevent this from happening, re-queue
3688 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3689 	 * empty. By doing so, bfqq is granted to be served before the
3690 	 * above queues (provided that bfqq is of course eligible).
3691 	 */
3692 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3693 	    !(reason == BFQQE_PREEMPTED &&
3694 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3695 		if (bfqq->dispatched == 0)
3696 			/*
3697 			 * Overloading budget_timeout field to store
3698 			 * the time at which the queue remains with no
3699 			 * backlog and no outstanding request; used by
3700 			 * the weight-raising mechanism.
3701 			 */
3702 			bfqq->budget_timeout = jiffies;
3703 
3704 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3705 	} else {
3706 		bfq_requeue_bfqq(bfqd, bfqq, true);
3707 		/*
3708 		 * Resort priority tree of potential close cooperators.
3709 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3710 		 */
3711 		if (unlikely(!bfqd->nonrot_with_queueing &&
3712 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3713 			bfq_pos_tree_add_move(bfqd, bfqq);
3714 	}
3715 
3716 	/*
3717 	 * All in-service entities must have been properly deactivated
3718 	 * or requeued before executing the next function, which
3719 	 * resets all in-service entities as no more in service. This
3720 	 * may cause bfqq to be freed. If this happens, the next
3721 	 * function returns true.
3722 	 */
3723 	return __bfq_bfqd_reset_in_service(bfqd);
3724 }
3725 
3726 /**
3727  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3728  * @bfqd: device data.
3729  * @bfqq: queue to update.
3730  * @reason: reason for expiration.
3731  *
3732  * Handle the feedback on @bfqq budget at queue expiration.
3733  * See the body for detailed comments.
3734  */
3735 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3736 				     struct bfq_queue *bfqq,
3737 				     enum bfqq_expiration reason)
3738 {
3739 	struct request *next_rq;
3740 	int budget, min_budget;
3741 
3742 	min_budget = bfq_min_budget(bfqd);
3743 
3744 	if (bfqq->wr_coeff == 1)
3745 		budget = bfqq->max_budget;
3746 	else /*
3747 	      * Use a constant, low budget for weight-raised queues,
3748 	      * to help achieve a low latency. Keep it slightly higher
3749 	      * than the minimum possible budget, to cause a little
3750 	      * bit fewer expirations.
3751 	      */
3752 		budget = 2 * min_budget;
3753 
3754 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3755 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3756 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3757 		budget, bfq_min_budget(bfqd));
3758 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3759 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3760 
3761 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3762 		switch (reason) {
3763 		/*
3764 		 * Caveat: in all the following cases we trade latency
3765 		 * for throughput.
3766 		 */
3767 		case BFQQE_TOO_IDLE:
3768 			/*
3769 			 * This is the only case where we may reduce
3770 			 * the budget: if there is no request of the
3771 			 * process still waiting for completion, then
3772 			 * we assume (tentatively) that the timer has
3773 			 * expired because the batch of requests of
3774 			 * the process could have been served with a
3775 			 * smaller budget.  Hence, betting that
3776 			 * process will behave in the same way when it
3777 			 * becomes backlogged again, we reduce its
3778 			 * next budget.  As long as we guess right,
3779 			 * this budget cut reduces the latency
3780 			 * experienced by the process.
3781 			 *
3782 			 * However, if there are still outstanding
3783 			 * requests, then the process may have not yet
3784 			 * issued its next request just because it is
3785 			 * still waiting for the completion of some of
3786 			 * the still outstanding ones.  So in this
3787 			 * subcase we do not reduce its budget, on the
3788 			 * contrary we increase it to possibly boost
3789 			 * the throughput, as discussed in the
3790 			 * comments to the BUDGET_TIMEOUT case.
3791 			 */
3792 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3793 				budget = min(budget * 2, bfqd->bfq_max_budget);
3794 			else {
3795 				if (budget > 5 * min_budget)
3796 					budget -= 4 * min_budget;
3797 				else
3798 					budget = min_budget;
3799 			}
3800 			break;
3801 		case BFQQE_BUDGET_TIMEOUT:
3802 			/*
3803 			 * We double the budget here because it gives
3804 			 * the chance to boost the throughput if this
3805 			 * is not a seeky process (and has bumped into
3806 			 * this timeout because of, e.g., ZBR).
3807 			 */
3808 			budget = min(budget * 2, bfqd->bfq_max_budget);
3809 			break;
3810 		case BFQQE_BUDGET_EXHAUSTED:
3811 			/*
3812 			 * The process still has backlog, and did not
3813 			 * let either the budget timeout or the disk
3814 			 * idling timeout expire. Hence it is not
3815 			 * seeky, has a short thinktime and may be
3816 			 * happy with a higher budget too. So
3817 			 * definitely increase the budget of this good
3818 			 * candidate to boost the disk throughput.
3819 			 */
3820 			budget = min(budget * 4, bfqd->bfq_max_budget);
3821 			break;
3822 		case BFQQE_NO_MORE_REQUESTS:
3823 			/*
3824 			 * For queues that expire for this reason, it
3825 			 * is particularly important to keep the
3826 			 * budget close to the actual service they
3827 			 * need. Doing so reduces the timestamp
3828 			 * misalignment problem described in the
3829 			 * comments in the body of
3830 			 * __bfq_activate_entity. In fact, suppose
3831 			 * that a queue systematically expires for
3832 			 * BFQQE_NO_MORE_REQUESTS and presents a
3833 			 * new request in time to enjoy timestamp
3834 			 * back-shifting. The larger the budget of the
3835 			 * queue is with respect to the service the
3836 			 * queue actually requests in each service
3837 			 * slot, the more times the queue can be
3838 			 * reactivated with the same virtual finish
3839 			 * time. It follows that, even if this finish
3840 			 * time is pushed to the system virtual time
3841 			 * to reduce the consequent timestamp
3842 			 * misalignment, the queue unjustly enjoys for
3843 			 * many re-activations a lower finish time
3844 			 * than all newly activated queues.
3845 			 *
3846 			 * The service needed by bfqq is measured
3847 			 * quite precisely by bfqq->entity.service.
3848 			 * Since bfqq does not enjoy device idling,
3849 			 * bfqq->entity.service is equal to the number
3850 			 * of sectors that the process associated with
3851 			 * bfqq requested to read/write before waiting
3852 			 * for request completions, or blocking for
3853 			 * other reasons.
3854 			 */
3855 			budget = max_t(int, bfqq->entity.service, min_budget);
3856 			break;
3857 		default:
3858 			return;
3859 		}
3860 	} else if (!bfq_bfqq_sync(bfqq)) {
3861 		/*
3862 		 * Async queues get always the maximum possible
3863 		 * budget, as for them we do not care about latency
3864 		 * (in addition, their ability to dispatch is limited
3865 		 * by the charging factor).
3866 		 */
3867 		budget = bfqd->bfq_max_budget;
3868 	}
3869 
3870 	bfqq->max_budget = budget;
3871 
3872 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3873 	    !bfqd->bfq_user_max_budget)
3874 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3875 
3876 	/*
3877 	 * If there is still backlog, then assign a new budget, making
3878 	 * sure that it is large enough for the next request.  Since
3879 	 * the finish time of bfqq must be kept in sync with the
3880 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3881 	 * update.
3882 	 *
3883 	 * If there is no backlog, then no need to update the budget;
3884 	 * it will be updated on the arrival of a new request.
3885 	 */
3886 	next_rq = bfqq->next_rq;
3887 	if (next_rq)
3888 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3889 					    bfq_serv_to_charge(next_rq, bfqq));
3890 
3891 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3892 			next_rq ? blk_rq_sectors(next_rq) : 0,
3893 			bfqq->entity.budget);
3894 }
3895 
3896 /*
3897  * Return true if the process associated with bfqq is "slow". The slow
3898  * flag is used, in addition to the budget timeout, to reduce the
3899  * amount of service provided to seeky processes, and thus reduce
3900  * their chances to lower the throughput. More details in the comments
3901  * on the function bfq_bfqq_expire().
3902  *
3903  * An important observation is in order: as discussed in the comments
3904  * on the function bfq_update_peak_rate(), with devices with internal
3905  * queues, it is hard if ever possible to know when and for how long
3906  * an I/O request is processed by the device (apart from the trivial
3907  * I/O pattern where a new request is dispatched only after the
3908  * previous one has been completed). This makes it hard to evaluate
3909  * the real rate at which the I/O requests of each bfq_queue are
3910  * served.  In fact, for an I/O scheduler like BFQ, serving a
3911  * bfq_queue means just dispatching its requests during its service
3912  * slot (i.e., until the budget of the queue is exhausted, or the
3913  * queue remains idle, or, finally, a timeout fires). But, during the
3914  * service slot of a bfq_queue, around 100 ms at most, the device may
3915  * be even still processing requests of bfq_queues served in previous
3916  * service slots. On the opposite end, the requests of the in-service
3917  * bfq_queue may be completed after the service slot of the queue
3918  * finishes.
3919  *
3920  * Anyway, unless more sophisticated solutions are used
3921  * (where possible), the sum of the sizes of the requests dispatched
3922  * during the service slot of a bfq_queue is probably the only
3923  * approximation available for the service received by the bfq_queue
3924  * during its service slot. And this sum is the quantity used in this
3925  * function to evaluate the I/O speed of a process.
3926  */
3927 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3928 				 bool compensate, enum bfqq_expiration reason,
3929 				 unsigned long *delta_ms)
3930 {
3931 	ktime_t delta_ktime;
3932 	u32 delta_usecs;
3933 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3934 
3935 	if (!bfq_bfqq_sync(bfqq))
3936 		return false;
3937 
3938 	if (compensate)
3939 		delta_ktime = bfqd->last_idling_start;
3940 	else
3941 		delta_ktime = ktime_get();
3942 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3943 	delta_usecs = ktime_to_us(delta_ktime);
3944 
3945 	/* don't use too short time intervals */
3946 	if (delta_usecs < 1000) {
3947 		if (blk_queue_nonrot(bfqd->queue))
3948 			 /*
3949 			  * give same worst-case guarantees as idling
3950 			  * for seeky
3951 			  */
3952 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3953 		else /* charge at least one seek */
3954 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3955 
3956 		return slow;
3957 	}
3958 
3959 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3960 
3961 	/*
3962 	 * Use only long (> 20ms) intervals to filter out excessive
3963 	 * spikes in service rate estimation.
3964 	 */
3965 	if (delta_usecs > 20000) {
3966 		/*
3967 		 * Caveat for rotational devices: processes doing I/O
3968 		 * in the slower disk zones tend to be slow(er) even
3969 		 * if not seeky. In this respect, the estimated peak
3970 		 * rate is likely to be an average over the disk
3971 		 * surface. Accordingly, to not be too harsh with
3972 		 * unlucky processes, a process is deemed slow only if
3973 		 * its rate has been lower than half of the estimated
3974 		 * peak rate.
3975 		 */
3976 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3977 	}
3978 
3979 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3980 
3981 	return slow;
3982 }
3983 
3984 /*
3985  * To be deemed as soft real-time, an application must meet two
3986  * requirements. First, the application must not require an average
3987  * bandwidth higher than the approximate bandwidth required to playback or
3988  * record a compressed high-definition video.
3989  * The next function is invoked on the completion of the last request of a
3990  * batch, to compute the next-start time instant, soft_rt_next_start, such
3991  * that, if the next request of the application does not arrive before
3992  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3993  *
3994  * The second requirement is that the request pattern of the application is
3995  * isochronous, i.e., that, after issuing a request or a batch of requests,
3996  * the application stops issuing new requests until all its pending requests
3997  * have been completed. After that, the application may issue a new batch,
3998  * and so on.
3999  * For this reason the next function is invoked to compute
4000  * soft_rt_next_start only for applications that meet this requirement,
4001  * whereas soft_rt_next_start is set to infinity for applications that do
4002  * not.
4003  *
4004  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4005  * happen to meet, occasionally or systematically, both the above
4006  * bandwidth and isochrony requirements. This may happen at least in
4007  * the following circumstances. First, if the CPU load is high. The
4008  * application may stop issuing requests while the CPUs are busy
4009  * serving other processes, then restart, then stop again for a while,
4010  * and so on. The other circumstances are related to the storage
4011  * device: the storage device is highly loaded or reaches a low-enough
4012  * throughput with the I/O of the application (e.g., because the I/O
4013  * is random and/or the device is slow). In all these cases, the
4014  * I/O of the application may be simply slowed down enough to meet
4015  * the bandwidth and isochrony requirements. To reduce the probability
4016  * that greedy applications are deemed as soft real-time in these
4017  * corner cases, a further rule is used in the computation of
4018  * soft_rt_next_start: the return value of this function is forced to
4019  * be higher than the maximum between the following two quantities.
4020  *
4021  * (a) Current time plus: (1) the maximum time for which the arrival
4022  *     of a request is waited for when a sync queue becomes idle,
4023  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4024  *     postpone for a moment the reason for adding a few extra
4025  *     jiffies; we get back to it after next item (b).  Lower-bounding
4026  *     the return value of this function with the current time plus
4027  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4028  *     because the latter issue their next request as soon as possible
4029  *     after the last one has been completed. In contrast, a soft
4030  *     real-time application spends some time processing data, after a
4031  *     batch of its requests has been completed.
4032  *
4033  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4034  *     above, greedy applications may happen to meet both the
4035  *     bandwidth and isochrony requirements under heavy CPU or
4036  *     storage-device load. In more detail, in these scenarios, these
4037  *     applications happen, only for limited time periods, to do I/O
4038  *     slowly enough to meet all the requirements described so far,
4039  *     including the filtering in above item (a). These slow-speed
4040  *     time intervals are usually interspersed between other time
4041  *     intervals during which these applications do I/O at a very high
4042  *     speed. Fortunately, exactly because of the high speed of the
4043  *     I/O in the high-speed intervals, the values returned by this
4044  *     function happen to be so high, near the end of any such
4045  *     high-speed interval, to be likely to fall *after* the end of
4046  *     the low-speed time interval that follows. These high values are
4047  *     stored in bfqq->soft_rt_next_start after each invocation of
4048  *     this function. As a consequence, if the last value of
4049  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4050  *     next value that this function may return, then, from the very
4051  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4052  *     likely to be constantly kept so high that any I/O request
4053  *     issued during the low-speed interval is considered as arriving
4054  *     to soon for the application to be deemed as soft
4055  *     real-time. Then, in the high-speed interval that follows, the
4056  *     application will not be deemed as soft real-time, just because
4057  *     it will do I/O at a high speed. And so on.
4058  *
4059  * Getting back to the filtering in item (a), in the following two
4060  * cases this filtering might be easily passed by a greedy
4061  * application, if the reference quantity was just
4062  * bfqd->bfq_slice_idle:
4063  * 1) HZ is so low that the duration of a jiffy is comparable to or
4064  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4065  *    devices with HZ=100. The time granularity may be so coarse
4066  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4067  *    is rather lower than the exact value.
4068  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4069  *    for a while, then suddenly 'jump' by several units to recover the lost
4070  *    increments. This seems to happen, e.g., inside virtual machines.
4071  * To address this issue, in the filtering in (a) we do not use as a
4072  * reference time interval just bfqd->bfq_slice_idle, but
4073  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4074  * minimum number of jiffies for which the filter seems to be quite
4075  * precise also in embedded systems and KVM/QEMU virtual machines.
4076  */
4077 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4078 						struct bfq_queue *bfqq)
4079 {
4080 	return max3(bfqq->soft_rt_next_start,
4081 		    bfqq->last_idle_bklogged +
4082 		    HZ * bfqq->service_from_backlogged /
4083 		    bfqd->bfq_wr_max_softrt_rate,
4084 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4085 }
4086 
4087 /**
4088  * bfq_bfqq_expire - expire a queue.
4089  * @bfqd: device owning the queue.
4090  * @bfqq: the queue to expire.
4091  * @compensate: if true, compensate for the time spent idling.
4092  * @reason: the reason causing the expiration.
4093  *
4094  * If the process associated with bfqq does slow I/O (e.g., because it
4095  * issues random requests), we charge bfqq with the time it has been
4096  * in service instead of the service it has received (see
4097  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4098  * a consequence, bfqq will typically get higher timestamps upon
4099  * reactivation, and hence it will be rescheduled as if it had
4100  * received more service than what it has actually received. In the
4101  * end, bfqq receives less service in proportion to how slowly its
4102  * associated process consumes its budgets (and hence how seriously it
4103  * tends to lower the throughput). In addition, this time-charging
4104  * strategy guarantees time fairness among slow processes. In
4105  * contrast, if the process associated with bfqq is not slow, we
4106  * charge bfqq exactly with the service it has received.
