xref: /linux/block/bfq-iosched.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 #include <linux/backing-dev.h>
127 
128 #include <trace/events/block.h>
129 
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
368 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
369 
370 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
371 {
372 	return bic->bfqq[is_sync];
373 }
374 
375 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
376 {
377 	bic->bfqq[is_sync] = bfqq;
378 }
379 
380 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
381 {
382 	return bic->icq.q->elevator->elevator_data;
383 }
384 
385 /**
386  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
387  * @icq: the iocontext queue.
388  */
389 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
390 {
391 	/* bic->icq is the first member, %NULL will convert to %NULL */
392 	return container_of(icq, struct bfq_io_cq, icq);
393 }
394 
395 /**
396  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
397  * @bfqd: the lookup key.
398  * @ioc: the io_context of the process doing I/O.
399  * @q: the request queue.
400  */
401 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
402 					struct io_context *ioc,
403 					struct request_queue *q)
404 {
405 	if (ioc) {
406 		unsigned long flags;
407 		struct bfq_io_cq *icq;
408 
409 		spin_lock_irqsave(&q->queue_lock, flags);
410 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
411 		spin_unlock_irqrestore(&q->queue_lock, flags);
412 
413 		return icq;
414 	}
415 
416 	return NULL;
417 }
418 
419 /*
420  * Scheduler run of queue, if there are requests pending and no one in the
421  * driver that will restart queueing.
422  */
423 void bfq_schedule_dispatch(struct bfq_data *bfqd)
424 {
425 	if (bfqd->queued != 0) {
426 		bfq_log(bfqd, "schedule dispatch");
427 		blk_mq_run_hw_queues(bfqd->queue, true);
428 	}
429 }
430 
431 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
432 
433 #define bfq_sample_valid(samples)	((samples) > 80)
434 
435 /*
436  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
437  * We choose the request that is closer to the head right now.  Distance
438  * behind the head is penalized and only allowed to a certain extent.
439  */
440 static struct request *bfq_choose_req(struct bfq_data *bfqd,
441 				      struct request *rq1,
442 				      struct request *rq2,
443 				      sector_t last)
444 {
445 	sector_t s1, s2, d1 = 0, d2 = 0;
446 	unsigned long back_max;
447 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
448 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
449 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
450 
451 	if (!rq1 || rq1 == rq2)
452 		return rq2;
453 	if (!rq2)
454 		return rq1;
455 
456 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
457 		return rq1;
458 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
459 		return rq2;
460 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
461 		return rq1;
462 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
463 		return rq2;
464 
465 	s1 = blk_rq_pos(rq1);
466 	s2 = blk_rq_pos(rq2);
467 
468 	/*
469 	 * By definition, 1KiB is 2 sectors.
470 	 */
471 	back_max = bfqd->bfq_back_max * 2;
472 
473 	/*
474 	 * Strict one way elevator _except_ in the case where we allow
475 	 * short backward seeks which are biased as twice the cost of a
476 	 * similar forward seek.
477 	 */
478 	if (s1 >= last)
479 		d1 = s1 - last;
480 	else if (s1 + back_max >= last)
481 		d1 = (last - s1) * bfqd->bfq_back_penalty;
482 	else
483 		wrap |= BFQ_RQ1_WRAP;
484 
485 	if (s2 >= last)
486 		d2 = s2 - last;
487 	else if (s2 + back_max >= last)
488 		d2 = (last - s2) * bfqd->bfq_back_penalty;
489 	else
490 		wrap |= BFQ_RQ2_WRAP;
491 
492 	/* Found required data */
493 
494 	/*
495 	 * By doing switch() on the bit mask "wrap" we avoid having to
496 	 * check two variables for all permutations: --> faster!
497 	 */
498 	switch (wrap) {
499 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
500 		if (d1 < d2)
501 			return rq1;
502 		else if (d2 < d1)
503 			return rq2;
504 
505 		if (s1 >= s2)
506 			return rq1;
507 		else
508 			return rq2;
509 
510 	case BFQ_RQ2_WRAP:
511 		return rq1;
512 	case BFQ_RQ1_WRAP:
513 		return rq2;
514 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
515 	default:
516 		/*
517 		 * Since both rqs are wrapped,
518 		 * start with the one that's further behind head
519 		 * (--> only *one* back seek required),
520 		 * since back seek takes more time than forward.
521 		 */
522 		if (s1 <= s2)
523 			return rq1;
524 		else
525 			return rq2;
526 	}
527 }
528 
529 /*
530  * Async I/O can easily starve sync I/O (both sync reads and sync
531  * writes), by consuming all tags. Similarly, storms of sync writes,
532  * such as those that sync(2) may trigger, can starve sync reads.
533  * Limit depths of async I/O and sync writes so as to counter both
534  * problems.
535  */
536 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
537 {
538 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
539 
540 	if (op_is_sync(op) && !op_is_write(op))
541 		return;
542 
543 	data->shallow_depth =
544 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
545 
546 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
547 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
548 			data->shallow_depth);
549 }
550 
551 static struct bfq_queue *
552 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
553 		     sector_t sector, struct rb_node **ret_parent,
554 		     struct rb_node ***rb_link)
555 {
556 	struct rb_node **p, *parent;
557 	struct bfq_queue *bfqq = NULL;
558 
559 	parent = NULL;
560 	p = &root->rb_node;
561 	while (*p) {
562 		struct rb_node **n;
563 
564 		parent = *p;
565 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
566 
567 		/*
568 		 * Sort strictly based on sector. Smallest to the left,
569 		 * largest to the right.
570 		 */
571 		if (sector > blk_rq_pos(bfqq->next_rq))
572 			n = &(*p)->rb_right;
573 		else if (sector < blk_rq_pos(bfqq->next_rq))
574 			n = &(*p)->rb_left;
575 		else
576 			break;
577 		p = n;
578 		bfqq = NULL;
579 	}
580 
581 	*ret_parent = parent;
582 	if (rb_link)
583 		*rb_link = p;
584 
585 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
586 		(unsigned long long)sector,
587 		bfqq ? bfqq->pid : 0);
588 
589 	return bfqq;
590 }
591 
592 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
593 {
594 	return bfqq->service_from_backlogged > 0 &&
595 		time_is_before_jiffies(bfqq->first_IO_time +
596 				       bfq_merge_time_limit);
597 }
598 
599 /*
600  * The following function is not marked as __cold because it is
601  * actually cold, but for the same performance goal described in the
602  * comments on the likely() at the beginning of
603  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
604  * execution time for the case where this function is not invoked, we
605  * had to add an unlikely() in each involved if().
606  */
607 void __cold
608 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
609 {
610 	struct rb_node **p, *parent;
611 	struct bfq_queue *__bfqq;
612 
613 	if (bfqq->pos_root) {
614 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
615 		bfqq->pos_root = NULL;
616 	}
617 
618 	/* oom_bfqq does not participate in queue merging */
619 	if (bfqq == &bfqd->oom_bfqq)
620 		return;
621 
622 	/*
623 	 * bfqq cannot be merged any longer (see comments in
624 	 * bfq_setup_cooperator): no point in adding bfqq into the
625 	 * position tree.
626 	 */
627 	if (bfq_too_late_for_merging(bfqq))
628 		return;
629 
630 	if (bfq_class_idle(bfqq))
631 		return;
632 	if (!bfqq->next_rq)
633 		return;
634 
635 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
636 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
637 			blk_rq_pos(bfqq->next_rq), &parent, &p);
638 	if (!__bfqq) {
639 		rb_link_node(&bfqq->pos_node, parent, p);
640 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
641 	} else
642 		bfqq->pos_root = NULL;
643 }
644 
645 /*
646  * The following function returns false either if every active queue
647  * must receive the same share of the throughput (symmetric scenario),
648  * or, as a special case, if bfqq must receive a share of the
649  * throughput lower than or equal to the share that every other active
650  * queue must receive.  If bfqq does sync I/O, then these are the only
651  * two cases where bfqq happens to be guaranteed its share of the
652  * throughput even if I/O dispatching is not plugged when bfqq remains
653  * temporarily empty (for more details, see the comments in the
654  * function bfq_better_to_idle()). For this reason, the return value
655  * of this function is used to check whether I/O-dispatch plugging can
656  * be avoided.
657  *
658  * The above first case (symmetric scenario) occurs when:
659  * 1) all active queues have the same weight,
660  * 2) all active queues belong to the same I/O-priority class,
661  * 3) all active groups at the same level in the groups tree have the same
662  *    weight,
663  * 4) all active groups at the same level in the groups tree have the same
664  *    number of children.
665  *
666  * Unfortunately, keeping the necessary state for evaluating exactly
667  * the last two symmetry sub-conditions above would be quite complex
668  * and time consuming. Therefore this function evaluates, instead,
669  * only the following stronger three sub-conditions, for which it is
670  * much easier to maintain the needed state:
671  * 1) all active queues have the same weight,
672  * 2) all active queues belong to the same I/O-priority class,
673  * 3) there are no active groups.
674  * In particular, the last condition is always true if hierarchical
675  * support or the cgroups interface are not enabled, thus no state
676  * needs to be maintained in this case.
677  */
678 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
679 				   struct bfq_queue *bfqq)
680 {
681 	bool smallest_weight = bfqq &&
682 		bfqq->weight_counter &&
683 		bfqq->weight_counter ==
684 		container_of(
685 			rb_first_cached(&bfqd->queue_weights_tree),
686 			struct bfq_weight_counter,
687 			weights_node);
688 
689 	/*
690 	 * For queue weights to differ, queue_weights_tree must contain
691 	 * at least two nodes.
692 	 */
693 	bool varied_queue_weights = !smallest_weight &&
694 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
695 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
696 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
697 
698 	bool multiple_classes_busy =
699 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
700 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
701 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
702 
703 	return varied_queue_weights || multiple_classes_busy
704 #ifdef CONFIG_BFQ_GROUP_IOSCHED
705 	       || bfqd->num_groups_with_pending_reqs > 0
706 #endif
707 		;
708 }
709 
710 /*
711  * If the weight-counter tree passed as input contains no counter for
712  * the weight of the input queue, then add that counter; otherwise just
713  * increment the existing counter.
714  *
715  * Note that weight-counter trees contain few nodes in mostly symmetric
716  * scenarios. For example, if all queues have the same weight, then the
717  * weight-counter tree for the queues may contain at most one node.
718  * This holds even if low_latency is on, because weight-raised queues
719  * are not inserted in the tree.
720  * In most scenarios, the rate at which nodes are created/destroyed
721  * should be low too.
722  */
723 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
724 			  struct rb_root_cached *root)
725 {
726 	struct bfq_entity *entity = &bfqq->entity;
727 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
728 	bool leftmost = true;
729 
730 	/*
731 	 * Do not insert if the queue is already associated with a
732 	 * counter, which happens if:
733 	 *   1) a request arrival has caused the queue to become both
734 	 *      non-weight-raised, and hence change its weight, and
735 	 *      backlogged; in this respect, each of the two events
736 	 *      causes an invocation of this function,
737 	 *   2) this is the invocation of this function caused by the
738 	 *      second event. This second invocation is actually useless,
739 	 *      and we handle this fact by exiting immediately. More
740 	 *      efficient or clearer solutions might possibly be adopted.
741 	 */
742 	if (bfqq->weight_counter)
743 		return;
744 
745 	while (*new) {
746 		struct bfq_weight_counter *__counter = container_of(*new,
747 						struct bfq_weight_counter,
748 						weights_node);
749 		parent = *new;
750 
751 		if (entity->weight == __counter->weight) {
752 			bfqq->weight_counter = __counter;
753 			goto inc_counter;
754 		}
755 		if (entity->weight < __counter->weight)
756 			new = &((*new)->rb_left);
757 		else {
758 			new = &((*new)->rb_right);
759 			leftmost = false;
760 		}
761 	}
762 
763 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
764 				       GFP_ATOMIC);
765 
766 	/*
767 	 * In the unlucky event of an allocation failure, we just
768 	 * exit. This will cause the weight of queue to not be
769 	 * considered in bfq_asymmetric_scenario, which, in its turn,
770 	 * causes the scenario to be deemed wrongly symmetric in case
771 	 * bfqq's weight would have been the only weight making the
772 	 * scenario asymmetric.  On the bright side, no unbalance will
773 	 * however occur when bfqq becomes inactive again (the
774 	 * invocation of this function is triggered by an activation
775 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
776 	 * if !bfqq->weight_counter.
777 	 */
778 	if (unlikely(!bfqq->weight_counter))
779 		return;
780 
781 	bfqq->weight_counter->weight = entity->weight;
782 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
783 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
784 				leftmost);
785 
786 inc_counter:
787 	bfqq->weight_counter->num_active++;
788 	bfqq->ref++;
789 }
790 
791 /*
792  * Decrement the weight counter associated with the queue, and, if the
793  * counter reaches 0, remove the counter from the tree.
794  * See the comments to the function bfq_weights_tree_add() for considerations
795  * about overhead.
796  */
797 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
798 			       struct bfq_queue *bfqq,
799 			       struct rb_root_cached *root)
800 {
801 	if (!bfqq->weight_counter)
802 		return;
803 
804 	bfqq->weight_counter->num_active--;
805 	if (bfqq->weight_counter->num_active > 0)
806 		goto reset_entity_pointer;
807 
808 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
809 	kfree(bfqq->weight_counter);
810 
811 reset_entity_pointer:
812 	bfqq->weight_counter = NULL;
813 	bfq_put_queue(bfqq);
814 }
815 
816 /*
817  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
818  * of active groups for each queue's inactive parent entity.
819  */
820 void bfq_weights_tree_remove(struct bfq_data *bfqd,
821 			     struct bfq_queue *bfqq)
822 {
823 	struct bfq_entity *entity = bfqq->entity.parent;
824 
825 	for_each_entity(entity) {
826 		struct bfq_sched_data *sd = entity->my_sched_data;
827 
828 		if (sd->next_in_service || sd->in_service_entity) {
829 			/*
830 			 * entity is still active, because either
831 			 * next_in_service or in_service_entity is not
832 			 * NULL (see the comments on the definition of
833 			 * next_in_service for details on why
834 			 * in_service_entity must be checked too).
835 			 *
836 			 * As a consequence, its parent entities are
837 			 * active as well, and thus this loop must
838 			 * stop here.
839 			 */
840 			break;
841 		}
842 
843 		/*
844 		 * The decrement of num_groups_with_pending_reqs is
845 		 * not performed immediately upon the deactivation of
846 		 * entity, but it is delayed to when it also happens
847 		 * that the first leaf descendant bfqq of entity gets
848 		 * all its pending requests completed. The following
849 		 * instructions perform this delayed decrement, if
850 		 * needed. See the comments on
851 		 * num_groups_with_pending_reqs for details.
852 		 */
853 		if (entity->in_groups_with_pending_reqs) {
854 			entity->in_groups_with_pending_reqs = false;
855 			bfqd->num_groups_with_pending_reqs--;
856 		}
857 	}
858 
859 	/*
860 	 * Next function is invoked last, because it causes bfqq to be
861 	 * freed if the following holds: bfqq is not in service and
862 	 * has no dispatched request. DO NOT use bfqq after the next
863 	 * function invocation.
864 	 */
865 	__bfq_weights_tree_remove(bfqd, bfqq,
866 				  &bfqd->queue_weights_tree);
867 }
868 
869 /*
870  * Return expired entry, or NULL to just start from scratch in rbtree.
871  */
872 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
873 				      struct request *last)
874 {
875 	struct request *rq;
876 
877 	if (bfq_bfqq_fifo_expire(bfqq))
878 		return NULL;
879 
880 	bfq_mark_bfqq_fifo_expire(bfqq);
881 
882 	rq = rq_entry_fifo(bfqq->fifo.next);
883 
884 	if (rq == last || ktime_get_ns() < rq->fifo_time)
885 		return NULL;
886 
887 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
888 	return rq;
889 }
890 
891 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
892 					struct bfq_queue *bfqq,
893 					struct request *last)
894 {
895 	struct rb_node *rbnext = rb_next(&last->rb_node);
896 	struct rb_node *rbprev = rb_prev(&last->rb_node);
897 	struct request *next, *prev = NULL;
898 
899 	/* Follow expired path, else get first next available. */
900 	next = bfq_check_fifo(bfqq, last);
901 	if (next)
902 		return next;
903 
904 	if (rbprev)
905 		prev = rb_entry_rq(rbprev);
906 
907 	if (rbnext)
908 		next = rb_entry_rq(rbnext);
909 	else {
910 		rbnext = rb_first(&bfqq->sort_list);
911 		if (rbnext && rbnext != &last->rb_node)
912 			next = rb_entry_rq(rbnext);
913 	}
914 
915 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
916 }
917 
918 /* see the definition of bfq_async_charge_factor for details */
919 static unsigned long bfq_serv_to_charge(struct request *rq,
920 					struct bfq_queue *bfqq)
921 {
922 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
923 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
924 		return blk_rq_sectors(rq);
925 
926 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
927 }
928 
929 /**
930  * bfq_updated_next_req - update the queue after a new next_rq selection.
931  * @bfqd: the device data the queue belongs to.
932  * @bfqq: the queue to update.
933  *
934  * If the first request of a queue changes we make sure that the queue
935  * has enough budget to serve at least its first request (if the
936  * request has grown).  We do this because if the queue has not enough
937  * budget for its first request, it has to go through two dispatch
938  * rounds to actually get it dispatched.
939  */
940 static void bfq_updated_next_req(struct bfq_data *bfqd,
941 				 struct bfq_queue *bfqq)
942 {
943 	struct bfq_entity *entity = &bfqq->entity;
944 	struct request *next_rq = bfqq->next_rq;
945 	unsigned long new_budget;
946 
947 	if (!next_rq)
948 		return;
949 
950 	if (bfqq == bfqd->in_service_queue)
951 		/*
952 		 * In order not to break guarantees, budgets cannot be
953 		 * changed after an entity has been selected.
954 		 */
955 		return;
956 
957 	new_budget = max_t(unsigned long,
958 			   max_t(unsigned long, bfqq->max_budget,
959 				 bfq_serv_to_charge(next_rq, bfqq)),
960 			   entity->service);
961 	if (entity->budget != new_budget) {
962 		entity->budget = new_budget;
963 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
964 					 new_budget);
965 		bfq_requeue_bfqq(bfqd, bfqq, false);
966 	}
967 }
968 
969 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
970 {
971 	u64 dur;
972 
973 	if (bfqd->bfq_wr_max_time > 0)
974 		return bfqd->bfq_wr_max_time;
975 
976 	dur = bfqd->rate_dur_prod;
977 	do_div(dur, bfqd->peak_rate);
978 
979 	/*
980 	 * Limit duration between 3 and 25 seconds. The upper limit
981 	 * has been conservatively set after the following worst case:
982 	 * on a QEMU/KVM virtual machine
983 	 * - running in a slow PC
984 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
985 	 * - serving a heavy I/O workload, such as the sequential reading
986 	 *   of several files
987 	 * mplayer took 23 seconds to start, if constantly weight-raised.
988 	 *
989 	 * As for higher values than that accommodating the above bad
990 	 * scenario, tests show that higher values would often yield
991 	 * the opposite of the desired result, i.e., would worsen
992 	 * responsiveness by allowing non-interactive applications to
993 	 * preserve weight raising for too long.
994 	 *
995 	 * On the other end, lower values than 3 seconds make it
996 	 * difficult for most interactive tasks to complete their jobs
997 	 * before weight-raising finishes.
998 	 */
999 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1000 }
1001 
1002 /* switch back from soft real-time to interactive weight raising */
1003 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1004 					  struct bfq_data *bfqd)
1005 {
1006 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1007 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1008 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1009 }
1010 
1011 static void
1012 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1013 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1014 {
1015 	unsigned int old_wr_coeff = 1;
1016 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1017 
1018 	if (bic->saved_has_short_ttime)
1019 		bfq_mark_bfqq_has_short_ttime(bfqq);
1020 	else
1021 		bfq_clear_bfqq_has_short_ttime(bfqq);
1022 
1023 	if (bic->saved_IO_bound)
1024 		bfq_mark_bfqq_IO_bound(bfqq);
1025 	else
1026 		bfq_clear_bfqq_IO_bound(bfqq);
1027 
1028 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1029 	bfqq->inject_limit = bic->saved_inject_limit;
1030 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1031 
1032 	bfqq->entity.new_weight = bic->saved_weight;
1033 	bfqq->ttime = bic->saved_ttime;
1034 	bfqq->io_start_time = bic->saved_io_start_time;
1035 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1036 	/*
1037 	 * Restore weight coefficient only if low_latency is on
1038 	 */
1039 	if (bfqd->low_latency) {
1040 		old_wr_coeff = bfqq->wr_coeff;
1041 		bfqq->wr_coeff = bic->saved_wr_coeff;
1042 	}
1043 	bfqq->service_from_wr = bic->saved_service_from_wr;
1044 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1045 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1046 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1047 
1048 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1049 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1050 				   bfqq->wr_cur_max_time))) {
1051 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1052 		    !bfq_bfqq_in_large_burst(bfqq) &&
1053 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1054 					     bfq_wr_duration(bfqd))) {
1055 			switch_back_to_interactive_wr(bfqq, bfqd);
1056 		} else {
1057 			bfqq->wr_coeff = 1;
1058 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1059 				     "resume state: switching off wr");
1060 		}
1061 	}
1062 
1063 	/* make sure weight will be updated, however we got here */
1064 	bfqq->entity.prio_changed = 1;
1065 
1066 	if (likely(!busy))
1067 		return;
1068 
1069 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1070 		bfqd->wr_busy_queues++;
1071 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1072 		bfqd->wr_busy_queues--;
1073 }
1074 
1075 static int bfqq_process_refs(struct bfq_queue *bfqq)
1076 {
1077 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1078 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1079 }
1080 
1081 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1082 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1083 {
1084 	struct bfq_queue *item;
1085 	struct hlist_node *n;
1086 
1087 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1088 		hlist_del_init(&item->burst_list_node);
1089 
1090 	/*
1091 	 * Start the creation of a new burst list only if there is no
1092 	 * active queue. See comments on the conditional invocation of
1093 	 * bfq_handle_burst().
1094 	 */
1095 	if (bfq_tot_busy_queues(bfqd) == 0) {
1096 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1097 		bfqd->burst_size = 1;
1098 	} else
1099 		bfqd->burst_size = 0;
1100 
1101 	bfqd->burst_parent_entity = bfqq->entity.parent;
1102 }
1103 
1104 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1105 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1106 {
1107 	/* Increment burst size to take into account also bfqq */
1108 	bfqd->burst_size++;
1109 
1110 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1111 		struct bfq_queue *pos, *bfqq_item;
1112 		struct hlist_node *n;
1113 
1114 		/*
1115 		 * Enough queues have been activated shortly after each
1116 		 * other to consider this burst as large.
1117 		 */
1118 		bfqd->large_burst = true;
1119 
1120 		/*
1121 		 * We can now mark all queues in the burst list as
1122 		 * belonging to a large burst.
1123 		 */
1124 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1125 				     burst_list_node)
1126 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1127 		bfq_mark_bfqq_in_large_burst(bfqq);
1128 
1129 		/*
1130 		 * From now on, and until the current burst finishes, any
1131 		 * new queue being activated shortly after the last queue
1132 		 * was inserted in the burst can be immediately marked as
1133 		 * belonging to a large burst. So the burst list is not
1134 		 * needed any more. Remove it.
1135 		 */
1136 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1137 					  burst_list_node)
1138 			hlist_del_init(&pos->burst_list_node);
1139 	} else /*
1140 		* Burst not yet large: add bfqq to the burst list. Do
1141 		* not increment the ref counter for bfqq, because bfqq
1142 		* is removed from the burst list before freeing bfqq
1143 		* in put_queue.
1144 		*/
1145 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1146 }
1147 
1148 /*
1149  * If many queues belonging to the same group happen to be created
1150  * shortly after each other, then the processes associated with these
1151  * queues have typically a common goal. In particular, bursts of queue
1152  * creations are usually caused by services or applications that spawn
1153  * many parallel threads/processes. Examples are systemd during boot,
1154  * or git grep. To help these processes get their job done as soon as
1155  * possible, it is usually better to not grant either weight-raising
1156  * or device idling to their queues, unless these queues must be
1157  * protected from the I/O flowing through other active queues.
1158  *
1159  * In this comment we describe, firstly, the reasons why this fact
1160  * holds, and, secondly, the next function, which implements the main
1161  * steps needed to properly mark these queues so that they can then be
1162  * treated in a different way.
1163  *
1164  * The above services or applications benefit mostly from a high
1165  * throughput: the quicker the requests of the activated queues are
1166  * cumulatively served, the sooner the target job of these queues gets
1167  * completed. As a consequence, weight-raising any of these queues,
1168  * which also implies idling the device for it, is almost always
1169  * counterproductive, unless there are other active queues to isolate
1170  * these new queues from. If there no other active queues, then
1171  * weight-raising these new queues just lowers throughput in most
1172  * cases.
1173  *
1174  * On the other hand, a burst of queue creations may be caused also by
1175  * the start of an application that does not consist of a lot of
1176  * parallel I/O-bound threads. In fact, with a complex application,
1177  * several short processes may need to be executed to start-up the
1178  * application. In this respect, to start an application as quickly as
1179  * possible, the best thing to do is in any case to privilege the I/O
1180  * related to the application with respect to all other
1181  * I/O. Therefore, the best strategy to start as quickly as possible
1182  * an application that causes a burst of queue creations is to
1183  * weight-raise all the queues created during the burst. This is the
1184  * exact opposite of the best strategy for the other type of bursts.
1185  *
1186  * In the end, to take the best action for each of the two cases, the
1187  * two types of bursts need to be distinguished. Fortunately, this
1188  * seems relatively easy, by looking at the sizes of the bursts. In
1189  * particular, we found a threshold such that only bursts with a
1190  * larger size than that threshold are apparently caused by
1191  * services or commands such as systemd or git grep. For brevity,
1192  * hereafter we call just 'large' these bursts. BFQ *does not*
1193  * weight-raise queues whose creation occurs in a large burst. In
1194  * addition, for each of these queues BFQ performs or does not perform
1195  * idling depending on which choice boosts the throughput more. The
1196  * exact choice depends on the device and request pattern at
1197  * hand.
1198  *
1199  * Unfortunately, false positives may occur while an interactive task
1200  * is starting (e.g., an application is being started). The
1201  * consequence is that the queues associated with the task do not
1202  * enjoy weight raising as expected. Fortunately these false positives
1203  * are very rare. They typically occur if some service happens to
1204  * start doing I/O exactly when the interactive task starts.
1205  *
1206  * Turning back to the next function, it is invoked only if there are
1207  * no active queues (apart from active queues that would belong to the
1208  * same, possible burst bfqq would belong to), and it implements all
1209  * the steps needed to detect the occurrence of a large burst and to
1210  * properly mark all the queues belonging to it (so that they can then
1211  * be treated in a different way). This goal is achieved by
1212  * maintaining a "burst list" that holds, temporarily, the queues that
1213  * belong to the burst in progress. The list is then used to mark
1214  * these queues as belonging to a large burst if the burst does become
1215  * large. The main steps are the following.
1216  *
1217  * . when the very first queue is created, the queue is inserted into the
1218  *   list (as it could be the first queue in a possible burst)
1219  *
1220  * . if the current burst has not yet become large, and a queue Q that does
1221  *   not yet belong to the burst is activated shortly after the last time
1222  *   at which a new queue entered the burst list, then the function appends
1223  *   Q to the burst list
1224  *
1225  * . if, as a consequence of the previous step, the burst size reaches
1226  *   the large-burst threshold, then
1227  *
1228  *     . all the queues in the burst list are marked as belonging to a
1229  *       large burst
1230  *
1231  *     . the burst list is deleted; in fact, the burst list already served
1232  *       its purpose (keeping temporarily track of the queues in a burst,
1233  *       so as to be able to mark them as belonging to a large burst in the
1234  *       previous sub-step), and now is not needed any more
1235  *
1236  *     . the device enters a large-burst mode
1237  *
1238  * . if a queue Q that does not belong to the burst is created while
1239  *   the device is in large-burst mode and shortly after the last time
1240  *   at which a queue either entered the burst list or was marked as
1241  *   belonging to the current large burst, then Q is immediately marked
1242  *   as belonging to a large burst.
1243  *
1244  * . if a queue Q that does not belong to the burst is created a while
1245  *   later, i.e., not shortly after, than the last time at which a queue
1246  *   either entered the burst list or was marked as belonging to the
1247  *   current large burst, then the current burst is deemed as finished and:
1248  *
1249  *        . the large-burst mode is reset if set
1250  *
1251  *        . the burst list is emptied
1252  *
1253  *        . Q is inserted in the burst list, as Q may be the first queue
1254  *          in a possible new burst (then the burst list contains just Q
1255  *          after this step).
1256  */
1257 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1258 {
1259 	/*
1260 	 * If bfqq is already in the burst list or is part of a large
1261 	 * burst, or finally has just been split, then there is
1262 	 * nothing else to do.
1263 	 */
1264 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1265 	    bfq_bfqq_in_large_burst(bfqq) ||
1266 	    time_is_after_eq_jiffies(bfqq->split_time +
1267 				     msecs_to_jiffies(10)))
1268 		return;
1269 
1270 	/*
1271 	 * If bfqq's creation happens late enough, or bfqq belongs to
1272 	 * a different group than the burst group, then the current
1273 	 * burst is finished, and related data structures must be
1274 	 * reset.
1275 	 *
1276 	 * In this respect, consider the special case where bfqq is
1277 	 * the very first queue created after BFQ is selected for this
1278 	 * device. In this case, last_ins_in_burst and
1279 	 * burst_parent_entity are not yet significant when we get
1280 	 * here. But it is easy to verify that, whether or not the
1281 	 * following condition is true, bfqq will end up being
1282 	 * inserted into the burst list. In particular the list will
1283 	 * happen to contain only bfqq. And this is exactly what has
1284 	 * to happen, as bfqq may be the first queue of the first
1285 	 * burst.
1286 	 */
1287 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1288 	    bfqd->bfq_burst_interval) ||
1289 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1290 		bfqd->large_burst = false;
1291 		bfq_reset_burst_list(bfqd, bfqq);
1292 		goto end;
1293 	}
1294 
1295 	/*
1296 	 * If we get here, then bfqq is being activated shortly after the
1297 	 * last queue. So, if the current burst is also large, we can mark
1298 	 * bfqq as belonging to this large burst immediately.
1299 	 */
1300 	if (bfqd->large_burst) {
1301 		bfq_mark_bfqq_in_large_burst(bfqq);
1302 		goto end;
1303 	}
1304 
1305 	/*
1306 	 * If we get here, then a large-burst state has not yet been
1307 	 * reached, but bfqq is being activated shortly after the last
1308 	 * queue. Then we add bfqq to the burst.
1309 	 */
1310 	bfq_add_to_burst(bfqd, bfqq);
1311 end:
1312 	/*
1313 	 * At this point, bfqq either has been added to the current
1314 	 * burst or has caused the current burst to terminate and a
1315 	 * possible new burst to start. In particular, in the second
1316 	 * case, bfqq has become the first queue in the possible new
1317 	 * burst.  In both cases last_ins_in_burst needs to be moved
1318 	 * forward.
1319 	 */
1320 	bfqd->last_ins_in_burst = jiffies;
1321 }
1322 
1323 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1324 {
1325 	struct bfq_entity *entity = &bfqq->entity;
1326 
1327 	return entity->budget - entity->service;
1328 }
1329 
1330 /*
1331  * If enough samples have been computed, return the current max budget
1332  * stored in bfqd, which is dynamically updated according to the
1333  * estimated disk peak rate; otherwise return the default max budget
1334  */
1335 static int bfq_max_budget(struct bfq_data *bfqd)
1336 {
1337 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1338 		return bfq_default_max_budget;
1339 	else
1340 		return bfqd->bfq_max_budget;
1341 }
1342 
1343 /*
1344  * Return min budget, which is a fraction of the current or default
1345  * max budget (trying with 1/32)
1346  */
1347 static int bfq_min_budget(struct bfq_data *bfqd)
1348 {
1349 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1350 		return bfq_default_max_budget / 32;
1351 	else
1352 		return bfqd->bfq_max_budget / 32;
1353 }
1354 
1355 /*
1356  * The next function, invoked after the input queue bfqq switches from
1357  * idle to busy, updates the budget of bfqq. The function also tells
1358  * whether the in-service queue should be expired, by returning
1359  * true. The purpose of expiring the in-service queue is to give bfqq
1360  * the chance to possibly preempt the in-service queue, and the reason
1361  * for preempting the in-service queue is to achieve one of the two
1362  * goals below.
1363  *
1364  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1365  * expired because it has remained idle. In particular, bfqq may have
1366  * expired for one of the following two reasons:
1367  *
1368  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1369  *   and did not make it to issue a new request before its last
1370  *   request was served;
1371  *
1372  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1373  *   a new request before the expiration of the idling-time.
1374  *
1375  * Even if bfqq has expired for one of the above reasons, the process
1376  * associated with the queue may be however issuing requests greedily,
1377  * and thus be sensitive to the bandwidth it receives (bfqq may have
1378  * remained idle for other reasons: CPU high load, bfqq not enjoying
1379  * idling, I/O throttling somewhere in the path from the process to
1380  * the I/O scheduler, ...). But if, after every expiration for one of
1381  * the above two reasons, bfqq has to wait for the service of at least
1382  * one full budget of another queue before being served again, then
1383  * bfqq is likely to get a much lower bandwidth or resource time than
1384  * its reserved ones. To address this issue, two countermeasures need
1385  * to be taken.
1386  *
1387  * First, the budget and the timestamps of bfqq need to be updated in
1388  * a special way on bfqq reactivation: they need to be updated as if
1389  * bfqq did not remain idle and did not expire. In fact, if they are
1390  * computed as if bfqq expired and remained idle until reactivation,
1391  * then the process associated with bfqq is treated as if, instead of
1392  * being greedy, it stopped issuing requests when bfqq remained idle,
1393  * and restarts issuing requests only on this reactivation. In other
1394  * words, the scheduler does not help the process recover the "service
1395  * hole" between bfqq expiration and reactivation. As a consequence,
1396  * the process receives a lower bandwidth than its reserved one. In
1397  * contrast, to recover this hole, the budget must be updated as if
1398  * bfqq was not expired at all before this reactivation, i.e., it must
1399  * be set to the value of the remaining budget when bfqq was
1400  * expired. Along the same line, timestamps need to be assigned the
1401  * value they had the last time bfqq was selected for service, i.e.,
1402  * before last expiration. Thus timestamps need to be back-shifted
1403  * with respect to their normal computation (see [1] for more details
1404  * on this tricky aspect).
1405  *
1406  * Secondly, to allow the process to recover the hole, the in-service
1407  * queue must be expired too, to give bfqq the chance to preempt it
1408  * immediately. In fact, if bfqq has to wait for a full budget of the
1409  * in-service queue to be completed, then it may become impossible to
1410  * let the process recover the hole, even if the back-shifted
1411  * timestamps of bfqq are lower than those of the in-service queue. If
1412  * this happens for most or all of the holes, then the process may not
1413  * receive its reserved bandwidth. In this respect, it is worth noting
1414  * that, being the service of outstanding requests unpreemptible, a
1415  * little fraction of the holes may however be unrecoverable, thereby
1416  * causing a little loss of bandwidth.
1417  *
1418  * The last important point is detecting whether bfqq does need this
1419  * bandwidth recovery. In this respect, the next function deems the
1420  * process associated with bfqq greedy, and thus allows it to recover
1421  * the hole, if: 1) the process is waiting for the arrival of a new
1422  * request (which implies that bfqq expired for one of the above two
1423  * reasons), and 2) such a request has arrived soon. The first
1424  * condition is controlled through the flag non_blocking_wait_rq,
1425  * while the second through the flag arrived_in_time. If both
1426  * conditions hold, then the function computes the budget in the
1427  * above-described special way, and signals that the in-service queue
1428  * should be expired. Timestamp back-shifting is done later in
1429  * __bfq_activate_entity.
1430  *
1431  * 2. Reduce latency. Even if timestamps are not backshifted to let
1432  * the process associated with bfqq recover a service hole, bfqq may
1433  * however happen to have, after being (re)activated, a lower finish
1434  * timestamp than the in-service queue.	 That is, the next budget of
1435  * bfqq may have to be completed before the one of the in-service
1436  * queue. If this is the case, then preempting the in-service queue
1437  * allows this goal to be achieved, apart from the unpreemptible,
1438  * outstanding requests mentioned above.
1439  *
1440  * Unfortunately, regardless of which of the above two goals one wants
1441  * to achieve, service trees need first to be updated to know whether
1442  * the in-service queue must be preempted. To have service trees
1443  * correctly updated, the in-service queue must be expired and
1444  * rescheduled, and bfqq must be scheduled too. This is one of the
1445  * most costly operations (in future versions, the scheduling
1446  * mechanism may be re-designed in such a way to make it possible to
1447  * know whether preemption is needed without needing to update service
1448  * trees). In addition, queue preemptions almost always cause random
1449  * I/O, which may in turn cause loss of throughput. Finally, there may
1450  * even be no in-service queue when the next function is invoked (so,
1451  * no queue to compare timestamps with). Because of these facts, the
1452  * next function adopts the following simple scheme to avoid costly
1453  * operations, too frequent preemptions and too many dependencies on
1454  * the state of the scheduler: it requests the expiration of the
1455  * in-service queue (unconditionally) only for queues that need to
1456  * recover a hole. Then it delegates to other parts of the code the
1457  * responsibility of handling the above case 2.
1458  */
1459 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1460 						struct bfq_queue *bfqq,
1461 						bool arrived_in_time)
1462 {
1463 	struct bfq_entity *entity = &bfqq->entity;
1464 
1465 	/*
1466 	 * In the next compound condition, we check also whether there
1467 	 * is some budget left, because otherwise there is no point in
1468 	 * trying to go on serving bfqq with this same budget: bfqq
1469 	 * would be expired immediately after being selected for
1470 	 * service. This would only cause useless overhead.
1471 	 */
1472 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1473 	    bfq_bfqq_budget_left(bfqq) > 0) {
1474 		/*
1475 		 * We do not clear the flag non_blocking_wait_rq here, as
1476 		 * the latter is used in bfq_activate_bfqq to signal
1477 		 * that timestamps need to be back-shifted (and is
1478 		 * cleared right after).
1479 		 */
1480 
1481 		/*
1482 		 * In next assignment we rely on that either
1483 		 * entity->service or entity->budget are not updated
1484 		 * on expiration if bfqq is empty (see
1485 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1486 		 * remain unchanged after such an expiration, and the
1487 		 * following statement therefore assigns to
1488 		 * entity->budget the remaining budget on such an
1489 		 * expiration.
1490 		 */
1491 		entity->budget = min_t(unsigned long,
1492 				       bfq_bfqq_budget_left(bfqq),
1493 				       bfqq->max_budget);
1494 
1495 		/*
1496 		 * At this point, we have used entity->service to get
1497 		 * the budget left (needed for updating
1498 		 * entity->budget). Thus we finally can, and have to,
1499 		 * reset entity->service. The latter must be reset
1500 		 * because bfqq would otherwise be charged again for
1501 		 * the service it has received during its previous
1502 		 * service slot(s).
1503 		 */
1504 		entity->service = 0;
1505 
1506 		return true;
1507 	}
1508 
1509 	/*
1510 	 * We can finally complete expiration, by setting service to 0.
1511 	 */
1512 	entity->service = 0;
1513 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1514 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1515 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1516 	return false;
1517 }
1518 
1519 /*
1520  * Return the farthest past time instant according to jiffies
1521  * macros.
1522  */
1523 static unsigned long bfq_smallest_from_now(void)
1524 {
1525 	return jiffies - MAX_JIFFY_OFFSET;
1526 }
1527 
1528 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1529 					     struct bfq_queue *bfqq,
1530 					     unsigned int old_wr_coeff,
1531 					     bool wr_or_deserves_wr,
1532 					     bool interactive,
1533 					     bool in_burst,
1534 					     bool soft_rt)
1535 {
1536 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1537 		/* start a weight-raising period */
1538 		if (interactive) {
1539 			bfqq->service_from_wr = 0;
1540 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1541 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1542 		} else {
1543 			/*
1544 			 * No interactive weight raising in progress
1545 			 * here: assign minus infinity to
1546 			 * wr_start_at_switch_to_srt, to make sure
1547 			 * that, at the end of the soft-real-time
1548 			 * weight raising periods that is starting
1549 			 * now, no interactive weight-raising period
1550 			 * may be wrongly considered as still in
1551 			 * progress (and thus actually started by
1552 			 * mistake).
1553 			 */
1554 			bfqq->wr_start_at_switch_to_srt =
1555 				bfq_smallest_from_now();
1556 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1557 				BFQ_SOFTRT_WEIGHT_FACTOR;
1558 			bfqq->wr_cur_max_time =
1559 				bfqd->bfq_wr_rt_max_time;
1560 		}
1561 
1562 		/*
1563 		 * If needed, further reduce budget to make sure it is
1564 		 * close to bfqq's backlog, so as to reduce the
1565 		 * scheduling-error component due to a too large
1566 		 * budget. Do not care about throughput consequences,
1567 		 * but only about latency. Finally, do not assign a
1568 		 * too small budget either, to avoid increasing
1569 		 * latency by causing too frequent expirations.
1570 		 */
1571 		bfqq->entity.budget = min_t(unsigned long,
1572 					    bfqq->entity.budget,
1573 					    2 * bfq_min_budget(bfqd));
1574 	} else if (old_wr_coeff > 1) {
1575 		if (interactive) { /* update wr coeff and duration */
1576 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1577 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1578 		} else if (in_burst)
1579 			bfqq->wr_coeff = 1;
1580 		else if (soft_rt) {
1581 			/*
1582 			 * The application is now or still meeting the
1583 			 * requirements for being deemed soft rt.  We
1584 			 * can then correctly and safely (re)charge
1585 			 * the weight-raising duration for the
1586 			 * application with the weight-raising
1587 			 * duration for soft rt applications.
1588 			 *
1589 			 * In particular, doing this recharge now, i.e.,
1590 			 * before the weight-raising period for the
1591 			 * application finishes, reduces the probability
1592 			 * of the following negative scenario:
1593 			 * 1) the weight of a soft rt application is
1594 			 *    raised at startup (as for any newly
1595 			 *    created application),
1596 			 * 2) since the application is not interactive,
1597 			 *    at a certain time weight-raising is
1598 			 *    stopped for the application,
1599 			 * 3) at that time the application happens to
1600 			 *    still have pending requests, and hence
1601 			 *    is destined to not have a chance to be
1602 			 *    deemed soft rt before these requests are
1603 			 *    completed (see the comments to the
1604 			 *    function bfq_bfqq_softrt_next_start()
1605 			 *    for details on soft rt detection),
1606 			 * 4) these pending requests experience a high
1607 			 *    latency because the application is not
1608 			 *    weight-raised while they are pending.
1609 			 */
1610 			if (bfqq->wr_cur_max_time !=
1611 				bfqd->bfq_wr_rt_max_time) {
1612 				bfqq->wr_start_at_switch_to_srt =
1613 					bfqq->last_wr_start_finish;
1614 
1615 				bfqq->wr_cur_max_time =
1616 					bfqd->bfq_wr_rt_max_time;
1617 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1618 					BFQ_SOFTRT_WEIGHT_FACTOR;
1619 			}
1620 			bfqq->last_wr_start_finish = jiffies;
1621 		}
1622 	}
1623 }
1624 
1625 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1626 					struct bfq_queue *bfqq)
1627 {
1628 	return bfqq->dispatched == 0 &&
1629 		time_is_before_jiffies(
1630 			bfqq->budget_timeout +
1631 			bfqd->bfq_wr_min_idle_time);
1632 }
1633 
1634 
1635 /*
1636  * Return true if bfqq is in a higher priority class, or has a higher
1637  * weight than the in-service queue.
1638  */
1639 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1640 					    struct bfq_queue *in_serv_bfqq)
1641 {
1642 	int bfqq_weight, in_serv_weight;
1643 
1644 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1645 		return true;
1646 
1647 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1648 		bfqq_weight = bfqq->entity.weight;
1649 		in_serv_weight = in_serv_bfqq->entity.weight;
1650 	} else {
1651 		if (bfqq->entity.parent)
1652 			bfqq_weight = bfqq->entity.parent->weight;
1653 		else
1654 			bfqq_weight = bfqq->entity.weight;
1655 		if (in_serv_bfqq->entity.parent)
1656 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1657 		else
1658 			in_serv_weight = in_serv_bfqq->entity.weight;
1659 	}
1660 
1661 	return bfqq_weight > in_serv_weight;
1662 }
1663 
1664 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1665 
1666 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1667 					     struct bfq_queue *bfqq,
1668 					     int old_wr_coeff,
1669 					     struct request *rq,
1670 					     bool *interactive)
1671 {
1672 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1673 		bfqq_wants_to_preempt,
1674 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1675 		/*
1676 		 * See the comments on
1677 		 * bfq_bfqq_update_budg_for_activation for
1678 		 * details on the usage of the next variable.
1679 		 */
1680 		arrived_in_time =  ktime_get_ns() <=
1681 			bfqq->ttime.last_end_request +
1682 			bfqd->bfq_slice_idle * 3;
1683 
1684 
1685 	/*
1686 	 * bfqq deserves to be weight-raised if:
1687 	 * - it is sync,
1688 	 * - it does not belong to a large burst,
1689 	 * - it has been idle for enough time or is soft real-time,
1690 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1691 	 * - has a default weight (otherwise we assume the user wanted
1692 	 *   to control its weight explicitly)
1693 	 */
1694 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1695 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1696 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1697 		!in_burst &&
1698 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1699 		bfqq->dispatched == 0 &&
1700 		bfqq->entity.new_weight == 40;
1701 	*interactive = !in_burst && idle_for_long_time &&
1702 		bfqq->entity.new_weight == 40;
1703 	wr_or_deserves_wr = bfqd->low_latency &&
1704 		(bfqq->wr_coeff > 1 ||
1705 		 (bfq_bfqq_sync(bfqq) &&
1706 		  bfqq->bic && (*interactive || soft_rt)));
1707 
1708 	/*
1709 	 * Using the last flag, update budget and check whether bfqq
1710 	 * may want to preempt the in-service queue.
1711 	 */
1712 	bfqq_wants_to_preempt =
1713 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1714 						    arrived_in_time);
1715 
1716 	/*
1717 	 * If bfqq happened to be activated in a burst, but has been
1718 	 * idle for much more than an interactive queue, then we
1719 	 * assume that, in the overall I/O initiated in the burst, the
1720 	 * I/O associated with bfqq is finished. So bfqq does not need
1721 	 * to be treated as a queue belonging to a burst
1722 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1723 	 * if set, and remove bfqq from the burst list if it's
1724 	 * there. We do not decrement burst_size, because the fact
1725 	 * that bfqq does not need to belong to the burst list any
1726 	 * more does not invalidate the fact that bfqq was created in
1727 	 * a burst.
1728 	 */
1729 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1730 	    idle_for_long_time &&
1731 	    time_is_before_jiffies(
1732 		    bfqq->budget_timeout +
1733 		    msecs_to_jiffies(10000))) {
1734 		hlist_del_init(&bfqq->burst_list_node);
1735 		bfq_clear_bfqq_in_large_burst(bfqq);
1736 	}
1737 
1738 	bfq_clear_bfqq_just_created(bfqq);
1739 
1740 	if (bfqd->low_latency) {
1741 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1742 			/* wraparound */
1743 			bfqq->split_time =
1744 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1745 
1746 		if (time_is_before_jiffies(bfqq->split_time +
1747 					   bfqd->bfq_wr_min_idle_time)) {
1748 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1749 							 old_wr_coeff,
1750 							 wr_or_deserves_wr,
1751 							 *interactive,
1752 							 in_burst,
1753 							 soft_rt);
1754 
1755 			if (old_wr_coeff != bfqq->wr_coeff)
1756 				bfqq->entity.prio_changed = 1;
1757 		}
1758 	}
1759 
1760 	bfqq->last_idle_bklogged = jiffies;
1761 	bfqq->service_from_backlogged = 0;
1762 	bfq_clear_bfqq_softrt_update(bfqq);
1763 
1764 	bfq_add_bfqq_busy(bfqd, bfqq);
1765 
1766 	/*
1767 	 * Expire in-service queue if preemption may be needed for
1768 	 * guarantees or throughput. As for guarantees, we care
1769 	 * explicitly about two cases. The first is that bfqq has to
1770 	 * recover a service hole, as explained in the comments on
1771 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1772 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1773 	 * carry time-critical I/O, then bfqq's bandwidth is less
1774 	 * important than that of queues that carry time-critical I/O.
1775 	 * So, as a further constraint, we consider this case only if
1776 	 * bfqq is at least as weight-raised, i.e., at least as time
1777 	 * critical, as the in-service queue.
1778 	 *
1779 	 * The second case is that bfqq is in a higher priority class,
1780 	 * or has a higher weight than the in-service queue. If this
1781 	 * condition does not hold, we don't care because, even if
1782 	 * bfqq does not start to be served immediately, the resulting
1783 	 * delay for bfqq's I/O is however lower or much lower than
1784 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1785 	 *
1786 	 * In both cases, preemption is needed only if, according to
1787 	 * the timestamps of both bfqq and of the in-service queue,
1788 	 * bfqq actually is the next queue to serve. So, to reduce
1789 	 * useless preemptions, the return value of
1790 	 * next_queue_may_preempt() is considered in the next compound
1791 	 * condition too. Yet next_queue_may_preempt() just checks a
1792 	 * simple, necessary condition for bfqq to be the next queue
1793 	 * to serve. In fact, to evaluate a sufficient condition, the
1794 	 * timestamps of the in-service queue would need to be
1795 	 * updated, and this operation is quite costly (see the
1796 	 * comments on bfq_bfqq_update_budg_for_activation()).
1797 	 *
1798 	 * As for throughput, we ask bfq_better_to_idle() whether we
1799 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1800 	 * says no, then plugging is not needed any longer, either to
1801 	 * boost throughput or to perserve service guarantees. Then
1802 	 * the best option is to stop plugging I/O, as not doing so
1803 	 * would certainly lower throughput. We may end up in this
1804 	 * case if: (1) upon a dispatch attempt, we detected that it
1805 	 * was better to plug I/O dispatch, and to wait for a new
1806 	 * request to arrive for the currently in-service queue, but
1807 	 * (2) this switch of bfqq to busy changes the scenario.
1808 	 */
1809 	if (bfqd->in_service_queue &&
1810 	    ((bfqq_wants_to_preempt &&
1811 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1812 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1813 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1814 	    next_queue_may_preempt(bfqd))
1815 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1816 				false, BFQQE_PREEMPTED);
1817 }
1818 
1819 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1820 				   struct bfq_queue *bfqq)
1821 {
1822 	/* invalidate baseline total service time */
1823 	bfqq->last_serv_time_ns = 0;
1824 
1825 	/*
1826 	 * Reset pointer in case we are waiting for
1827 	 * some request completion.
1828 	 */
1829 	bfqd->waited_rq = NULL;
1830 
1831 	/*
1832 	 * If bfqq has a short think time, then start by setting the
1833 	 * inject limit to 0 prudentially, because the service time of
1834 	 * an injected I/O request may be higher than the think time
1835 	 * of bfqq, and therefore, if one request was injected when
1836 	 * bfqq remains empty, this injected request might delay the
1837 	 * service of the next I/O request for bfqq significantly. In
1838 	 * case bfqq can actually tolerate some injection, then the
1839 	 * adaptive update will however raise the limit soon. This
1840 	 * lucky circumstance holds exactly because bfqq has a short
1841 	 * think time, and thus, after remaining empty, is likely to
1842 	 * get new I/O enqueued---and then completed---before being
1843 	 * expired. This is the very pattern that gives the
1844 	 * limit-update algorithm the chance to measure the effect of
1845 	 * injection on request service times, and then to update the
1846 	 * limit accordingly.
1847 	 *
1848 	 * However, in the following special case, the inject limit is
1849 	 * left to 1 even if the think time is short: bfqq's I/O is
1850 	 * synchronized with that of some other queue, i.e., bfqq may
1851 	 * receive new I/O only after the I/O of the other queue is
1852 	 * completed. Keeping the inject limit to 1 allows the
1853 	 * blocking I/O to be served while bfqq is in service. And
1854 	 * this is very convenient both for bfqq and for overall
1855 	 * throughput, as explained in detail in the comments in
1856 	 * bfq_update_has_short_ttime().
1857 	 *
1858 	 * On the opposite end, if bfqq has a long think time, then
1859 	 * start directly by 1, because:
1860 	 * a) on the bright side, keeping at most one request in
1861 	 * service in the drive is unlikely to cause any harm to the
1862 	 * latency of bfqq's requests, as the service time of a single
1863 	 * request is likely to be lower than the think time of bfqq;
1864 	 * b) on the downside, after becoming empty, bfqq is likely to
1865 	 * expire before getting its next request. With this request
1866 	 * arrival pattern, it is very hard to sample total service
1867 	 * times and update the inject limit accordingly (see comments
1868 	 * on bfq_update_inject_limit()). So the limit is likely to be
1869 	 * never, or at least seldom, updated.  As a consequence, by
1870 	 * setting the limit to 1, we avoid that no injection ever
1871 	 * occurs with bfqq. On the downside, this proactive step
1872 	 * further reduces chances to actually compute the baseline
1873 	 * total service time. Thus it reduces chances to execute the
1874 	 * limit-update algorithm and possibly raise the limit to more
1875 	 * than 1.
1876 	 */
1877 	if (bfq_bfqq_has_short_ttime(bfqq))
1878 		bfqq->inject_limit = 0;
1879 	else
1880 		bfqq->inject_limit = 1;
1881 
1882 	bfqq->decrease_time_jif = jiffies;
1883 }
1884 
1885 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
1886 {
1887 	u64 tot_io_time = now_ns - bfqq->io_start_time;
1888 
1889 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
1890 		bfqq->tot_idle_time +=
1891 			now_ns - bfqq->ttime.last_end_request;
1892 
1893 	if (unlikely(bfq_bfqq_just_created(bfqq)))
1894 		return;
1895 
1896 	/*
1897 	 * Must be busy for at least about 80% of the time to be
1898 	 * considered I/O bound.
1899 	 */
1900 	if (bfqq->tot_idle_time * 5 > tot_io_time)
1901 		bfq_clear_bfqq_IO_bound(bfqq);
1902 	else
1903 		bfq_mark_bfqq_IO_bound(bfqq);
1904 
1905 	/*
1906 	 * Keep an observation window of at most 200 ms in the past
1907 	 * from now.