4107  *
4108  * Charging time to the first type of queues and the exact service to
4109  * the other has the effect of using the WF2Q+ policy to schedule the
4110  * former on a timeslice basis, without violating service domain
4111  * guarantees among the latter.
4112  */
4113 void bfq_bfqq_expire(struct bfq_data *bfqd,
4114 		     struct bfq_queue *bfqq,
4115 		     bool compensate,
4116 		     enum bfqq_expiration reason)
4117 {
4118 	bool slow;
4119 	unsigned long delta = 0;
4120 	struct bfq_entity *entity = &bfqq->entity;
4121 
4122 	/*
4123 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4124 	 */
4125 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4126 
4127 	/*
4128 	 * As above explained, charge slow (typically seeky) and
4129 	 * timed-out queues with the time and not the service
4130 	 * received, to favor sequential workloads.
4131 	 *
4132 	 * Processes doing I/O in the slower disk zones will tend to
4133 	 * be slow(er) even if not seeky. Therefore, since the
4134 	 * estimated peak rate is actually an average over the disk
4135 	 * surface, these processes may timeout just for bad luck. To
4136 	 * avoid punishing them, do not charge time to processes that
4137 	 * succeeded in consuming at least 2/3 of their budget. This
4138 	 * allows BFQ to preserve enough elasticity to still perform
4139 	 * bandwidth, and not time, distribution with little unlucky
4140 	 * or quasi-sequential processes.
4141 	 */
4142 	if (bfqq->wr_coeff == 1 &&
4143 	    (slow ||
4144 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4145 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4146 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4147 
4148 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4149 		bfqq->last_wr_start_finish = jiffies;
4150 
4151 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4152 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4153 		/*
4154 		 * If we get here, and there are no outstanding
4155 		 * requests, then the request pattern is isochronous
4156 		 * (see the comments on the function
4157 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4158 		 * compute soft_rt_next_start.
4159 		 *
4160 		 * If, instead, the queue still has outstanding
4161 		 * requests, then we have to wait for the completion
4162 		 * of all the outstanding requests to discover whether
4163 		 * the request pattern is actually isochronous.
4164 		 */
4165 		if (bfqq->dispatched == 0)
4166 			bfqq->soft_rt_next_start =
4167 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4168 		else if (bfqq->dispatched > 0) {
4169 			/*
4170 			 * Schedule an update of soft_rt_next_start to when
4171 			 * the task may be discovered to be isochronous.
4172 			 */
4173 			bfq_mark_bfqq_softrt_update(bfqq);
4174 		}
4175 	}
4176 
4177 	bfq_log_bfqq(bfqd, bfqq,
4178 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4179 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4180 
4181 	/*
4182 	 * bfqq expired, so no total service time needs to be computed
4183 	 * any longer: reset state machine for measuring total service
4184 	 * times.
4185 	 */
4186 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4187 	bfqd->waited_rq = NULL;
4188 
4189 	/*
4190 	 * Increase, decrease or leave budget unchanged according to
4191 	 * reason.
4192 	 */
4193 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4194 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4195 		/* bfqq is gone, no more actions on it */
4196 		return;
4197 
4198 	/* mark bfqq as waiting a request only if a bic still points to it */
4199 	if (!bfq_bfqq_busy(bfqq) &&
4200 	    reason != BFQQE_BUDGET_TIMEOUT &&
4201 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4202 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4203 		/*
4204 		 * Not setting service to 0, because, if the next rq
4205 		 * arrives in time, the queue will go on receiving
4206 		 * service with this same budget (as if it never expired)
4207 		 */
4208 	} else
4209 		entity->service = 0;
4210 
4211 	/*
4212 	 * Reset the received-service counter for every parent entity.
4213 	 * Differently from what happens with bfqq->entity.service,
4214 	 * the resetting of this counter never needs to be postponed
4215 	 * for parent entities. In fact, in case bfqq may have a
4216 	 * chance to go on being served using the last, partially
4217 	 * consumed budget, bfqq->entity.service needs to be kept,
4218 	 * because if bfqq then actually goes on being served using
4219 	 * the same budget, the last value of bfqq->entity.service is
4220 	 * needed to properly decrement bfqq->entity.budget by the
4221 	 * portion already consumed. In contrast, it is not necessary
4222 	 * to keep entity->service for parent entities too, because
4223 	 * the bubble up of the new value of bfqq->entity.budget will
4224 	 * make sure that the budgets of parent entities are correct,
4225 	 * even in case bfqq and thus parent entities go on receiving
4226 	 * service with the same budget.
4227 	 */
4228 	entity = entity->parent;
4229 	for_each_entity(entity)
4230 		entity->service = 0;
4231 }
4232 
4233 /*
4234  * Budget timeout is not implemented through a dedicated timer, but
4235  * just checked on request arrivals and completions, as well as on
4236  * idle timer expirations.
4237  */
4238 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4239 {
4240 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4241 }
4242 
4243 /*
4244  * If we expire a queue that is actively waiting (i.e., with the
4245  * device idled) for the arrival of a new request, then we may incur
4246  * the timestamp misalignment problem described in the body of the
4247  * function __bfq_activate_entity. Hence we return true only if this
4248  * condition does not hold, or if the queue is slow enough to deserve
4249  * only to be kicked off for preserving a high throughput.
4250  */
4251 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4252 {
4253 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4254 		"may_budget_timeout: wait_request %d left %d timeout %d",
4255 		bfq_bfqq_wait_request(bfqq),
4256 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4257 		bfq_bfqq_budget_timeout(bfqq));
4258 
4259 	return (!bfq_bfqq_wait_request(bfqq) ||
4260 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4261 		&&
4262 		bfq_bfqq_budget_timeout(bfqq);
4263 }
4264 
4265 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4266 					     struct bfq_queue *bfqq)
4267 {
4268 	bool rot_without_queueing =
4269 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4270 		bfqq_sequential_and_IO_bound,
4271 		idling_boosts_thr;
4272 
4273 	/* No point in idling for bfqq if it won't get requests any longer */
4274 	if (unlikely(!bfqq_process_refs(bfqq)))
4275 		return false;
4276 
4277 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4278 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4279 
4280 	/*
4281 	 * The next variable takes into account the cases where idling
4282 	 * boosts the throughput.
4283 	 *
4284 	 * The value of the variable is computed considering, first, that
4285 	 * idling is virtually always beneficial for the throughput if:
4286 	 * (a) the device is not NCQ-capable and rotational, or
4287 	 * (b) regardless of the presence of NCQ, the device is rotational and
4288 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4289 	 * (c) regardless of whether it is rotational, the device is
4290 	 *     not NCQ-capable and the request pattern for bfqq is
4291 	 *     I/O-bound and sequential.
4292 	 *
4293 	 * Secondly, and in contrast to the above item (b), idling an
4294 	 * NCQ-capable flash-based device would not boost the
4295 	 * throughput even with sequential I/O; rather it would lower
4296 	 * the throughput in proportion to how fast the device
4297 	 * is. Accordingly, the next variable is true if any of the
4298 	 * above conditions (a), (b) or (c) is true, and, in
4299 	 * particular, happens to be false if bfqd is an NCQ-capable
4300 	 * flash-based device.
4301 	 */
4302 	idling_boosts_thr = rot_without_queueing ||
4303 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4304 		 bfqq_sequential_and_IO_bound);
4305 
4306 	/*
4307 	 * The return value of this function is equal to that of
4308 	 * idling_boosts_thr, unless a special case holds. In this
4309 	 * special case, described below, idling may cause problems to
4310 	 * weight-raised queues.
4311 	 *
4312 	 * When the request pool is saturated (e.g., in the presence
4313 	 * of write hogs), if the processes associated with
4314 	 * non-weight-raised queues ask for requests at a lower rate,
4315 	 * then processes associated with weight-raised queues have a
4316 	 * higher probability to get a request from the pool
4317 	 * immediately (or at least soon) when they need one. Thus
4318 	 * they have a higher probability to actually get a fraction
4319 	 * of the device throughput proportional to their high
4320 	 * weight. This is especially true with NCQ-capable drives,
4321 	 * which enqueue several requests in advance, and further
4322 	 * reorder internally-queued requests.
4323 	 *
4324 	 * For this reason, we force to false the return value if
4325 	 * there are weight-raised busy queues. In this case, and if
4326 	 * bfqq is not weight-raised, this guarantees that the device
4327 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4328 	 * then idling will be guaranteed by another variable, see
4329 	 * below). Combined with the timestamping rules of BFQ (see
4330 	 * [1] for details), this behavior causes bfqq, and hence any
4331 	 * sync non-weight-raised queue, to get a lower number of
4332 	 * requests served, and thus to ask for a lower number of
4333 	 * requests from the request pool, before the busy
4334 	 * weight-raised queues get served again. This often mitigates
4335 	 * starvation problems in the presence of heavy write
4336 	 * workloads and NCQ, thereby guaranteeing a higher
4337 	 * application and system responsiveness in these hostile
4338 	 * scenarios.
4339 	 */
4340 	return idling_boosts_thr &&
4341 		bfqd->wr_busy_queues == 0;
4342 }
4343 
4344 /*
4345  * For a queue that becomes empty, device idling is allowed only if
4346  * this function returns true for that queue. As a consequence, since
4347  * device idling plays a critical role for both throughput boosting
4348  * and service guarantees, the return value of this function plays a
4349  * critical role as well.
4350  *
4351  * In a nutshell, this function returns true only if idling is
4352  * beneficial for throughput or, even if detrimental for throughput,
4353  * idling is however necessary to preserve service guarantees (low
4354  * latency, desired throughput distribution, ...). In particular, on
4355  * NCQ-capable devices, this function tries to return false, so as to
4356  * help keep the drives' internal queues full, whenever this helps the
4357  * device boost the throughput without causing any service-guarantee
4358  * issue.
4359  *
4360  * Most of the issues taken into account to get the return value of
4361  * this function are not trivial. We discuss these issues in the two
4362  * functions providing the main pieces of information needed by this
4363  * function.
4364  */
4365 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4366 {
4367 	struct bfq_data *bfqd = bfqq->bfqd;
4368 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4369 
4370 	/* No point in idling for bfqq if it won't get requests any longer */
4371 	if (unlikely(!bfqq_process_refs(bfqq)))
4372 		return false;
4373 
4374 	if (unlikely(bfqd->strict_guarantees))
4375 		return true;
4376 
4377 	/*
4378 	 * Idling is performed only if slice_idle > 0. In addition, we
4379 	 * do not idle if
4380 	 * (a) bfqq is async
4381 	 * (b) bfqq is in the idle io prio class: in this case we do
4382 	 * not idle because we want to minimize the bandwidth that
4383 	 * queues in this class can steal to higher-priority queues
4384 	 */
4385 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4386 	   bfq_class_idle(bfqq))
4387 		return false;
4388 
4389 	idling_boosts_thr_with_no_issue =
4390 		idling_boosts_thr_without_issues(bfqd, bfqq);
4391 
4392 	idling_needed_for_service_guar =
4393 		idling_needed_for_service_guarantees(bfqd, bfqq);
4394 
4395 	/*
4396 	 * We have now the two components we need to compute the
4397 	 * return value of the function, which is true only if idling
4398 	 * either boosts the throughput (without issues), or is
4399 	 * necessary to preserve service guarantees.
4400 	 */
4401 	return idling_boosts_thr_with_no_issue ||
4402 		idling_needed_for_service_guar;
4403 }
4404 
4405 /*
4406  * If the in-service queue is empty but the function bfq_better_to_idle
4407  * returns true, then:
4408  * 1) the queue must remain in service and cannot be expired, and
4409  * 2) the device must be idled to wait for the possible arrival of a new
4410  *    request for the queue.
4411  * See the comments on the function bfq_better_to_idle for the reasons
4412  * why performing device idling is the best choice to boost the throughput
4413  * and preserve service guarantees when bfq_better_to_idle itself
4414  * returns true.
4415  */
4416 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4417 {
4418 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4419 }
4420 
4421 /*
4422  * This function chooses the queue from which to pick the next extra
4423  * I/O request to inject, if it finds a compatible queue. See the
4424  * comments on bfq_update_inject_limit() for details on the injection
4425  * mechanism, and for the definitions of the quantities mentioned
4426  * below.
4427  */
4428 static struct bfq_queue *
4429 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4430 {
4431 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4432 	unsigned int limit = in_serv_bfqq->inject_limit;
4433 	/*
4434 	 * If
4435 	 * - bfqq is not weight-raised and therefore does not carry
4436 	 *   time-critical I/O,
4437 	 * or
4438 	 * - regardless of whether bfqq is weight-raised, bfqq has
4439 	 *   however a long think time, during which it can absorb the
4440 	 *   effect of an appropriate number of extra I/O requests
4441 	 *   from other queues (see bfq_update_inject_limit for
4442 	 *   details on the computation of this number);
4443 	 * then injection can be performed without restrictions.
4444 	 */
4445 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4446 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4447 
4448 	/*
4449 	 * If
4450 	 * - the baseline total service time could not be sampled yet,
4451 	 *   so the inject limit happens to be still 0, and
4452 	 * - a lot of time has elapsed since the plugging of I/O
4453 	 *   dispatching started, so drive speed is being wasted
4454 	 *   significantly;
4455 	 * then temporarily raise inject limit to one request.
4456 	 */
4457 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4458 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4459 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4460 				      bfqd->bfq_slice_idle)
4461 		)
4462 		limit = 1;
4463 
4464 	if (bfqd->rq_in_driver >= limit)
4465 		return NULL;
4466 
4467 	/*
4468 	 * Linear search of the source queue for injection; but, with
4469 	 * a high probability, very few steps are needed to find a
4470 	 * candidate queue, i.e., a queue with enough budget left for
4471 	 * its next request. In fact:
4472 	 * - BFQ dynamically updates the budget of every queue so as
4473 	 *   to accommodate the expected backlog of the queue;
4474 	 * - if a queue gets all its requests dispatched as injected
4475 	 *   service, then the queue is removed from the active list
4476 	 *   (and re-added only if it gets new requests, but then it
4477 	 *   is assigned again enough budget for its new backlog).
4478 	 */
4479 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4480 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4481 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4482 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4483 		    bfq_bfqq_budget_left(bfqq)) {
4484 			/*
4485 			 * Allow for only one large in-flight request
4486 			 * on non-rotational devices, for the
4487 			 * following reason. On non-rotationl drives,
4488 			 * large requests take much longer than
4489 			 * smaller requests to be served. In addition,
4490 			 * the drive prefers to serve large requests
4491 			 * w.r.t. to small ones, if it can choose. So,
4492 			 * having more than one large requests queued
4493 			 * in the drive may easily make the next first
4494 			 * request of the in-service queue wait for so
4495 			 * long to break bfqq's service guarantees. On
4496 			 * the bright side, large requests let the
4497 			 * drive reach a very high throughput, even if
4498 			 * there is only one in-flight large request
4499 			 * at a time.
4500 			 */
4501 			if (blk_queue_nonrot(bfqd->queue) &&
4502 			    blk_rq_sectors(bfqq->next_rq) >=
4503 			    BFQQ_SECT_THR_NONROT)
4504 				limit = min_t(unsigned int, 1, limit);
4505 			else
4506 				limit = in_serv_bfqq->inject_limit;
4507 
4508 			if (bfqd->rq_in_driver < limit) {
4509 				bfqd->rqs_injected = true;
4510 				return bfqq;
4511 			}
4512 		}
4513 
4514 	return NULL;
4515 }
4516 
4517 /*
4518  * Select a queue for service.  If we have a current queue in service,
4519  * check whether to continue servicing it, or retrieve and set a new one.
4520  */
4521 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4522 {
4523 	struct bfq_queue *bfqq;
4524 	struct request *next_rq;
4525 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4526 
4527 	bfqq = bfqd->in_service_queue;
4528 	if (!bfqq)
4529 		goto new_queue;
4530 
4531 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4532 
4533 	/*
4534 	 * Do not expire bfqq for budget timeout if bfqq may be about
4535 	 * to enjoy device idling. The reason why, in this case, we
4536 	 * prevent bfqq from expiring is the same as in the comments
4537 	 * on the case where bfq_bfqq_must_idle() returns true, in
4538 	 * bfq_completed_request().
4539 	 */
4540 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4541 	    !bfq_bfqq_must_idle(bfqq))
4542 		goto expire;
4543 
4544 check_queue:
4545 	/*
4546 	 * This loop is rarely executed more than once. Even when it
4547 	 * happens, it is much more convenient to re-execute this loop
4548 	 * than to return NULL and trigger a new dispatch to get a
4549 	 * request served.
4550 	 */
4551 	next_rq = bfqq->next_rq;
4552 	/*
4553 	 * If bfqq has requests queued and it has enough budget left to
4554 	 * serve them, keep the queue, otherwise expire it.
4555 	 */
4556 	if (next_rq) {
4557 		if (bfq_serv_to_charge(next_rq, bfqq) >
4558 			bfq_bfqq_budget_left(bfqq)) {
4559 			/*
4560 			 * Expire the queue for budget exhaustion,
4561 			 * which makes sure that the next budget is
4562 			 * enough to serve the next request, even if
4563 			 * it comes from the fifo expired path.
4564 			 */
4565 			reason = BFQQE_BUDGET_EXHAUSTED;
4566 			goto expire;
4567 		} else {
4568 			/*
4569 			 * The idle timer may be pending because we may
4570 			 * not disable disk idling even when a new request
4571 			 * arrives.
4572 			 */
4573 			if (bfq_bfqq_wait_request(bfqq)) {
4574 				/*
4575 				 * If we get here: 1) at least a new request
4576 				 * has arrived but we have not disabled the
4577 				 * timer because the request was too small,
4578 				 * 2) then the block layer has unplugged
4579 				 * the device, causing the dispatch to be
4580 				 * invoked.
4581 				 *
4582 				 * Since the device is unplugged, now the
4583 				 * requests are probably large enough to
4584 				 * provide a reasonable throughput.
4585 				 * So we disable idling.
4586 				 */
4587 				bfq_clear_bfqq_wait_request(bfqq);
4588 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4589 			}
4590 			goto keep_queue;
4591 		}
4592 	}
4593 
4594 	/*
4595 	 * No requests pending. However, if the in-service queue is idling
4596 	 * for a new request, or has requests waiting for a completion and
4597 	 * may idle after their completion, then keep it anyway.
4598 	 *
4599 	 * Yet, inject service from other queues if it boosts
4600 	 * throughput and is possible.
4601 	 */
4602 	if (bfq_bfqq_wait_request(bfqq) ||
4603 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4604 		struct bfq_queue *async_bfqq =
4605 			bfqq->bic && bfqq->bic->bfqq[0] &&
4606 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4607 			bfqq->bic->bfqq[0]->next_rq ?
4608 			bfqq->bic->bfqq[0] : NULL;
4609 		struct bfq_queue *blocked_bfqq =
4610 			!hlist_empty(&bfqq->woken_list) ?
4611 			container_of(bfqq->woken_list.first,
4612 				     struct bfq_queue,
4613 				     woken_list_node)
4614 			: NULL;
4615 
4616 		/*
4617 		 * The next four mutually-exclusive ifs decide
4618 		 * whether to try injection, and choose the queue to
4619 		 * pick an I/O request from.
4620 		 *
4621 		 * The first if checks whether the process associated
4622 		 * with bfqq has also async I/O pending. If so, it
4623 		 * injects such I/O unconditionally. Injecting async
4624 		 * I/O from the same process can cause no harm to the
4625 		 * process. On the contrary, it can only increase
4626 		 * bandwidth and reduce latency for the process.
4627 		 *
4628 		 * The second if checks whether there happens to be a
4629 		 * non-empty waker queue for bfqq, i.e., a queue whose
4630 		 * I/O needs to be completed for bfqq to receive new
4631 		 * I/O. This happens, e.g., if bfqq is associated with
4632 		 * a process that does some sync. A sync generates
4633 		 * extra blocking I/O, which must be completed before
4634 		 * the process associated with bfqq can go on with its
4635 		 * I/O. If the I/O of the waker queue is not served,
4636 		 * then bfqq remains empty, and no I/O is dispatched,
4637 		 * until the idle timeout fires for bfqq. This is
4638 		 * likely to result in lower bandwidth and higher
4639 		 * latencies for bfqq, and in a severe loss of total
4640 		 * throughput. The best action to take is therefore to
4641 		 * serve the waker queue as soon as possible. So do it
4642 		 * (without relying on the third alternative below for
4643 		 * eventually serving waker_bfqq's I/O; see the last
4644 		 * paragraph for further details). This systematic
4645 		 * injection of I/O from the waker queue does not
4646 		 * cause any delay to bfqq's I/O. On the contrary,
4647 		 * next bfqq's I/O is brought forward dramatically,
4648 		 * for it is not blocked for milliseconds.
4649 		 *
4650 		 * The third if checks whether there is a queue woken
4651 		 * by bfqq, and currently with pending I/O. Such a
4652 		 * woken queue does not steal bandwidth from bfqq,
4653 		 * because it remains soon without I/O if bfqq is not
4654 		 * served. So there is virtually no risk of loss of
4655 		 * bandwidth for bfqq if this woken queue has I/O
4656 		 * dispatched while bfqq is waiting for new I/O.
4657 		 *
4658 		 * The fourth if checks whether bfqq is a queue for
4659 		 * which it is better to avoid injection. It is so if
4660 		 * bfqq delivers more throughput when served without
4661 		 * any further I/O from other queues in the middle, or
4662 		 * if the service times of bfqq's I/O requests both
4663 		 * count more than overall throughput, and may be
4664 		 * easily increased by injection (this happens if bfqq
4665 		 * has a short think time). If none of these
4666 		 * conditions holds, then a candidate queue for
4667 		 * injection is looked for through
4668 		 * bfq_choose_bfqq_for_injection(). Note that the
4669 		 * latter may return NULL (for example if the inject
4670 		 * limit for bfqq is currently 0).
4671 		 *
4672 		 * NOTE: motivation for the second alternative
4673 		 *
4674 		 * Thanks to the way the inject limit is updated in
4675 		 * bfq_update_has_short_ttime(), it is rather likely
4676 		 * that, if I/O is being plugged for bfqq and the
4677 		 * waker queue has pending I/O requests that are
4678 		 * blocking bfqq's I/O, then the fourth alternative
4679 		 * above lets the waker queue get served before the
4680 		 * I/O-plugging timeout fires. So one may deem the
4681 		 * second alternative superfluous. It is not, because
4682 		 * the fourth alternative may be way less effective in
4683 		 * case of a synchronization. For two main
4684 		 * reasons. First, throughput may be low because the
4685 		 * inject limit may be too low to guarantee the same
4686 		 * amount of injected I/O, from the waker queue or
4687 		 * other queues, that the second alternative
4688 		 * guarantees (the second alternative unconditionally
4689 		 * injects a pending I/O request of the waker queue
4690 		 * for each bfq_dispatch_request()). Second, with the
4691 		 * fourth alternative, the duration of the plugging,
4692 		 * i.e., the time before bfqq finally receives new I/O,
4693 		 * may not be minimized, because the waker queue may
4694 		 * happen to be served only after other queues.
4695 		 */
4696 		if (async_bfqq &&
4697 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4698 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4699 		    bfq_bfqq_budget_left(async_bfqq))
4700 			bfqq = bfqq->bic->bfqq[0];
4701 		else if (bfqq->waker_bfqq &&
4702 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4703 			   bfqq->waker_bfqq->next_rq &&
4704 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4705 					      bfqq->waker_bfqq) <=
4706 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4707 			)
4708 			bfqq = bfqq->waker_bfqq;
4709 		else if (blocked_bfqq &&
4710 			   bfq_bfqq_busy(blocked_bfqq) &&
4711 			   blocked_bfqq->next_rq &&
4712 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
4713 					      blocked_bfqq) <=
4714 			   bfq_bfqq_budget_left(blocked_bfqq)
4715 			)
4716 			bfqq = blocked_bfqq;
4717 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4718 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4719 			  !bfq_bfqq_has_short_ttime(bfqq)))
4720 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4721 		else
4722 			bfqq = NULL;
4723 
4724 		goto keep_queue;
4725 	}
4726 
4727 	reason = BFQQE_NO_MORE_REQUESTS;
4728 expire:
4729 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4730 new_queue:
4731 	bfqq = bfq_set_in_service_queue(bfqd);
4732 	if (bfqq) {
4733 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4734 		goto check_queue;
4735 	}
4736 keep_queue:
4737 	if (bfqq)
4738 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4739 	else
4740 		bfq_log(bfqd, "select_queue: no queue returned");
4741 
4742 	return bfqq;
4743 }
4744 
4745 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4746 {
4747 	struct bfq_entity *entity = &bfqq->entity;
4748 
4749 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4750 		bfq_log_bfqq(bfqd, bfqq,
4751 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4752 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4753 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4754 			bfqq->wr_coeff,
4755 			bfqq->entity.weight, bfqq->entity.orig_weight);
4756 
4757 		if (entity->prio_changed)
4758 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4759 
4760 		/*
4761 		 * If the queue was activated in a burst, or too much
4762 		 * time has elapsed from the beginning of this
4763 		 * weight-raising period, then end weight raising.
4764 		 */
4765 		if (bfq_bfqq_in_large_burst(bfqq))
4766 			bfq_bfqq_end_wr(bfqq);
4767 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4768 						bfqq->wr_cur_max_time)) {
4769 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4770 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4771 					       bfq_wr_duration(bfqd))) {
4772 				/*
4773 				 * Either in interactive weight
4774 				 * raising, or in soft_rt weight
4775 				 * raising with the
4776 				 * interactive-weight-raising period
4777 				 * elapsed (so no switch back to
4778 				 * interactive weight raising).
4779 				 */
4780 				bfq_bfqq_end_wr(bfqq);
4781 			} else { /*
4782 				  * soft_rt finishing while still in
4783 				  * interactive period, switch back to
4784 				  * interactive weight raising
4785 				  */
4786 				switch_back_to_interactive_wr(bfqq, bfqd);
4787 				bfqq->entity.prio_changed = 1;
4788 			}
4789 		}
4790 		if (bfqq->wr_coeff > 1 &&
4791 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4792 		    bfqq->service_from_wr > max_service_from_wr) {
4793 			/* see comments on max_service_from_wr */
4794 			bfq_bfqq_end_wr(bfqq);
4795 		}
4796 	}
4797 	/*
4798 	 * To improve latency (for this or other queues), immediately
4799 	 * update weight both if it must be raised and if it must be
4800 	 * lowered. Since, entity may be on some active tree here, and
4801 	 * might have a pending change of its ioprio class, invoke
4802 	 * next function with the last parameter unset (see the
4803 	 * comments on the function).
4804 	 */
4805 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4806 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4807 						entity, false);
4808 }
4809 
4810 /*
4811  * Dispatch next request from bfqq.
4812  */
4813 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4814 						 struct bfq_queue *bfqq)
4815 {
4816 	struct request *rq = bfqq->next_rq;
4817 	unsigned long service_to_charge;
4818 
4819 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4820 
4821 	bfq_bfqq_served(bfqq, service_to_charge);
4822 
4823 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4824 		bfqd->wait_dispatch = false;
4825 		bfqd->waited_rq = rq;
4826 	}
4827 
4828 	bfq_dispatch_remove(bfqd->queue, rq);
4829 
4830 	if (bfqq != bfqd->in_service_queue)
4831 		goto return_rq;
4832 
4833 	/*
4834 	 * If weight raising has to terminate for bfqq, then next
4835 	 * function causes an immediate update of bfqq's weight,
4836 	 * without waiting for next activation. As a consequence, on
4837 	 * expiration, bfqq will be timestamped as if has never been
4838 	 * weight-raised during this service slot, even if it has
4839 	 * received part or even most of the service as a
4840 	 * weight-raised queue. This inflates bfqq's timestamps, which
4841 	 * is beneficial, as bfqq is then more willing to leave the
4842 	 * device immediately to possible other weight-raised queues.
4843 	 */
4844 	bfq_update_wr_data(bfqd, bfqq);
4845 
4846 	/*
4847 	 * Expire bfqq, pretending that its budget expired, if bfqq
4848 	 * belongs to CLASS_IDLE and other queues are waiting for
4849 	 * service.
4850 	 */
4851 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4852 		goto return_rq;
4853 
4854 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4855 
4856 return_rq:
4857 	return rq;
4858 }
4859 
4860 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4861 {
4862 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4863 
4864 	/*
4865 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4866 	 * most a call to dispatch for nothing
4867 	 */
4868 	return !list_empty_careful(&bfqd->dispatch) ||
4869 		bfq_tot_busy_queues(bfqd) > 0;
4870 }
4871 
4872 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4873 {
4874 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4875 	struct request *rq = NULL;
4876 	struct bfq_queue *bfqq = NULL;
4877 
4878 	if (!list_empty(&bfqd->dispatch)) {
4879 		rq = list_first_entry(&bfqd->dispatch, struct request,
4880 				      queuelist);
4881 		list_del_init(&rq->queuelist);
4882 
4883 		bfqq = RQ_BFQQ(rq);
4884 
4885 		if (bfqq) {
4886 			/*
4887 			 * Increment counters here, because this
4888 			 * dispatch does not follow the standard
4889 			 * dispatch flow (where counters are
4890 			 * incremented)
4891 			 */
4892 			bfqq->dispatched++;
4893 
4894 			goto inc_in_driver_start_rq;
4895 		}
4896 
4897 		/*
4898 		 * We exploit the bfq_finish_requeue_request hook to
4899 		 * decrement rq_in_driver, but
4900 		 * bfq_finish_requeue_request will not be invoked on
4901 		 * this request. So, to avoid unbalance, just start
4902 		 * this request, without incrementing rq_in_driver. As
4903 		 * a negative consequence, rq_in_driver is deceptively
4904 		 * lower than it should be while this request is in
4905 		 * service. This may cause bfq_schedule_dispatch to be
4906 		 * invoked uselessly.
4907 		 *
4908 		 * As for implementing an exact solution, the
4909 		 * bfq_finish_requeue_request hook, if defined, is
4910 		 * probably invoked also on this request. So, by
4911 		 * exploiting this hook, we could 1) increment
4912 		 * rq_in_driver here, and 2) decrement it in
4913 		 * bfq_finish_requeue_request. Such a solution would
4914 		 * let the value of the counter be always accurate,
4915 		 * but it would entail using an extra interface
4916 		 * function. This cost seems higher than the benefit,
4917 		 * being the frequency of non-elevator-private
4918 		 * requests very low.
4919 		 */
4920 		goto start_rq;
4921 	}
4922 
4923 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4924 		bfq_tot_busy_queues(bfqd));
4925 
4926 	if (bfq_tot_busy_queues(bfqd) == 0)
4927 		goto exit;
4928 
4929 	/*
4930 	 * Force device to serve one request at a time if
4931 	 * strict_guarantees is true. Forcing this service scheme is
4932 	 * currently the ONLY way to guarantee that the request
4933 	 * service order enforced by the scheduler is respected by a
4934 	 * queueing device. Otherwise the device is free even to make
4935 	 * some unlucky request wait for as long as the device
4936 	 * wishes.
4937 	 *
4938 	 * Of course, serving one request at a time may cause loss of
4939 	 * throughput.
4940 	 */
4941 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4942 		goto exit;
4943 
4944 	bfqq = bfq_select_queue(bfqd);
4945 	if (!bfqq)
4946 		goto exit;
4947 
4948 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4949 
4950 	if (rq) {
4951 inc_in_driver_start_rq:
4952 		bfqd->rq_in_driver++;
4953 start_rq:
4954 		rq->rq_flags |= RQF_STARTED;
4955 	}
4956 exit:
4957 	return rq;
4958 }
4959 
4960 #ifdef CONFIG_BFQ_CGROUP_DEBUG
4961 static void bfq_update_dispatch_stats(struct request_queue *q,
4962 				      struct request *rq,
4963 				      struct bfq_queue *in_serv_queue,
4964 				      bool idle_timer_disabled)
4965 {
4966 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4967 
4968 	if (!idle_timer_disabled && !bfqq)
4969 		return;
4970 
4971 	/*
4972 	 * rq and bfqq are guaranteed to exist until this function
4973 	 * ends, for the following reasons. First, rq can be
4974 	 * dispatched to the device, and then can be completed and
4975 	 * freed, only after this function ends. Second, rq cannot be
4976 	 * merged (and thus freed because of a merge) any longer,
4977 	 * because it has already started. Thus rq cannot be freed
4978 	 * before this function ends, and, since rq has a reference to
4979 	 * bfqq, the same guarantee holds for bfqq too.
4980 	 *
4981 	 * In addition, the following queue lock guarantees that
4982 	 * bfqq_group(bfqq) exists as well.
4983 	 */
4984 	spin_lock_irq(&q->queue_lock);
4985 	if (idle_timer_disabled)
4986 		/*
4987 		 * Since the idle timer has been disabled,
4988 		 * in_serv_queue contained some request when
4989 		 * __bfq_dispatch_request was invoked above, which
4990 		 * implies that rq was picked exactly from
4991 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4992 		 * therefore guaranteed to exist because of the above
4993 		 * arguments.