1908 	 */
1909 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
1910 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
1911 		bfqq->tot_idle_time >>= 1;
1912 	}
1913 }
1914 
1915 /*
1916  * Detect whether bfqq's I/O seems synchronized with that of some
1917  * other queue, i.e., whether bfqq, after remaining empty, happens to
1918  * receive new I/O only right after some I/O request of the other
1919  * queue has been completed. We call waker queue the other queue, and
1920  * we assume, for simplicity, that bfqq may have at most one waker
1921  * queue.
1922  *
1923  * A remarkable throughput boost can be reached by unconditionally
1924  * injecting the I/O of the waker queue, every time a new
1925  * bfq_dispatch_request happens to be invoked while I/O is being
1926  * plugged for bfqq.  In addition to boosting throughput, this
1927  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
1928  * bfqq. Note that these same results may be achieved with the general
1929  * injection mechanism, but less effectively. For details on this
1930  * aspect, see the comments on the choice of the queue for injection
1931  * in bfq_select_queue().
1932  *
1933  * Turning back to the detection of a waker queue, a queue Q is deemed
1934  * as a waker queue for bfqq if, for three consecutive times, bfqq
1935  * happens to become non empty right after a request of Q has been
1936  * completed. In particular, on the first time, Q is tentatively set
1937  * as a candidate waker queue, while on the third consecutive time
1938  * that Q is detected, the field waker_bfqq is set to Q, to confirm
1939  * that Q is a waker queue for bfqq. These detection steps are
1940  * performed only if bfqq has a long think time, so as to make it more
1941  * likely that bfqq's I/O is actually being blocked by a
1942  * synchronization. This last filter, plus the above three-times
1943  * requirement, make false positives less likely.
1944  *
1945  * NOTE
1946  *
1947  * The sooner a waker queue is detected, the sooner throughput can be
1948  * boosted by injecting I/O from the waker queue. Fortunately,
1949  * detection is likely to be actually fast, for the following
1950  * reasons. While blocked by synchronization, bfqq has a long think
1951  * time. This implies that bfqq's inject limit is at least equal to 1
1952  * (see the comments in bfq_update_inject_limit()). So, thanks to
1953  * injection, the waker queue is likely to be served during the very
1954  * first I/O-plugging time interval for bfqq. This triggers the first
1955  * step of the detection mechanism. Thanks again to injection, the
1956  * candidate waker queue is then likely to be confirmed no later than
1957  * during the next I/O-plugging interval for bfqq.
1958  *
1959  * ISSUE
1960  *
1961  * On queue merging all waker information is lost.
1962  */
1963 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1964 			    u64 now_ns)
1965 {
1966 	if (!bfqd->last_completed_rq_bfqq ||
1967 	    bfqd->last_completed_rq_bfqq == bfqq ||
1968 	    bfq_bfqq_has_short_ttime(bfqq) ||
1969 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
1970 	    bfqd->last_completed_rq_bfqq == bfqq->waker_bfqq)
1971 		return;
1972 
1973 	if (bfqd->last_completed_rq_bfqq !=
1974 	    bfqq->tentative_waker_bfqq) {
1975 		/*
1976 		 * First synchronization detected with a
1977 		 * candidate waker queue, or with a different
1978 		 * candidate waker queue from the current one.
1979 		 */
1980 		bfqq->tentative_waker_bfqq =
1981 			bfqd->last_completed_rq_bfqq;
1982 		bfqq->num_waker_detections = 1;
1983 	} else /* Same tentative waker queue detected again */
1984 		bfqq->num_waker_detections++;
1985 
1986 	if (bfqq->num_waker_detections == 3) {
1987 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1988 		bfqq->tentative_waker_bfqq = NULL;
1989 
1990 		/*
1991 		 * If the waker queue disappears, then
1992 		 * bfqq->waker_bfqq must be reset. To
1993 		 * this goal, we maintain in each
1994 		 * waker queue a list, woken_list, of
1995 		 * all the queues that reference the
1996 		 * waker queue through their
1997 		 * waker_bfqq pointer. When the waker
1998 		 * queue exits, the waker_bfqq pointer
1999 		 * of all the queues in the woken_list
2000 		 * is reset.
2001 		 *
2002 		 * In addition, if bfqq is already in
2003 		 * the woken_list of a waker queue,
2004 		 * then, before being inserted into
2005 		 * the woken_list of a new waker
2006 		 * queue, bfqq must be removed from
2007 		 * the woken_list of the old waker
2008 		 * queue.
2009 		 */
2010 		if (!hlist_unhashed(&bfqq->woken_list_node))
2011 			hlist_del_init(&bfqq->woken_list_node);
2012 		hlist_add_head(&bfqq->woken_list_node,
2013 			       &bfqd->last_completed_rq_bfqq->woken_list);
2014 	}
2015 }
2016 
2017 static void bfq_add_request(struct request *rq)
2018 {
2019 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2020 	struct bfq_data *bfqd = bfqq->bfqd;
2021 	struct request *next_rq, *prev;
2022 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2023 	bool interactive = false;
2024 	u64 now_ns = ktime_get_ns();
2025 
2026 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2027 	bfqq->queued[rq_is_sync(rq)]++;
2028 	bfqd->queued++;
2029 
2030 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
2031 		bfq_check_waker(bfqd, bfqq, now_ns);
2032 
2033 		/*
2034 		 * Periodically reset inject limit, to make sure that
2035 		 * the latter eventually drops in case workload
2036 		 * changes, see step (3) in the comments on
2037 		 * bfq_update_inject_limit().
2038 		 */
2039 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2040 					     msecs_to_jiffies(1000)))
2041 			bfq_reset_inject_limit(bfqd, bfqq);
2042 
2043 		/*
2044 		 * The following conditions must hold to setup a new
2045 		 * sampling of total service time, and then a new
2046 		 * update of the inject limit:
2047 		 * - bfqq is in service, because the total service
2048 		 *   time is evaluated only for the I/O requests of
2049 		 *   the queues in service;
2050 		 * - this is the right occasion to compute or to
2051 		 *   lower the baseline total service time, because
2052 		 *   there are actually no requests in the drive,
2053 		 *   or
2054 		 *   the baseline total service time is available, and
2055 		 *   this is the right occasion to compute the other
2056 		 *   quantity needed to update the inject limit, i.e.,
2057 		 *   the total service time caused by the amount of
2058 		 *   injection allowed by the current value of the
2059 		 *   limit. It is the right occasion because injection
2060 		 *   has actually been performed during the service
2061 		 *   hole, and there are still in-flight requests,
2062 		 *   which are very likely to be exactly the injected
2063 		 *   requests, or part of them;
2064 		 * - the minimum interval for sampling the total
2065 		 *   service time and updating the inject limit has
2066 		 *   elapsed.
2067 		 */
2068 		if (bfqq == bfqd->in_service_queue &&
2069 		    (bfqd->rq_in_driver == 0 ||
2070 		     (bfqq->last_serv_time_ns > 0 &&
2071 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2072 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2073 					      msecs_to_jiffies(10))) {
2074 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2075 			/*
2076 			 * Start the state machine for measuring the
2077 			 * total service time of rq: setting
2078 			 * wait_dispatch will cause bfqd->waited_rq to
2079 			 * be set when rq will be dispatched.
2080 			 */
2081 			bfqd->wait_dispatch = true;
2082 			/*
2083 			 * If there is no I/O in service in the drive,
2084 			 * then possible injection occurred before the
2085 			 * arrival of rq will not affect the total
2086 			 * service time of rq. So the injection limit
2087 			 * must not be updated as a function of such
2088 			 * total service time, unless new injection
2089 			 * occurs before rq is completed. To have the
2090 			 * injection limit updated only in the latter
2091 			 * case, reset rqs_injected here (rqs_injected
2092 			 * will be set in case injection is performed
2093 			 * on bfqq before rq is completed).
2094 			 */
2095 			if (bfqd->rq_in_driver == 0)
2096 				bfqd->rqs_injected = false;
2097 		}
2098 	}
2099 
2100 	if (bfq_bfqq_sync(bfqq))
2101 		bfq_update_io_intensity(bfqq, now_ns);
2102 
2103 	elv_rb_add(&bfqq->sort_list, rq);
2104 
2105 	/*
2106 	 * Check if this request is a better next-serve candidate.
2107 	 */
2108 	prev = bfqq->next_rq;
2109 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2110 	bfqq->next_rq = next_rq;
2111 
2112 	/*
2113 	 * Adjust priority tree position, if next_rq changes.
2114 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2115 	 */
2116 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2117 		bfq_pos_tree_add_move(bfqd, bfqq);
2118 
2119 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2120 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2121 						 rq, &interactive);
2122 	else {
2123 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2124 		    time_is_before_jiffies(
2125 				bfqq->last_wr_start_finish +
2126 				bfqd->bfq_wr_min_inter_arr_async)) {
2127 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2128 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2129 
2130 			bfqd->wr_busy_queues++;
2131 			bfqq->entity.prio_changed = 1;
2132 		}
2133 		if (prev != bfqq->next_rq)
2134 			bfq_updated_next_req(bfqd, bfqq);
2135 	}
2136 
2137 	/*
2138 	 * Assign jiffies to last_wr_start_finish in the following
2139 	 * cases:
2140 	 *
2141 	 * . if bfqq is not going to be weight-raised, because, for
2142 	 *   non weight-raised queues, last_wr_start_finish stores the
2143 	 *   arrival time of the last request; as of now, this piece
2144 	 *   of information is used only for deciding whether to
2145 	 *   weight-raise async queues
2146 	 *
2147 	 * . if bfqq is not weight-raised, because, if bfqq is now
2148 	 *   switching to weight-raised, then last_wr_start_finish
2149 	 *   stores the time when weight-raising starts
2150 	 *
2151 	 * . if bfqq is interactive, because, regardless of whether
2152 	 *   bfqq is currently weight-raised, the weight-raising
2153 	 *   period must start or restart (this case is considered
2154 	 *   separately because it is not detected by the above
2155 	 *   conditions, if bfqq is already weight-raised)
2156 	 *
2157 	 * last_wr_start_finish has to be updated also if bfqq is soft
2158 	 * real-time, because the weight-raising period is constantly
2159 	 * restarted on idle-to-busy transitions for these queues, but
2160 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2161 	 * needed.
2162 	 */
2163 	if (bfqd->low_latency &&
2164 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2165 		bfqq->last_wr_start_finish = jiffies;
2166 }
2167 
2168 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2169 					  struct bio *bio,
2170 					  struct request_queue *q)
2171 {
2172 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2173 
2174 
2175 	if (bfqq)
2176 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2177 
2178 	return NULL;
2179 }
2180 
2181 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2182 {
2183 	if (last_pos)
2184 		return abs(blk_rq_pos(rq) - last_pos);
2185 
2186 	return 0;
2187 }
2188 
2189 #if 0 /* Still not clear if we can do without next two functions */
2190 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2191 {
2192 	struct bfq_data *bfqd = q->elevator->elevator_data;
2193 
2194 	bfqd->rq_in_driver++;
2195 }
2196 
2197 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2198 {
2199 	struct bfq_data *bfqd = q->elevator->elevator_data;
2200 
2201 	bfqd->rq_in_driver--;
2202 }
2203 #endif
2204 
2205 static void bfq_remove_request(struct request_queue *q,
2206 			       struct request *rq)
2207 {
2208 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2209 	struct bfq_data *bfqd = bfqq->bfqd;
2210 	const int sync = rq_is_sync(rq);
2211 
2212 	if (bfqq->next_rq == rq) {
2213 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2214 		bfq_updated_next_req(bfqd, bfqq);
2215 	}
2216 
2217 	if (rq->queuelist.prev != &rq->queuelist)
2218 		list_del_init(&rq->queuelist);
2219 	bfqq->queued[sync]--;
2220 	bfqd->queued--;
2221 	elv_rb_del(&bfqq->sort_list, rq);
2222 
2223 	elv_rqhash_del(q, rq);
2224 	if (q->last_merge == rq)
2225 		q->last_merge = NULL;
2226 
2227 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2228 		bfqq->next_rq = NULL;
2229 
2230 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2231 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2232 			/*
2233 			 * bfqq emptied. In normal operation, when
2234 			 * bfqq is empty, bfqq->entity.service and
2235 			 * bfqq->entity.budget must contain,
2236 			 * respectively, the service received and the
2237 			 * budget used last time bfqq emptied. These
2238 			 * facts do not hold in this case, as at least
2239 			 * this last removal occurred while bfqq is
2240 			 * not in service. To avoid inconsistencies,
2241 			 * reset both bfqq->entity.service and
2242 			 * bfqq->entity.budget, if bfqq has still a
2243 			 * process that may issue I/O requests to it.
2244 			 */
2245 			bfqq->entity.budget = bfqq->entity.service = 0;
2246 		}
2247 
2248 		/*
2249 		 * Remove queue from request-position tree as it is empty.
2250 		 */
2251 		if (bfqq->pos_root) {
2252 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2253 			bfqq->pos_root = NULL;
2254 		}
2255 	} else {
2256 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2257 		if (unlikely(!bfqd->nonrot_with_queueing))
2258 			bfq_pos_tree_add_move(bfqd, bfqq);
2259 	}
2260 
2261 	if (rq->cmd_flags & REQ_META)
2262 		bfqq->meta_pending--;
2263 
2264 }
2265 
2266 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
2267 		unsigned int nr_segs)
2268 {
2269 	struct request_queue *q = hctx->queue;
2270 	struct bfq_data *bfqd = q->elevator->elevator_data;
2271 	struct request *free = NULL;
2272 	/*
2273 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2274 	 * store its return value for later use, to avoid nesting
2275 	 * queue_lock inside the bfqd->lock. We assume that the bic
2276 	 * returned by bfq_bic_lookup does not go away before
2277 	 * bfqd->lock is taken.
2278 	 */
2279 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2280 	bool ret;
2281 
2282 	spin_lock_irq(&bfqd->lock);
2283 
2284 	if (bic)
2285 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2286 	else
2287 		bfqd->bio_bfqq = NULL;
2288 	bfqd->bio_bic = bic;
2289 
2290 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2291 
2292 	if (free)
2293 		blk_mq_free_request(free);
2294 	spin_unlock_irq(&bfqd->lock);
2295 
2296 	return ret;
2297 }
2298 
2299 static int bfq_request_merge(struct request_queue *q, struct request **req,
2300 			     struct bio *bio)
2301 {
2302 	struct bfq_data *bfqd = q->elevator->elevator_data;
2303 	struct request *__rq;
2304 
2305 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2306 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2307 		*req = __rq;
2308 		return ELEVATOR_FRONT_MERGE;
2309 	}
2310 
2311 	return ELEVATOR_NO_MERGE;
2312 }
2313 
2314 static struct bfq_queue *bfq_init_rq(struct request *rq);
2315 
2316 static void bfq_request_merged(struct request_queue *q, struct request *req,
2317 			       enum elv_merge type)
2318 {
2319 	if (type == ELEVATOR_FRONT_MERGE &&
2320 	    rb_prev(&req->rb_node) &&
2321 	    blk_rq_pos(req) <
2322 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2323 				    struct request, rb_node))) {
2324 		struct bfq_queue *bfqq = bfq_init_rq(req);
2325 		struct bfq_data *bfqd;
2326 		struct request *prev, *next_rq;
2327 
2328 		if (!bfqq)
2329 			return;
2330 
2331 		bfqd = bfqq->bfqd;
2332 
2333 		/* Reposition request in its sort_list */
2334 		elv_rb_del(&bfqq->sort_list, req);
2335 		elv_rb_add(&bfqq->sort_list, req);
2336 
2337 		/* Choose next request to be served for bfqq */
2338 		prev = bfqq->next_rq;
2339 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2340 					 bfqd->last_position);
2341 		bfqq->next_rq = next_rq;
2342 		/*
2343 		 * If next_rq changes, update both the queue's budget to
2344 		 * fit the new request and the queue's position in its
2345 		 * rq_pos_tree.
2346 		 */
2347 		if (prev != bfqq->next_rq) {
2348 			bfq_updated_next_req(bfqd, bfqq);
2349 			/*
2350 			 * See comments on bfq_pos_tree_add_move() for
2351 			 * the unlikely().
2352 			 */
2353 			if (unlikely(!bfqd->nonrot_with_queueing))
2354 				bfq_pos_tree_add_move(bfqd, bfqq);
2355 		}
2356 	}
2357 }
2358 
2359 /*
2360  * This function is called to notify the scheduler that the requests
2361  * rq and 'next' have been merged, with 'next' going away.  BFQ
2362  * exploits this hook to address the following issue: if 'next' has a
2363  * fifo_time lower that rq, then the fifo_time of rq must be set to
2364  * the value of 'next', to not forget the greater age of 'next'.
2365  *
2366  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2367  * on that rq is picked from the hash table q->elevator->hash, which,
2368  * in its turn, is filled only with I/O requests present in
2369  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2370  * the function that fills this hash table (elv_rqhash_add) is called
2371  * only by bfq_insert_request.
2372  */
2373 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2374 				struct request *next)
2375 {
2376 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2377 		*next_bfqq = bfq_init_rq(next);
2378 
2379 	if (!bfqq)
2380 		return;
2381 
2382 	/*
2383 	 * If next and rq belong to the same bfq_queue and next is older
2384 	 * than rq, then reposition rq in the fifo (by substituting next
2385 	 * with rq). Otherwise, if next and rq belong to different
2386 	 * bfq_queues, never reposition rq: in fact, we would have to
2387 	 * reposition it with respect to next's position in its own fifo,
2388 	 * which would most certainly be too expensive with respect to
2389 	 * the benefits.
2390 	 */
2391 	if (bfqq == next_bfqq &&
2392 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2393 	    next->fifo_time < rq->fifo_time) {
2394 		list_del_init(&rq->queuelist);
2395 		list_replace_init(&next->queuelist, &rq->queuelist);
2396 		rq->fifo_time = next->fifo_time;
2397 	}
2398 
2399 	if (bfqq->next_rq == next)
2400 		bfqq->next_rq = rq;
2401 
2402 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2403 }
2404 
2405 /* Must be called with bfqq != NULL */
2406 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2407 {
2408 	/*
2409 	 * If bfqq has been enjoying interactive weight-raising, then
2410 	 * reset soft_rt_next_start. We do it for the following
2411 	 * reason. bfqq may have been conveying the I/O needed to load
2412 	 * a soft real-time application. Such an application actually
2413 	 * exhibits a soft real-time I/O pattern after it finishes
2414 	 * loading, and finally starts doing its job. But, if bfqq has
2415 	 * been receiving a lot of bandwidth so far (likely to happen
2416 	 * on a fast device), then soft_rt_next_start now contains a
2417 	 * high value that. So, without this reset, bfqq would be
2418 	 * prevented from being possibly considered as soft_rt for a
2419 	 * very long time.
2420 	 */
2421 
2422 	if (bfqq->wr_cur_max_time !=
2423 	    bfqq->bfqd->bfq_wr_rt_max_time)
2424 		bfqq->soft_rt_next_start = jiffies;
2425 
2426 	if (bfq_bfqq_busy(bfqq))
2427 		bfqq->bfqd->wr_busy_queues--;
2428 	bfqq->wr_coeff = 1;
2429 	bfqq->wr_cur_max_time = 0;
2430 	bfqq->last_wr_start_finish = jiffies;
2431 	/*
2432 	 * Trigger a weight change on the next invocation of
2433 	 * __bfq_entity_update_weight_prio.
2434 	 */
2435 	bfqq->entity.prio_changed = 1;
2436 }
2437 
2438 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2439 			     struct bfq_group *bfqg)
2440 {
2441 	int i, j;
2442 
2443 	for (i = 0; i < 2; i++)
2444 		for (j = 0; j < IOPRIO_BE_NR; j++)
2445 			if (bfqg->async_bfqq[i][j])
2446 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2447 	if (bfqg->async_idle_bfqq)
2448 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2449 }
2450 
2451 static void bfq_end_wr(struct bfq_data *bfqd)
2452 {
2453 	struct bfq_queue *bfqq;
2454 
2455 	spin_lock_irq(&bfqd->lock);
2456 
2457 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2458 		bfq_bfqq_end_wr(bfqq);
2459 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2460 		bfq_bfqq_end_wr(bfqq);
2461 	bfq_end_wr_async(bfqd);
2462 
2463 	spin_unlock_irq(&bfqd->lock);
2464 }
2465 
2466 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2467 {
2468 	if (request)
2469 		return blk_rq_pos(io_struct);
2470 	else
2471 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2472 }
2473 
2474 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2475 				  sector_t sector)
2476 {
2477 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2478 	       BFQQ_CLOSE_THR;
2479 }
2480 
2481 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2482 					 struct bfq_queue *bfqq,
2483 					 sector_t sector)
2484 {
2485 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2486 	struct rb_node *parent, *node;
2487 	struct bfq_queue *__bfqq;
2488 
2489 	if (RB_EMPTY_ROOT(root))
2490 		return NULL;
2491 
2492 	/*
2493 	 * First, if we find a request starting at the end of the last
2494 	 * request, choose it.
2495 	 */
2496 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2497 	if (__bfqq)
2498 		return __bfqq;
2499 
2500 	/*
2501 	 * If the exact sector wasn't found, the parent of the NULL leaf
2502 	 * will contain the closest sector (rq_pos_tree sorted by
2503 	 * next_request position).
2504 	 */
2505 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2506 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2507 		return __bfqq;
2508 
2509 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2510 		node = rb_next(&__bfqq->pos_node);
2511 	else
2512 		node = rb_prev(&__bfqq->pos_node);
2513 	if (!node)
2514 		return NULL;
2515 
2516 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2517 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2518 		return __bfqq;
2519 
2520 	return NULL;
2521 }
2522 
2523 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2524 						   struct bfq_queue *cur_bfqq,
2525 						   sector_t sector)
2526 {
2527 	struct bfq_queue *bfqq;
2528 
2529 	/*
2530 	 * We shall notice if some of the queues are cooperating,
2531 	 * e.g., working closely on the same area of the device. In
2532 	 * that case, we can group them together and: 1) don't waste
2533 	 * time idling, and 2) serve the union of their requests in
2534 	 * the best possible order for throughput.
2535 	 */
2536 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2537 	if (!bfqq || bfqq == cur_bfqq)
2538 		return NULL;
2539 
2540 	return bfqq;
2541 }
2542 
2543 static struct bfq_queue *
2544 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2545 {
2546 	int process_refs, new_process_refs;
2547 	struct bfq_queue *__bfqq;
2548 
2549 	/*
2550 	 * If there are no process references on the new_bfqq, then it is
2551 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2552 	 * may have dropped their last reference (not just their last process
2553 	 * reference).
2554 	 */
2555 	if (!bfqq_process_refs(new_bfqq))
2556 		return NULL;
2557 
2558 	/* Avoid a circular list and skip interim queue merges. */
2559 	while ((__bfqq = new_bfqq->new_bfqq)) {
2560 		if (__bfqq == bfqq)
2561 			return NULL;
2562 		new_bfqq = __bfqq;
2563 	}
2564 
2565 	process_refs = bfqq_process_refs(bfqq);
2566 	new_process_refs = bfqq_process_refs(new_bfqq);
2567 	/*
2568 	 * If the process for the bfqq has gone away, there is no
2569 	 * sense in merging the queues.
2570 	 */
2571 	if (process_refs == 0 || new_process_refs == 0)
2572 		return NULL;
2573 
2574 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2575 		new_bfqq->pid);
2576 
2577 	/*
2578 	 * Merging is just a redirection: the requests of the process
2579 	 * owning one of the two queues are redirected to the other queue.
2580 	 * The latter queue, in its turn, is set as shared if this is the
2581 	 * first time that the requests of some process are redirected to
2582 	 * it.
2583 	 *
2584 	 * We redirect bfqq to new_bfqq and not the opposite, because
2585 	 * we are in the context of the process owning bfqq, thus we
2586 	 * have the io_cq of this process. So we can immediately
2587 	 * configure this io_cq to redirect the requests of the
2588 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2589 	 * not available any more (new_bfqq->bic == NULL).
2590 	 *
2591 	 * Anyway, even in case new_bfqq coincides with the in-service
2592 	 * queue, redirecting requests the in-service queue is the
2593 	 * best option, as we feed the in-service queue with new
2594 	 * requests close to the last request served and, by doing so,
2595 	 * are likely to increase the throughput.
2596 	 */
2597 	bfqq->new_bfqq = new_bfqq;
2598 	new_bfqq->ref += process_refs;
2599 	return new_bfqq;
2600 }
2601 
2602 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2603 					struct bfq_queue *new_bfqq)
2604 {
2605 	if (bfq_too_late_for_merging(new_bfqq))
2606 		return false;
2607 
2608 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2609 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2610 		return false;
2611 
2612 	/*
2613 	 * If either of the queues has already been detected as seeky,
2614 	 * then merging it with the other queue is unlikely to lead to
2615 	 * sequential I/O.
2616 	 */
2617 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2618 		return false;
2619 
2620 	/*
2621 	 * Interleaved I/O is known to be done by (some) applications
2622 	 * only for reads, so it does not make sense to merge async
2623 	 * queues.
2624 	 */
2625 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2626 		return false;
2627 
2628 	return true;
2629 }
2630 
2631 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2632 					     struct bfq_queue *bfqq);
2633 
2634 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
2635 
2636 /*
2637  * Attempt to schedule a merge of bfqq with the currently in-service
2638  * queue or with a close queue among the scheduled queues.  Return
2639  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2640  * structure otherwise.
2641  *
2642  * The OOM queue is not allowed to participate to cooperation: in fact, since
2643  * the requests temporarily redirected to the OOM queue could be redirected
2644  * again to dedicated queues at any time, the state needed to correctly
2645  * handle merging with the OOM queue would be quite complex and expensive
2646  * to maintain. Besides, in such a critical condition as an out of memory,
2647  * the benefits of queue merging may be little relevant, or even negligible.
2648  *
2649  * WARNING: queue merging may impair fairness among non-weight raised
2650  * queues, for at least two reasons: 1) the original weight of a
2651  * merged queue may change during the merged state, 2) even being the
2652  * weight the same, a merged queue may be bloated with many more
2653  * requests than the ones produced by its originally-associated
2654  * process.
2655  */
2656 static struct bfq_queue *
2657 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2658 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2659 {
2660 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2661 
2662 	/*
2663 	 * Check delayed stable merge for rotational or non-queueing
2664 	 * devs. For this branch to be executed, bfqq must not be
2665 	 * currently merged with some other queue (i.e., bfqq->bic
2666 	 * must be non null). If we considered also merged queues,
2667 	 * then we should also check whether bfqq has already been
2668 	 * merged with bic->stable_merge_bfqq. But this would be
2669 	 * costly and complicated.