4994 		 */
4995 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4996 	if (bfqq) {
4997 		struct bfq_group *bfqg = bfqq_group(bfqq);
4998 
4999 		bfqg_stats_update_avg_queue_size(bfqg);
5000 		bfqg_stats_set_start_empty_time(bfqg);
5001 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5002 	}
5003 	spin_unlock_irq(&q->queue_lock);
5004 }
5005 #else
5006 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5007 					     struct request *rq,
5008 					     struct bfq_queue *in_serv_queue,
5009 					     bool idle_timer_disabled) {}
5010 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5011 
5012 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5013 {
5014 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5015 	struct request *rq;
5016 	struct bfq_queue *in_serv_queue;
5017 	bool waiting_rq, idle_timer_disabled;
5018 
5019 	spin_lock_irq(&bfqd->lock);
5020 
5021 	in_serv_queue = bfqd->in_service_queue;
5022 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5023 
5024 	rq = __bfq_dispatch_request(hctx);
5025 
5026 	idle_timer_disabled =
5027 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5028 
5029 	spin_unlock_irq(&bfqd->lock);
5030 
5031 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
5032 				  idle_timer_disabled);
5033 
5034 	return rq;
5035 }
5036 
5037 /*
5038  * Task holds one reference to the queue, dropped when task exits.  Each rq
5039  * in-flight on this queue also holds a reference, dropped when rq is freed.
5040  *
5041  * Scheduler lock must be held here. Recall not to use bfqq after calling
5042  * this function on it.
5043  */
5044 void bfq_put_queue(struct bfq_queue *bfqq)
5045 {
5046 	struct bfq_queue *item;
5047 	struct hlist_node *n;
5048 	struct bfq_group *bfqg = bfqq_group(bfqq);
5049 
5050 	if (bfqq->bfqd)
5051 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
5052 			     bfqq, bfqq->ref);
5053 
5054 	bfqq->ref--;
5055 	if (bfqq->ref)
5056 		return;
5057 
5058 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5059 		hlist_del_init(&bfqq->burst_list_node);
5060 		/*
5061 		 * Decrement also burst size after the removal, if the
5062 		 * process associated with bfqq is exiting, and thus
5063 		 * does not contribute to the burst any longer. This
5064 		 * decrement helps filter out false positives of large
5065 		 * bursts, when some short-lived process (often due to
5066 		 * the execution of commands by some service) happens
5067 		 * to start and exit while a complex application is
5068 		 * starting, and thus spawning several processes that
5069 		 * do I/O (and that *must not* be treated as a large
5070 		 * burst, see comments on bfq_handle_burst).
5071 		 *
5072 		 * In particular, the decrement is performed only if:
5073 		 * 1) bfqq is not a merged queue, because, if it is,
5074 		 * then this free of bfqq is not triggered by the exit
5075 		 * of the process bfqq is associated with, but exactly
5076 		 * by the fact that bfqq has just been merged.
5077 		 * 2) burst_size is greater than 0, to handle
5078 		 * unbalanced decrements. Unbalanced decrements may
5079 		 * happen in te following case: bfqq is inserted into
5080 		 * the current burst list--without incrementing
5081 		 * bust_size--because of a split, but the current
5082 		 * burst list is not the burst list bfqq belonged to
5083 		 * (see comments on the case of a split in
5084 		 * bfq_set_request).
5085 		 */
5086 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5087 			bfqq->bfqd->burst_size--;
5088 	}
5089 
5090 	/*
5091 	 * bfqq does not exist any longer, so it cannot be woken by
5092 	 * any other queue, and cannot wake any other queue. Then bfqq
5093 	 * must be removed from the woken list of its possible waker
5094 	 * queue, and all queues in the woken list of bfqq must stop
5095 	 * having a waker queue. Strictly speaking, these updates
5096 	 * should be performed when bfqq remains with no I/O source
5097 	 * attached to it, which happens before bfqq gets freed. In
5098 	 * particular, this happens when the last process associated
5099 	 * with bfqq exits or gets associated with a different
5100 	 * queue. However, both events lead to bfqq being freed soon,
5101 	 * and dangling references would come out only after bfqq gets
5102 	 * freed. So these updates are done here, as a simple and safe
5103 	 * way to handle all cases.
5104 	 */
5105 	/* remove bfqq from woken list */
5106 	if (!hlist_unhashed(&bfqq->woken_list_node))
5107 		hlist_del_init(&bfqq->woken_list_node);
5108 
5109 	/* reset waker for all queues in woken list */
5110 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5111 				  woken_list_node) {
5112 		item->waker_bfqq = NULL;
5113 		hlist_del_init(&item->woken_list_node);
5114 	}
5115 
5116 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5117 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5118 
5119 	kmem_cache_free(bfq_pool, bfqq);
5120 	bfqg_and_blkg_put(bfqg);
5121 }
5122 
5123 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5124 {
5125 	bfqq->stable_ref--;
5126 	bfq_put_queue(bfqq);
5127 }
5128 
5129 static void bfq_put_cooperator(struct bfq_queue *bfqq)
5130 {
5131 	struct bfq_queue *__bfqq, *next;
5132 
5133 	/*
5134 	 * If this queue was scheduled to merge with another queue, be
5135 	 * sure to drop the reference taken on that queue (and others in
5136 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5137 	 */
5138 	__bfqq = bfqq->new_bfqq;
5139 	while (__bfqq) {
5140 		if (__bfqq == bfqq)
5141 			break;
5142 		next = __bfqq->new_bfqq;
5143 		bfq_put_queue(__bfqq);
5144 		__bfqq = next;
5145 	}
5146 }
5147 
5148 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5149 {
5150 	if (bfqq == bfqd->in_service_queue) {
5151 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5152 		bfq_schedule_dispatch(bfqd);
5153 	}
5154 
5155 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5156 
5157 	bfq_put_cooperator(bfqq);
5158 
5159 	bfq_release_process_ref(bfqd, bfqq);
5160 }
5161 
5162 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5163 {
5164 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5165 	struct bfq_data *bfqd;
5166 
5167 	if (bfqq)
5168 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5169 
5170 	if (bfqq && bfqd) {
5171 		unsigned long flags;
5172 
5173 		spin_lock_irqsave(&bfqd->lock, flags);
5174 		bfqq->bic = NULL;
5175 		bfq_exit_bfqq(bfqd, bfqq);
5176 		bic_set_bfqq(bic, NULL, is_sync);
5177 		spin_unlock_irqrestore(&bfqd->lock, flags);
5178 	}
5179 }
5180 
5181 static void bfq_exit_icq(struct io_cq *icq)
5182 {
5183 	struct bfq_io_cq *bic = icq_to_bic(icq);
5184 
5185 	if (bic->stable_merge_bfqq) {
5186 		struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5187 
5188 		/*
5189 		 * bfqd is NULL if scheduler already exited, and in
5190 		 * that case this is the last time bfqq is accessed.
5191 		 */
5192 		if (bfqd) {
5193 			unsigned long flags;
5194 
5195 			spin_lock_irqsave(&bfqd->lock, flags);
5196 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5197 			spin_unlock_irqrestore(&bfqd->lock, flags);
5198 		} else {
5199 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5200 		}
5201 	}
5202 
5203 	bfq_exit_icq_bfqq(bic, true);
5204 	bfq_exit_icq_bfqq(bic, false);
5205 }
5206 
5207 /*
5208  * Update the entity prio values; note that the new values will not
5209  * be used until the next (re)activation.
5210  */
5211 static void
5212 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5213 {
5214 	struct task_struct *tsk = current;
5215 	int ioprio_class;
5216 	struct bfq_data *bfqd = bfqq->bfqd;
5217 
5218 	if (!bfqd)
5219 		return;
5220 
5221 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5222 	switch (ioprio_class) {
5223 	default:
5224 		pr_err("bdi %s: bfq: bad prio class %d\n",
5225 				bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
5226 				ioprio_class);
5227 		fallthrough;
5228 	case IOPRIO_CLASS_NONE:
5229 		/*
5230 		 * No prio set, inherit CPU scheduling settings.
5231 		 */
5232 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5233 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5234 		break;
5235 	case IOPRIO_CLASS_RT:
5236 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5237 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5238 		break;
5239 	case IOPRIO_CLASS_BE:
5240 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5241 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5242 		break;
5243 	case IOPRIO_CLASS_IDLE:
5244 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5245 		bfqq->new_ioprio = 7;
5246 		break;
5247 	}
5248 
5249 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5250 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5251 			bfqq->new_ioprio);
5252 		bfqq->new_ioprio = IOPRIO_BE_NR;
5253 	}
5254 
5255 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5256 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5257 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5258 	bfqq->entity.prio_changed = 1;
5259 }
5260 
5261 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5262 				       struct bio *bio, bool is_sync,
5263 				       struct bfq_io_cq *bic,
5264 				       bool respawn);
5265 
5266 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5267 {
5268 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5269 	struct bfq_queue *bfqq;
5270 	int ioprio = bic->icq.ioc->ioprio;
5271 
5272 	/*
5273 	 * This condition may trigger on a newly created bic, be sure to
5274 	 * drop the lock before returning.
5275 	 */
5276 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5277 		return;
5278 
5279 	bic->ioprio = ioprio;
5280 
5281 	bfqq = bic_to_bfqq(bic, false);
5282 	if (bfqq) {
5283 		bfq_release_process_ref(bfqd, bfqq);
5284 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic, true);
5285 		bic_set_bfqq(bic, bfqq, false);
5286 	}
5287 
5288 	bfqq = bic_to_bfqq(bic, true);
5289 	if (bfqq)
5290 		bfq_set_next_ioprio_data(bfqq, bic);
5291 }
5292 
5293 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5294 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5295 {
5296 	u64 now_ns = ktime_get_ns();
5297 
5298 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5299 	INIT_LIST_HEAD(&bfqq->fifo);
5300 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5301 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5302 	INIT_HLIST_HEAD(&bfqq->woken_list);
5303 
5304 	bfqq->ref = 0;
5305 	bfqq->bfqd = bfqd;
5306 
5307 	if (bic)
5308 		bfq_set_next_ioprio_data(bfqq, bic);
5309 
5310 	if (is_sync) {
5311 		/*
5312 		 * No need to mark as has_short_ttime if in
5313 		 * idle_class, because no device idling is performed
5314 		 * for queues in idle class
5315 		 */
5316 		if (!bfq_class_idle(bfqq))
5317 			/* tentatively mark as has_short_ttime */
5318 			bfq_mark_bfqq_has_short_ttime(bfqq);
5319 		bfq_mark_bfqq_sync(bfqq);
5320 		bfq_mark_bfqq_just_created(bfqq);
5321 	} else
5322 		bfq_clear_bfqq_sync(bfqq);
5323 
5324 	/* set end request to minus infinity from now */
5325 	bfqq->ttime.last_end_request = now_ns + 1;
5326 
5327 	bfqq->creation_time = jiffies;
5328 
5329 	bfqq->io_start_time = now_ns;
5330 
5331 	bfq_mark_bfqq_IO_bound(bfqq);
5332 
5333 	bfqq->pid = pid;
5334 
5335 	/* Tentative initial value to trade off between thr and lat */
5336 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5337 	bfqq->budget_timeout = bfq_smallest_from_now();
5338 
5339 	bfqq->wr_coeff = 1;
5340 	bfqq->last_wr_start_finish = jiffies;
5341 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5342 	bfqq->split_time = bfq_smallest_from_now();
5343 
5344 	/*
5345 	 * To not forget the possibly high bandwidth consumed by a
5346 	 * process/queue in the recent past,
5347 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5348 	 * to the current value of bfqq->soft_rt_next_start (see
5349 	 * comments on bfq_bfqq_softrt_next_start).  Set
5350 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5351 	 * no bandwidth so far.
5352 	 */
5353 	bfqq->soft_rt_next_start = jiffies;
5354 
5355 	/* first request is almost certainly seeky */
5356 	bfqq->seek_history = 1;
5357 }
5358 
5359 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5360 					       struct bfq_group *bfqg,
5361 					       int ioprio_class, int ioprio)
5362 {
5363 	switch (ioprio_class) {
5364 	case IOPRIO_CLASS_RT:
5365 		return &bfqg->async_bfqq[0][ioprio];
5366 	case IOPRIO_CLASS_NONE:
5367 		ioprio = IOPRIO_NORM;
5368 		fallthrough;
5369 	case IOPRIO_CLASS_BE:
5370 		return &bfqg->async_bfqq[1][ioprio];
5371 	case IOPRIO_CLASS_IDLE:
5372 		return &bfqg->async_idle_bfqq;
5373 	default:
5374 		return NULL;
5375 	}
5376 }
5377 
5378 static struct bfq_queue *
5379 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5380 			  struct bfq_io_cq *bic,
5381 			  struct bfq_queue *last_bfqq_created)
5382 {
5383 	struct bfq_queue *new_bfqq =
5384 		bfq_setup_merge(bfqq, last_bfqq_created);
5385 
5386 	if (!new_bfqq)
5387 		return bfqq;
5388 
5389 	if (new_bfqq->bic)
5390 		new_bfqq->bic->stably_merged = true;
5391 	bic->stably_merged = true;
5392 
5393 	/*
5394 	 * Reusing merge functions. This implies that
5395 	 * bfqq->bic must be set too, for
5396 	 * bfq_merge_bfqqs to correctly save bfqq's
5397 	 * state before killing it.
5398 	 */
5399 	bfqq->bic = bic;
5400 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5401 
5402 	return new_bfqq;
5403 }
5404 
5405 /*
5406  * Many throughput-sensitive workloads are made of several parallel
5407  * I/O flows, with all flows generated by the same application, or
5408  * more generically by the same task (e.g., system boot). The most
5409  * counterproductive action with these workloads is plugging I/O
5410  * dispatch when one of the bfq_queues associated with these flows
5411  * remains temporarily empty.
5412  *
5413  * To avoid this plugging, BFQ has been using a burst-handling
5414  * mechanism for years now. This mechanism has proven effective for
5415  * throughput, and not detrimental for service guarantees. The
5416  * following function pushes this mechanism a little bit further,
5417  * basing on the following two facts.
5418  *
5419  * First, all the I/O flows of a the same application or task
5420  * contribute to the execution/completion of that common application
5421  * or task. So the performance figures that matter are total
5422  * throughput of the flows and task-wide I/O latency.  In particular,
5423  * these flows do not need to be protected from each other, in terms
5424  * of individual bandwidth or latency.
5425  *
5426  * Second, the above fact holds regardless of the number of flows.
5427  *
5428  * Putting these two facts together, this commits merges stably the
5429  * bfq_queues associated with these I/O flows, i.e., with the
5430  * processes that generate these IO/ flows, regardless of how many the
5431  * involved processes are.
5432  *
5433  * To decide whether a set of bfq_queues is actually associated with
5434  * the I/O flows of a common application or task, and to merge these
5435  * queues stably, this function operates as follows: given a bfq_queue,
5436  * say Q2, currently being created, and the last bfq_queue, say Q1,
5437  * created before Q2, Q2 is merged stably with Q1 if
5438  * - very little time has elapsed since when Q1 was created
5439  * - Q2 has the same ioprio as Q1
5440  * - Q2 belongs to the same group as Q1
5441  *
5442  * Merging bfq_queues also reduces scheduling overhead. A fio test
5443  * with ten random readers on /dev/nullb shows a throughput boost of
5444  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5445  * the total per-request processing time, the above throughput boost
5446  * implies that BFQ's overhead is reduced by more than 50%.
5447  *
5448  * This new mechanism most certainly obsoletes the current
5449  * burst-handling heuristics. We keep those heuristics for the moment.
5450  */
5451 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5452 						      struct bfq_queue *bfqq,
5453 						      struct bfq_io_cq *bic)
5454 {
5455 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5456 		&bfqq->entity.parent->last_bfqq_created :
5457 		&bfqd->last_bfqq_created;
5458 
5459 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5460 
5461 	/*
5462 	 * If last_bfqq_created has not been set yet, then init it. If
5463 	 * it has been set already, but too long ago, then move it
5464 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5465 	 * different group than last_bfqq_created, or if bfqq has a
5466 	 * different ioprio or ioprio_class. If none of these
5467 	 * conditions holds true, then try an early stable merge or
5468 	 * schedule a delayed stable merge.
5469 	 *
5470 	 * A delayed merge is scheduled (instead of performing an
5471 	 * early merge), in case bfqq might soon prove to be more
5472 	 * throughput-beneficial if not merged. Currently this is
5473 	 * possible only if bfqd is rotational with no queueing. For
5474 	 * such a drive, not merging bfqq is better for throughput if
5475 	 * bfqq happens to contain sequential I/O. So, we wait a
5476 	 * little bit for enough I/O to flow through bfqq. After that,
5477 	 * if such an I/O is sequential, then the merge is
5478 	 * canceled. Otherwise the merge is finally performed.