2670 	 */
2671 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2672 		if (bic->stable_merge_bfqq &&
2673 		    !bfq_bfqq_just_created(bfqq) &&
2674 		    time_is_after_jiffies(bfqq->split_time +
2675 					  msecs_to_jiffies(200))) {
2676 			struct bfq_queue *stable_merge_bfqq =
2677 				bic->stable_merge_bfqq;
2678 			int proc_ref = min(bfqq_process_refs(bfqq),
2679 					   bfqq_process_refs(stable_merge_bfqq));
2680 
2681 			/* deschedule stable merge, because done or aborted here */
2682 			bfq_put_stable_ref(stable_merge_bfqq);
2683 
2684 			bic->stable_merge_bfqq = NULL;
2685 
2686 			if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2687 			    proc_ref > 0) {
2688 				/* next function will take at least one ref */
2689 				struct bfq_queue *new_bfqq =
2690 					bfq_setup_merge(bfqq, stable_merge_bfqq);
2691 
2692 				bic->stably_merged = true;
2693 				if (new_bfqq && new_bfqq->bic)
2694 					new_bfqq->bic->stably_merged = true;
2695 				return new_bfqq;
2696 			} else
2697 				return NULL;
2698 		}
2699 	}
2700 
2701 	/*
2702 	 * Do not perform queue merging if the device is non
2703 	 * rotational and performs internal queueing. In fact, such a
2704 	 * device reaches a high speed through internal parallelism
2705 	 * and pipelining. This means that, to reach a high
2706 	 * throughput, it must have many requests enqueued at the same
2707 	 * time. But, in this configuration, the internal scheduling
2708 	 * algorithm of the device does exactly the job of queue
2709 	 * merging: it reorders requests so as to obtain as much as
2710 	 * possible a sequential I/O pattern. As a consequence, with
2711 	 * the workload generated by processes doing interleaved I/O,
2712 	 * the throughput reached by the device is likely to be the
2713 	 * same, with and without queue merging.
2714 	 *
2715 	 * Disabling merging also provides a remarkable benefit in
2716 	 * terms of throughput. Merging tends to make many workloads
2717 	 * artificially more uneven, because of shared queues
2718 	 * remaining non empty for incomparably more time than
2719 	 * non-merged queues. This may accentuate workload
2720 	 * asymmetries. For example, if one of the queues in a set of
2721 	 * merged queues has a higher weight than a normal queue, then
2722 	 * the shared queue may inherit such a high weight and, by
2723 	 * staying almost always active, may force BFQ to perform I/O
2724 	 * plugging most of the time. This evidently makes it harder
2725 	 * for BFQ to let the device reach a high throughput.
2726 	 *
2727 	 * Finally, the likely() macro below is not used because one
2728 	 * of the two branches is more likely than the other, but to
2729 	 * have the code path after the following if() executed as
2730 	 * fast as possible for the case of a non rotational device
2731 	 * with queueing. We want it because this is the fastest kind
2732 	 * of device. On the opposite end, the likely() may lengthen
2733 	 * the execution time of BFQ for the case of slower devices
2734 	 * (rotational or at least without queueing). But in this case
2735 	 * the execution time of BFQ matters very little, if not at
2736 	 * all.
2737 	 */
2738 	if (likely(bfqd->nonrot_with_queueing))
2739 		return NULL;
2740 
2741 	/*
2742 	 * Prevent bfqq from being merged if it has been created too
2743 	 * long ago. The idea is that true cooperating processes, and
2744 	 * thus their associated bfq_queues, are supposed to be
2745 	 * created shortly after each other. This is the case, e.g.,
2746 	 * for KVM/QEMU and dump I/O threads. Basing on this
2747 	 * assumption, the following filtering greatly reduces the
2748 	 * probability that two non-cooperating processes, which just
2749 	 * happen to do close I/O for some short time interval, have
2750 	 * their queues merged by mistake.
2751 	 */
2752 	if (bfq_too_late_for_merging(bfqq))
2753 		return NULL;
2754 
2755 	if (bfqq->new_bfqq)
2756 		return bfqq->new_bfqq;
2757 
2758 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2759 		return NULL;
2760 
2761 	/* If there is only one backlogged queue, don't search. */
2762 	if (bfq_tot_busy_queues(bfqd) == 1)
2763 		return NULL;
2764 
2765 	in_service_bfqq = bfqd->in_service_queue;
2766 
2767 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2768 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2769 	    bfq_rq_close_to_sector(io_struct, request,
2770 				   bfqd->in_serv_last_pos) &&
2771 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2772 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2773 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2774 		if (new_bfqq)
2775 			return new_bfqq;
2776 	}
2777 	/*
2778 	 * Check whether there is a cooperator among currently scheduled
2779 	 * queues. The only thing we need is that the bio/request is not
2780 	 * NULL, as we need it to establish whether a cooperator exists.
2781 	 */
2782 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2783 			bfq_io_struct_pos(io_struct, request));
2784 
2785 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2786 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2787 		return bfq_setup_merge(bfqq, new_bfqq);
2788 
2789 	return NULL;
2790 }
2791 
2792 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2793 {
2794 	struct bfq_io_cq *bic = bfqq->bic;
2795 
2796 	/*
2797 	 * If !bfqq->bic, the queue is already shared or its requests
2798 	 * have already been redirected to a shared queue; both idle window
2799 	 * and weight raising state have already been saved. Do nothing.
2800 	 */
2801 	if (!bic)
2802 		return;
2803 
2804 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
2805 	bic->saved_inject_limit = bfqq->inject_limit;
2806 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
2807 
2808 	bic->saved_weight = bfqq->entity.orig_weight;
2809 	bic->saved_ttime = bfqq->ttime;
2810 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2811 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2812 	bic->saved_io_start_time = bfqq->io_start_time;
2813 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
2814 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2815 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2816 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2817 		     !bfq_bfqq_in_large_burst(bfqq) &&
2818 		     bfqq->bfqd->low_latency)) {
2819 		/*
2820 		 * bfqq being merged right after being created: bfqq
2821 		 * would have deserved interactive weight raising, but
2822 		 * did not make it to be set in a weight-raised state,
2823 		 * because of this early merge.	Store directly the
2824 		 * weight-raising state that would have been assigned
2825 		 * to bfqq, so that to avoid that bfqq unjustly fails
2826 		 * to enjoy weight raising if split soon.
2827 		 */
2828 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2829 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2830 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2831 		bic->saved_last_wr_start_finish = jiffies;
2832 	} else {
2833 		bic->saved_wr_coeff = bfqq->wr_coeff;
2834 		bic->saved_wr_start_at_switch_to_srt =
2835 			bfqq->wr_start_at_switch_to_srt;
2836 		bic->saved_service_from_wr = bfqq->service_from_wr;
2837 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2838 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2839 	}
2840 }
2841 
2842 
2843 static void
2844 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
2845 {
2846 	if (cur_bfqq->entity.parent &&
2847 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
2848 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
2849 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
2850 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
2851 }
2852 
2853 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2854 {
2855 	/*
2856 	 * To prevent bfqq's service guarantees from being violated,
2857 	 * bfqq may be left busy, i.e., queued for service, even if
2858 	 * empty (see comments in __bfq_bfqq_expire() for
2859 	 * details). But, if no process will send requests to bfqq any
2860 	 * longer, then there is no point in keeping bfqq queued for
2861 	 * service. In addition, keeping bfqq queued for service, but
2862 	 * with no process ref any longer, may have caused bfqq to be
2863 	 * freed when dequeued from service. But this is assumed to
2864 	 * never happen.
2865 	 */
2866 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2867 	    bfqq != bfqd->in_service_queue)
2868 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2869 
2870 	bfq_reassign_last_bfqq(bfqq, NULL);
2871 
2872 	bfq_put_queue(bfqq);
2873 }
2874 
2875 static void
2876 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2877 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2878 {
2879 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2880 		(unsigned long)new_bfqq->pid);
2881 	/* Save weight raising and idle window of the merged queues */
2882 	bfq_bfqq_save_state(bfqq);
2883 	bfq_bfqq_save_state(new_bfqq);
2884 	if (bfq_bfqq_IO_bound(bfqq))
2885 		bfq_mark_bfqq_IO_bound(new_bfqq);
2886 	bfq_clear_bfqq_IO_bound(bfqq);
2887 
2888 	/*
2889 	 * The processes associated with bfqq are cooperators of the
2890 	 * processes associated with new_bfqq. So, if bfqq has a
2891 	 * waker, then assume that all these processes will be happy
2892 	 * to let bfqq's waker freely inject I/O when they have no
2893 	 * I/O.
2894 	 */
2895 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
2896 	    bfqq->waker_bfqq != new_bfqq) {
2897 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
2898 		new_bfqq->tentative_waker_bfqq = NULL;
2899 
2900 		/*
2901 		 * If the waker queue disappears, then
2902 		 * new_bfqq->waker_bfqq must be reset. So insert
2903 		 * new_bfqq into the woken_list of the waker. See
2904 		 * bfq_check_waker for details.
2905 		 */
2906 		hlist_add_head(&new_bfqq->woken_list_node,
2907 			       &new_bfqq->waker_bfqq->woken_list);
2908 
2909 	}
2910 
2911 	/*
2912 	 * If bfqq is weight-raised, then let new_bfqq inherit
2913 	 * weight-raising. To reduce false positives, neglect the case
2914 	 * where bfqq has just been created, but has not yet made it
2915 	 * to be weight-raised (which may happen because EQM may merge
2916 	 * bfqq even before bfq_add_request is executed for the first
2917 	 * time for bfqq). Handling this case would however be very
2918 	 * easy, thanks to the flag just_created.
2919 	 */
2920 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2921 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2922 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2923 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2924 		new_bfqq->wr_start_at_switch_to_srt =
2925 			bfqq->wr_start_at_switch_to_srt;
2926 		if (bfq_bfqq_busy(new_bfqq))
2927 			bfqd->wr_busy_queues++;
2928 		new_bfqq->entity.prio_changed = 1;
2929 	}
2930 
2931 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2932 		bfqq->wr_coeff = 1;
2933 		bfqq->entity.prio_changed = 1;
2934 		if (bfq_bfqq_busy(bfqq))
2935 			bfqd->wr_busy_queues--;
2936 	}
2937 
2938 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2939 		     bfqd->wr_busy_queues);
2940 
2941 	/*
2942 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2943 	 */
2944 	bic_set_bfqq(bic, new_bfqq, 1);
2945 	bfq_mark_bfqq_coop(new_bfqq);
2946 	/*
2947 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2948 	 * set new_bfqq->bic to NULL. bfqq either:
2949 	 * - does not belong to any bic any more, and hence bfqq->bic must
2950 	 *   be set to NULL, or
2951 	 * - is a queue whose owning bics have already been redirected to a
2952 	 *   different queue, hence the queue is destined to not belong to
2953 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2954 	 *   assignment causes no harm).
2955 	 */
2956 	new_bfqq->bic = NULL;
2957 	/*
2958 	 * If the queue is shared, the pid is the pid of one of the associated
2959 	 * processes. Which pid depends on the exact sequence of merge events
2960 	 * the queue underwent. So printing such a pid is useless and confusing
2961 	 * because it reports a random pid between those of the associated
2962 	 * processes.
2963 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2964 	 * a pid in logging messages.
2965 	 */
2966 	new_bfqq->pid = -1;
2967 	bfqq->bic = NULL;
2968 
2969 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
2970 
2971 	bfq_release_process_ref(bfqd, bfqq);
2972 }
2973 
2974 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2975 				struct bio *bio)
2976 {
2977 	struct bfq_data *bfqd = q->elevator->elevator_data;
2978 	bool is_sync = op_is_sync(bio->bi_opf);
2979 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2980 
2981 	/*
2982 	 * Disallow merge of a sync bio into an async request.
2983 	 */
2984 	if (is_sync && !rq_is_sync(rq))
2985 		return false;
2986 
2987 	/*
2988 	 * Lookup the bfqq that this bio will be queued with. Allow
2989 	 * merge only if rq is queued there.
2990 	 */
2991 	if (!bfqq)
2992 		return false;
2993 
2994 	/*
2995 	 * We take advantage of this function to perform an early merge
2996 	 * of the queues of possible cooperating processes.
2997 	 */
2998 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
2999 	if (new_bfqq) {
3000 		/*
3001 		 * bic still points to bfqq, then it has not yet been
3002 		 * redirected to some other bfq_queue, and a queue
3003 		 * merge between bfqq and new_bfqq can be safely
3004 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3005 		 * and bfqq can be put.
3006 		 */
3007 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3008 				new_bfqq);
3009 		/*
3010 		 * If we get here, bio will be queued into new_queue,
3011 		 * so use new_bfqq to decide whether bio and rq can be
3012 		 * merged.
3013 		 */
3014 		bfqq = new_bfqq;
3015 
3016 		/*
3017 		 * Change also bqfd->bio_bfqq, as
3018 		 * bfqd->bio_bic now points to new_bfqq, and
3019 		 * this function may be invoked again (and then may
3020 		 * use again bqfd->bio_bfqq).
3021 		 */
3022 		bfqd->bio_bfqq = bfqq;
3023 	}
3024 
3025 	return bfqq == RQ_BFQQ(rq);
3026 }
3027 
3028 /*
3029  * Set the maximum time for the in-service queue to consume its
3030  * budget. This prevents seeky processes from lowering the throughput.
3031  * In practice, a time-slice service scheme is used with seeky
3032  * processes.
3033  */
3034 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3035 				   struct bfq_queue *bfqq)
3036 {
3037 	unsigned int timeout_coeff;
3038 
3039 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3040 		timeout_coeff = 1;
3041 	else
3042 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3043 
3044 	bfqd->last_budget_start = ktime_get();
3045 
3046 	bfqq->budget_timeout = jiffies +
3047 		bfqd->bfq_timeout * timeout_coeff;
3048 }
3049 
3050 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3051 				       struct bfq_queue *bfqq)
3052 {
3053 	if (bfqq) {
3054 		bfq_clear_bfqq_fifo_expire(bfqq);
3055 
3056 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3057 
3058 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3059 		    bfqq->wr_coeff > 1 &&
3060 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3061 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3062 			/*
3063 			 * For soft real-time queues, move the start
3064 			 * of the weight-raising period forward by the
3065 			 * time the queue has not received any
3066 			 * service. Otherwise, a relatively long
3067 			 * service delay is likely to cause the
3068 			 * weight-raising period of the queue to end,
3069 			 * because of the short duration of the
3070 			 * weight-raising period of a soft real-time
3071 			 * queue.  It is worth noting that this move
3072 			 * is not so dangerous for the other queues,
3073 			 * because soft real-time queues are not
3074 			 * greedy.
3075 			 *
3076 			 * To not add a further variable, we use the
3077 			 * overloaded field budget_timeout to
3078 			 * determine for how long the queue has not
3079 			 * received service, i.e., how much time has
3080 			 * elapsed since the queue expired. However,
3081 			 * this is a little imprecise, because
3082 			 * budget_timeout is set to jiffies if bfqq
3083 			 * not only expires, but also remains with no
3084 			 * request.
3085 			 */
3086 			if (time_after(bfqq->budget_timeout,
3087 				       bfqq->last_wr_start_finish))
3088 				bfqq->last_wr_start_finish +=
3089 					jiffies - bfqq->budget_timeout;
3090 			else
3091 				bfqq->last_wr_start_finish = jiffies;
3092 		}
3093 
3094 		bfq_set_budget_timeout(bfqd, bfqq);
3095 		bfq_log_bfqq(bfqd, bfqq,
3096 			     "set_in_service_queue, cur-budget = %d",
3097 			     bfqq->entity.budget);
3098 	}
3099 
3100 	bfqd->in_service_queue = bfqq;
3101 	bfqd->in_serv_last_pos = 0;
3102 }
3103 
3104 /*
3105  * Get and set a new queue for service.
3106  */
3107 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3108 {
3109 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3110 
3111 	__bfq_set_in_service_queue(bfqd, bfqq);
3112 	return bfqq;
3113 }
3114 
3115 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3116 {
3117 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3118 	u32 sl;
3119 
3120 	bfq_mark_bfqq_wait_request(bfqq);
3121 
3122 	/*
3123 	 * We don't want to idle for seeks, but we do want to allow
3124 	 * fair distribution of slice time for a process doing back-to-back
3125 	 * seeks. So allow a little bit of time for him to submit a new rq.
3126 	 */
3127 	sl = bfqd->bfq_slice_idle;
3128 	/*
3129 	 * Unless the queue is being weight-raised or the scenario is
3130 	 * asymmetric, grant only minimum idle time if the queue
3131 	 * is seeky. A long idling is preserved for a weight-raised
3132 	 * queue, or, more in general, in an asymmetric scenario,
3133 	 * because a long idling is needed for guaranteeing to a queue
3134 	 * its reserved share of the throughput (in particular, it is
3135 	 * needed if the queue has a higher weight than some other
3136 	 * queue).
3137 	 */
3138 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3139 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3140 		sl = min_t(u64, sl, BFQ_MIN_TT);
3141 	else if (bfqq->wr_coeff > 1)
3142 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3143 
3144 	bfqd->last_idling_start = ktime_get();
3145 	bfqd->last_idling_start_jiffies = jiffies;
3146 
3147 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3148 		      HRTIMER_MODE_REL);
3149 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3150 }
3151 
3152 /*
3153  * In autotuning mode, max_budget is dynamically recomputed as the
3154  * amount of sectors transferred in timeout at the estimated peak
3155  * rate. This enables BFQ to utilize a full timeslice with a full
3156  * budget, even if the in-service queue is served at peak rate. And
3157  * this maximises throughput with sequential workloads.
3158  */
3159 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3160 {
3161 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3162 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3163 }
3164 
3165 /*
3166  * Update parameters related to throughput and responsiveness, as a
3167  * function of the estimated peak rate. See comments on
3168  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3169  */
3170 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3171 {
3172 	if (bfqd->bfq_user_max_budget == 0) {
3173 		bfqd->bfq_max_budget =
3174 			bfq_calc_max_budget(bfqd);
3175 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3176 	}
3177 }
3178 
3179 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3180 				       struct request *rq)
3181 {
3182 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3183 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3184 		bfqd->peak_rate_samples = 1;
3185 		bfqd->sequential_samples = 0;
3186 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3187 			blk_rq_sectors(rq);
3188 	} else /* no new rq dispatched, just reset the number of samples */
3189 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3190 
3191 	bfq_log(bfqd,
3192 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3193 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3194 		bfqd->tot_sectors_dispatched);
3195 }
3196 
3197 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3198 {
3199 	u32 rate, weight, divisor;
3200 
3201 	/*
3202 	 * For the convergence property to hold (see comments on
3203 	 * bfq_update_peak_rate()) and for the assessment to be
3204 	 * reliable, a minimum number of samples must be present, and
3205 	 * a minimum amount of time must have elapsed. If not so, do
3206 	 * not compute new rate. Just reset parameters, to get ready
3207 	 * for a new evaluation attempt.
3208 	 */
3209 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3210 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3211 		goto reset_computation;
3212 
3213 	/*
3214 	 * If a new request completion has occurred after last
3215 	 * dispatch, then, to approximate the rate at which requests
3216 	 * have been served by the device, it is more precise to
3217 	 * extend the observation interval to the last completion.
3218 	 */
3219 	bfqd->delta_from_first =
3220 		max_t(u64, bfqd->delta_from_first,
3221 		      bfqd->last_completion - bfqd->first_dispatch);
3222 
3223 	/*
3224 	 * Rate computed in sects/usec, and not sects/nsec, for
3225 	 * precision issues.
3226 	 */
3227 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3228 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3229 
3230 	/*
3231 	 * Peak rate not updated if:
3232 	 * - the percentage of sequential dispatches is below 3/4 of the
3233 	 *   total, and rate is below the current estimated peak rate
3234 	 * - rate is unreasonably high (> 20M sectors/sec)
3235 	 */
3236 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3237 	     rate <= bfqd->peak_rate) ||
3238 		rate > 20<<BFQ_RATE_SHIFT)
3239 		goto reset_computation;
3240 
3241 	/*
3242 	 * We have to update the peak rate, at last! To this purpose,
3243 	 * we use a low-pass filter. We compute the smoothing constant
3244 	 * of the filter as a function of the 'weight' of the new
3245 	 * measured rate.
3246 	 *
3247 	 * As can be seen in next formulas, we define this weight as a
3248 	 * quantity proportional to how sequential the workload is,
3249 	 * and to how long the observation time interval is.
3250 	 *
3251 	 * The weight runs from 0 to 8. The maximum value of the
3252 	 * weight, 8, yields the minimum value for the smoothing
3253 	 * constant. At this minimum value for the smoothing constant,
3254 	 * the measured rate contributes for half of the next value of
3255 	 * the estimated peak rate.
3256 	 *
3257 	 * So, the first step is to compute the weight as a function
3258 	 * of how sequential the workload is. Note that the weight
3259 	 * cannot reach 9, because bfqd->sequential_samples cannot
3260 	 * become equal to bfqd->peak_rate_samples, which, in its
3261 	 * turn, holds true because bfqd->sequential_samples is not
3262 	 * incremented for the first sample.
3263 	 */
3264 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3265 
3266 	/*
3267 	 * Second step: further refine the weight as a function of the
3268 	 * duration of the observation interval.
3269 	 */
3270 	weight = min_t(u32, 8,
3271 		       div_u64(weight * bfqd->delta_from_first,
3272 			       BFQ_RATE_REF_INTERVAL));
3273 
3274 	/*
3275 	 * Divisor ranging from 10, for minimum weight, to 2, for
3276 	 * maximum weight.
3277 	 */
3278 	divisor = 10 - weight;
3279 
3280 	/*
3281 	 * Finally, update peak rate:
3282 	 *
3283 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3284 	 */
3285 	bfqd->peak_rate *= divisor-1;
3286 	bfqd->peak_rate /= divisor;
3287 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3288 
3289 	bfqd->peak_rate += rate;
3290 
3291 	/*
3292 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3293 	 * the minimum representable values reported in the comments
3294 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3295 	 * divisions by zero where bfqd->peak_rate is used as a
3296 	 * divisor.
3297 	 */
3298 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3299 
3300 	update_thr_responsiveness_params(bfqd);
3301 
3302 reset_computation:
3303 	bfq_reset_rate_computation(bfqd, rq);
3304 }
3305 
3306 /*
3307  * Update the read/write peak rate (the main quantity used for
3308  * auto-tuning, see update_thr_responsiveness_params()).
3309  *
3310  * It is not trivial to estimate the peak rate (correctly): because of
3311  * the presence of sw and hw queues between the scheduler and the
3312  * device components that finally serve I/O requests, it is hard to
3313  * say exactly when a given dispatched request is served inside the
3314  * device, and for how long. As a consequence, it is hard to know
3315  * precisely at what rate a given set of requests is actually served
3316  * by the device.
3317  *
3318  * On the opposite end, the dispatch time of any request is trivially
3319  * available, and, from this piece of information, the "dispatch rate"
3320  * of requests can be immediately computed. So, the idea in the next
3321  * function is to use what is known, namely request dispatch times
3322  * (plus, when useful, request completion times), to estimate what is
3323  * unknown, namely in-device request service rate.
3324  *
3325  * The main issue is that, because of the above facts, the rate at
3326  * which a certain set of requests is dispatched over a certain time
3327  * interval can vary greatly with respect to the rate at which the
3328  * same requests are then served. But, since the size of any
3329  * intermediate queue is limited, and the service scheme is lossless
3330  * (no request is silently dropped), the following obvious convergence
3331  * property holds: the number of requests dispatched MUST become
3332  * closer and closer to the number of requests completed as the
3333  * observation interval grows. This is the key property used in
3334  * the next function to estimate the peak service rate as a function
3335  * of the observed dispatch rate. The function assumes to be invoked
3336  * on every request dispatch.
3337  */
3338 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3339 {
3340 	u64 now_ns = ktime_get_ns();
3341 
3342 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3343 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3344 			bfqd->peak_rate_samples);
3345 		bfq_reset_rate_computation(bfqd, rq);
3346 		goto update_last_values; /* will add one sample */
3347 	}
3348 
3349 	/*
3350 	 * Device idle for very long: the observation interval lasting
3351 	 * up to this dispatch cannot be a valid observation interval
3352 	 * for computing a new peak rate (similarly to the late-
3353 	 * completion event in bfq_completed_request()). Go to
3354 	 * update_rate_and_reset to have the following three steps
3355 	 * taken:
3356 	 * - close the observation interval at the last (previous)
3357 	 *   request dispatch or completion
3358 	 * - compute rate, if possible, for that observation interval
3359 	 * - start a new observation interval with this dispatch
3360 	 */
3361 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3362 	    bfqd->rq_in_driver == 0)
3363 		goto update_rate_and_reset;
3364 
3365 	/* Update sampling information */
3366 	bfqd->peak_rate_samples++;
3367 
3368 	if ((bfqd->rq_in_driver > 0 ||
3369 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3370 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3371 		bfqd->sequential_samples++;
3372 
3373 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3374 
3375 	/* Reset max observed rq size every 32 dispatches */
3376 	if (likely(bfqd->peak_rate_samples % 32))
3377 		bfqd->last_rq_max_size =
3378 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3379 	else
3380 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3381 
3382 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3383 
3384 	/* Target observation interval not yet reached, go on sampling */
3385 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3386 		goto update_last_values;
3387 
3388 update_rate_and_reset:
3389 	bfq_update_rate_reset(bfqd, rq);
3390 update_last_values:
3391 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3392 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3393 		bfqd->in_serv_last_pos = bfqd->last_position;
3394 	bfqd->last_dispatch = now_ns;
3395 }
3396 
3397 /*
3398  * Remove request from internal lists.
3399  */
3400 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3401 {
3402 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3403 
3404 	/*
3405 	 * For consistency, the next instruction should have been
3406 	 * executed after removing the request from the queue and
3407 	 * dispatching it.  We execute instead this instruction before
3408 	 * bfq_remove_request() (and hence introduce a temporary
3409 	 * inconsistency), for efficiency.  In fact, should this
3410 	 * dispatch occur for a non in-service bfqq, this anticipated
3411 	 * increment prevents two counters related to bfqq->dispatched
3412 	 * from risking to be, first, uselessly decremented, and then
3413 	 * incremented again when the (new) value of bfqq->dispatched
3414 	 * happens to be taken into account.
3415 	 */
3416 	bfqq->dispatched++;
3417 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3418 
3419 	bfq_remove_request(q, rq);
3420 }
3421 
3422 /*
3423  * There is a case where idling does not have to be performed for
3424  * throughput concerns, but to preserve the throughput share of
3425  * the process associated with bfqq.
3426  *
3427  * To introduce this case, we can note that allowing the drive
3428  * to enqueue more than one request at a time, and hence
3429  * delegating de facto final scheduling decisions to the
3430  * drive's internal scheduler, entails loss of control on the
3431  * actual request service order. In particular, the critical
3432  * situation is when requests from different processes happen
3433  * to be present, at the same time, in the internal queue(s)
3434  * of the drive. In such a situation, the drive, by deciding
3435  * the service order of the internally-queued requests, does
3436  * determine also the actual throughput distribution among
3437  * these processes. But the drive typically has no notion or
3438  * concern about per-process throughput distribution, and
3439  * makes its decisions only on a per-request basis. Therefore,
3440  * the service distribution enforced by the drive's internal
3441  * scheduler is likely to coincide with the desired throughput
3442  * distribution only in a completely symmetric, or favorably
3443  * skewed scenario where:
3444  * (i-a) each of these processes must get the same throughput as
3445  *	 the others,
3446  * (i-b) in case (i-a) does not hold, it holds that the process
3447  *       associated with bfqq must receive a lower or equal
3448  *	 throughput than any of the other processes;
3449  * (ii)  the I/O of each process has the same properties, in
3450  *       terms of locality (sequential or random), direction
3451  *       (reads or writes), request sizes, greediness
3452  *       (from I/O-bound to sporadic), and so on;
3453 
3454  * In fact, in such a scenario, the drive tends to treat the requests
3455  * of each process in about the same way as the requests of the
3456  * others, and thus to provide each of these processes with about the
3457  * same throughput.  This is exactly the desired throughput
3458  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3459  * even more convenient distribution for (the process associated with)
3460  * bfqq.
3461  *
3462  * In contrast, in any asymmetric or unfavorable scenario, device
3463  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3464  * that bfqq receives its assigned fraction of the device throughput
3465  * (see [1] for details).