5479 	 */
5480 	if (!last_bfqq_created ||
5481 	    time_before(last_bfqq_created->creation_time +
5482 			bfqd->bfq_burst_interval,
5483 			bfqq->creation_time) ||
5484 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5485 		bfqq->ioprio != last_bfqq_created->ioprio ||
5486 		bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5487 		*source_bfqq = bfqq;
5488 	else if (time_after_eq(last_bfqq_created->creation_time +
5489 				 bfqd->bfq_burst_interval,
5490 				 bfqq->creation_time)) {
5491 		if (likely(bfqd->nonrot_with_queueing))
5492 			/*
5493 			 * With this type of drive, leaving
5494 			 * bfqq alone may provide no
5495 			 * throughput benefits compared with
5496 			 * merging bfqq. So merge bfqq now.
5497 			 */
5498 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5499 							 bic,
5500 							 last_bfqq_created);
5501 		else { /* schedule tentative stable merge */
5502 			/*
5503 			 * get reference on last_bfqq_created,
5504 			 * to prevent it from being freed,
5505 			 * until we decide whether to merge
5506 			 */
5507 			last_bfqq_created->ref++;
5508 			/*
5509 			 * need to keep track of stable refs, to
5510 			 * compute process refs correctly
5511 			 */
5512 			last_bfqq_created->stable_ref++;
5513 			/*
5514 			 * Record the bfqq to merge to.
5515 			 */
5516 			bic->stable_merge_bfqq = last_bfqq_created;
5517 		}
5518 	}
5519 
5520 	return bfqq;
5521 }
5522 
5523 
5524 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5525 				       struct bio *bio, bool is_sync,
5526 				       struct bfq_io_cq *bic,
5527 				       bool respawn)
5528 {
5529 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5530 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5531 	struct bfq_queue **async_bfqq = NULL;
5532 	struct bfq_queue *bfqq;
5533 	struct bfq_group *bfqg;
5534 
5535 	rcu_read_lock();
5536 
5537 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
5538 	if (!bfqg) {
5539 		bfqq = &bfqd->oom_bfqq;
5540 		goto out;
5541 	}
5542 
5543 	if (!is_sync) {
5544 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5545 						  ioprio);
5546 		bfqq = *async_bfqq;
5547 		if (bfqq)
5548 			goto out;
5549 	}
5550 
5551 	bfqq = kmem_cache_alloc_node(bfq_pool,
5552 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5553 				     bfqd->queue->node);
5554 
5555 	if (bfqq) {
5556 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5557 			      is_sync);
5558 		bfq_init_entity(&bfqq->entity, bfqg);
5559 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5560 	} else {
5561 		bfqq = &bfqd->oom_bfqq;
5562 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5563 		goto out;
5564 	}
5565 
5566 	/*
5567 	 * Pin the queue now that it's allocated, scheduler exit will
5568 	 * prune it.
5569 	 */
5570 	if (async_bfqq) {
5571 		bfqq->ref++; /*
5572 			      * Extra group reference, w.r.t. sync
5573 			      * queue. This extra reference is removed
5574 			      * only if bfqq->bfqg disappears, to
5575 			      * guarantee that this queue is not freed
5576 			      * until its group goes away.
5577 			      */
5578 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5579 			     bfqq, bfqq->ref);
5580 		*async_bfqq = bfqq;
5581 	}
5582 
5583 out:
5584 	bfqq->ref++; /* get a process reference to this queue */
5585 
5586 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5587 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5588 
5589 	rcu_read_unlock();
5590 	return bfqq;
5591 }
5592 
5593 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5594 				    struct bfq_queue *bfqq)
5595 {
5596 	struct bfq_ttime *ttime = &bfqq->ttime;
5597 	u64 elapsed;
5598 
5599 	/*
5600 	 * We are really interested in how long it takes for the queue to
5601 	 * become busy when there is no outstanding IO for this queue. So
5602 	 * ignore cases when the bfq queue has already IO queued.
5603 	 */
5604 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5605 		return;
5606 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5607 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5608 
5609 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5610 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5611 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5612 				     ttime->ttime_samples);
5613 }
5614 
5615 static void
5616 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5617 		       struct request *rq)
5618 {
5619 	bfqq->seek_history <<= 1;
5620 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5621 
5622 	if (bfqq->wr_coeff > 1 &&
5623 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5624 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5625 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5626 					   bfq_wr_duration(bfqd))) {
5627 			/*
5628 			 * In soft_rt weight raising with the
5629 			 * interactive-weight-raising period
5630 			 * elapsed (so no switch back to
5631 			 * interactive weight raising).
5632 			 */
5633 			bfq_bfqq_end_wr(bfqq);
5634 		} else { /*
5635 			  * stopping soft_rt weight raising
5636 			  * while still in interactive period,
5637 			  * switch back to interactive weight
5638 			  * raising
5639 			  */
5640 			switch_back_to_interactive_wr(bfqq, bfqd);
5641 			bfqq->entity.prio_changed = 1;
5642 		}
5643 	}
5644 }
5645 
5646 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5647 				       struct bfq_queue *bfqq,
5648 				       struct bfq_io_cq *bic)
5649 {
5650 	bool has_short_ttime = true, state_changed;
5651 
5652 	/*
5653 	 * No need to update has_short_ttime if bfqq is async or in
5654 	 * idle io prio class, or if bfq_slice_idle is zero, because
5655 	 * no device idling is performed for bfqq in this case.
5656 	 */
5657 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5658 	    bfqd->bfq_slice_idle == 0)
5659 		return;
5660 
5661 	/* Idle window just restored, statistics are meaningless. */
5662 	if (time_is_after_eq_jiffies(bfqq->split_time +
5663 				     bfqd->bfq_wr_min_idle_time))
5664 		return;
5665 
5666 	/* Think time is infinite if no process is linked to
5667 	 * bfqq. Otherwise check average think time to decide whether
5668 	 * to mark as has_short_ttime. To this goal, compare average
5669 	 * think time with half the I/O-plugging timeout.
5670 	 */
5671 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5672 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5673 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5674 		has_short_ttime = false;
5675 
5676 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5677 
5678 	if (has_short_ttime)
5679 		bfq_mark_bfqq_has_short_ttime(bfqq);
5680 	else
5681 		bfq_clear_bfqq_has_short_ttime(bfqq);
5682 
5683 	/*
5684 	 * Until the base value for the total service time gets
5685 	 * finally computed for bfqq, the inject limit does depend on
5686 	 * the think-time state (short|long). In particular, the limit
5687 	 * is 0 or 1 if the think time is deemed, respectively, as
5688 	 * short or long (details in the comments in
5689 	 * bfq_update_inject_limit()). Accordingly, the next
5690 	 * instructions reset the inject limit if the think-time state
5691 	 * has changed and the above base value is still to be
5692 	 * computed.
5693 	 *
5694 	 * However, the reset is performed only if more than 100 ms
5695 	 * have elapsed since the last update of the inject limit, or
5696 	 * (inclusive) if the change is from short to long think
5697 	 * time. The reason for this waiting is as follows.
5698 	 *
5699 	 * bfqq may have a long think time because of a
5700 	 * synchronization with some other queue, i.e., because the
5701 	 * I/O of some other queue may need to be completed for bfqq
5702 	 * to receive new I/O. Details in the comments on the choice
5703 	 * of the queue for injection in bfq_select_queue().
5704 	 *
5705 	 * As stressed in those comments, if such a synchronization is
5706 	 * actually in place, then, without injection on bfqq, the
5707 	 * blocking I/O cannot happen to served while bfqq is in
5708 	 * service. As a consequence, if bfqq is granted
5709 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5710 	 * is dispatched, until the idle timeout fires. This is likely
5711 	 * to result in lower bandwidth and higher latencies for bfqq,
5712 	 * and in a severe loss of total throughput.
5713 	 *
5714 	 * On the opposite end, a non-zero inject limit may allow the
5715 	 * I/O that blocks bfqq to be executed soon, and therefore
5716 	 * bfqq to receive new I/O soon.
5717 	 *
5718 	 * But, if the blocking gets actually eliminated, then the
5719 	 * next think-time sample for bfqq may be very low. This in
5720 	 * turn may cause bfqq's think time to be deemed
5721 	 * short. Without the 100 ms barrier, this new state change
5722 	 * would cause the body of the next if to be executed
5723 	 * immediately. But this would set to 0 the inject
5724 	 * limit. Without injection, the blocking I/O would cause the
5725 	 * think time of bfqq to become long again, and therefore the
5726 	 * inject limit to be raised again, and so on. The only effect
5727 	 * of such a steady oscillation between the two think-time
5728 	 * states would be to prevent effective injection on bfqq.
5729 	 *
5730 	 * In contrast, if the inject limit is not reset during such a
5731 	 * long time interval as 100 ms, then the number of short
5732 	 * think time samples can grow significantly before the reset
5733 	 * is performed. As a consequence, the think time state can
5734 	 * become stable before the reset. Therefore there will be no
5735 	 * state change when the 100 ms elapse, and no reset of the
5736 	 * inject limit. The inject limit remains steadily equal to 1
5737 	 * both during and after the 100 ms. So injection can be
5738 	 * performed at all times, and throughput gets boosted.
5739 	 *
5740 	 * An inject limit equal to 1 is however in conflict, in
5741 	 * general, with the fact that the think time of bfqq is
5742 	 * short, because injection may be likely to delay bfqq's I/O
5743 	 * (as explained in the comments in
5744 	 * bfq_update_inject_limit()). But this does not happen in
5745 	 * this special case, because bfqq's low think time is due to
5746 	 * an effective handling of a synchronization, through
5747 	 * injection. In this special case, bfqq's I/O does not get
5748 	 * delayed by injection; on the contrary, bfqq's I/O is
5749 	 * brought forward, because it is not blocked for
5750 	 * milliseconds.
5751 	 *
5752 	 * In addition, serving the blocking I/O much sooner, and much
5753 	 * more frequently than once per I/O-plugging timeout, makes
5754 	 * it much quicker to detect a waker queue (the concept of
5755 	 * waker queue is defined in the comments in
5756 	 * bfq_add_request()). This makes it possible to start sooner
5757 	 * to boost throughput more effectively, by injecting the I/O
5758 	 * of the waker queue unconditionally on every
5759 	 * bfq_dispatch_request().
5760 	 *
5761 	 * One last, important benefit of not resetting the inject
5762 	 * limit before 100 ms is that, during this time interval, the
5763 	 * base value for the total service time is likely to get
5764 	 * finally computed for bfqq, freeing the inject limit from
5765 	 * its relation with the think time.
5766 	 */
5767 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5768 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5769 				      msecs_to_jiffies(100)) ||
5770 	     !has_short_ttime))
5771 		bfq_reset_inject_limit(bfqd, bfqq);
5772 }
5773 
5774 /*
5775  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5776  * something we should do about it.
5777  */
5778 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5779 			    struct request *rq)
5780 {
5781 	if (rq->cmd_flags & REQ_META)
5782 		bfqq->meta_pending++;
5783 
5784 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5785 
5786 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5787 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5788 				 blk_rq_sectors(rq) < 32;
5789 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5790 
5791 		/*
5792 		 * There is just this request queued: if
5793 		 * - the request is small, and
5794 		 * - we are idling to boost throughput, and
5795 		 * - the queue is not to be expired,
5796 		 * then just exit.
5797 		 *
5798 		 * In this way, if the device is being idled to wait
5799 		 * for a new request from the in-service queue, we
5800 		 * avoid unplugging the device and committing the
5801 		 * device to serve just a small request. In contrast
5802 		 * we wait for the block layer to decide when to
5803 		 * unplug the device: hopefully, new requests will be
5804 		 * merged to this one quickly, then the device will be
5805 		 * unplugged and larger requests will be dispatched.
5806 		 */
5807 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5808 		    !budget_timeout)
5809 			return;
5810 
5811 		/*
5812 		 * A large enough request arrived, or idling is being
5813 		 * performed to preserve service guarantees, or
5814 		 * finally the queue is to be expired: in all these
5815 		 * cases disk idling is to be stopped, so clear
5816 		 * wait_request flag and reset timer.
5817 		 */
5818 		bfq_clear_bfqq_wait_request(bfqq);
5819 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5820 
5821 		/*
5822 		 * The queue is not empty, because a new request just
5823 		 * arrived. Hence we can safely expire the queue, in
5824 		 * case of budget timeout, without risking that the
5825 		 * timestamps of the queue are not updated correctly.
5826 		 * See [1] for more details.
5827 		 */
5828 		if (budget_timeout)
5829 			bfq_bfqq_expire(bfqd, bfqq, false,
5830 					BFQQE_BUDGET_TIMEOUT);
5831 	}
5832 }
5833 
5834 /* returns true if it causes the idle timer to be disabled */
5835 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5836 {
5837 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5838 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
5839 						 RQ_BIC(rq));
5840 	bool waiting, idle_timer_disabled = false;
5841 
5842 	if (new_bfqq) {
5843 		/*
5844 		 * Release the request's reference to the old bfqq
5845 		 * and make sure one is taken to the shared queue.
5846 		 */
5847 		new_bfqq->allocated++;
5848 		bfqq->allocated--;
5849 		new_bfqq->ref++;
5850 		/*
5851 		 * If the bic associated with the process
5852 		 * issuing this request still points to bfqq
5853 		 * (and thus has not been already redirected
5854 		 * to new_bfqq or even some other bfq_queue),
5855 		 * then complete the merge and redirect it to
5856 		 * new_bfqq.
5857 		 */
5858 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5859 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5860 					bfqq, new_bfqq);
5861 
5862 		bfq_clear_bfqq_just_created(bfqq);
5863 		/*
5864 		 * rq is about to be enqueued into new_bfqq,
5865 		 * release rq reference on bfqq
5866 		 */
5867 		bfq_put_queue(bfqq);
5868 		rq->elv.priv[1] = new_bfqq;
5869 		bfqq = new_bfqq;
5870 	}
5871 
5872 	bfq_update_io_thinktime(bfqd, bfqq);
5873 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5874 	bfq_update_io_seektime(bfqd, bfqq, rq);
5875 
5876 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5877 	bfq_add_request(rq);
5878 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5879 
5880 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5881 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5882 
5883 	bfq_rq_enqueued(bfqd, bfqq, rq);
5884 
5885 	return idle_timer_disabled;
5886 }
5887 
5888 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5889 static void bfq_update_insert_stats(struct request_queue *q,
5890 				    struct bfq_queue *bfqq,
5891 				    bool idle_timer_disabled,
5892 				    unsigned int cmd_flags)
5893 {
5894 	if (!bfqq)
5895 		return;
5896 
5897 	/*
5898 	 * bfqq still exists, because it can disappear only after
5899 	 * either it is merged with another queue, or the process it
5900 	 * is associated with exits. But both actions must be taken by
5901 	 * the same process currently executing this flow of
5902 	 * instructions.
5903 	 *
5904 	 * In addition, the following queue lock guarantees that
5905 	 * bfqq_group(bfqq) exists as well.
5906 	 */
5907 	spin_lock_irq(&q->queue_lock);
5908 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5909 	if (idle_timer_disabled)
5910 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5911 	spin_unlock_irq(&q->queue_lock);
5912 }
5913 #else
5914 static inline void bfq_update_insert_stats(struct request_queue *q,
5915 					   struct bfq_queue *bfqq,
5916 					   bool idle_timer_disabled,
5917 					   unsigned int cmd_flags) {}
5918 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5919 
5920 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5921 			       bool at_head)
5922 {
5923 	struct request_queue *q = hctx->queue;
5924 	struct bfq_data *bfqd = q->elevator->elevator_data;
5925 	struct bfq_queue *bfqq;
5926 	bool idle_timer_disabled = false;
5927 	unsigned int cmd_flags;
5928 
5929 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5930 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5931 		bfqg_stats_update_legacy_io(q, rq);
5932 #endif
5933 	spin_lock_irq(&bfqd->lock);
5934 	if (blk_mq_sched_try_insert_merge(q, rq)) {
5935 		spin_unlock_irq(&bfqd->lock);
5936 		return;
5937 	}
5938 
5939 	spin_unlock_irq(&bfqd->lock);
5940 
5941 	trace_block_rq_insert(rq);
5942 
5943 	spin_lock_irq(&bfqd->lock);
5944 	bfqq = bfq_init_rq(rq);
5945 
5946 	/*
5947 	 * Reqs with at_head or passthrough flags set are to be put
5948 	 * directly into dispatch list. Additional case for putting rq
5949 	 * directly into the dispatch queue: the only active
5950 	 * bfq_queues are bfqq and either its waker bfq_queue or one
5951 	 * of its woken bfq_queues. The rationale behind this
5952 	 * additional condition is as follows:
5953 	 * - consider a bfq_queue, say Q1, detected as a waker of
5954 	 *   another bfq_queue, say Q2
5955 	 * - by definition of a waker, Q1 blocks the I/O of Q2, i.e.,
5956 	 *   some I/O of Q1 needs to be completed for new I/O of Q2
5957 	 *   to arrive.  A notable example of waker is journald
5958 	 * - so, Q1 and Q2 are in any respect the queues of two
5959 	 *   cooperating processes (or of two cooperating sets of
5960 	 *   processes): the goal of Q1's I/O is doing what needs to
5961 	 *   be done so that new Q2's I/O can finally be
5962 	 *   issued. Therefore, if the service of Q1's I/O is delayed,
5963 	 *   then Q2's I/O is delayed too.  Conversely, if Q2's I/O is
5964 	 *   delayed, the goal of Q1's I/O is hindered.
5965 	 * - as a consequence, if some I/O of Q1/Q2 arrives while
5966 	 *   Q2/Q1 is the only queue in service, there is absolutely
5967 	 *   no point in delaying the service of such an I/O. The
5968 	 *   only possible result is a throughput loss
5969 	 * - so, when the above condition holds, the best option is to
5970 	 *   have the new I/O dispatched as soon as possible
5971 	 * - the most effective and efficient way to attain the above
5972 	 *   goal is to put the new I/O directly in the dispatch
5973 	 *   list
5974 	 * - as an additional restriction, Q1 and Q2 must be the only
5975 	 *   busy queues for this commit to put the I/O of Q2/Q1 in
5976 	 *   the dispatch list.  This is necessary, because, if also
5977 	 *   other queues are waiting for service, then putting new
5978 	 *   I/O directly in the dispatch list may evidently cause a
5979 	 *   violation of service guarantees for the other queues
5980 	 */
5981 	if (!bfqq ||
5982 	    (bfqq != bfqd->in_service_queue &&
5983 	     bfqd->in_service_queue != NULL &&
5984 	     bfq_tot_busy_queues(bfqd) == 1 + bfq_bfqq_busy(bfqq) &&
5985 	     (bfqq->waker_bfqq == bfqd->in_service_queue ||
5986 	      bfqd->in_service_queue->waker_bfqq == bfqq)) || at_head) {
5987 		if (at_head)
5988 			list_add(&rq->queuelist, &bfqd->dispatch);
5989 		else
5990 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5991 	} else {
5992 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5993 		/*
5994 		 * Update bfqq, because, if a queue merge has occurred
5995 		 * in __bfq_insert_request, then rq has been
5996 		 * redirected into a new queue.
5997 		 */
5998 		bfqq = RQ_BFQQ(rq);
5999 
6000 		if (rq_mergeable(rq)) {
6001 			elv_rqhash_add(q, rq);
6002 			if (!q->last_merge)
6003 				q->last_merge = rq;
6004 		}
6005 	}
6006 
6007 	/*
6008 	 * Cache cmd_flags before releasing scheduler lock, because rq
6009 	 * may disappear afterwards (for example, because of a request
6010 	 * merge).
6011 	 */
6012 	cmd_flags = rq->cmd_flags;
6013 
6014 	spin_unlock_irq(&bfqd->lock);
6015 
6016 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6017 				cmd_flags);
6018 }
6019 
6020 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6021 				struct list_head *list, bool at_head)
6022 {
6023 	while (!list_empty(list)) {
6024 		struct request *rq;
6025 
6026 		rq = list_first_entry(list, struct request, queuelist);
6027 		list_del_init(&rq->queuelist);
6028 		bfq_insert_request(hctx, rq, at_head);
6029 	}
6030 }
6031 
6032 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6033 {
6034 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6035 
6036 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6037 				       bfqd->rq_in_driver);
6038 
6039 	if (bfqd->hw_tag == 1)
6040 		return;
6041 
6042 	/*
6043 	 * This sample is valid if the number of outstanding requests
6044 	 * is large enough to allow a queueing behavior.  Note that the
6045 	 * sum is not exact, as it's not taking into account deactivated
6046 	 * requests.
6047 	 */
6048 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6049 		return;
6050 
6051 	/*
6052 	 * If active queue hasn't enough requests and can idle, bfq might not
6053 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6054 	 * case
6055 	 */
6056 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6057 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6058 	    BFQ_HW_QUEUE_THRESHOLD &&
6059 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6060 		return;
6061 
6062 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6063 		return;
6064 
6065 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6066 	bfqd->max_rq_in_driver = 0;
6067 	bfqd->hw_tag_samples = 0;
6068 
6069 	bfqd->nonrot_with_queueing =
6070 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6071 }
6072 
6073 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6074 {
6075 	u64 now_ns;
6076 	u32 delta_us;
6077 
6078 	bfq_update_hw_tag(bfqd);
6079 
6080 	bfqd->rq_in_driver--;
6081 	bfqq->dispatched--;
6082 
6083 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6084 		/*
6085 		 * Set budget_timeout (which we overload to store the
6086 		 * time at which the queue remains with no backlog and
6087 		 * no outstanding request; used by the weight-raising
6088 		 * mechanism).
6089 		 */
6090 		bfqq->budget_timeout = jiffies;
6091 
6092 		bfq_weights_tree_remove(bfqd, bfqq);
6093 	}
6094 
6095 	now_ns = ktime_get_ns();
6096 
6097 	bfqq->ttime.last_end_request = now_ns;
6098 
6099 	/*
6100 	 * Using us instead of ns, to get a reasonable precision in
6101 	 * computing rate in next check.
6102 	 */
6103 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6104 
6105 	/*
6106 	 * If the request took rather long to complete, and, according
6107 	 * to the maximum request size recorded, this completion latency
6108 	 * implies that the request was certainly served at a very low
6109 	 * rate (less than 1M sectors/sec), then the whole observation
6110 	 * interval that lasts up to this time instant cannot be a
6111 	 * valid time interval for computing a new peak rate.  Invoke
6112 	 * bfq_update_rate_reset to have the following three steps
6113 	 * taken:
6114 	 * - close the observation interval at the last (previous)
6115 	 *   request dispatch or completion
6116 	 * - compute rate, if possible, for that observation interval
6117 	 * - reset to zero samples, which will trigger a proper
6118 	 *   re-initialization of the observation interval on next
6119 	 *   dispatch
6120 	 */
6121 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6122 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6123 			1UL<<(BFQ_RATE_SHIFT - 10))
6124 		bfq_update_rate_reset(bfqd, NULL);
6125 	bfqd->last_completion = now_ns;
6126 	/*
6127 	 * Shared queues are likely to receive I/O at a high
6128 	 * rate. This may deceptively let them be considered as wakers
6129 	 * of other queues. But a false waker will unjustly steal
6130 	 * bandwidth to its supposedly woken queue. So considering
6131 	 * also shared queues in the waking mechanism may cause more
6132 	 * control troubles than throughput benefits. Then do not set
6133 	 * last_completed_rq_bfqq to bfqq if bfqq is a shared queue.
6134 	 */
6135 	if (!bfq_bfqq_coop(bfqq))
6136 		bfqd->last_completed_rq_bfqq = bfqq;
6137 
6138 	/*
6139 	 * If we are waiting to discover whether the request pattern
6140 	 * of the task associated with the queue is actually
6141 	 * isochronous, and both requisites for this condition to hold
6142 	 * are now satisfied, then compute soft_rt_next_start (see the
6143 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6144 	 * do not compute soft_rt_next_start if bfqq is in interactive
6145 	 * weight raising (see the comments in bfq_bfqq_expire() for
6146 	 * an explanation). We schedule this delayed update when bfqq
6147 	 * expires, if it still has in-flight requests.
6148 	 */
6149 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6150 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6151 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6152 		bfqq->soft_rt_next_start =
6153 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6154 
6155 	/*
6156 	 * If this is the in-service queue, check if it needs to be expired,
6157 	 * or if we want to idle in case it has no pending requests.
6158 	 */
6159 	if (bfqd->in_service_queue == bfqq) {
6160 		if (bfq_bfqq_must_idle(bfqq)) {
6161 			if (bfqq->dispatched == 0)
6162 				bfq_arm_slice_timer(bfqd);
6163 			/*
6164 			 * If we get here, we do not expire bfqq, even
6165 			 * if bfqq was in budget timeout or had no
6166 			 * more requests (as controlled in the next
6167 			 * conditional instructions). The reason for
6168 			 * not expiring bfqq is as follows.
6169 			 *
6170 			 * Here bfqq->dispatched > 0 holds, but
6171 			 * bfq_bfqq_must_idle() returned true. This
6172 			 * implies that, even if no request arrives
6173 			 * for bfqq before bfqq->dispatched reaches 0,
6174 			 * bfqq will, however, not be expired on the
6175 			 * completion event that causes bfqq->dispatch
6176 			 * to reach zero. In contrast, on this event,
6177 			 * bfqq will start enjoying device idling
6178 			 * (I/O-dispatch plugging).
6179 			 *
6180 			 * But, if we expired bfqq here, bfqq would
6181 			 * not have the chance to enjoy device idling
6182 			 * when bfqq->dispatched finally reaches
6183 			 * zero. This would expose bfqq to violation
6184 			 * of its reserved service guarantees.
6185 			 */
6186 			return;
6187 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6188 			bfq_bfqq_expire(bfqd, bfqq, false,
6189 					BFQQE_BUDGET_TIMEOUT);
6190 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6191 			 (bfqq->dispatched == 0 ||
6192 			  !bfq_better_to_idle(bfqq)))
6193 			bfq_bfqq_expire(bfqd, bfqq, false,
6194 					BFQQE_NO_MORE_REQUESTS);
6195 	}
6196 
6197 	if (!bfqd->rq_in_driver)
6198 		bfq_schedule_dispatch(bfqd);
6199 }
6200 
6201 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
6202 {
6203 	bfqq->allocated--;
6204 
6205 	bfq_put_queue(bfqq);
6206 }
6207 
6208 /*
6209  * The processes associated with bfqq may happen to generate their
6210  * cumulative I/O at a lower rate than the rate at which the device
6211  * could serve the same I/O. This is rather probable, e.g., if only
6212  * one process is associated with bfqq and the device is an SSD. It
6213  * results in bfqq becoming often empty while in service. In this
6214  * respect, if BFQ is allowed to switch to another queue when bfqq
6215  * remains empty, then the device goes on being fed with I/O requests,
6216  * and the throughput is not affected. In contrast, if BFQ is not
6217  * allowed to switch to another queue---because bfqq is sync and
6218  * I/O-dispatch needs to be plugged while bfqq is temporarily
6219  * empty---then, during the service of bfqq, there will be frequent
6220  * "service holes", i.e., time intervals during which bfqq gets empty
6221  * and the device can only consume the I/O already queued in its
6222  * hardware queues. During service holes, the device may even get to
6223  * remaining idle. In the end, during the service of bfqq, the device
6224  * is driven at a lower speed than the one it can reach with the kind
6225  * of I/O flowing through bfqq.
6226  *
6227  * To counter this loss of throughput, BFQ implements a "request
6228  * injection mechanism", which tries to fill the above service holes
6229  * with I/O requests taken from other queues. The hard part in this
6230  * mechanism is finding the right amount of I/O to inject, so as to
6231  * both boost throughput and not break bfqq's bandwidth and latency
6232  * guarantees. In this respect, the mechanism maintains a per-queue
6233  * inject limit, computed as below. While bfqq is empty, the injection
6234  * mechanism dispatches extra I/O requests only until the total number
6235  * of I/O requests in flight---i.e., already dispatched but not yet
6236  * completed---remains lower than this limit.
6237  *
6238  * A first definition comes in handy to introduce the algorithm by
6239  * which the inject limit is computed.  We define as first request for
6240  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6241  * service, and causes bfqq to switch from empty to non-empty. The
6242  * algorithm updates the limit as a function of the effect of
6243  * injection on the service times of only the first requests of
6244  * bfqq. The reason for this restriction is that these are the
6245  * requests whose service time is affected most, because they are the
6246  * first to arrive after injection possibly occurred.
6247  *
6248  * To evaluate the effect of injection, the algorithm measures the
6249  * "total service time" of first requests. We define as total service
6250  * time of an I/O request, the time that elapses since when the
6251  * request is enqueued into bfqq, to when it is completed. This
6252  * quantity allows the whole effect of injection to be measured. It is
6253  * easy to see why. Suppose that some requests of other queues are
6254  * actually injected while bfqq is empty, and that a new request R
6255  * then arrives for bfqq. If the device does start to serve all or
6256  * part of the injected requests during the service hole, then,
6257  * because of this extra service, it may delay the next invocation of
6258  * the dispatch hook of BFQ. Then, even after R gets eventually
6259  * dispatched, the device may delay the actual service of R if it is
6260  * still busy serving the extra requests, or if it decides to serve,
6261  * before R, some extra request still present in its queues. As a
6262  * conclusion, the cumulative extra delay caused by injection can be
6263  * easily evaluated by just comparing the total service time of first
6264  * requests with and without injection.
6265  *
6266  * The limit-update algorithm works as follows. On the arrival of a
6267  * first request of bfqq, the algorithm measures the total time of the
6268  * request only if one of the three cases below holds, and, for each
6269  * case, it updates the limit as described below:
6270  *
6271  * (1) If there is no in-flight request. This gives a baseline for the
6272  *     total service time of the requests of bfqq. If the baseline has
6273  *     not been computed yet, then, after computing it, the limit is
6274  *     set to 1, to start boosting throughput, and to prepare the
6275  *     ground for the next case. If the baseline has already been
6276  *     computed, then it is updated, in case it results to be lower
6277  *     than the previous value.
6278  *
6279  * (2) If the limit is higher than 0 and there are in-flight
6280  *     requests. By comparing the total service time in this case with
6281  *     the above baseline, it is possible to know at which extent the
6282  *     current value of the limit is inflating the total service
6283  *     time. If the inflation is below a certain threshold, then bfqq
6284  *     is assumed to be suffering from no perceivable loss of its
6285  *     service guarantees, and the limit is even tentatively
6286  *     increased. If the inflation is above the threshold, then the
6287  *     limit is decreased. Due to the lack of any hysteresis, this
6288  *     logic makes the limit oscillate even in steady workload
6289  *     conditions. Yet we opted for it, because it is fast in reaching
6290  *     the best value for the limit, as a function of the current I/O
6291  *     workload. To reduce oscillations, this step is disabled for a
6292  *     short time interval after the limit happens to be decreased.
6293  *
6294  * (3) Periodically, after resetting the limit, to make sure that the
6295  *     limit eventually drops in case the workload changes. This is
6296  *     needed because, after the limit has gone safely up for a
6297  *     certain workload, it is impossible to guess whether the
6298  *     baseline total service time may have changed, without measuring
6299  *     it again without injection. A more effective version of this
6300  *     step might be to just sample the baseline, by interrupting
6301  *     injection only once, and then to reset/lower the limit only if
6302  *     the total service time with the current limit does happen to be
6303  *     too large.
6304  *
6305  * More details on each step are provided in the comments on the
6306  * pieces of code that implement these steps: the branch handling the
6307  * transition from empty to non empty in bfq_add_request(), the branch
6308  * handling injection in bfq_select_queue(), and the function
6309  * bfq_choose_bfqq_for_injection(). These comments also explain some
6310  * exceptions, made by the injection mechanism in some special cases.
6311  */
6312 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6313 				    struct bfq_queue *bfqq)
6314 {
6315 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6316 	unsigned int old_limit = bfqq->inject_limit;
6317 
6318 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6319 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6320 
6321 		if (tot_time_ns >= threshold && old_limit > 0) {
6322 			bfqq->inject_limit--;
6323 			bfqq->decrease_time_jif = jiffies;
6324 		} else if (tot_time_ns < threshold &&
6325 			   old_limit <= bfqd->max_rq_in_driver)
6326 			bfqq->inject_limit++;
6327 	}
6328 
6329 	/*
6330 	 * Either we still have to compute the base value for the
6331 	 * total service time, and there seem to be the right
6332 	 * conditions to do it, or we can lower the last base value
6333 	 * computed.
6334 	 *
6335 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6336 	 * request in flight, because this function is in the code
6337 	 * path that handles the completion of a request of bfqq, and,
6338 	 * in particular, this function is executed before
6339 	 * bfqd->rq_in_driver is decremented in such a code path.
6340 	 */
6341 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
6342 	    tot_time_ns < bfqq->last_serv_time_ns) {
6343 		if (bfqq->last_serv_time_ns == 0) {
6344 			/*
6345 			 * Now we certainly have a base value: make sure we
6346 			 * start trying injection.