3466  *
3467  * The problem is that idling may significantly reduce throughput with
3468  * certain combinations of types of I/O and devices. An important
3469  * example is sync random I/O on flash storage with command
3470  * queueing. So, unless bfqq falls in cases where idling also boosts
3471  * throughput, it is important to check conditions (i-a), i(-b) and
3472  * (ii) accurately, so as to avoid idling when not strictly needed for
3473  * service guarantees.
3474  *
3475  * Unfortunately, it is extremely difficult to thoroughly check
3476  * condition (ii). And, in case there are active groups, it becomes
3477  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3478  * if there are active groups, then, for conditions (i-a) or (i-b) to
3479  * become false 'indirectly', it is enough that an active group
3480  * contains more active processes or sub-groups than some other active
3481  * group. More precisely, for conditions (i-a) or (i-b) to become
3482  * false because of such a group, it is not even necessary that the
3483  * group is (still) active: it is sufficient that, even if the group
3484  * has become inactive, some of its descendant processes still have
3485  * some request already dispatched but still waiting for
3486  * completion. In fact, requests have still to be guaranteed their
3487  * share of the throughput even after being dispatched. In this
3488  * respect, it is easy to show that, if a group frequently becomes
3489  * inactive while still having in-flight requests, and if, when this
3490  * happens, the group is not considered in the calculation of whether
3491  * the scenario is asymmetric, then the group may fail to be
3492  * guaranteed its fair share of the throughput (basically because
3493  * idling may not be performed for the descendant processes of the
3494  * group, but it had to be).  We address this issue with the following
3495  * bi-modal behavior, implemented in the function
3496  * bfq_asymmetric_scenario().
3497  *
3498  * If there are groups with requests waiting for completion
3499  * (as commented above, some of these groups may even be
3500  * already inactive), then the scenario is tagged as
3501  * asymmetric, conservatively, without checking any of the
3502  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3503  * This behavior matches also the fact that groups are created
3504  * exactly if controlling I/O is a primary concern (to
3505  * preserve bandwidth and latency guarantees).
3506  *
3507  * On the opposite end, if there are no groups with requests waiting
3508  * for completion, then only conditions (i-a) and (i-b) are actually
3509  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3510  * idling is not performed, regardless of whether condition (ii)
3511  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3512  * hold, then idling is allowed, and the device tends to be prevented
3513  * from queueing many requests, possibly of several processes. Since
3514  * there are no groups with requests waiting for completion, then, to
3515  * control conditions (i-a) and (i-b) it is enough to check just
3516  * whether all the queues with requests waiting for completion also
3517  * have the same weight.
3518  *
3519  * Not checking condition (ii) evidently exposes bfqq to the
3520  * risk of getting less throughput than its fair share.
3521  * However, for queues with the same weight, a further
3522  * mechanism, preemption, mitigates or even eliminates this
3523  * problem. And it does so without consequences on overall
3524  * throughput. This mechanism and its benefits are explained
3525  * in the next three paragraphs.
3526  *
3527  * Even if a queue, say Q, is expired when it remains idle, Q
3528  * can still preempt the new in-service queue if the next
3529  * request of Q arrives soon (see the comments on
3530  * bfq_bfqq_update_budg_for_activation). If all queues and
3531  * groups have the same weight, this form of preemption,
3532  * combined with the hole-recovery heuristic described in the
3533  * comments on function bfq_bfqq_update_budg_for_activation,
3534  * are enough to preserve a correct bandwidth distribution in
3535  * the mid term, even without idling. In fact, even if not
3536  * idling allows the internal queues of the device to contain
3537  * many requests, and thus to reorder requests, we can rather
3538  * safely assume that the internal scheduler still preserves a
3539  * minimum of mid-term fairness.
3540  *
3541  * More precisely, this preemption-based, idleless approach
3542  * provides fairness in terms of IOPS, and not sectors per
3543  * second. This can be seen with a simple example. Suppose
3544  * that there are two queues with the same weight, but that
3545  * the first queue receives requests of 8 sectors, while the
3546  * second queue receives requests of 1024 sectors. In
3547  * addition, suppose that each of the two queues contains at
3548  * most one request at a time, which implies that each queue
3549  * always remains idle after it is served. Finally, after
3550  * remaining idle, each queue receives very quickly a new
3551  * request. It follows that the two queues are served
3552  * alternatively, preempting each other if needed. This
3553  * implies that, although both queues have the same weight,
3554  * the queue with large requests receives a service that is
3555  * 1024/8 times as high as the service received by the other
3556  * queue.
3557  *
3558  * The motivation for using preemption instead of idling (for
3559  * queues with the same weight) is that, by not idling,
3560  * service guarantees are preserved (completely or at least in
3561  * part) without minimally sacrificing throughput. And, if
3562  * there is no active group, then the primary expectation for
3563  * this device is probably a high throughput.
3564  *
3565  * We are now left only with explaining the two sub-conditions in the
3566  * additional compound condition that is checked below for deciding
3567  * whether the scenario is asymmetric. To explain the first
3568  * sub-condition, we need to add that the function
3569  * bfq_asymmetric_scenario checks the weights of only
3570  * non-weight-raised queues, for efficiency reasons (see comments on
3571  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3572  * is checked explicitly here. More precisely, the compound condition
3573  * below takes into account also the fact that, even if bfqq is being
3574  * weight-raised, the scenario is still symmetric if all queues with
3575  * requests waiting for completion happen to be
3576  * weight-raised. Actually, we should be even more precise here, and
3577  * differentiate between interactive weight raising and soft real-time
3578  * weight raising.
3579  *
3580  * The second sub-condition checked in the compound condition is
3581  * whether there is a fair amount of already in-flight I/O not
3582  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3583  * following reason. The drive may decide to serve in-flight
3584  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3585  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3586  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3587  * basically uncontrolled amount of I/O from other queues may be
3588  * dispatched too, possibly causing the service of bfqq's I/O to be
3589  * delayed even longer in the drive. This problem gets more and more
3590  * serious as the speed and the queue depth of the drive grow,
3591  * because, as these two quantities grow, the probability to find no
3592  * queue busy but many requests in flight grows too. By contrast,
3593  * plugging I/O dispatching minimizes the delay induced by already
3594  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3595  * lose because of this delay.
3596  *
3597  * As a side note, it is worth considering that the above
3598  * device-idling countermeasures may however fail in the following
3599  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3600  * in a time period during which all symmetry sub-conditions hold, and
3601  * therefore the device is allowed to enqueue many requests, but at
3602  * some later point in time some sub-condition stops to hold, then it
3603  * may become impossible to make requests be served in the desired
3604  * order until all the requests already queued in the device have been
3605  * served. The last sub-condition commented above somewhat mitigates
3606  * this problem for weight-raised queues.
3607  *
3608  * However, as an additional mitigation for this problem, we preserve
3609  * plugging for a special symmetric case that may suddenly turn into
3610  * asymmetric: the case where only bfqq is busy. In this case, not
3611  * expiring bfqq does not cause any harm to any other queues in terms
3612  * of service guarantees. In contrast, it avoids the following unlucky
3613  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3614  * lower weight than bfqq becomes busy (or more queues), (3) the new
3615  * queue is served until a new request arrives for bfqq, (4) when bfqq
3616  * is finally served, there are so many requests of the new queue in
3617  * the drive that the pending requests for bfqq take a lot of time to
3618  * be served. In particular, event (2) may case even already
3619  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3620  * avoid this series of events, the scenario is preventively declared
3621  * as asymmetric also if bfqq is the only busy queues
3622  */
3623 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3624 						 struct bfq_queue *bfqq)
3625 {
3626 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3627 
3628 	/* No point in idling for bfqq if it won't get requests any longer */
3629 	if (unlikely(!bfqq_process_refs(bfqq)))
3630 		return false;
3631 
3632 	return (bfqq->wr_coeff > 1 &&
3633 		(bfqd->wr_busy_queues <
3634 		 tot_busy_queues ||
3635 		 bfqd->rq_in_driver >=
3636 		 bfqq->dispatched + 4)) ||
3637 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3638 		tot_busy_queues == 1;
3639 }
3640 
3641 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3642 			      enum bfqq_expiration reason)
3643 {
3644 	/*
3645 	 * If this bfqq is shared between multiple processes, check
3646 	 * to make sure that those processes are still issuing I/Os
3647 	 * within the mean seek distance. If not, it may be time to
3648 	 * break the queues apart again.
3649 	 */
3650 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3651 		bfq_mark_bfqq_split_coop(bfqq);
3652 
3653 	/*
3654 	 * Consider queues with a higher finish virtual time than
3655 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3656 	 * true, then bfqq's bandwidth would be violated if an
3657 	 * uncontrolled amount of I/O from these queues were
3658 	 * dispatched while bfqq is waiting for its new I/O to
3659 	 * arrive. This is exactly what may happen if this is a forced
3660 	 * expiration caused by a preemption attempt, and if bfqq is
3661 	 * not re-scheduled. To prevent this from happening, re-queue
3662 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3663 	 * empty. By doing so, bfqq is granted to be served before the
3664 	 * above queues (provided that bfqq is of course eligible).
3665 	 */
3666 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3667 	    !(reason == BFQQE_PREEMPTED &&
3668 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3669 		if (bfqq->dispatched == 0)
3670 			/*
3671 			 * Overloading budget_timeout field to store
3672 			 * the time at which the queue remains with no
3673 			 * backlog and no outstanding request; used by
3674 			 * the weight-raising mechanism.
3675 			 */
3676 			bfqq->budget_timeout = jiffies;
3677 
3678 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3679 	} else {
3680 		bfq_requeue_bfqq(bfqd, bfqq, true);
3681 		/*
3682 		 * Resort priority tree of potential close cooperators.
3683 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3684 		 */
3685 		if (unlikely(!bfqd->nonrot_with_queueing &&
3686 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3687 			bfq_pos_tree_add_move(bfqd, bfqq);
3688 	}
3689 
3690 	/*
3691 	 * All in-service entities must have been properly deactivated
3692 	 * or requeued before executing the next function, which
3693 	 * resets all in-service entities as no more in service. This
3694 	 * may cause bfqq to be freed. If this happens, the next
3695 	 * function returns true.
3696 	 */
3697 	return __bfq_bfqd_reset_in_service(bfqd);
3698 }
3699 
3700 /**
3701  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3702  * @bfqd: device data.
3703  * @bfqq: queue to update.
3704  * @reason: reason for expiration.
3705  *
3706  * Handle the feedback on @bfqq budget at queue expiration.
3707  * See the body for detailed comments.
3708  */
3709 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3710 				     struct bfq_queue *bfqq,
3711 				     enum bfqq_expiration reason)
3712 {
3713 	struct request *next_rq;
3714 	int budget, min_budget;
3715 
3716 	min_budget = bfq_min_budget(bfqd);
3717 
3718 	if (bfqq->wr_coeff == 1)
3719 		budget = bfqq->max_budget;
3720 	else /*
3721 	      * Use a constant, low budget for weight-raised queues,
3722 	      * to help achieve a low latency. Keep it slightly higher
3723 	      * than the minimum possible budget, to cause a little
3724 	      * bit fewer expirations.
3725 	      */
3726 		budget = 2 * min_budget;
3727 
3728 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3729 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3730 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3731 		budget, bfq_min_budget(bfqd));
3732 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3733 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3734 
3735 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3736 		switch (reason) {
3737 		/*
3738 		 * Caveat: in all the following cases we trade latency
3739 		 * for throughput.
3740 		 */
3741 		case BFQQE_TOO_IDLE:
3742 			/*
3743 			 * This is the only case where we may reduce
3744 			 * the budget: if there is no request of the
3745 			 * process still waiting for completion, then
3746 			 * we assume (tentatively) that the timer has
3747 			 * expired because the batch of requests of
3748 			 * the process could have been served with a
3749 			 * smaller budget.  Hence, betting that
3750 			 * process will behave in the same way when it
3751 			 * becomes backlogged again, we reduce its
3752 			 * next budget.  As long as we guess right,
3753 			 * this budget cut reduces the latency
3754 			 * experienced by the process.
3755 			 *
3756 			 * However, if there are still outstanding
3757 			 * requests, then the process may have not yet
3758 			 * issued its next request just because it is
3759 			 * still waiting for the completion of some of
3760 			 * the still outstanding ones.  So in this
3761 			 * subcase we do not reduce its budget, on the
3762 			 * contrary we increase it to possibly boost
3763 			 * the throughput, as discussed in the
3764 			 * comments to the BUDGET_TIMEOUT case.
3765 			 */
3766 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3767 				budget = min(budget * 2, bfqd->bfq_max_budget);
3768 			else {
3769 				if (budget > 5 * min_budget)
3770 					budget -= 4 * min_budget;
3771 				else
3772 					budget = min_budget;
3773 			}
3774 			break;
3775 		case BFQQE_BUDGET_TIMEOUT:
3776 			/*
3777 			 * We double the budget here because it gives
3778 			 * the chance to boost the throughput if this
3779 			 * is not a seeky process (and has bumped into
3780 			 * this timeout because of, e.g., ZBR).
3781 			 */
3782 			budget = min(budget * 2, bfqd->bfq_max_budget);
3783 			break;
3784 		case BFQQE_BUDGET_EXHAUSTED:
3785 			/*
3786 			 * The process still has backlog, and did not
3787 			 * let either the budget timeout or the disk
3788 			 * idling timeout expire. Hence it is not
3789 			 * seeky, has a short thinktime and may be
3790 			 * happy with a higher budget too. So
3791 			 * definitely increase the budget of this good
3792 			 * candidate to boost the disk throughput.
3793 			 */
3794 			budget = min(budget * 4, bfqd->bfq_max_budget);
3795 			break;
3796 		case BFQQE_NO_MORE_REQUESTS:
3797 			/*
3798 			 * For queues that expire for this reason, it
3799 			 * is particularly important to keep the
3800 			 * budget close to the actual service they
3801 			 * need. Doing so reduces the timestamp
3802 			 * misalignment problem described in the
3803 			 * comments in the body of
3804 			 * __bfq_activate_entity. In fact, suppose
3805 			 * that a queue systematically expires for
3806 			 * BFQQE_NO_MORE_REQUESTS and presents a
3807 			 * new request in time to enjoy timestamp
3808 			 * back-shifting. The larger the budget of the
3809 			 * queue is with respect to the service the
3810 			 * queue actually requests in each service
3811 			 * slot, the more times the queue can be
3812 			 * reactivated with the same virtual finish
3813 			 * time. It follows that, even if this finish
3814 			 * time is pushed to the system virtual time
3815 			 * to reduce the consequent timestamp
3816 			 * misalignment, the queue unjustly enjoys for
3817 			 * many re-activations a lower finish time
3818 			 * than all newly activated queues.
3819 			 *
3820 			 * The service needed by bfqq is measured
3821 			 * quite precisely by bfqq->entity.service.
3822 			 * Since bfqq does not enjoy device idling,
3823 			 * bfqq->entity.service is equal to the number
3824 			 * of sectors that the process associated with
3825 			 * bfqq requested to read/write before waiting
3826 			 * for request completions, or blocking for
3827 			 * other reasons.
3828 			 */
3829 			budget = max_t(int, bfqq->entity.service, min_budget);
3830 			break;
3831 		default:
3832 			return;
3833 		}
3834 	} else if (!bfq_bfqq_sync(bfqq)) {
3835 		/*
3836 		 * Async queues get always the maximum possible
3837 		 * budget, as for them we do not care about latency
3838 		 * (in addition, their ability to dispatch is limited
3839 		 * by the charging factor).
3840 		 */
3841 		budget = bfqd->bfq_max_budget;
3842 	}
3843 
3844 	bfqq->max_budget = budget;
3845 
3846 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3847 	    !bfqd->bfq_user_max_budget)
3848 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3849 
3850 	/*
3851 	 * If there is still backlog, then assign a new budget, making
3852 	 * sure that it is large enough for the next request.  Since
3853 	 * the finish time of bfqq must be kept in sync with the
3854 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3855 	 * update.
3856 	 *
3857 	 * If there is no backlog, then no need to update the budget;
3858 	 * it will be updated on the arrival of a new request.
3859 	 */
3860 	next_rq = bfqq->next_rq;
3861 	if (next_rq)
3862 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3863 					    bfq_serv_to_charge(next_rq, bfqq));
3864 
3865 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3866 			next_rq ? blk_rq_sectors(next_rq) : 0,
3867 			bfqq->entity.budget);
3868 }
3869 
3870 /*
3871  * Return true if the process associated with bfqq is "slow". The slow
3872  * flag is used, in addition to the budget timeout, to reduce the
3873  * amount of service provided to seeky processes, and thus reduce
3874  * their chances to lower the throughput. More details in the comments
3875  * on the function bfq_bfqq_expire().
3876  *
3877  * An important observation is in order: as discussed in the comments
3878  * on the function bfq_update_peak_rate(), with devices with internal
3879  * queues, it is hard if ever possible to know when and for how long
3880  * an I/O request is processed by the device (apart from the trivial
3881  * I/O pattern where a new request is dispatched only after the
3882  * previous one has been completed). This makes it hard to evaluate
3883  * the real rate at which the I/O requests of each bfq_queue are
3884  * served.  In fact, for an I/O scheduler like BFQ, serving a
3885  * bfq_queue means just dispatching its requests during its service
3886  * slot (i.e., until the budget of the queue is exhausted, or the
3887  * queue remains idle, or, finally, a timeout fires). But, during the
3888  * service slot of a bfq_queue, around 100 ms at most, the device may
3889  * be even still processing requests of bfq_queues served in previous
3890  * service slots. On the opposite end, the requests of the in-service
3891  * bfq_queue may be completed after the service slot of the queue
3892  * finishes.
3893  *
3894  * Anyway, unless more sophisticated solutions are used
3895  * (where possible), the sum of the sizes of the requests dispatched
3896  * during the service slot of a bfq_queue is probably the only
3897  * approximation available for the service received by the bfq_queue
3898  * during its service slot. And this sum is the quantity used in this
3899  * function to evaluate the I/O speed of a process.
3900  */
3901 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3902 				 bool compensate, enum bfqq_expiration reason,
3903 				 unsigned long *delta_ms)
3904 {
3905 	ktime_t delta_ktime;
3906 	u32 delta_usecs;
3907 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3908 
3909 	if (!bfq_bfqq_sync(bfqq))
3910 		return false;
3911 
3912 	if (compensate)
3913 		delta_ktime = bfqd->last_idling_start;
3914 	else
3915 		delta_ktime = ktime_get();
3916 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3917 	delta_usecs = ktime_to_us(delta_ktime);
3918 
3919 	/* don't use too short time intervals */
3920 	if (delta_usecs < 1000) {
3921 		if (blk_queue_nonrot(bfqd->queue))
3922 			 /*
3923 			  * give same worst-case guarantees as idling
3924 			  * for seeky
3925 			  */
3926 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3927 		else /* charge at least one seek */
3928 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3929 
3930 		return slow;
3931 	}
3932 
3933 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3934 
3935 	/*
3936 	 * Use only long (> 20ms) intervals to filter out excessive
3937 	 * spikes in service rate estimation.
3938 	 */
3939 	if (delta_usecs > 20000) {
3940 		/*
3941 		 * Caveat for rotational devices: processes doing I/O
3942 		 * in the slower disk zones tend to be slow(er) even
3943 		 * if not seeky. In this respect, the estimated peak
3944 		 * rate is likely to be an average over the disk
3945 		 * surface. Accordingly, to not be too harsh with
3946 		 * unlucky processes, a process is deemed slow only if
3947 		 * its rate has been lower than half of the estimated
3948 		 * peak rate.
3949 		 */
3950 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3951 	}
3952 
3953 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3954 
3955 	return slow;
3956 }
3957 
3958 /*
3959  * To be deemed as soft real-time, an application must meet two
3960  * requirements. First, the application must not require an average
3961  * bandwidth higher than the approximate bandwidth required to playback or
3962  * record a compressed high-definition video.
3963  * The next function is invoked on the completion of the last request of a
3964  * batch, to compute the next-start time instant, soft_rt_next_start, such
3965  * that, if the next request of the application does not arrive before
3966  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3967  *
3968  * The second requirement is that the request pattern of the application is
3969  * isochronous, i.e., that, after issuing a request or a batch of requests,
3970  * the application stops issuing new requests until all its pending requests
3971  * have been completed. After that, the application may issue a new batch,
3972  * and so on.
3973  * For this reason the next function is invoked to compute
3974  * soft_rt_next_start only for applications that meet this requirement,
3975  * whereas soft_rt_next_start is set to infinity for applications that do
3976  * not.
3977  *
3978  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3979  * happen to meet, occasionally or systematically, both the above
3980  * bandwidth and isochrony requirements. This may happen at least in
3981  * the following circumstances. First, if the CPU load is high. The
3982  * application may stop issuing requests while the CPUs are busy
3983  * serving other processes, then restart, then stop again for a while,
3984  * and so on. The other circumstances are related to the storage
3985  * device: the storage device is highly loaded or reaches a low-enough
3986  * throughput with the I/O of the application (e.g., because the I/O
3987  * is random and/or the device is slow). In all these cases, the
3988  * I/O of the application may be simply slowed down enough to meet
3989  * the bandwidth and isochrony requirements. To reduce the probability
3990  * that greedy applications are deemed as soft real-time in these
3991  * corner cases, a further rule is used in the computation of
3992  * soft_rt_next_start: the return value of this function is forced to
3993  * be higher than the maximum between the following two quantities.
3994  *
3995  * (a) Current time plus: (1) the maximum time for which the arrival
3996  *     of a request is waited for when a sync queue becomes idle,
3997  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3998  *     postpone for a moment the reason for adding a few extra
3999  *     jiffies; we get back to it after next item (b).  Lower-bounding
4000  *     the return value of this function with the current time plus
4001  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4002  *     because the latter issue their next request as soon as possible
4003  *     after the last one has been completed. In contrast, a soft
4004  *     real-time application spends some time processing data, after a
4005  *     batch of its requests has been completed.
4006  *
4007  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4008  *     above, greedy applications may happen to meet both the
4009  *     bandwidth and isochrony requirements under heavy CPU or
4010  *     storage-device load. In more detail, in these scenarios, these
4011  *     applications happen, only for limited time periods, to do I/O
4012  *     slowly enough to meet all the requirements described so far,
4013  *     including the filtering in above item (a). These slow-speed
4014  *     time intervals are usually interspersed between other time
4015  *     intervals during which these applications do I/O at a very high
4016  *     speed. Fortunately, exactly because of the high speed of the
4017  *     I/O in the high-speed intervals, the values returned by this
4018  *     function happen to be so high, near the end of any such
4019  *     high-speed interval, to be likely to fall *after* the end of
4020  *     the low-speed time interval that follows. These high values are
4021  *     stored in bfqq->soft_rt_next_start after each invocation of
4022  *     this function. As a consequence, if the last value of
4023  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4024  *     next value that this function may return, then, from the very
4025  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4026  *     likely to be constantly kept so high that any I/O request
4027  *     issued during the low-speed interval is considered as arriving
4028  *     to soon for the application to be deemed as soft
4029  *     real-time. Then, in the high-speed interval that follows, the
4030  *     application will not be deemed as soft real-time, just because
4031  *     it will do I/O at a high speed. And so on.
4032  *
4033  * Getting back to the filtering in item (a), in the following two
4034  * cases this filtering might be easily passed by a greedy
4035  * application, if the reference quantity was just
4036  * bfqd->bfq_slice_idle:
4037  * 1) HZ is so low that the duration of a jiffy is comparable to or
4038  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4039  *    devices with HZ=100. The time granularity may be so coarse
4040  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4041  *    is rather lower than the exact value.
4042  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4043  *    for a while, then suddenly 'jump' by several units to recover the lost
4044  *    increments. This seems to happen, e.g., inside virtual machines.
4045  * To address this issue, in the filtering in (a) we do not use as a
4046  * reference time interval just bfqd->bfq_slice_idle, but
4047  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4048  * minimum number of jiffies for which the filter seems to be quite
4049  * precise also in embedded systems and KVM/QEMU virtual machines.
4050  */
4051 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4052 						struct bfq_queue *bfqq)
4053 {
4054 	return max3(bfqq->soft_rt_next_start,
4055 		    bfqq->last_idle_bklogged +
4056 		    HZ * bfqq->service_from_backlogged /
4057 		    bfqd->bfq_wr_max_softrt_rate,
4058 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4059 }
4060 
4061 /**
4062  * bfq_bfqq_expire - expire a queue.
4063  * @bfqd: device owning the queue.
4064  * @bfqq: the queue to expire.
4065  * @compensate: if true, compensate for the time spent idling.
4066  * @reason: the reason causing the expiration.
4067  *
4068  * If the process associated with bfqq does slow I/O (e.g., because it
4069  * issues random requests), we charge bfqq with the time it has been
4070  * in service instead of the service it has received (see
4071  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4072  * a consequence, bfqq will typically get higher timestamps upon
4073  * reactivation, and hence it will be rescheduled as if it had
4074  * received more service than what it has actually received. In the
4075  * end, bfqq receives less service in proportion to how slowly its
4076  * associated process consumes its budgets (and hence how seriously it
4077  * tends to lower the throughput). In addition, this time-charging
4078  * strategy guarantees time fairness among slow processes. In
4079  * contrast, if the process associated with bfqq is not slow, we
4080  * charge bfqq exactly with the service it has received.
4081  *
4082  * Charging time to the first type of queues and the exact service to
4083  * the other has the effect of using the WF2Q+ policy to schedule the
4084  * former on a timeslice basis, without violating service domain
4085  * guarantees among the latter.
4086  */
4087 void bfq_bfqq_expire(struct bfq_data *bfqd,
4088 		     struct bfq_queue *bfqq,
4089 		     bool compensate,
4090 		     enum bfqq_expiration reason)
4091 {
4092 	bool slow;
4093 	unsigned long delta = 0;
4094 	struct bfq_entity *entity = &bfqq->entity;
4095 
4096 	/*
4097 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4098 	 */
4099 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4100 
4101 	/*
4102 	 * As above explained, charge slow (typically seeky) and
4103 	 * timed-out queues with the time and not the service
4104 	 * received, to favor sequential workloads.
4105 	 *
4106 	 * Processes doing I/O in the slower disk zones will tend to
4107 	 * be slow(er) even if not seeky. Therefore, since the
4108 	 * estimated peak rate is actually an average over the disk
4109 	 * surface, these processes may timeout just for bad luck. To
4110 	 * avoid punishing them, do not charge time to processes that
4111 	 * succeeded in consuming at least 2/3 of their budget. This
4112 	 * allows BFQ to preserve enough elasticity to still perform
4113 	 * bandwidth, and not time, distribution with little unlucky
4114 	 * or quasi-sequential processes.
4115 	 */
4116 	if (bfqq->wr_coeff == 1 &&
4117 	    (slow ||
4118 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4119 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4120 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4121 
4122 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4123 		bfqq->last_wr_start_finish = jiffies;
4124 
4125 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4126 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4127 		/*
4128 		 * If we get here, and there are no outstanding
4129 		 * requests, then the request pattern is isochronous
4130 		 * (see the comments on the function
4131 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4132 		 * compute soft_rt_next_start.
4133 		 *
4134 		 * If, instead, the queue still has outstanding
4135 		 * requests, then we have to wait for the completion
4136 		 * of all the outstanding requests to discover whether
4137 		 * the request pattern is actually isochronous.