6347 			 */
6348 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6349 		}
6350 		bfqq->last_serv_time_ns = tot_time_ns;
6351 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6352 		/*
6353 		 * No I/O injected and no request still in service in
6354 		 * the drive: these are the exact conditions for
6355 		 * computing the base value of the total service time
6356 		 * for bfqq. So let's update this value, because it is
6357 		 * rather variable. For example, it varies if the size
6358 		 * or the spatial locality of the I/O requests in bfqq
6359 		 * change.
6360 		 */
6361 		bfqq->last_serv_time_ns = tot_time_ns;
6362 
6363 
6364 	/* update complete, not waiting for any request completion any longer */
6365 	bfqd->waited_rq = NULL;
6366 	bfqd->rqs_injected = false;
6367 }
6368 
6369 /*
6370  * Handle either a requeue or a finish for rq. The things to do are
6371  * the same in both cases: all references to rq are to be dropped. In
6372  * particular, rq is considered completed from the point of view of
6373  * the scheduler.
6374  */
6375 static void bfq_finish_requeue_request(struct request *rq)
6376 {
6377 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6378 	struct bfq_data *bfqd;
6379 
6380 	/*
6381 	 * rq either is not associated with any icq, or is an already
6382 	 * requeued request that has not (yet) been re-inserted into
6383 	 * a bfq_queue.
6384 	 */
6385 	if (!rq->elv.icq || !bfqq)
6386 		return;
6387 
6388 	bfqd = bfqq->bfqd;
6389 
6390 	if (rq->rq_flags & RQF_STARTED)
6391 		bfqg_stats_update_completion(bfqq_group(bfqq),
6392 					     rq->start_time_ns,
6393 					     rq->io_start_time_ns,
6394 					     rq->cmd_flags);
6395 
6396 	if (likely(rq->rq_flags & RQF_STARTED)) {
6397 		unsigned long flags;
6398 
6399 		spin_lock_irqsave(&bfqd->lock, flags);
6400 
6401 		if (rq == bfqd->waited_rq)
6402 			bfq_update_inject_limit(bfqd, bfqq);
6403 
6404 		bfq_completed_request(bfqq, bfqd);
6405 		bfq_finish_requeue_request_body(bfqq);
6406 
6407 		spin_unlock_irqrestore(&bfqd->lock, flags);
6408 	} else {
6409 		/*
6410 		 * Request rq may be still/already in the scheduler,
6411 		 * in which case we need to remove it (this should
6412 		 * never happen in case of requeue). And we cannot
6413 		 * defer such a check and removal, to avoid
6414 		 * inconsistencies in the time interval from the end
6415 		 * of this function to the start of the deferred work.
6416 		 * This situation seems to occur only in process
6417 		 * context, as a consequence of a merge. In the
6418 		 * current version of the code, this implies that the
6419 		 * lock is held.
6420 		 */
6421 
6422 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
6423 			bfq_remove_request(rq->q, rq);
6424 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
6425 						    rq->cmd_flags);
6426 		}
6427 		bfq_finish_requeue_request_body(bfqq);
6428 	}
6429 
6430 	/*
6431 	 * Reset private fields. In case of a requeue, this allows
6432 	 * this function to correctly do nothing if it is spuriously
6433 	 * invoked again on this same request (see the check at the
6434 	 * beginning of the function). Probably, a better general
6435 	 * design would be to prevent blk-mq from invoking the requeue
6436 	 * or finish hooks of an elevator, for a request that is not
6437 	 * referred by that elevator.
6438 	 *
6439 	 * Resetting the following fields would break the
6440 	 * request-insertion logic if rq is re-inserted into a bfq
6441 	 * internal queue, without a re-preparation. Here we assume
6442 	 * that re-insertions of requeued requests, without
6443 	 * re-preparation, can happen only for pass_through or at_head
6444 	 * requests (which are not re-inserted into bfq internal
6445 	 * queues).
6446 	 */
6447 	rq->elv.priv[0] = NULL;
6448 	rq->elv.priv[1] = NULL;
6449 }
6450 
6451 /*
6452  * Removes the association between the current task and bfqq, assuming
6453  * that bic points to the bfq iocontext of the task.
6454  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6455  * was the last process referring to that bfqq.
6456  */
6457 static struct bfq_queue *
6458 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6459 {
6460 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6461 
6462 	if (bfqq_process_refs(bfqq) == 1) {
6463 		bfqq->pid = current->pid;
6464 		bfq_clear_bfqq_coop(bfqq);
6465 		bfq_clear_bfqq_split_coop(bfqq);
6466 		return bfqq;
6467 	}
6468 
6469 	bic_set_bfqq(bic, NULL, 1);
6470 
6471 	bfq_put_cooperator(bfqq);
6472 
6473 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6474 	return NULL;
6475 }
6476 
6477 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6478 						   struct bfq_io_cq *bic,
6479 						   struct bio *bio,
6480 						   bool split, bool is_sync,
6481 						   bool *new_queue)
6482 {
6483 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6484 
6485 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6486 		return bfqq;
6487 
6488 	if (new_queue)
6489 		*new_queue = true;
6490 
6491 	if (bfqq)
6492 		bfq_put_queue(bfqq);
6493 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6494 
6495 	bic_set_bfqq(bic, bfqq, is_sync);
6496 	if (split && is_sync) {
6497 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6498 		    bic->saved_in_large_burst)
6499 			bfq_mark_bfqq_in_large_burst(bfqq);
6500 		else {
6501 			bfq_clear_bfqq_in_large_burst(bfqq);
6502 			if (bic->was_in_burst_list)
6503 				/*
6504 				 * If bfqq was in the current
6505 				 * burst list before being
6506 				 * merged, then we have to add
6507 				 * it back. And we do not need
6508 				 * to increase burst_size, as
6509 				 * we did not decrement
6510 				 * burst_size when we removed
6511 				 * bfqq from the burst list as
6512 				 * a consequence of a merge
6513 				 * (see comments in
6514 				 * bfq_put_queue). In this
6515 				 * respect, it would be rather
6516 				 * costly to know whether the
6517 				 * current burst list is still
6518 				 * the same burst list from
6519 				 * which bfqq was removed on
6520 				 * the merge. To avoid this
6521 				 * cost, if bfqq was in a
6522 				 * burst list, then we add
6523 				 * bfqq to the current burst
6524 				 * list without any further
6525 				 * check. This can cause
6526 				 * inappropriate insertions,
6527 				 * but rarely enough to not
6528 				 * harm the detection of large
6529 				 * bursts significantly.
6530 				 */
6531 				hlist_add_head(&bfqq->burst_list_node,
6532 					       &bfqd->burst_list);
6533 		}
6534 		bfqq->split_time = jiffies;
6535 	}
6536 
6537 	return bfqq;
6538 }
6539 
6540 /*
6541  * Only reset private fields. The actual request preparation will be
6542  * performed by bfq_init_rq, when rq is either inserted or merged. See
6543  * comments on bfq_init_rq for the reason behind this delayed
6544  * preparation.
6545  */
6546 static void bfq_prepare_request(struct request *rq)
6547 {
6548 	/*
6549 	 * Regardless of whether we have an icq attached, we have to
6550 	 * clear the scheduler pointers, as they might point to
6551 	 * previously allocated bic/bfqq structs.
6552 	 */
6553 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6554 }
6555 
6556 /*
6557  * If needed, init rq, allocate bfq data structures associated with
6558  * rq, and increment reference counters in the destination bfq_queue
6559  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6560  * not associated with any bfq_queue.
6561  *
6562  * This function is invoked by the functions that perform rq insertion
6563  * or merging. One may have expected the above preparation operations
6564  * to be performed in bfq_prepare_request, and not delayed to when rq
6565  * is inserted or merged. The rationale behind this delayed
6566  * preparation is that, after the prepare_request hook is invoked for
6567  * rq, rq may still be transformed into a request with no icq, i.e., a
6568  * request not associated with any queue. No bfq hook is invoked to
6569  * signal this transformation. As a consequence, should these
6570  * preparation operations be performed when the prepare_request hook
6571  * is invoked, and should rq be transformed one moment later, bfq
6572  * would end up in an inconsistent state, because it would have
6573  * incremented some queue counters for an rq destined to
6574  * transformation, without any chance to correctly lower these
6575  * counters back. In contrast, no transformation can still happen for
6576  * rq after rq has been inserted or merged. So, it is safe to execute
6577  * these preparation operations when rq is finally inserted or merged.
6578  */
6579 static struct bfq_queue *bfq_init_rq(struct request *rq)
6580 {
6581 	struct request_queue *q = rq->q;
6582 	struct bio *bio = rq->bio;
6583 	struct bfq_data *bfqd = q->elevator->elevator_data;
6584 	struct bfq_io_cq *bic;
6585 	const int is_sync = rq_is_sync(rq);
6586 	struct bfq_queue *bfqq;
6587 	bool new_queue = false;
6588 	bool bfqq_already_existing = false, split = false;
6589 
6590 	if (unlikely(!rq->elv.icq))
6591 		return NULL;
6592 
6593 	/*
6594 	 * Assuming that elv.priv[1] is set only if everything is set
6595 	 * for this rq. This holds true, because this function is
6596 	 * invoked only for insertion or merging, and, after such
6597 	 * events, a request cannot be manipulated any longer before
6598 	 * being removed from bfq.
6599 	 */
6600 	if (rq->elv.priv[1])
6601 		return rq->elv.priv[1];
6602 
6603 	bic = icq_to_bic(rq->elv.icq);
6604 
6605 	bfq_check_ioprio_change(bic, bio);
6606 
6607 	bfq_bic_update_cgroup(bic, bio);
6608 
6609 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6610 					 &new_queue);
6611 
6612 	if (likely(!new_queue)) {
6613 		/* If the queue was seeky for too long, break it apart. */
6614 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6615 			!bic->stably_merged) {
6616 			struct bfq_queue *old_bfqq = bfqq;
6617 
6618 			/* Update bic before losing reference to bfqq */
6619 			if (bfq_bfqq_in_large_burst(bfqq))
6620 				bic->saved_in_large_burst = true;
6621 
6622 			bfqq = bfq_split_bfqq(bic, bfqq);
6623 			split = true;
6624 
6625 			if (!bfqq) {
6626 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6627 								 true, is_sync,
6628 								 NULL);
6629 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6630 				bfqq->tentative_waker_bfqq = NULL;
6631 
6632 				/*
6633 				 * If the waker queue disappears, then
6634 				 * new_bfqq->waker_bfqq must be
6635 				 * reset. So insert new_bfqq into the
6636 				 * woken_list of the waker. See
6637 				 * bfq_check_waker for details.
6638 				 */
6639 				if (bfqq->waker_bfqq)
6640 					hlist_add_head(&bfqq->woken_list_node,
6641 						       &bfqq->waker_bfqq->woken_list);
6642 			} else
6643 				bfqq_already_existing = true;
6644 		}
6645 	}
6646 
6647 	bfqq->allocated++;
6648 	bfqq->ref++;
6649 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6650 		     rq, bfqq, bfqq->ref);
6651 
6652 	rq->elv.priv[0] = bic;
6653 	rq->elv.priv[1] = bfqq;
6654 
6655 	/*
6656 	 * If a bfq_queue has only one process reference, it is owned
6657 	 * by only this bic: we can then set bfqq->bic = bic. in
6658 	 * addition, if the queue has also just been split, we have to
6659 	 * resume its state.
6660 	 */
6661 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6662 		bfqq->bic = bic;
6663 		if (split) {
6664 			/*
6665 			 * The queue has just been split from a shared
6666 			 * queue: restore the idle window and the
6667 			 * possible weight raising period.
6668 			 */
6669 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6670 					      bfqq_already_existing);
6671 		}
6672 	}
6673 
6674 	/*
6675 	 * Consider bfqq as possibly belonging to a burst of newly
6676 	 * created queues only if:
6677 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6678 	 * or
6679 	 * 2) There is no other active queue. In fact, if, in
6680 	 *    contrast, there are active queues not belonging to the
6681 	 *    possible burst bfqq may belong to, then there is no gain
6682 	 *    in considering bfqq as belonging to a burst, and
6683 	 *    therefore in not weight-raising bfqq. See comments on
6684 	 *    bfq_handle_burst().
6685 	 *
6686 	 * This filtering also helps eliminating false positives,
6687 	 * occurring when bfqq does not belong to an actual large
6688 	 * burst, but some background task (e.g., a service) happens
6689 	 * to trigger the creation of new queues very close to when
6690 	 * bfqq and its possible companion queues are created. See
6691 	 * comments on bfq_handle_burst() for further details also on
6692 	 * this issue.
6693 	 */
6694 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6695 		     (bfqd->burst_size > 0 ||
6696 		      bfq_tot_busy_queues(bfqd) == 0)))
6697 		bfq_handle_burst(bfqd, bfqq);
6698 
6699 	return bfqq;
6700 }
6701 
6702 static void
6703 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6704 {
6705 	enum bfqq_expiration reason;
6706 	unsigned long flags;
6707 
6708 	spin_lock_irqsave(&bfqd->lock, flags);
6709 
6710 	/*
6711 	 * Considering that bfqq may be in race, we should firstly check
6712 	 * whether bfqq is in service before doing something on it. If
6713 	 * the bfqq in race is not in service, it has already been expired
6714 	 * through __bfq_bfqq_expire func and its wait_request flags has
6715 	 * been cleared in __bfq_bfqd_reset_in_service func.
6716 	 */
6717 	if (bfqq != bfqd->in_service_queue) {
6718 		spin_unlock_irqrestore(&bfqd->lock, flags);
6719 		return;
6720 	}
6721 
6722 	bfq_clear_bfqq_wait_request(bfqq);
6723 
6724 	if (bfq_bfqq_budget_timeout(bfqq))
6725 		/*
6726 		 * Also here the queue can be safely expired
6727 		 * for budget timeout without wasting
6728 		 * guarantees
6729 		 */
6730 		reason = BFQQE_BUDGET_TIMEOUT;
6731 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6732 		/*
6733 		 * The queue may not be empty upon timer expiration,
6734 		 * because we may not disable the timer when the
6735 		 * first request of the in-service queue arrives
6736 		 * during disk idling.
6737 		 */
6738 		reason = BFQQE_TOO_IDLE;
6739 	else
6740 		goto schedule_dispatch;
6741 
6742 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6743 
6744 schedule_dispatch:
6745 	spin_unlock_irqrestore(&bfqd->lock, flags);
6746 	bfq_schedule_dispatch(bfqd);
6747 }
6748 
6749 /*
6750  * Handler of the expiration of the timer running if the in-service queue
6751  * is idling inside its time slice.
6752  */
6753 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6754 {
6755 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6756 					     idle_slice_timer);
6757 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6758 
6759 	/*
6760 	 * Theoretical race here: the in-service queue can be NULL or
6761 	 * different from the queue that was idling if a new request
6762 	 * arrives for the current queue and there is a full dispatch
6763 	 * cycle that changes the in-service queue.  This can hardly
6764 	 * happen, but in the worst case we just expire a queue too
6765 	 * early.
6766 	 */
6767 	if (bfqq)
6768 		bfq_idle_slice_timer_body(bfqd, bfqq);
6769 
6770 	return HRTIMER_NORESTART;
6771 }
6772 
6773 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6774 				 struct bfq_queue **bfqq_ptr)
6775 {
6776 	struct bfq_queue *bfqq = *bfqq_ptr;
6777 
6778 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6779 	if (bfqq) {
6780 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6781 
6782 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6783 			     bfqq, bfqq->ref);
6784 		bfq_put_queue(bfqq);
6785 		*bfqq_ptr = NULL;
6786 	}
6787 }
6788 
6789 /*
6790  * Release all the bfqg references to its async queues.  If we are
6791  * deallocating the group these queues may still contain requests, so
6792  * we reparent them to the root cgroup (i.e., the only one that will
6793  * exist for sure until all the requests on a device are gone).
6794  */
6795 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6796 {
6797 	int i, j;
6798 
6799 	for (i = 0; i < 2; i++)
6800 		for (j = 0; j < IOPRIO_BE_NR; j++)
6801 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6802 
6803 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6804 }
6805 
6806 /*
6807  * See the comments on bfq_limit_depth for the purpose of
6808  * the depths set in the function. Return minimum shallow depth we'll use.
6809  */
6810 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6811 				      struct sbitmap_queue *bt)
6812 {
6813 	unsigned int i, j, min_shallow = UINT_MAX;
6814 
6815 	/*
6816 	 * In-word depths if no bfq_queue is being weight-raised:
6817 	 * leaving 25% of tags only for sync reads.