4138 		 */
4139 		if (bfqq->dispatched == 0)
4140 			bfqq->soft_rt_next_start =
4141 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4142 		else if (bfqq->dispatched > 0) {
4143 			/*
4144 			 * Schedule an update of soft_rt_next_start to when
4145 			 * the task may be discovered to be isochronous.
4146 			 */
4147 			bfq_mark_bfqq_softrt_update(bfqq);
4148 		}
4149 	}
4150 
4151 	bfq_log_bfqq(bfqd, bfqq,
4152 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4153 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4154 
4155 	/*
4156 	 * bfqq expired, so no total service time needs to be computed
4157 	 * any longer: reset state machine for measuring total service
4158 	 * times.
4159 	 */
4160 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4161 	bfqd->waited_rq = NULL;
4162 
4163 	/*
4164 	 * Increase, decrease or leave budget unchanged according to
4165 	 * reason.
4166 	 */
4167 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4168 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4169 		/* bfqq is gone, no more actions on it */
4170 		return;
4171 
4172 	/* mark bfqq as waiting a request only if a bic still points to it */
4173 	if (!bfq_bfqq_busy(bfqq) &&
4174 	    reason != BFQQE_BUDGET_TIMEOUT &&
4175 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4176 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4177 		/*
4178 		 * Not setting service to 0, because, if the next rq
4179 		 * arrives in time, the queue will go on receiving
4180 		 * service with this same budget (as if it never expired)
4181 		 */
4182 	} else
4183 		entity->service = 0;
4184 
4185 	/*
4186 	 * Reset the received-service counter for every parent entity.
4187 	 * Differently from what happens with bfqq->entity.service,
4188 	 * the resetting of this counter never needs to be postponed
4189 	 * for parent entities. In fact, in case bfqq may have a
4190 	 * chance to go on being served using the last, partially
4191 	 * consumed budget, bfqq->entity.service needs to be kept,
4192 	 * because if bfqq then actually goes on being served using
4193 	 * the same budget, the last value of bfqq->entity.service is
4194 	 * needed to properly decrement bfqq->entity.budget by the
4195 	 * portion already consumed. In contrast, it is not necessary
4196 	 * to keep entity->service for parent entities too, because
4197 	 * the bubble up of the new value of bfqq->entity.budget will
4198 	 * make sure that the budgets of parent entities are correct,
4199 	 * even in case bfqq and thus parent entities go on receiving
4200 	 * service with the same budget.
4201 	 */
4202 	entity = entity->parent;
4203 	for_each_entity(entity)
4204 		entity->service = 0;
4205 }
4206 
4207 /*
4208  * Budget timeout is not implemented through a dedicated timer, but
4209  * just checked on request arrivals and completions, as well as on
4210  * idle timer expirations.
4211  */
4212 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4213 {
4214 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4215 }
4216 
4217 /*
4218  * If we expire a queue that is actively waiting (i.e., with the
4219  * device idled) for the arrival of a new request, then we may incur
4220  * the timestamp misalignment problem described in the body of the
4221  * function __bfq_activate_entity. Hence we return true only if this
4222  * condition does not hold, or if the queue is slow enough to deserve
4223  * only to be kicked off for preserving a high throughput.
4224  */
4225 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4226 {
4227 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4228 		"may_budget_timeout: wait_request %d left %d timeout %d",
4229 		bfq_bfqq_wait_request(bfqq),
4230 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4231 		bfq_bfqq_budget_timeout(bfqq));
4232 
4233 	return (!bfq_bfqq_wait_request(bfqq) ||
4234 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4235 		&&
4236 		bfq_bfqq_budget_timeout(bfqq);
4237 }
4238 
4239 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4240 					     struct bfq_queue *bfqq)
4241 {
4242 	bool rot_without_queueing =
4243 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4244 		bfqq_sequential_and_IO_bound,
4245 		idling_boosts_thr;
4246 
4247 	/* No point in idling for bfqq if it won't get requests any longer */
4248 	if (unlikely(!bfqq_process_refs(bfqq)))
4249 		return false;
4250 
4251 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4252 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4253 
4254 	/*
4255 	 * The next variable takes into account the cases where idling
4256 	 * boosts the throughput.
4257 	 *
4258 	 * The value of the variable is computed considering, first, that
4259 	 * idling is virtually always beneficial for the throughput if:
4260 	 * (a) the device is not NCQ-capable and rotational, or
4261 	 * (b) regardless of the presence of NCQ, the device is rotational and
4262 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4263 	 * (c) regardless of whether it is rotational, the device is
4264 	 *     not NCQ-capable and the request pattern for bfqq is
4265 	 *     I/O-bound and sequential.
4266 	 *
4267 	 * Secondly, and in contrast to the above item (b), idling an
4268 	 * NCQ-capable flash-based device would not boost the
4269 	 * throughput even with sequential I/O; rather it would lower
4270 	 * the throughput in proportion to how fast the device
4271 	 * is. Accordingly, the next variable is true if any of the
4272 	 * above conditions (a), (b) or (c) is true, and, in
4273 	 * particular, happens to be false if bfqd is an NCQ-capable
4274 	 * flash-based device.
4275 	 */
4276 	idling_boosts_thr = rot_without_queueing ||
4277 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4278 		 bfqq_sequential_and_IO_bound);
4279 
4280 	/*
4281 	 * The return value of this function is equal to that of
4282 	 * idling_boosts_thr, unless a special case holds. In this
4283 	 * special case, described below, idling may cause problems to
4284 	 * weight-raised queues.
4285 	 *
4286 	 * When the request pool is saturated (e.g., in the presence
4287 	 * of write hogs), if the processes associated with
4288 	 * non-weight-raised queues ask for requests at a lower rate,
4289 	 * then processes associated with weight-raised queues have a
4290 	 * higher probability to get a request from the pool
4291 	 * immediately (or at least soon) when they need one. Thus
4292 	 * they have a higher probability to actually get a fraction
4293 	 * of the device throughput proportional to their high
4294 	 * weight. This is especially true with NCQ-capable drives,
4295 	 * which enqueue several requests in advance, and further
4296 	 * reorder internally-queued requests.
4297 	 *
4298 	 * For this reason, we force to false the return value if
4299 	 * there are weight-raised busy queues. In this case, and if
4300 	 * bfqq is not weight-raised, this guarantees that the device
4301 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4302 	 * then idling will be guaranteed by another variable, see
4303 	 * below). Combined with the timestamping rules of BFQ (see
4304 	 * [1] for details), this behavior causes bfqq, and hence any
4305 	 * sync non-weight-raised queue, to get a lower number of
4306 	 * requests served, and thus to ask for a lower number of
4307 	 * requests from the request pool, before the busy
4308 	 * weight-raised queues get served again. This often mitigates
4309 	 * starvation problems in the presence of heavy write
4310 	 * workloads and NCQ, thereby guaranteeing a higher
4311 	 * application and system responsiveness in these hostile
4312 	 * scenarios.
4313 	 */
4314 	return idling_boosts_thr &&
4315 		bfqd->wr_busy_queues == 0;
4316 }
4317 
4318 /*
4319  * For a queue that becomes empty, device idling is allowed only if
4320  * this function returns true for that queue. As a consequence, since
4321  * device idling plays a critical role for both throughput boosting
4322  * and service guarantees, the return value of this function plays a
4323  * critical role as well.
4324  *
4325  * In a nutshell, this function returns true only if idling is
4326  * beneficial for throughput or, even if detrimental for throughput,
4327  * idling is however necessary to preserve service guarantees (low
4328  * latency, desired throughput distribution, ...). In particular, on
4329  * NCQ-capable devices, this function tries to return false, so as to
4330  * help keep the drives' internal queues full, whenever this helps the
4331  * device boost the throughput without causing any service-guarantee
4332  * issue.
4333  *
4334  * Most of the issues taken into account to get the return value of
4335  * this function are not trivial. We discuss these issues in the two
4336  * functions providing the main pieces of information needed by this
4337  * function.
4338  */
4339 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4340 {
4341 	struct bfq_data *bfqd = bfqq->bfqd;
4342 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4343 
4344 	/* No point in idling for bfqq if it won't get requests any longer */
4345 	if (unlikely(!bfqq_process_refs(bfqq)))
4346 		return false;
4347 
4348 	if (unlikely(bfqd->strict_guarantees))
4349 		return true;
4350 
4351 	/*
4352 	 * Idling is performed only if slice_idle > 0. In addition, we
4353 	 * do not idle if
4354 	 * (a) bfqq is async
4355 	 * (b) bfqq is in the idle io prio class: in this case we do
4356 	 * not idle because we want to minimize the bandwidth that
4357 	 * queues in this class can steal to higher-priority queues
4358 	 */
4359 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4360 	   bfq_class_idle(bfqq))
4361 		return false;
4362 
4363 	idling_boosts_thr_with_no_issue =
4364 		idling_boosts_thr_without_issues(bfqd, bfqq);
4365 
4366 	idling_needed_for_service_guar =
4367 		idling_needed_for_service_guarantees(bfqd, bfqq);
4368 
4369 	/*
4370 	 * We have now the two components we need to compute the
4371 	 * return value of the function, which is true only if idling
4372 	 * either boosts the throughput (without issues), or is
4373 	 * necessary to preserve service guarantees.
4374 	 */
4375 	return idling_boosts_thr_with_no_issue ||
4376 		idling_needed_for_service_guar;
4377 }
4378 
4379 /*
4380  * If the in-service queue is empty but the function bfq_better_to_idle
4381  * returns true, then:
4382  * 1) the queue must remain in service and cannot be expired, and
4383  * 2) the device must be idled to wait for the possible arrival of a new
4384  *    request for the queue.
4385  * See the comments on the function bfq_better_to_idle for the reasons
4386  * why performing device idling is the best choice to boost the throughput
4387  * and preserve service guarantees when bfq_better_to_idle itself
4388  * returns true.
4389  */
4390 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4391 {
4392 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4393 }
4394 
4395 /*
4396  * This function chooses the queue from which to pick the next extra
4397  * I/O request to inject, if it finds a compatible queue. See the
4398  * comments on bfq_update_inject_limit() for details on the injection
4399  * mechanism, and for the definitions of the quantities mentioned
4400  * below.
4401  */
4402 static struct bfq_queue *
4403 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4404 {
4405 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4406 	unsigned int limit = in_serv_bfqq->inject_limit;
4407 	/*
4408 	 * If
4409 	 * - bfqq is not weight-raised and therefore does not carry
4410 	 *   time-critical I/O,
4411 	 * or
4412 	 * - regardless of whether bfqq is weight-raised, bfqq has
4413 	 *   however a long think time, during which it can absorb the
4414 	 *   effect of an appropriate number of extra I/O requests
4415 	 *   from other queues (see bfq_update_inject_limit for
4416 	 *   details on the computation of this number);
4417 	 * then injection can be performed without restrictions.
4418 	 */
4419 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4420 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4421 
4422 	/*
4423 	 * If
4424 	 * - the baseline total service time could not be sampled yet,
4425 	 *   so the inject limit happens to be still 0, and
4426 	 * - a lot of time has elapsed since the plugging of I/O
4427 	 *   dispatching started, so drive speed is being wasted
4428 	 *   significantly;
4429 	 * then temporarily raise inject limit to one request.
4430 	 */
4431 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4432 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4433 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4434 				      bfqd->bfq_slice_idle)
4435 		)
4436 		limit = 1;
4437 
4438 	if (bfqd->rq_in_driver >= limit)
4439 		return NULL;
4440 
4441 	/*
4442 	 * Linear search of the source queue for injection; but, with
4443 	 * a high probability, very few steps are needed to find a
4444 	 * candidate queue, i.e., a queue with enough budget left for
4445 	 * its next request. In fact:
4446 	 * - BFQ dynamically updates the budget of every queue so as
4447 	 *   to accommodate the expected backlog of the queue;
4448 	 * - if a queue gets all its requests dispatched as injected
4449 	 *   service, then the queue is removed from the active list
4450 	 *   (and re-added only if it gets new requests, but then it
4451 	 *   is assigned again enough budget for its new backlog).
4452 	 */
4453 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4454 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4455 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4456 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4457 		    bfq_bfqq_budget_left(bfqq)) {
4458 			/*
4459 			 * Allow for only one large in-flight request
4460 			 * on non-rotational devices, for the
4461 			 * following reason. On non-rotationl drives,
4462 			 * large requests take much longer than
4463 			 * smaller requests to be served. In addition,
4464 			 * the drive prefers to serve large requests
4465 			 * w.r.t. to small ones, if it can choose. So,
4466 			 * having more than one large requests queued
4467 			 * in the drive may easily make the next first
4468 			 * request of the in-service queue wait for so
4469 			 * long to break bfqq's service guarantees. On
4470 			 * the bright side, large requests let the
4471 			 * drive reach a very high throughput, even if
4472 			 * there is only one in-flight large request
4473 			 * at a time.
4474 			 */
4475 			if (blk_queue_nonrot(bfqd->queue) &&
4476 			    blk_rq_sectors(bfqq->next_rq) >=
4477 			    BFQQ_SECT_THR_NONROT)
4478 				limit = min_t(unsigned int, 1, limit);
4479 			else
4480 				limit = in_serv_bfqq->inject_limit;
4481 
4482 			if (bfqd->rq_in_driver < limit) {
4483 				bfqd->rqs_injected = true;
4484 				return bfqq;
4485 			}
4486 		}
4487 
4488 	return NULL;
4489 }
4490 
4491 /*
4492  * Select a queue for service.  If we have a current queue in service,
4493  * check whether to continue servicing it, or retrieve and set a new one.
4494  */
4495 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4496 {
4497 	struct bfq_queue *bfqq;
4498 	struct request *next_rq;
4499 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4500 
4501 	bfqq = bfqd->in_service_queue;
4502 	if (!bfqq)
4503 		goto new_queue;
4504 
4505 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4506 
4507 	/*
4508 	 * Do not expire bfqq for budget timeout if bfqq may be about
4509 	 * to enjoy device idling. The reason why, in this case, we
4510 	 * prevent bfqq from expiring is the same as in the comments
4511 	 * on the case where bfq_bfqq_must_idle() returns true, in
4512 	 * bfq_completed_request().
4513 	 */
4514 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4515 	    !bfq_bfqq_must_idle(bfqq))
4516 		goto expire;
4517 
4518 check_queue:
4519 	/*
4520 	 * This loop is rarely executed more than once. Even when it
4521 	 * happens, it is much more convenient to re-execute this loop
4522 	 * than to return NULL and trigger a new dispatch to get a
4523 	 * request served.
4524 	 */
4525 	next_rq = bfqq->next_rq;
4526 	/*
4527 	 * If bfqq has requests queued and it has enough budget left to
4528 	 * serve them, keep the queue, otherwise expire it.
4529 	 */
4530 	if (next_rq) {
4531 		if (bfq_serv_to_charge(next_rq, bfqq) >
4532 			bfq_bfqq_budget_left(bfqq)) {
4533 			/*
4534 			 * Expire the queue for budget exhaustion,
4535 			 * which makes sure that the next budget is
4536 			 * enough to serve the next request, even if
4537 			 * it comes from the fifo expired path.
4538 			 */
4539 			reason = BFQQE_BUDGET_EXHAUSTED;
4540 			goto expire;
4541 		} else {
4542 			/*
4543 			 * The idle timer may be pending because we may
4544 			 * not disable disk idling even when a new request
4545 			 * arrives.
4546 			 */
4547 			if (bfq_bfqq_wait_request(bfqq)) {
4548 				/*
4549 				 * If we get here: 1) at least a new request
4550 				 * has arrived but we have not disabled the
4551 				 * timer because the request was too small,
4552 				 * 2) then the block layer has unplugged
4553 				 * the device, causing the dispatch to be
4554 				 * invoked.
4555 				 *
4556 				 * Since the device is unplugged, now the
4557 				 * requests are probably large enough to
4558 				 * provide a reasonable throughput.
4559 				 * So we disable idling.
4560 				 */
4561 				bfq_clear_bfqq_wait_request(bfqq);
4562 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4563 			}
4564 			goto keep_queue;
4565 		}
4566 	}
4567 
4568 	/*
4569 	 * No requests pending. However, if the in-service queue is idling
4570 	 * for a new request, or has requests waiting for a completion and
4571 	 * may idle after their completion, then keep it anyway.
4572 	 *
4573 	 * Yet, inject service from other queues if it boosts
4574 	 * throughput and is possible.
4575 	 */
4576 	if (bfq_bfqq_wait_request(bfqq) ||
4577 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4578 		struct bfq_queue *async_bfqq =
4579 			bfqq->bic && bfqq->bic->bfqq[0] &&
4580 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4581 			bfqq->bic->bfqq[0]->next_rq ?
4582 			bfqq->bic->bfqq[0] : NULL;
4583 		struct bfq_queue *blocked_bfqq =
4584 			!hlist_empty(&bfqq->woken_list) ?
4585 			container_of(bfqq->woken_list.first,
4586 				     struct bfq_queue,
4587 				     woken_list_node)
4588 			: NULL;
4589 
4590 		/*
4591 		 * The next four mutually-exclusive ifs decide
4592 		 * whether to try injection, and choose the queue to
4593 		 * pick an I/O request from.
4594 		 *
4595 		 * The first if checks whether the process associated
4596 		 * with bfqq has also async I/O pending. If so, it
4597 		 * injects such I/O unconditionally. Injecting async
4598 		 * I/O from the same process can cause no harm to the
4599 		 * process. On the contrary, it can only increase
4600 		 * bandwidth and reduce latency for the process.
4601 		 *
4602 		 * The second if checks whether there happens to be a
4603 		 * non-empty waker queue for bfqq, i.e., a queue whose
4604 		 * I/O needs to be completed for bfqq to receive new
4605 		 * I/O. This happens, e.g., if bfqq is associated with
4606 		 * a process that does some sync. A sync generates
4607 		 * extra blocking I/O, which must be completed before
4608 		 * the process associated with bfqq can go on with its
4609 		 * I/O. If the I/O of the waker queue is not served,
4610 		 * then bfqq remains empty, and no I/O is dispatched,
4611 		 * until the idle timeout fires for bfqq. This is
4612 		 * likely to result in lower bandwidth and higher
4613 		 * latencies for bfqq, and in a severe loss of total
4614 		 * throughput. The best action to take is therefore to
4615 		 * serve the waker queue as soon as possible. So do it
4616 		 * (without relying on the third alternative below for
4617 		 * eventually serving waker_bfqq's I/O; see the last
4618 		 * paragraph for further details). This systematic
4619 		 * injection of I/O from the waker queue does not
4620 		 * cause any delay to bfqq's I/O. On the contrary,
4621 		 * next bfqq's I/O is brought forward dramatically,
4622 		 * for it is not blocked for milliseconds.
4623 		 *
4624 		 * The third if checks whether there is a queue woken
4625 		 * by bfqq, and currently with pending I/O. Such a
4626 		 * woken queue does not steal bandwidth from bfqq,
4627 		 * because it remains soon without I/O if bfqq is not
4628 		 * served. So there is virtually no risk of loss of
4629 		 * bandwidth for bfqq if this woken queue has I/O
4630 		 * dispatched while bfqq is waiting for new I/O.
4631 		 *
4632 		 * The fourth if checks whether bfqq is a queue for
4633 		 * which it is better to avoid injection. It is so if
4634 		 * bfqq delivers more throughput when served without
4635 		 * any further I/O from other queues in the middle, or
4636 		 * if the service times of bfqq's I/O requests both
4637 		 * count more than overall throughput, and may be
4638 		 * easily increased by injection (this happens if bfqq
4639 		 * has a short think time). If none of these
4640 		 * conditions holds, then a candidate queue for
4641 		 * injection is looked for through
4642 		 * bfq_choose_bfqq_for_injection(). Note that the
4643 		 * latter may return NULL (for example if the inject
4644 		 * limit for bfqq is currently 0).
4645 		 *
4646 		 * NOTE: motivation for the second alternative
4647 		 *
4648 		 * Thanks to the way the inject limit is updated in
4649 		 * bfq_update_has_short_ttime(), it is rather likely
4650 		 * that, if I/O is being plugged for bfqq and the
4651 		 * waker queue has pending I/O requests that are
4652 		 * blocking bfqq's I/O, then the fourth alternative
4653 		 * above lets the waker queue get served before the
4654 		 * I/O-plugging timeout fires. So one may deem the
4655 		 * second alternative superfluous. It is not, because
4656 		 * the fourth alternative may be way less effective in
4657 		 * case of a synchronization. For two main
4658 		 * reasons. First, throughput may be low because the
4659 		 * inject limit may be too low to guarantee the same
4660 		 * amount of injected I/O, from the waker queue or
4661 		 * other queues, that the second alternative
4662 		 * guarantees (the second alternative unconditionally
4663 		 * injects a pending I/O request of the waker queue
4664 		 * for each bfq_dispatch_request()). Second, with the
4665 		 * fourth alternative, the duration of the plugging,
4666 		 * i.e., the time before bfqq finally receives new I/O,
4667 		 * may not be minimized, because the waker queue may
4668 		 * happen to be served only after other queues.
4669 		 */
4670 		if (async_bfqq &&
4671 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4672 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4673 		    bfq_bfqq_budget_left(async_bfqq))
4674 			bfqq = bfqq->bic->bfqq[0];
4675 		else if (bfqq->waker_bfqq &&
4676 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4677 			   bfqq->waker_bfqq->next_rq &&
4678 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4679 					      bfqq->waker_bfqq) <=
4680 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4681 			)
4682 			bfqq = bfqq->waker_bfqq;
4683 		else if (blocked_bfqq &&
4684 			   bfq_bfqq_busy(blocked_bfqq) &&
4685 			   blocked_bfqq->next_rq &&
4686 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
4687 					      blocked_bfqq) <=
4688 			   bfq_bfqq_budget_left(blocked_bfqq)
4689 			)
4690 			bfqq = blocked_bfqq;
4691 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4692 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4693 			  !bfq_bfqq_has_short_ttime(bfqq)))
4694 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4695 		else
4696 			bfqq = NULL;
4697 
4698 		goto keep_queue;
4699 	}
4700 
4701 	reason = BFQQE_NO_MORE_REQUESTS;
4702 expire:
4703 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4704 new_queue:
4705 	bfqq = bfq_set_in_service_queue(bfqd);
4706 	if (bfqq) {
4707 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4708 		goto check_queue;
4709 	}
4710 keep_queue:
4711 	if (bfqq)
4712 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4713 	else
4714 		bfq_log(bfqd, "select_queue: no queue returned");
4715 
4716 	return bfqq;
4717 }
4718 
4719 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4720 {
4721 	struct bfq_entity *entity = &bfqq->entity;
4722 
4723 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4724 		bfq_log_bfqq(bfqd, bfqq,
4725 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4726 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4727 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4728 			bfqq->wr_coeff,
4729 			bfqq->entity.weight, bfqq->entity.orig_weight);
4730 
4731 		if (entity->prio_changed)
4732 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4733 
4734 		/*
4735 		 * If the queue was activated in a burst, or too much
4736 		 * time has elapsed from the beginning of this
4737 		 * weight-raising period, then end weight raising.
4738 		 */
4739 		if (bfq_bfqq_in_large_burst(bfqq))
4740 			bfq_bfqq_end_wr(bfqq);
4741 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4742 						bfqq->wr_cur_max_time)) {
4743 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4744 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4745 					       bfq_wr_duration(bfqd))) {
4746 				/*
4747 				 * Either in interactive weight
4748 				 * raising, or in soft_rt weight
4749 				 * raising with the
4750 				 * interactive-weight-raising period
4751 				 * elapsed (so no switch back to
4752 				 * interactive weight raising).
4753 				 */
4754 				bfq_bfqq_end_wr(bfqq);
4755 			} else { /*
4756 				  * soft_rt finishing while still in
4757 				  * interactive period, switch back to
4758 				  * interactive weight raising
4759 				  */
4760 				switch_back_to_interactive_wr(bfqq, bfqd);
4761 				bfqq->entity.prio_changed = 1;
4762 			}
4763 		}
4764 		if (bfqq->wr_coeff > 1 &&
4765 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4766 		    bfqq->service_from_wr > max_service_from_wr) {
4767 			/* see comments on max_service_from_wr */
4768 			bfq_bfqq_end_wr(bfqq);
4769 		}
4770 	}
4771 	/*
4772 	 * To improve latency (for this or other queues), immediately
4773 	 * update weight both if it must be raised and if it must be
4774 	 * lowered. Since, entity may be on some active tree here, and
4775 	 * might have a pending change of its ioprio class, invoke
4776 	 * next function with the last parameter unset (see the
4777 	 * comments on the function).
4778 	 */
4779 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4780 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4781 						entity, false);
4782 }
4783 
4784 /*
4785  * Dispatch next request from bfqq.
4786  */
4787 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4788 						 struct bfq_queue *bfqq)
4789 {
4790 	struct request *rq = bfqq->next_rq;
4791 	unsigned long service_to_charge;
4792 
4793 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4794 
4795 	bfq_bfqq_served(bfqq, service_to_charge);
4796 
4797 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4798 		bfqd->wait_dispatch = false;
4799 		bfqd->waited_rq = rq;
4800 	}
4801 
4802 	bfq_dispatch_remove(bfqd->queue, rq);
4803 
4804 	if (bfqq != bfqd->in_service_queue)
4805 		goto return_rq;
4806 
4807 	/*
4808 	 * If weight raising has to terminate for bfqq, then next
4809 	 * function causes an immediate update of bfqq's weight,
4810 	 * without waiting for next activation. As a consequence, on
4811 	 * expiration, bfqq will be timestamped as if has never been
4812 	 * weight-raised during this service slot, even if it has
4813 	 * received part or even most of the service as a
4814 	 * weight-raised queue. This inflates bfqq's timestamps, which
4815 	 * is beneficial, as bfqq is then more willing to leave the
4816 	 * device immediately to possible other weight-raised queues.
4817 	 */
4818 	bfq_update_wr_data(bfqd, bfqq);
4819 
4820 	/*
4821 	 * Expire bfqq, pretending that its budget expired, if bfqq
4822 	 * belongs to CLASS_IDLE and other queues are waiting for
4823 	 * service.
4824 	 */
4825 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4826 		goto return_rq;
4827 
4828 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4829 
4830 return_rq:
4831 	return rq;
4832 }
4833 
4834 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4835 {
4836 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4837 
4838 	/*
4839 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4840 	 * most a call to dispatch for nothing
4841 	 */
4842 	return !list_empty_careful(&bfqd->dispatch) ||
4843 		bfq_tot_busy_queues(bfqd) > 0;
4844 }
4845 
4846 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4847 {
4848 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4849 	struct request *rq = NULL;
4850 	struct bfq_queue *bfqq = NULL;
4851 
4852 	if (!list_empty(&bfqd->dispatch)) {
4853 		rq = list_first_entry(&bfqd->dispatch, struct request,
4854 				      queuelist);
4855 		list_del_init(&rq->queuelist);
4856 
4857 		bfqq = RQ_BFQQ(rq);
4858 
4859 		if (bfqq) {
4860 			/*
4861 			 * Increment counters here, because this
4862 			 * dispatch does not follow the standard
4863 			 * dispatch flow (where counters are
4864 			 * incremented)
4865 			 */
4866 			bfqq->dispatched++;
4867 
4868 			goto inc_in_driver_start_rq;
4869 		}
4870 
4871 		/*
4872 		 * We exploit the bfq_finish_requeue_request hook to
4873 		 * decrement rq_in_driver, but
4874 		 * bfq_finish_requeue_request will not be invoked on
4875 		 * this request. So, to avoid unbalance, just start
4876 		 * this request, without incrementing rq_in_driver. As
4877 		 * a negative consequence, rq_in_driver is deceptively
4878 		 * lower than it should be while this request is in
4879 		 * service. This may cause bfq_schedule_dispatch to be
4880 		 * invoked uselessly.
4881 		 *
4882 		 * As for implementing an exact solution, the
4883 		 * bfq_finish_requeue_request hook, if defined, is
4884 		 * probably invoked also on this request. So, by
4885 		 * exploiting this hook, we could 1) increment
4886 		 * rq_in_driver here, and 2) decrement it in
4887 		 * bfq_finish_requeue_request. Such a solution would
4888 		 * let the value of the counter be always accurate,
4889 		 * but it would entail using an extra interface
4890 		 * function. This cost seems higher than the benefit,
4891 		 * being the frequency of non-elevator-private
4892 		 * requests very low.
4893 		 */
4894 		goto start_rq;
4895 	}
4896 
4897 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4898 		bfq_tot_busy_queues(bfqd));
4899 
4900 	if (bfq_tot_busy_queues(bfqd) == 0)
4901 		goto exit;
4902 
4903 	/*
4904 	 * Force device to serve one request at a time if
4905 	 * strict_guarantees is true. Forcing this service scheme is
4906 	 * currently the ONLY way to guarantee that the request
4907 	 * service order enforced by the scheduler is respected by a
4908 	 * queueing device. Otherwise the device is free even to make
4909 	 * some unlucky request wait for as long as the device
4910 	 * wishes.
4911 	 *
4912 	 * Of course, serving one request at a time may cause loss of
4913 	 * throughput.
4914 	 */
4915 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4916 		goto exit;
4917 
4918 	bfqq = bfq_select_queue(bfqd);
4919 	if (!bfqq)
4920 		goto exit;
4921 
4922 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4923 
4924 	if (rq) {
4925 inc_in_driver_start_rq:
4926 		bfqd->rq_in_driver++;
4927 start_rq:
4928 		rq->rq_flags |= RQF_STARTED;
4929 	}
4930 exit:
4931 	return rq;
4932 }
4933 
4934 #ifdef CONFIG_BFQ_CGROUP_DEBUG
4935 static void bfq_update_dispatch_stats(struct request_queue *q,
4936 				      struct request *rq,
4937 				      struct bfq_queue *in_serv_queue,
4938 				      bool idle_timer_disabled)
4939 {
4940 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4941 
4942 	if (!idle_timer_disabled && !bfqq)
4943 		return;
4944 
4945 	/*
4946 	 * rq and bfqq are guaranteed to exist until this function
4947 	 * ends, for the following reasons. First, rq can be
4948 	 * dispatched to the device, and then can be completed and
4949 	 * freed, only after this function ends. Second, rq cannot be
4950 	 * merged (and thus freed because of a merge) any longer,
4951 	 * because it has already started. Thus rq cannot be freed
4952 	 * before this function ends, and, since rq has a reference to
4953 	 * bfqq, the same guarantee holds for bfqq too.
4954 	 *
4955 	 * In addition, the following queue lock guarantees that
4956 	 * bfqq_group(bfqq) exists as well.
4957 	 */
4958 	spin_lock_irq(&q->queue_lock);
4959 	if (idle_timer_disabled)
4960 		/*
4961 		 * Since the idle timer has been disabled,
4962 		 * in_serv_queue contained some request when
4963 		 * __bfq_dispatch_request was invoked above, which
4964 		 * implies that rq was picked exactly from
4965 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4966 		 * therefore guaranteed to exist because of the above
4967 		 * arguments.
4968 		 */
4969 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4970 	if (bfqq) {
4971 		struct bfq_group *bfqg = bfqq_group(bfqq);
4972 
4973 		bfqg_stats_update_avg_queue_size(bfqg);
4974 		bfqg_stats_set_start_empty_time(bfqg);
4975 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4976 	}
4977 	spin_unlock_irq(&q->queue_lock);
4978 }
4979 #else
4980 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4981 					     struct request *rq,
4982 					     struct bfq_queue *in_serv_queue,
4983 					     bool idle_timer_disabled) {}
4984 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
4985 
4986 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4987 {
4988 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4989 	struct request *rq;
4990 	struct bfq_queue *in_serv_queue;
4991 	bool waiting_rq, idle_timer_disabled;
4992 
4993 	spin_lock_irq(&bfqd->lock);
4994 
4995 	in_serv_queue = bfqd->in_service_queue;
4996 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4997 
4998 	rq = __bfq_dispatch_request(hctx);
4999 
5000 	idle_timer_disabled =
5001 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5002 
5003 	spin_unlock_irq(&bfqd->lock);
5004 
5005 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
5006 				  idle_timer_disabled);
5007 
5008 	return rq;
5009 }
5010 
5011 /*
5012  * Task holds one reference to the queue, dropped when task exits.  Each rq
5013  * in-flight on this queue also holds a reference, dropped when rq is freed.
5014  *
5015  * Scheduler lock must be held here. Recall not to use bfqq after calling
5016  * this function on it.
5017  */
5018 void bfq_put_queue(struct bfq_queue *bfqq)
5019 {
5020 	struct bfq_queue *item;
5021 	struct hlist_node *n;
5022 	struct bfq_group *bfqg = bfqq_group(bfqq);
5023 
5024 	if (bfqq->bfqd)
5025 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
5026 			     bfqq, bfqq->ref);
5027 
5028 	bfqq->ref--;
5029 	if (bfqq->ref)
5030 		return;
5031 
5032 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5033 		hlist_del_init(&bfqq->burst_list_node);
5034 		/*
5035 		 * Decrement also burst size after the removal, if the
5036 		 * process associated with bfqq is exiting, and thus
5037 		 * does not contribute to the burst any longer. This
5038 		 * decrement helps filter out false positives of large
5039 		 * bursts, when some short-lived process (often due to
5040 		 * the execution of commands by some service) happens
5041 		 * to start and exit while a complex application is
5042 		 * starting, and thus spawning several processes that
5043 		 * do I/O (and that *must not* be treated as a large
5044 		 * burst, see comments on bfq_handle_burst).
5045 		 *
5046 		 * In particular, the decrement is performed only if:
5047 		 * 1) bfqq is not a merged queue, because, if it is,
5048 		 * then this free of bfqq is not triggered by the exit
5049 		 * of the process bfqq is associated with, but exactly
5050 		 * by the fact that bfqq has just been merged.
5051 		 * 2) burst_size is greater than 0, to handle
5052 		 * unbalanced decrements. Unbalanced decrements may
5053 		 * happen in te following case: bfqq is inserted into
5054 		 * the current burst list--without incrementing
5055 		 * bust_size--because of a split, but the current
5056 		 * burst list is not the burst list bfqq belonged to
5057 		 * (see comments on the case of a split in
5058 		 * bfq_set_request).
5059 		 */
5060 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5061 			bfqq->bfqd->burst_size--;
5062 	}
5063 
5064 	/*
5065 	 * bfqq does not exist any longer, so it cannot be woken by
5066 	 * any other queue, and cannot wake any other queue. Then bfqq
5067 	 * must be removed from the woken list of its possible waker
5068 	 * queue, and all queues in the woken list of bfqq must stop
5069 	 * having a waker queue. Strictly speaking, these updates
5070 	 * should be performed when bfqq remains with no I/O source
5071 	 * attached to it, which happens before bfqq gets freed. In
5072 	 * particular, this happens when the last process associated
5073 	 * with bfqq exits or gets associated with a different
5074 	 * queue. However, both events lead to bfqq being freed soon,
5075 	 * and dangling references would come out only after bfqq gets
5076 	 * freed. So these updates are done here, as a simple and safe
5077 	 * way to handle all cases.
5078 	 */
5079 	/* remove bfqq from woken list */
5080 	if (!hlist_unhashed(&bfqq->woken_list_node))
5081 		hlist_del_init(&bfqq->woken_list_node);
5082 
5083 	/* reset waker for all queues in woken list */
5084 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5085 				  woken_list_node) {
5086 		item->waker_bfqq = NULL;
5087 		hlist_del_init(&item->woken_list_node);
5088 	}
5089 
5090 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5091 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5092 
5093 	kmem_cache_free(bfq_pool, bfqq);
5094 	bfqg_and_blkg_put(bfqg);
5095 }
5096 
5097 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5098 {
5099 	bfqq->stable_ref--;
5100 	bfq_put_queue(bfqq);
5101 }
5102 
5103 static void bfq_put_cooperator(struct bfq_queue *bfqq)
5104 {
5105 	struct bfq_queue *__bfqq, *next;
5106 
5107 	/*
5108 	 * If this queue was scheduled to merge with another queue, be
5109 	 * sure to drop the reference taken on that queue (and others in
5110 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5111 	 */
5112 	__bfqq = bfqq->new_bfqq;
5113 	while (__bfqq) {
5114 		if (__bfqq == bfqq)
5115 			break;
5116 		next = __bfqq->new_bfqq;
5117 		bfq_put_queue(__bfqq);
5118 		__bfqq = next;
5119 	}
5120 }
5121 
5122 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5123 {
5124 	if (bfqq == bfqd->in_service_queue) {
5125 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5126 		bfq_schedule_dispatch(bfqd);
5127 	}
5128 
5129 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5130 
5131 	bfq_put_cooperator(bfqq);
5132 
5133 	bfq_release_process_ref(bfqd, bfqq);
5134 }
5135 
5136 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5137 {
5138 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5139 	struct bfq_data *bfqd;
5140 
5141 	if (bfqq)
5142 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5143 
5144 	if (bfqq && bfqd) {
5145 		unsigned long flags;
5146 
5147 		spin_lock_irqsave(&bfqd->lock, flags);
5148 		bfqq->bic = NULL;
5149 		bfq_exit_bfqq(bfqd, bfqq);
5150 		bic_set_bfqq(bic, NULL, is_sync);
5151 		spin_unlock_irqrestore(&bfqd->lock, flags);
5152 	}
5153 }
5154 
5155 static void bfq_exit_icq(struct io_cq *icq)
5156 {
5157 	struct bfq_io_cq *bic = icq_to_bic(icq);
5158 
5159 	if (bic->stable_merge_bfqq) {
5160 		struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5161 
5162 		/*
5163 		 * bfqd is NULL if scheduler already exited, and in
5164 		 * that case this is the last time bfqq is accessed.
5165 		 */
5166 		if (bfqd) {
5167 			unsigned long flags;
5168 
5169 			spin_lock_irqsave(&bfqd->lock, flags);
5170 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5171 			spin_unlock_irqrestore(&bfqd->lock, flags);
5172 		} else {
5173 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5174 		}
5175 	}
5176 
5177 	bfq_exit_icq_bfqq(bic, true);
5178 	bfq_exit_icq_bfqq(bic, false);
5179 }
5180 
5181 /*
5182  * Update the entity prio values; note that the new values will not
5183  * be used until the next (re)activation.
5184  */
5185 static void
5186 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5187 {
5188 	struct task_struct *tsk = current;
5189 	int ioprio_class;
5190 	struct bfq_data *bfqd = bfqq->bfqd;
5191 
5192 	if (!bfqd)
5193 		return;
5194 
5195 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5196 	switch (ioprio_class) {
5197 	default:
5198 		pr_err("bdi %s: bfq: bad prio class %d\n",
5199 				bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
5200 				ioprio_class);
5201 		fallthrough;
5202 	case IOPRIO_CLASS_NONE:
5203 		/*
5204 		 * No prio set, inherit CPU scheduling settings.
5205 		 */
5206 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5207 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5208 		break;
5209 	case IOPRIO_CLASS_RT:
5210 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5211 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5212 		break;
5213 	case IOPRIO_CLASS_BE:
5214 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5215 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5216 		break;
5217 	case IOPRIO_CLASS_IDLE:
5218 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5219 		bfqq->new_ioprio = 7;
5220 		break;
5221 	}
5222 
5223 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5224 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5225 			bfqq->new_ioprio);
5226 		bfqq->new_ioprio = IOPRIO_BE_NR;
5227 	}
5228 
5229 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5230 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5231 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5232 	bfqq->entity.prio_changed = 1;
5233 }
5234 
5235 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5236 				       struct bio *bio, bool is_sync,
5237 				       struct bfq_io_cq *bic,
5238 				       bool respawn);
5239 
5240 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5241 {
5242 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5243 	struct bfq_queue *bfqq;
5244 	int ioprio = bic->icq.ioc->ioprio;
5245 
5246 	/*
5247 	 * This condition may trigger on a newly created bic, be sure to
5248 	 * drop the lock before returning.
5249 	 */
5250 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5251 		return;
5252 
5253 	bic->ioprio = ioprio;
5254 
5255 	bfqq = bic_to_bfqq(bic, false);
5256 	if (bfqq) {
5257 		bfq_release_process_ref(bfqd, bfqq);
5258 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic, true);
5259 		bic_set_bfqq(bic, bfqq, false);
5260 	}
5261 
5262 	bfqq = bic_to_bfqq(bic, true);
5263 	if (bfqq)
5264 		bfq_set_next_ioprio_data(bfqq, bic);
5265 }
5266 
5267 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5268 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5269 {
5270 	u64 now_ns = ktime_get_ns();
5271 
5272 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5273 	INIT_LIST_HEAD(&bfqq->fifo);
5274 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5275 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5276 	INIT_HLIST_HEAD(&bfqq->woken_list);
5277 
5278 	bfqq->ref = 0;
5279 	bfqq->bfqd = bfqd;
5280 
5281 	if (bic)
5282 		bfq_set_next_ioprio_data(bfqq, bic);
5283 
5284 	if (is_sync) {
5285 		/*
5286 		 * No need to mark as has_short_ttime if in
5287 		 * idle_class, because no device idling is performed
5288 		 * for queues in idle class
5289 		 */
5290 		if (!bfq_class_idle(bfqq))
5291 			/* tentatively mark as has_short_ttime */
5292 			bfq_mark_bfqq_has_short_ttime(bfqq);
5293 		bfq_mark_bfqq_sync(bfqq);
5294 		bfq_mark_bfqq_just_created(bfqq);
5295 	} else
5296 		bfq_clear_bfqq_sync(bfqq);
5297 
5298 	/* set end request to minus infinity from now */
5299 	bfqq->ttime.last_end_request = now_ns + 1;
5300 
5301 	bfqq->creation_time = jiffies;
5302 
5303 	bfqq->io_start_time = now_ns;
5304 
5305 	bfq_mark_bfqq_IO_bound(bfqq);
5306 
5307 	bfqq->pid = pid;
5308 
5309 	/* Tentative initial value to trade off between thr and lat */
5310 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5311 	bfqq->budget_timeout = bfq_smallest_from_now();
5312 
5313 	bfqq->wr_coeff = 1;
5314 	bfqq->last_wr_start_finish = jiffies;
5315 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5316 	bfqq->split_time = bfq_smallest_from_now();
5317 
5318 	/*
5319 	 * To not forget the possibly high bandwidth consumed by a
5320 	 * process/queue in the recent past,
5321 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5322 	 * to the current value of bfqq->soft_rt_next_start (see
5323 	 * comments on bfq_bfqq_softrt_next_start).  Set
5324 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5325 	 * no bandwidth so far.
5326 	 */
5327 	bfqq->soft_rt_next_start = jiffies;
5328 
5329 	/* first request is almost certainly seeky */
5330 	bfqq->seek_history = 1;
5331 }
5332 
5333 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5334 					       struct bfq_group *bfqg,
5335 					       int ioprio_class, int ioprio)
5336 {
5337 	switch (ioprio_class) {
5338 	case IOPRIO_CLASS_RT:
5339 		return &bfqg->async_bfqq[0][ioprio];
5340 	case IOPRIO_CLASS_NONE:
5341 		ioprio = IOPRIO_NORM;
5342 		fallthrough;
5343 	case IOPRIO_CLASS_BE:
5344 		return &bfqg->async_bfqq[1][ioprio];
5345 	case IOPRIO_CLASS_IDLE:
5346 		return &bfqg->async_idle_bfqq;
5347 	default:
5348 		return NULL;
5349 	}
5350 }
5351 
5352 static struct bfq_queue *
5353 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5354 			  struct bfq_io_cq *bic,
5355 			  struct bfq_queue *last_bfqq_created)
5356 {
5357 	struct bfq_queue *new_bfqq =
5358 		bfq_setup_merge(bfqq, last_bfqq_created);
5359 
5360 	if (!new_bfqq)
5361 		return bfqq;
5362 
5363 	if (new_bfqq->bic)
5364 		new_bfqq->bic->stably_merged = true;
5365 	bic->stably_merged = true;
5366 
5367 	/*
5368 	 * Reusing merge functions. This implies that
5369 	 * bfqq->bic must be set too, for
5370 	 * bfq_merge_bfqqs to correctly save bfqq's
5371 	 * state before killing it.
5372 	 */
5373 	bfqq->bic = bic;
5374 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5375 
5376 	return new_bfqq;
5377 }
5378 
5379 /*
5380  * Many throughput-sensitive workloads are made of several parallel
5381  * I/O flows, with all flows generated by the same application, or
5382  * more generically by the same task (e.g., system boot). The most
5383  * counterproductive action with these workloads is plugging I/O
5384  * dispatch when one of the bfq_queues associated with these flows
5385  * remains temporarily empty.
5386  *
5387  * To avoid this plugging, BFQ has been using a burst-handling
5388  * mechanism for years now. This mechanism has proven effective for
5389  * throughput, and not detrimental for service guarantees. The
5390  * following function pushes this mechanism a little bit further,
5391  * basing on the following two facts.
5392  *
5393  * First, all the I/O flows of a the same application or task
5394  * contribute to the execution/completion of that common application
5395  * or task. So the performance figures that matter are total
5396  * throughput of the flows and task-wide I/O latency.  In particular,
5397  * these flows do not need to be protected from each other, in terms
5398  * of individual bandwidth or latency.
5399  *
5400  * Second, the above fact holds regardless of the number of flows.
5401  *
5402  * Putting these two facts together, this commits merges stably the
5403  * bfq_queues associated with these I/O flows, i.e., with the
5404  * processes that generate these IO/ flows, regardless of how many the
5405  * involved processes are.
5406  *
5407  * To decide whether a set of bfq_queues is actually associated with
5408  * the I/O flows of a common application or task, and to merge these
5409  * queues stably, this function operates as follows: given a bfq_queue,
5410  * say Q2, currently being created, and the last bfq_queue, say Q1,
5411  * created before Q2, Q2 is merged stably with Q1 if
5412  * - very little time has elapsed since when Q1 was created
5413  * - Q2 has the same ioprio as Q1
5414  * - Q2 belongs to the same group as Q1
5415  *
5416  * Merging bfq_queues also reduces scheduling overhead. A fio test
5417  * with ten random readers on /dev/nullb shows a throughput boost of
5418  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5419  * the total per-request processing time, the above throughput boost
5420  * implies that BFQ's overhead is reduced by more than 50%.
5421  *
5422  * This new mechanism most certainly obsoletes the current
5423  * burst-handling heuristics. We keep those heuristics for the moment.
5424  */
5425 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5426 						      struct bfq_queue *bfqq,
5427 						      struct bfq_io_cq *bic)
5428 {
5429 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5430 		&bfqq->entity.parent->last_bfqq_created :
5431 		&bfqd->last_bfqq_created;
5432 
5433 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5434 
5435 	/*
5436 	 * If last_bfqq_created has not been set yet, then init it. If
5437 	 * it has been set already, but too long ago, then move it
5438 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5439 	 * different group than last_bfqq_created, or if bfqq has a
5440 	 * different ioprio or ioprio_class. If none of these
5441 	 * conditions holds true, then try an early stable merge or
5442 	 * schedule a delayed stable merge.
5443 	 *
5444 	 * A delayed merge is scheduled (instead of performing an
5445 	 * early merge), in case bfqq might soon prove to be more
5446 	 * throughput-beneficial if not merged. Currently this is
5447 	 * possible only if bfqd is rotational with no queueing. For
5448 	 * such a drive, not merging bfqq is better for throughput if
5449 	 * bfqq happens to contain sequential I/O. So, we wait a
5450 	 * little bit for enough I/O to flow through bfqq. After that,
5451 	 * if such an I/O is sequential, then the merge is
5452 	 * canceled. Otherwise the merge is finally performed.
5453 	 */
5454 	if (!last_bfqq_created ||
5455 	    time_before(last_bfqq_created->creation_time +
5456 			bfqd->bfq_burst_interval,
5457 			bfqq->creation_time) ||
5458 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5459 		bfqq->ioprio != last_bfqq_created->ioprio ||
5460 		bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5461 		*source_bfqq = bfqq;
5462 	else if (time_after_eq(last_bfqq_created->creation_time +
5463 				 bfqd->bfq_burst_interval,
5464 				 bfqq->creation_time)) {
5465 		if (likely(bfqd->nonrot_with_queueing))
5466 			/*
5467 			 * With this type of drive, leaving
5468 			 * bfqq alone may provide no
5469 			 * throughput benefits compared with
5470 			 * merging bfqq. So merge bfqq now.
5471 			 */
5472 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5473 							 bic,
5474 							 last_bfqq_created);
5475 		else { /* schedule tentative stable merge */
5476 			/*
5477 			 * get reference on last_bfqq_created,
5478 			 * to prevent it from being freed,
5479 			 * until we decide whether to merge
5480 			 */
5481 			last_bfqq_created->ref++;
5482 			/*
5483 			 * need to keep track of stable refs, to
5484 			 * compute process refs correctly
5485 			 */
5486 			last_bfqq_created->stable_ref++;
5487 			/*
5488 			 * Record the bfqq to merge to.
5489 			 */
5490 			bic->stable_merge_bfqq = last_bfqq_created;
5491 		}
5492 	}
5493 
5494 	return bfqq;
5495 }
5496 
5497 
5498 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5499 				       struct bio *bio, bool is_sync,
5500 				       struct bfq_io_cq *bic,
5501 				       bool respawn)
5502 {
5503 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5504 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5505 	struct bfq_queue **async_bfqq = NULL;
5506 	struct bfq_queue *bfqq;
5507 	struct bfq_group *bfqg;
5508 
5509 	rcu_read_lock();
5510 
5511 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
5512 	if (!bfqg) {
5513 		bfqq = &bfqd->oom_bfqq;
5514 		goto out;
5515 	}
5516 
5517 	if (!is_sync) {
5518 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5519 						  ioprio);
5520 		bfqq = *async_bfqq;
5521 		if (bfqq)
5522 			goto out;
5523 	}
5524 
5525 	bfqq = kmem_cache_alloc_node(bfq_pool,
5526 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5527 				     bfqd->queue->node);
5528 
5529 	if (bfqq) {
5530 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5531 			      is_sync);
5532 		bfq_init_entity(&bfqq->entity, bfqg);
5533 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5534 	} else {
5535 		bfqq = &bfqd->oom_bfqq;
5536 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5537 		goto out;
5538 	}
5539 
5540 	/*
5541 	 * Pin the queue now that it's allocated, scheduler exit will
5542 	 * prune it.
5543 	 */
5544 	if (async_bfqq) {
5545 		bfqq->ref++; /*
5546 			      * Extra group reference, w.r.t. sync
5547 			      * queue. This extra reference is removed
5548 			      * only if bfqq->bfqg disappears, to
5549 			      * guarantee that this queue is not freed
5550 			      * until its group goes away.
5551 			      */
5552 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5553 			     bfqq, bfqq->ref);
5554 		*async_bfqq = bfqq;
5555 	}
5556 
5557 out:
5558 	bfqq->ref++; /* get a process reference to this queue */
5559 
5560 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5561 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5562 
5563 	rcu_read_unlock();
5564 	return bfqq;
5565 }
5566 
5567 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5568 				    struct bfq_queue *bfqq)
5569 {
5570 	struct bfq_ttime *ttime = &bfqq->ttime;
5571 	u64 elapsed;
5572 
5573 	/*
5574 	 * We are really interested in how long it takes for the queue to
5575 	 * become busy when there is no outstanding IO for this queue. So
5576 	 * ignore cases when the bfq queue has already IO queued.
5577 	 */
5578 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5579 		return;
5580 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5581 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5582 
5583 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5584 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5585 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5586 				     ttime->ttime_samples);
5587 }
5588 
5589 static void
5590 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5591 		       struct request *rq)
5592 {
5593 	bfqq->seek_history <<= 1;
5594 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5595 
5596 	if (bfqq->wr_coeff > 1 &&
5597 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5598 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5599 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5600 					   bfq_wr_duration(bfqd))) {
5601 			/*
5602 			 * In soft_rt weight raising with the
5603 			 * interactive-weight-raising period
5604 			 * elapsed (so no switch back to
5605 			 * interactive weight raising).
5606 			 */
5607 			bfq_bfqq_end_wr(bfqq);
5608 		} else { /*
5609 			  * stopping soft_rt weight raising
5610 			  * while still in interactive period,
5611 			  * switch back to interactive weight
5612 			  * raising
5613 			  */
5614 			switch_back_to_interactive_wr(bfqq, bfqd);
5615 			bfqq->entity.prio_changed = 1;
5616 		}
5617 	}
5618 }
5619 
5620 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5621 				       struct bfq_queue *bfqq,
5622 				       struct bfq_io_cq *bic)
5623 {
5624 	bool has_short_ttime = true, state_changed;
5625 
5626 	/*
5627 	 * No need to update has_short_ttime if bfqq is async or in
5628 	 * idle io prio class, or if bfq_slice_idle is zero, because
5629 	 * no device idling is performed for bfqq in this case.
5630 	 */
5631 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5632 	    bfqd->bfq_slice_idle == 0)
5633 		return;
5634 
5635 	/* Idle window just restored, statistics are meaningless. */
5636 	if (time_is_after_eq_jiffies(bfqq->split_time +
5637 				     bfqd->bfq_wr_min_idle_time))
5638 		return;
5639 
5640 	/* Think time is infinite if no process is linked to
5641 	 * bfqq. Otherwise check average think time to decide whether
5642 	 * to mark as has_short_ttime. To this goal, compare average
5643 	 * think time with half the I/O-plugging timeout.
5644 	 */
5645 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5646 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5647 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5648 		has_short_ttime = false;
5649 
5650 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5651 
5652 	if (has_short_ttime)
5653 		bfq_mark_bfqq_has_short_ttime(bfqq);
5654 	else
5655 		bfq_clear_bfqq_has_short_ttime(bfqq);
5656 
5657 	/*
5658 	 * Until the base value for the total service time gets
5659 	 * finally computed for bfqq, the inject limit does depend on
5660 	 * the think-time state (short|long). In particular, the limit
5661 	 * is 0 or 1 if the think time is deemed, respectively, as
5662 	 * short or long (details in the comments in
5663 	 * bfq_update_inject_limit()). Accordingly, the next
5664 	 * instructions reset the inject limit if the think-time state
5665 	 * has changed and the above base value is still to be
5666 	 * computed.
5667 	 *
5668 	 * However, the reset is performed only if more than 100 ms
5669 	 * have elapsed since the last update of the inject limit, or
5670 	 * (inclusive) if the change is from short to long think
5671 	 * time. The reason for this waiting is as follows.
5672 	 *
5673 	 * bfqq may have a long think time because of a
5674 	 * synchronization with some other queue, i.e., because the
5675 	 * I/O of some other queue may need to be completed for bfqq
5676 	 * to receive new I/O. Details in the comments on the choice
5677 	 * of the queue for injection in bfq_select_queue().