6818 	 *
6819 	 * In next formulas, right-shift the value
6820 	 * (1U<<bt->sb.shift), instead of computing directly
6821 	 * (1U<<(bt->sb.shift - something)), to be robust against
6822 	 * any possible value of bt->sb.shift, without having to
6823 	 * limit 'something'.
6824 	 */
6825 	/* no more than 50% of tags for async I/O */
6826 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6827 	/*
6828 	 * no more than 75% of tags for sync writes (25% extra tags
6829 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6830 	 * writes)
6831 	 */
6832 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6833 
6834 	/*
6835 	 * In-word depths in case some bfq_queue is being weight-
6836 	 * raised: leaving ~63% of tags for sync reads. This is the
6837 	 * highest percentage for which, in our tests, application
6838 	 * start-up times didn't suffer from any regression due to tag
6839 	 * shortage.
6840 	 */
6841 	/* no more than ~18% of tags for async I/O */
6842 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6843 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6844 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6845 
6846 	for (i = 0; i < 2; i++)
6847 		for (j = 0; j < 2; j++)
6848 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6849 
6850 	return min_shallow;
6851 }
6852 
6853 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6854 {
6855 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6856 	struct blk_mq_tags *tags = hctx->sched_tags;
6857 	unsigned int min_shallow;
6858 
6859 	min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6860 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
6861 }
6862 
6863 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6864 {
6865 	bfq_depth_updated(hctx);
6866 	return 0;
6867 }
6868 
6869 static void bfq_exit_queue(struct elevator_queue *e)
6870 {
6871 	struct bfq_data *bfqd = e->elevator_data;
6872 	struct bfq_queue *bfqq, *n;
6873 
6874 	hrtimer_cancel(&bfqd->idle_slice_timer);
6875 
6876 	spin_lock_irq(&bfqd->lock);
6877 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6878 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6879 	spin_unlock_irq(&bfqd->lock);
6880 
6881 	hrtimer_cancel(&bfqd->idle_slice_timer);
6882 
6883 	/* release oom-queue reference to root group */
6884 	bfqg_and_blkg_put(bfqd->root_group);
6885 
6886 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6887 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6888 #else
6889 	spin_lock_irq(&bfqd->lock);
6890 	bfq_put_async_queues(bfqd, bfqd->root_group);
6891 	kfree(bfqd->root_group);
6892 	spin_unlock_irq(&bfqd->lock);
6893 #endif
6894 
6895 	kfree(bfqd);
6896 }
6897 
6898 static void bfq_init_root_group(struct bfq_group *root_group,
6899 				struct bfq_data *bfqd)
6900 {
6901 	int i;
6902 
6903 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6904 	root_group->entity.parent = NULL;
6905 	root_group->my_entity = NULL;
6906 	root_group->bfqd = bfqd;
6907 #endif
6908 	root_group->rq_pos_tree = RB_ROOT;
6909 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6910 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6911 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6912 }
6913 
6914 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6915 {
6916 	struct bfq_data *bfqd;
6917 	struct elevator_queue *eq;
6918 
6919 	eq = elevator_alloc(q, e);
6920 	if (!eq)
6921 		return -ENOMEM;
6922 
6923 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6924 	if (!bfqd) {
6925 		kobject_put(&eq->kobj);
6926 		return -ENOMEM;
6927 	}
6928 	eq->elevator_data = bfqd;
6929 
6930 	spin_lock_irq(&q->queue_lock);
6931 	q->elevator = eq;
6932 	spin_unlock_irq(&q->queue_lock);
6933 
6934 	/*
6935 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6936 	 * Grab a permanent reference to it, so that the normal code flow
6937 	 * will not attempt to free it.
6938 	 */
6939 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6940 	bfqd->oom_bfqq.ref++;
6941 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6942 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6943 	bfqd->oom_bfqq.entity.new_weight =
6944 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6945 
6946 	/* oom_bfqq does not participate to bursts */
6947 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6948 
6949 	/*
6950 	 * Trigger weight initialization, according to ioprio, at the
6951 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6952 	 * class won't be changed any more.
6953 	 */
6954 	bfqd->oom_bfqq.entity.prio_changed = 1;
6955 
6956 	bfqd->queue = q;
6957 
6958 	INIT_LIST_HEAD(&bfqd->dispatch);
6959 
6960 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6961 		     HRTIMER_MODE_REL);
6962 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6963 
6964 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6965 	bfqd->num_groups_with_pending_reqs = 0;
6966 
6967 	INIT_LIST_HEAD(&bfqd->active_list);
6968 	INIT_LIST_HEAD(&bfqd->idle_list);
6969 	INIT_HLIST_HEAD(&bfqd->burst_list);
6970 
6971 	bfqd->hw_tag = -1;
6972 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6973 
6974 	bfqd->bfq_max_budget = bfq_default_max_budget;
6975 
6976 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6977 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6978 	bfqd->bfq_back_max = bfq_back_max;
6979 	bfqd->bfq_back_penalty = bfq_back_penalty;
6980 	bfqd->bfq_slice_idle = bfq_slice_idle;
6981 	bfqd->bfq_timeout = bfq_timeout;
6982 
6983 	bfqd->bfq_large_burst_thresh = 8;
6984 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6985 
6986 	bfqd->low_latency = true;
6987 
6988 	/*
6989 	 * Trade-off between responsiveness and fairness.
6990 	 */
6991 	bfqd->bfq_wr_coeff = 30;
6992 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6993 	bfqd->bfq_wr_max_time = 0;
6994 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6995 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6996 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6997 					      * Approximate rate required
6998 					      * to playback or record a
6999 					      * high-definition compressed
7000 					      * video.
7001 					      */
7002 	bfqd->wr_busy_queues = 0;
7003 
7004 	/*
7005 	 * Begin by assuming, optimistically, that the device peak
7006 	 * rate is equal to 2/3 of the highest reference rate.
7007 	 */
7008 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7009 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7010 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7011 
7012 	spin_lock_init(&bfqd->lock);
7013 
7014 	/*
7015 	 * The invocation of the next bfq_create_group_hierarchy
7016 	 * function is the head of a chain of function calls
7017 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7018 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7019 	 * has_work hook function. For this reason,
7020 	 * bfq_create_group_hierarchy is invoked only after all
7021 	 * scheduler data has been initialized, apart from the fields
7022 	 * that can be initialized only after invoking
7023 	 * bfq_create_group_hierarchy. This, in particular, enables
7024 	 * has_work to correctly return false. Of course, to avoid
7025 	 * other inconsistencies, the blk-mq stack must then refrain
7026 	 * from invoking further scheduler hooks before this init
7027 	 * function is finished.
7028 	 */
7029 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7030 	if (!bfqd->root_group)
7031 		goto out_free;
7032 	bfq_init_root_group(bfqd->root_group, bfqd);
7033 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7034 
7035 	wbt_disable_default(q);
7036 	return 0;
7037 
7038 out_free:
7039 	kfree(bfqd);
7040 	kobject_put(&eq->kobj);
7041 	return -ENOMEM;
7042 }
7043 
7044 static void bfq_slab_kill(void)
7045 {
7046 	kmem_cache_destroy(bfq_pool);
7047 }
7048 
7049 static int __init bfq_slab_setup(void)
7050 {
7051 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7052 	if (!bfq_pool)
7053 		return -ENOMEM;
7054 	return 0;
7055 }
7056 
7057 static ssize_t bfq_var_show(unsigned int var, char *page)
7058 {
7059 	return sprintf(page, "%u\n", var);
7060 }
7061 
7062 static int bfq_var_store(unsigned long *var, const char *page)
7063 {
7064 	unsigned long new_val;
7065 	int ret = kstrtoul(page, 10, &new_val);
7066 
7067 	if (ret)
7068 		return ret;
7069 	*var = new_val;
7070 	return 0;
7071 }
7072 
7073 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7074 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7075 {									\
7076 	struct bfq_data *bfqd = e->elevator_data;			\
7077 	u64 __data = __VAR;						\
7078 	if (__CONV == 1)						\
7079 		__data = jiffies_to_msecs(__data);			\
7080 	else if (__CONV == 2)						\
7081 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7082 	return bfq_var_show(__data, (page));				\
7083 }
7084 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7085 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7086 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7087 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7088 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7089 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7090 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7091 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7092 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7093 #undef SHOW_FUNCTION
7094 
7095 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7096 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7097 {									\
7098 	struct bfq_data *bfqd = e->elevator_data;			\
7099 	u64 __data = __VAR;						\
7100 	__data = div_u64(__data, NSEC_PER_USEC);			\
7101 	return bfq_var_show(__data, (page));				\
7102 }
7103 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7104 #undef USEC_SHOW_FUNCTION
7105 
7106 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7107 static ssize_t								\
7108 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7109 {									\
7110 	struct bfq_data *bfqd = e->elevator_data;			\
7111 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7112 	int ret;							\
7113 									\
7114 	ret = bfq_var_store(&__data, (page));				\
7115 	if (ret)							\
7116 		return ret;						\
7117 	if (__data < __min)						\
7118 		__data = __min;						\
7119 	else if (__data > __max)					\
7120 		__data = __max;						\
7121 	if (__CONV == 1)						\
7122 		*(__PTR) = msecs_to_jiffies(__data);			\
7123 	else if (__CONV == 2)						\
7124 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7125 	else								\
7126 		*(__PTR) = __data;					\
7127 	return count;							\
7128 }
7129 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7130 		INT_MAX, 2);
7131 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7132 		INT_MAX, 2);
7133 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7134 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7135 		INT_MAX, 0);
7136 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7137 #undef STORE_FUNCTION
7138 
7139 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7140 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7141 {									\
7142 	struct bfq_data *bfqd = e->elevator_data;			\
7143 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7144 	int ret;							\
7145 									\
7146 	ret = bfq_var_store(&__data, (page));				\
7147 	if (ret)							\
7148 		return ret;						\
7149 	if (__data < __min)						\
7150 		__data = __min;						\
7151 	else if (__data > __max)					\
7152 		__data = __max;						\
7153 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7154 	return count;							\
7155 }
7156 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7157 		    UINT_MAX);
7158 #undef USEC_STORE_FUNCTION
7159 
7160 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7161 				    const char *page, size_t count)
7162 {
7163 	struct bfq_data *bfqd = e->elevator_data;
7164 	unsigned long __data;
7165 	int ret;
7166 
7167 	ret = bfq_var_store(&__data, (page));
7168 	if (ret)
7169 		return ret;
7170 
7171 	if (__data == 0)
7172 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7173 	else {
7174 		if (__data > INT_MAX)
7175 			__data = INT_MAX;
7176 		bfqd->bfq_max_budget = __data;
7177 	}
7178 
7179 	bfqd->bfq_user_max_budget = __data;
7180 
7181 	return count;
7182 }
7183 
7184 /*
7185  * Leaving this name to preserve name compatibility with cfq
7186  * parameters, but this timeout is used for both sync and async.
7187  */
7188 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7189 				      const char *page, size_t count)
7190 {
7191 	struct bfq_data *bfqd = e->elevator_data;
7192 	unsigned long __data;
7193 	int ret;
7194 
7195 	ret = bfq_var_store(&__data, (page));
7196 	if (ret)
7197 		return ret;
7198 
7199 	if (__data < 1)
7200 		__data = 1;
7201 	else if (__data > INT_MAX)
7202 		__data = INT_MAX;
7203 
7204 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7205 	if (bfqd->bfq_user_max_budget == 0)
7206 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7207 
7208 	return count;
7209 }
7210 
7211 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7212 				     const char *page, size_t count)
7213 {
7214 	struct bfq_data *bfqd = e->elevator_data;
7215 	unsigned long __data;
7216 	int ret;
7217 
7218 	ret = bfq_var_store(&__data, (page));
7219 	if (ret)
7220 		return ret;
7221 
7222 	if (__data > 1)
7223 		__data = 1;
7224 	if (!bfqd->strict_guarantees && __data == 1
7225 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7226 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7227 
7228 	bfqd->strict_guarantees = __data;
7229 
7230 	return count;
7231 }
7232 
7233 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7234 				     const char *page, size_t count)
7235 {
7236 	struct bfq_data *bfqd = e->elevator_data;
7237 	unsigned long __data;
7238 	int ret;
7239 
7240 	ret = bfq_var_store(&__data, (page));
7241 	if (ret)
7242 		return ret;
7243 
7244 	if (__data > 1)
7245 		__data = 1;
7246 	if (__data == 0 && bfqd->low_latency != 0)
7247 		bfq_end_wr(bfqd);
7248 	bfqd->low_latency = __data;
7249 
7250 	return count;
7251 }
7252 
7253 #define BFQ_ATTR(name) \
7254 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7255 
7256 static struct elv_fs_entry bfq_attrs[] = {
7257 	BFQ_ATTR(fifo_expire_sync),
7258 	BFQ_ATTR(fifo_expire_async),
7259 	BFQ_ATTR(back_seek_max),
7260 	BFQ_ATTR(back_seek_penalty),
7261 	BFQ_ATTR(slice_idle),
7262 	BFQ_ATTR(slice_idle_us),
7263 	BFQ_ATTR(max_budget),
7264 	BFQ_ATTR(timeout_sync),
7265 	BFQ_ATTR(strict_guarantees),
7266 	BFQ_ATTR(low_latency),
7267 	__ATTR_NULL
7268 };
7269 
7270 static struct elevator_type iosched_bfq_mq = {
7271 	.ops = {
7272 		.limit_depth		= bfq_limit_depth,
7273 		.prepare_request	= bfq_prepare_request,
7274 		.requeue_request        = bfq_finish_requeue_request,
7275 		.finish_request		= bfq_finish_requeue_request,
7276 		.exit_icq		= bfq_exit_icq,
7277 		.insert_requests	= bfq_insert_requests,
7278 		.dispatch_request	= bfq_dispatch_request,
7279 		.next_request		= elv_rb_latter_request,
7280 		.former_request		= elv_rb_former_request,
7281 		.allow_merge		= bfq_allow_bio_merge,
7282 		.bio_merge		= bfq_bio_merge,
7283 		.request_merge		= bfq_request_merge,
7284 		.requests_merged	= bfq_requests_merged,
7285 		.request_merged		= bfq_request_merged,
7286 		.has_work		= bfq_has_work,
7287 		.depth_updated		= bfq_depth_updated,
7288 		.init_hctx		= bfq_init_hctx,
7289 		.init_sched		= bfq_init_queue,
7290 		.exit_sched		= bfq_exit_queue,
7291 	},
7292 
7293 	.icq_size =		sizeof(struct bfq_io_cq),
7294 	.icq_align =		__alignof__(struct bfq_io_cq),
7295 	.elevator_attrs =	bfq_attrs,
7296 	.elevator_name =	"bfq",
7297 	.elevator_owner =	THIS_MODULE,
7298 };
7299 MODULE_ALIAS("bfq-iosched");
7300 
7301 static int __init bfq_init(void)
7302 {
7303 	int ret;
7304 
7305 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7306 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7307 	if (ret)
7308 		return ret;
7309 #endif
7310 
7311 	ret = -ENOMEM;
7312 	if (bfq_slab_setup())
7313 		goto err_pol_unreg;
7314 
7315 	/*
7316 	 * Times to load large popular applications for the typical
7317 	 * systems installed on the reference devices (see the
7318 	 * comments before the definition of the next
7319 	 * array). Actually, we use slightly lower values, as the
7320 	 * estimated peak rate tends to be smaller than the actual
7321 	 * peak rate.  The reason for this last fact is that estimates
7322 	 * are computed over much shorter time intervals than the long
7323 	 * intervals typically used for benchmarking. Why? First, to
7324 	 * adapt more quickly to variations. Second, because an I/O
7325 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7326 	 * be run for a long time.
7327 	 */
7328 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7329 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7330 
7331 	ret = elv_register(&iosched_bfq_mq);
7332 	if (ret)
7333 		goto slab_kill;
7334 
7335 	return 0;
7336 
7337 slab_kill:
7338 	bfq_slab_kill();
7339 err_pol_unreg:
7340 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7341 	blkcg_policy_unregister(&blkcg_policy_bfq);
7342 #endif
7343 	return ret;
7344 }
7345 
7346 static void __exit bfq_exit(void)
7347 {
7348 	elv_unregister(&iosched_bfq_mq);
7349 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7350 	blkcg_policy_unregister(&blkcg_policy_bfq);
7351 #endif
7352 	bfq_slab_kill();
7353 }
7354 
7355 module_init(bfq_init);
7356 module_exit(bfq_exit);
7357 
7358 MODULE_AUTHOR("Paolo Valente");
7359 MODULE_LICENSE("GPL");
7360 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7361