5678 	 *
5679 	 * As stressed in those comments, if such a synchronization is
5680 	 * actually in place, then, without injection on bfqq, the
5681 	 * blocking I/O cannot happen to served while bfqq is in
5682 	 * service. As a consequence, if bfqq is granted
5683 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5684 	 * is dispatched, until the idle timeout fires. This is likely
5685 	 * to result in lower bandwidth and higher latencies for bfqq,
5686 	 * and in a severe loss of total throughput.
5687 	 *
5688 	 * On the opposite end, a non-zero inject limit may allow the
5689 	 * I/O that blocks bfqq to be executed soon, and therefore
5690 	 * bfqq to receive new I/O soon.
5691 	 *
5692 	 * But, if the blocking gets actually eliminated, then the
5693 	 * next think-time sample for bfqq may be very low. This in
5694 	 * turn may cause bfqq's think time to be deemed
5695 	 * short. Without the 100 ms barrier, this new state change
5696 	 * would cause the body of the next if to be executed
5697 	 * immediately. But this would set to 0 the inject
5698 	 * limit. Without injection, the blocking I/O would cause the
5699 	 * think time of bfqq to become long again, and therefore the
5700 	 * inject limit to be raised again, and so on. The only effect
5701 	 * of such a steady oscillation between the two think-time
5702 	 * states would be to prevent effective injection on bfqq.
5703 	 *
5704 	 * In contrast, if the inject limit is not reset during such a
5705 	 * long time interval as 100 ms, then the number of short
5706 	 * think time samples can grow significantly before the reset
5707 	 * is performed. As a consequence, the think time state can
5708 	 * become stable before the reset. Therefore there will be no
5709 	 * state change when the 100 ms elapse, and no reset of the
5710 	 * inject limit. The inject limit remains steadily equal to 1
5711 	 * both during and after the 100 ms. So injection can be
5712 	 * performed at all times, and throughput gets boosted.
5713 	 *
5714 	 * An inject limit equal to 1 is however in conflict, in
5715 	 * general, with the fact that the think time of bfqq is
5716 	 * short, because injection may be likely to delay bfqq's I/O
5717 	 * (as explained in the comments in
5718 	 * bfq_update_inject_limit()). But this does not happen in
5719 	 * this special case, because bfqq's low think time is due to
5720 	 * an effective handling of a synchronization, through
5721 	 * injection. In this special case, bfqq's I/O does not get
5722 	 * delayed by injection; on the contrary, bfqq's I/O is
5723 	 * brought forward, because it is not blocked for
5724 	 * milliseconds.
5725 	 *
5726 	 * In addition, serving the blocking I/O much sooner, and much
5727 	 * more frequently than once per I/O-plugging timeout, makes
5728 	 * it much quicker to detect a waker queue (the concept of
5729 	 * waker queue is defined in the comments in
5730 	 * bfq_add_request()). This makes it possible to start sooner
5731 	 * to boost throughput more effectively, by injecting the I/O
5732 	 * of the waker queue unconditionally on every
5733 	 * bfq_dispatch_request().
5734 	 *
5735 	 * One last, important benefit of not resetting the inject
5736 	 * limit before 100 ms is that, during this time interval, the
5737 	 * base value for the total service time is likely to get
5738 	 * finally computed for bfqq, freeing the inject limit from
5739 	 * its relation with the think time.
5740 	 */
5741 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5742 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5743 				      msecs_to_jiffies(100)) ||
5744 	     !has_short_ttime))
5745 		bfq_reset_inject_limit(bfqd, bfqq);
5746 }
5747 
5748 /*
5749  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5750  * something we should do about it.
5751  */
5752 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5753 			    struct request *rq)
5754 {
5755 	if (rq->cmd_flags & REQ_META)
5756 		bfqq->meta_pending++;
5757 
5758 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5759 
5760 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5761 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5762 				 blk_rq_sectors(rq) < 32;
5763 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5764 
5765 		/*
5766 		 * There is just this request queued: if
5767 		 * - the request is small, and
5768 		 * - we are idling to boost throughput, and
5769 		 * - the queue is not to be expired,
5770 		 * then just exit.
5771 		 *
5772 		 * In this way, if the device is being idled to wait
5773 		 * for a new request from the in-service queue, we
5774 		 * avoid unplugging the device and committing the
5775 		 * device to serve just a small request. In contrast
5776 		 * we wait for the block layer to decide when to
5777 		 * unplug the device: hopefully, new requests will be
5778 		 * merged to this one quickly, then the device will be
5779 		 * unplugged and larger requests will be dispatched.
5780 		 */
5781 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5782 		    !budget_timeout)
5783 			return;
5784 
5785 		/*
5786 		 * A large enough request arrived, or idling is being
5787 		 * performed to preserve service guarantees, or
5788 		 * finally the queue is to be expired: in all these
5789 		 * cases disk idling is to be stopped, so clear
5790 		 * wait_request flag and reset timer.
5791 		 */
5792 		bfq_clear_bfqq_wait_request(bfqq);
5793 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5794 
5795 		/*
5796 		 * The queue is not empty, because a new request just
5797 		 * arrived. Hence we can safely expire the queue, in
5798 		 * case of budget timeout, without risking that the
5799 		 * timestamps of the queue are not updated correctly.
5800 		 * See [1] for more details.
5801 		 */
5802 		if (budget_timeout)
5803 			bfq_bfqq_expire(bfqd, bfqq, false,
5804 					BFQQE_BUDGET_TIMEOUT);
5805 	}
5806 }
5807 
5808 /* returns true if it causes the idle timer to be disabled */
5809 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5810 {
5811 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5812 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
5813 						 RQ_BIC(rq));
5814 	bool waiting, idle_timer_disabled = false;
5815 
5816 	if (new_bfqq) {
5817 		/*
5818 		 * Release the request's reference to the old bfqq
5819 		 * and make sure one is taken to the shared queue.
5820 		 */
5821 		new_bfqq->allocated++;
5822 		bfqq->allocated--;
5823 		new_bfqq->ref++;
5824 		/*
5825 		 * If the bic associated with the process
5826 		 * issuing this request still points to bfqq
5827 		 * (and thus has not been already redirected
5828 		 * to new_bfqq or even some other bfq_queue),
5829 		 * then complete the merge and redirect it to
5830 		 * new_bfqq.
5831 		 */
5832 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5833 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5834 					bfqq, new_bfqq);
5835 
5836 		bfq_clear_bfqq_just_created(bfqq);
5837 		/*
5838 		 * rq is about to be enqueued into new_bfqq,
5839 		 * release rq reference on bfqq
5840 		 */
5841 		bfq_put_queue(bfqq);
5842 		rq->elv.priv[1] = new_bfqq;
5843 		bfqq = new_bfqq;
5844 	}
5845 
5846 	bfq_update_io_thinktime(bfqd, bfqq);
5847 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5848 	bfq_update_io_seektime(bfqd, bfqq, rq);
5849 
5850 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5851 	bfq_add_request(rq);
5852 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5853 
5854 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5855 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5856 
5857 	bfq_rq_enqueued(bfqd, bfqq, rq);
5858 
5859 	return idle_timer_disabled;
5860 }
5861 
5862 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5863 static void bfq_update_insert_stats(struct request_queue *q,
5864 				    struct bfq_queue *bfqq,
5865 				    bool idle_timer_disabled,
5866 				    unsigned int cmd_flags)
5867 {
5868 	if (!bfqq)
5869 		return;
5870 
5871 	/*
5872 	 * bfqq still exists, because it can disappear only after
5873 	 * either it is merged with another queue, or the process it
5874 	 * is associated with exits. But both actions must be taken by
5875 	 * the same process currently executing this flow of
5876 	 * instructions.
5877 	 *
5878 	 * In addition, the following queue lock guarantees that
5879 	 * bfqq_group(bfqq) exists as well.
5880 	 */
5881 	spin_lock_irq(&q->queue_lock);
5882 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5883 	if (idle_timer_disabled)
5884 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5885 	spin_unlock_irq(&q->queue_lock);
5886 }
5887 #else
5888 static inline void bfq_update_insert_stats(struct request_queue *q,
5889 					   struct bfq_queue *bfqq,
5890 					   bool idle_timer_disabled,
5891 					   unsigned int cmd_flags) {}
5892 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5893 
5894 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5895 			       bool at_head)
5896 {
5897 	struct request_queue *q = hctx->queue;
5898 	struct bfq_data *bfqd = q->elevator->elevator_data;
5899 	struct bfq_queue *bfqq;
5900 	bool idle_timer_disabled = false;
5901 	unsigned int cmd_flags;
5902 
5903 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5904 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5905 		bfqg_stats_update_legacy_io(q, rq);
5906 #endif
5907 	spin_lock_irq(&bfqd->lock);
5908 	if (blk_mq_sched_try_insert_merge(q, rq)) {
5909 		spin_unlock_irq(&bfqd->lock);
5910 		return;
5911 	}
5912 
5913 	spin_unlock_irq(&bfqd->lock);
5914 
5915 	trace_block_rq_insert(rq);
5916 
5917 	spin_lock_irq(&bfqd->lock);
5918 	bfqq = bfq_init_rq(rq);
5919 
5920 	/*
5921 	 * Reqs with at_head or passthrough flags set are to be put
5922 	 * directly into dispatch list. Additional case for putting rq
5923 	 * directly into the dispatch queue: the only active
5924 	 * bfq_queues are bfqq and either its waker bfq_queue or one
5925 	 * of its woken bfq_queues. The rationale behind this
5926 	 * additional condition is as follows:
5927 	 * - consider a bfq_queue, say Q1, detected as a waker of
5928 	 *   another bfq_queue, say Q2
5929 	 * - by definition of a waker, Q1 blocks the I/O of Q2, i.e.,
5930 	 *   some I/O of Q1 needs to be completed for new I/O of Q2
5931 	 *   to arrive.  A notable example of waker is journald
5932 	 * - so, Q1 and Q2 are in any respect the queues of two
5933 	 *   cooperating processes (or of two cooperating sets of
5934 	 *   processes): the goal of Q1's I/O is doing what needs to
5935 	 *   be done so that new Q2's I/O can finally be
5936 	 *   issued. Therefore, if the service of Q1's I/O is delayed,
5937 	 *   then Q2's I/O is delayed too.  Conversely, if Q2's I/O is
5938 	 *   delayed, the goal of Q1's I/O is hindered.
5939 	 * - as a consequence, if some I/O of Q1/Q2 arrives while
5940 	 *   Q2/Q1 is the only queue in service, there is absolutely
5941 	 *   no point in delaying the service of such an I/O. The
5942 	 *   only possible result is a throughput loss
5943 	 * - so, when the above condition holds, the best option is to
5944 	 *   have the new I/O dispatched as soon as possible
5945 	 * - the most effective and efficient way to attain the above
5946 	 *   goal is to put the new I/O directly in the dispatch
5947 	 *   list
5948 	 * - as an additional restriction, Q1 and Q2 must be the only
5949 	 *   busy queues for this commit to put the I/O of Q2/Q1 in
5950 	 *   the dispatch list.  This is necessary, because, if also
5951 	 *   other queues are waiting for service, then putting new
5952 	 *   I/O directly in the dispatch list may evidently cause a
5953 	 *   violation of service guarantees for the other queues
5954 	 */
5955 	if (!bfqq ||
5956 	    (bfqq != bfqd->in_service_queue &&
5957 	     bfqd->in_service_queue != NULL &&
5958 	     bfq_tot_busy_queues(bfqd) == 1 + bfq_bfqq_busy(bfqq) &&
5959 	     (bfqq->waker_bfqq == bfqd->in_service_queue ||
5960 	      bfqd->in_service_queue->waker_bfqq == bfqq)) || at_head) {
5961 		if (at_head)
5962 			list_add(&rq->queuelist, &bfqd->dispatch);
5963 		else
5964 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5965 	} else {
5966 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5967 		/*
5968 		 * Update bfqq, because, if a queue merge has occurred
5969 		 * in __bfq_insert_request, then rq has been
5970 		 * redirected into a new queue.
5971 		 */
5972 		bfqq = RQ_BFQQ(rq);
5973 
5974 		if (rq_mergeable(rq)) {
5975 			elv_rqhash_add(q, rq);
5976 			if (!q->last_merge)
5977 				q->last_merge = rq;
5978 		}
5979 	}
5980 
5981 	/*
5982 	 * Cache cmd_flags before releasing scheduler lock, because rq
5983 	 * may disappear afterwards (for example, because of a request
5984 	 * merge).
5985 	 */
5986 	cmd_flags = rq->cmd_flags;
5987 
5988 	spin_unlock_irq(&bfqd->lock);
5989 
5990 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5991 				cmd_flags);
5992 }
5993 
5994 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5995 				struct list_head *list, bool at_head)
5996 {
5997 	while (!list_empty(list)) {
5998 		struct request *rq;
5999 
6000 		rq = list_first_entry(list, struct request, queuelist);
6001 		list_del_init(&rq->queuelist);
6002 		bfq_insert_request(hctx, rq, at_head);
6003 	}
6004 }
6005 
6006 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6007 {
6008 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6009 
6010 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6011 				       bfqd->rq_in_driver);
6012 
6013 	if (bfqd->hw_tag == 1)
6014 		return;
6015 
6016 	/*
6017 	 * This sample is valid if the number of outstanding requests
6018 	 * is large enough to allow a queueing behavior.  Note that the
6019 	 * sum is not exact, as it's not taking into account deactivated
6020 	 * requests.
6021 	 */
6022 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6023 		return;
6024 
6025 	/*
6026 	 * If active queue hasn't enough requests and can idle, bfq might not
6027 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6028 	 * case
6029 	 */
6030 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6031 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6032 	    BFQ_HW_QUEUE_THRESHOLD &&
6033 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6034 		return;
6035 
6036 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6037 		return;
6038 
6039 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6040 	bfqd->max_rq_in_driver = 0;
6041 	bfqd->hw_tag_samples = 0;
6042 
6043 	bfqd->nonrot_with_queueing =
6044 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6045 }
6046 
6047 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6048 {
6049 	u64 now_ns;
6050 	u32 delta_us;
6051 
6052 	bfq_update_hw_tag(bfqd);
6053 
6054 	bfqd->rq_in_driver--;
6055 	bfqq->dispatched--;
6056 
6057 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6058 		/*
6059 		 * Set budget_timeout (which we overload to store the
6060 		 * time at which the queue remains with no backlog and
6061 		 * no outstanding request; used by the weight-raising
6062 		 * mechanism).
6063 		 */
6064 		bfqq->budget_timeout = jiffies;
6065 
6066 		bfq_weights_tree_remove(bfqd, bfqq);
6067 	}
6068 
6069 	now_ns = ktime_get_ns();
6070 
6071 	bfqq->ttime.last_end_request = now_ns;
6072 
6073 	/*
6074 	 * Using us instead of ns, to get a reasonable precision in
6075 	 * computing rate in next check.
6076 	 */
6077 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6078 
6079 	/*
6080 	 * If the request took rather long to complete, and, according
6081 	 * to the maximum request size recorded, this completion latency
6082 	 * implies that the request was certainly served at a very low
6083 	 * rate (less than 1M sectors/sec), then the whole observation
6084 	 * interval that lasts up to this time instant cannot be a
6085 	 * valid time interval for computing a new peak rate.  Invoke
6086 	 * bfq_update_rate_reset to have the following three steps
6087 	 * taken:
6088 	 * - close the observation interval at the last (previous)
6089 	 *   request dispatch or completion
6090 	 * - compute rate, if possible, for that observation interval
6091 	 * - reset to zero samples, which will trigger a proper
6092 	 *   re-initialization of the observation interval on next
6093 	 *   dispatch
6094 	 */
6095 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6096 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6097 			1UL<<(BFQ_RATE_SHIFT - 10))
6098 		bfq_update_rate_reset(bfqd, NULL);
6099 	bfqd->last_completion = now_ns;
6100 	/*
6101 	 * Shared queues are likely to receive I/O at a high
6102 	 * rate. This may deceptively let them be considered as wakers
6103 	 * of other queues. But a false waker will unjustly steal
6104 	 * bandwidth to its supposedly woken queue. So considering
6105 	 * also shared queues in the waking mechanism may cause more
6106 	 * control troubles than throughput benefits. Then do not set
6107 	 * last_completed_rq_bfqq to bfqq if bfqq is a shared queue.
6108 	 */
6109 	if (!bfq_bfqq_coop(bfqq))
6110 		bfqd->last_completed_rq_bfqq = bfqq;
6111 
6112 	/*
6113 	 * If we are waiting to discover whether the request pattern
6114 	 * of the task associated with the queue is actually
6115 	 * isochronous, and both requisites for this condition to hold
6116 	 * are now satisfied, then compute soft_rt_next_start (see the
6117 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6118 	 * do not compute soft_rt_next_start if bfqq is in interactive
6119 	 * weight raising (see the comments in bfq_bfqq_expire() for
6120 	 * an explanation). We schedule this delayed update when bfqq
6121 	 * expires, if it still has in-flight requests.
6122 	 */
6123 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6124 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6125 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6126 		bfqq->soft_rt_next_start =
6127 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6128 
6129 	/*
6130 	 * If this is the in-service queue, check if it needs to be expired,
6131 	 * or if we want to idle in case it has no pending requests.
6132 	 */
6133 	if (bfqd->in_service_queue == bfqq) {
6134 		if (bfq_bfqq_must_idle(bfqq)) {
6135 			if (bfqq->dispatched == 0)
6136 				bfq_arm_slice_timer(bfqd);
6137 			/*
6138 			 * If we get here, we do not expire bfqq, even
6139 			 * if bfqq was in budget timeout or had no
6140 			 * more requests (as controlled in the next
6141 			 * conditional instructions). The reason for
6142 			 * not expiring bfqq is as follows.
6143 			 *
6144 			 * Here bfqq->dispatched > 0 holds, but
6145 			 * bfq_bfqq_must_idle() returned true. This
6146 			 * implies that, even if no request arrives
6147 			 * for bfqq before bfqq->dispatched reaches 0,
6148 			 * bfqq will, however, not be expired on the
6149 			 * completion event that causes bfqq->dispatch
6150 			 * to reach zero. In contrast, on this event,
6151 			 * bfqq will start enjoying device idling
6152 			 * (I/O-dispatch plugging).
6153 			 *
6154 			 * But, if we expired bfqq here, bfqq would
6155 			 * not have the chance to enjoy device idling
6156 			 * when bfqq->dispatched finally reaches
6157 			 * zero. This would expose bfqq to violation
6158 			 * of its reserved service guarantees.
6159 			 */
6160 			return;
6161 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6162 			bfq_bfqq_expire(bfqd, bfqq, false,
6163 					BFQQE_BUDGET_TIMEOUT);
6164 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6165 			 (bfqq->dispatched == 0 ||
6166 			  !bfq_better_to_idle(bfqq)))
6167 			bfq_bfqq_expire(bfqd, bfqq, false,
6168 					BFQQE_NO_MORE_REQUESTS);
6169 	}
6170 
6171 	if (!bfqd->rq_in_driver)
6172 		bfq_schedule_dispatch(bfqd);
6173 }
6174 
6175 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
6176 {
6177 	bfqq->allocated--;
6178 
6179 	bfq_put_queue(bfqq);
6180 }
6181 
6182 /*
6183  * The processes associated with bfqq may happen to generate their
6184  * cumulative I/O at a lower rate than the rate at which the device
6185  * could serve the same I/O. This is rather probable, e.g., if only
6186  * one process is associated with bfqq and the device is an SSD. It
6187  * results in bfqq becoming often empty while in service. In this
6188  * respect, if BFQ is allowed to switch to another queue when bfqq
6189  * remains empty, then the device goes on being fed with I/O requests,
6190  * and the throughput is not affected. In contrast, if BFQ is not
6191  * allowed to switch to another queue---because bfqq is sync and
6192  * I/O-dispatch needs to be plugged while bfqq is temporarily
6193  * empty---then, during the service of bfqq, there will be frequent
6194  * "service holes", i.e., time intervals during which bfqq gets empty
6195  * and the device can only consume the I/O already queued in its
6196  * hardware queues. During service holes, the device may even get to
6197  * remaining idle. In the end, during the service of bfqq, the device
6198  * is driven at a lower speed than the one it can reach with the kind
6199  * of I/O flowing through bfqq.
6200  *
6201  * To counter this loss of throughput, BFQ implements a "request
6202  * injection mechanism", which tries to fill the above service holes
6203  * with I/O requests taken from other queues. The hard part in this
6204  * mechanism is finding the right amount of I/O to inject, so as to
6205  * both boost throughput and not break bfqq's bandwidth and latency
6206  * guarantees. In this respect, the mechanism maintains a per-queue
6207  * inject limit, computed as below. While bfqq is empty, the injection
6208  * mechanism dispatches extra I/O requests only until the total number
6209  * of I/O requests in flight---i.e., already dispatched but not yet
6210  * completed---remains lower than this limit.
6211  *
6212  * A first definition comes in handy to introduce the algorithm by
6213  * which the inject limit is computed.  We define as first request for
6214  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6215  * service, and causes bfqq to switch from empty to non-empty. The
6216  * algorithm updates the limit as a function of the effect of
6217  * injection on the service times of only the first requests of
6218  * bfqq. The reason for this restriction is that these are the
6219  * requests whose service time is affected most, because they are the
6220  * first to arrive after injection possibly occurred.
6221  *
6222  * To evaluate the effect of injection, the algorithm measures the
6223  * "total service time" of first requests. We define as total service
6224  * time of an I/O request, the time that elapses since when the
6225  * request is enqueued into bfqq, to when it is completed. This
6226  * quantity allows the whole effect of injection to be measured. It is
6227  * easy to see why. Suppose that some requests of other queues are
6228  * actually injected while bfqq is empty, and that a new request R
6229  * then arrives for bfqq. If the device does start to serve all or
6230  * part of the injected requests during the service hole, then,
6231  * because of this extra service, it may delay the next invocation of
6232  * the dispatch hook of BFQ. Then, even after R gets eventually
6233  * dispatched, the device may delay the actual service of R if it is
6234  * still busy serving the extra requests, or if it decides to serve,
6235  * before R, some extra request still present in its queues. As a
6236  * conclusion, the cumulative extra delay caused by injection can be
6237  * easily evaluated by just comparing the total service time of first
6238  * requests with and without injection.
6239  *
6240  * The limit-update algorithm works as follows. On the arrival of a
6241  * first request of bfqq, the algorithm measures the total time of the
6242  * request only if one of the three cases below holds, and, for each
6243  * case, it updates the limit as described below:
6244  *
6245  * (1) If there is no in-flight request. This gives a baseline for the
6246  *     total service time of the requests of bfqq. If the baseline has
6247  *     not been computed yet, then, after computing it, the limit is
6248  *     set to 1, to start boosting throughput, and to prepare the
6249  *     ground for the next case. If the baseline has already been
6250  *     computed, then it is updated, in case it results to be lower
6251  *     than the previous value.
6252  *
6253  * (2) If the limit is higher than 0 and there are in-flight
6254  *     requests. By comparing the total service time in this case with
6255  *     the above baseline, it is possible to know at which extent the
6256  *     current value of the limit is inflating the total service
6257  *     time. If the inflation is below a certain threshold, then bfqq
6258  *     is assumed to be suffering from no perceivable loss of its
6259  *     service guarantees, and the limit is even tentatively
6260  *     increased. If the inflation is above the threshold, then the
6261  *     limit is decreased. Due to the lack of any hysteresis, this
6262  *     logic makes the limit oscillate even in steady workload
6263  *     conditions. Yet we opted for it, because it is fast in reaching
6264  *     the best value for the limit, as a function of the current I/O
6265  *     workload. To reduce oscillations, this step is disabled for a
6266  *     short time interval after the limit happens to be decreased.
6267  *
6268  * (3) Periodically, after resetting the limit, to make sure that the
6269  *     limit eventually drops in case the workload changes. This is
6270  *     needed because, after the limit has gone safely up for a
6271  *     certain workload, it is impossible to guess whether the
6272  *     baseline total service time may have changed, without measuring
6273  *     it again without injection. A more effective version of this
6274  *     step might be to just sample the baseline, by interrupting
6275  *     injection only once, and then to reset/lower the limit only if
6276  *     the total service time with the current limit does happen to be
6277  *     too large.
6278  *
6279  * More details on each step are provided in the comments on the
6280  * pieces of code that implement these steps: the branch handling the
6281  * transition from empty to non empty in bfq_add_request(), the branch
6282  * handling injection in bfq_select_queue(), and the function
6283  * bfq_choose_bfqq_for_injection(). These comments also explain some
6284  * exceptions, made by the injection mechanism in some special cases.
6285  */
6286 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6287 				    struct bfq_queue *bfqq)
6288 {
6289 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6290 	unsigned int old_limit = bfqq->inject_limit;
6291 
6292 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6293 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6294 
6295 		if (tot_time_ns >= threshold && old_limit > 0) {
6296 			bfqq->inject_limit--;
6297 			bfqq->decrease_time_jif = jiffies;
6298 		} else if (tot_time_ns < threshold &&
6299 			   old_limit <= bfqd->max_rq_in_driver)
6300 			bfqq->inject_limit++;
6301 	}
6302 
6303 	/*
6304 	 * Either we still have to compute the base value for the
6305 	 * total service time, and there seem to be the right
6306 	 * conditions to do it, or we can lower the last base value
6307 	 * computed.
6308 	 *
6309 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6310 	 * request in flight, because this function is in the code
6311 	 * path that handles the completion of a request of bfqq, and,
6312 	 * in particular, this function is executed before
6313 	 * bfqd->rq_in_driver is decremented in such a code path.
6314 	 */
6315 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
6316 	    tot_time_ns < bfqq->last_serv_time_ns) {
6317 		if (bfqq->last_serv_time_ns == 0) {
6318 			/*
6319 			 * Now we certainly have a base value: make sure we
6320 			 * start trying injection.
6321 			 */
6322 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6323 		}
6324 		bfqq->last_serv_time_ns = tot_time_ns;
6325 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6326 		/*
6327 		 * No I/O injected and no request still in service in
6328 		 * the drive: these are the exact conditions for
6329 		 * computing the base value of the total service time
6330 		 * for bfqq. So let's update this value, because it is
6331 		 * rather variable. For example, it varies if the size
6332 		 * or the spatial locality of the I/O requests in bfqq
6333 		 * change.
6334 		 */
6335 		bfqq->last_serv_time_ns = tot_time_ns;
6336 
6337 
6338 	/* update complete, not waiting for any request completion any longer */
6339 	bfqd->waited_rq = NULL;
6340 	bfqd->rqs_injected = false;
6341 }
6342 
6343 /*
6344  * Handle either a requeue or a finish for rq. The things to do are
6345  * the same in both cases: all references to rq are to be dropped. In
6346  * particular, rq is considered completed from the point of view of
6347  * the scheduler.
6348  */
6349 static void bfq_finish_requeue_request(struct request *rq)
6350 {
6351 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6352 	struct bfq_data *bfqd;
6353 
6354 	/*
6355 	 * rq either is not associated with any icq, or is an already
6356 	 * requeued request that has not (yet) been re-inserted into
6357 	 * a bfq_queue.
6358 	 */
6359 	if (!rq->elv.icq || !bfqq)
6360 		return;
6361 
6362 	bfqd = bfqq->bfqd;
6363 
6364 	if (rq->rq_flags & RQF_STARTED)
6365 		bfqg_stats_update_completion(bfqq_group(bfqq),
6366 					     rq->start_time_ns,
6367 					     rq->io_start_time_ns,
6368 					     rq->cmd_flags);
6369 
6370 	if (likely(rq->rq_flags & RQF_STARTED)) {
6371 		unsigned long flags;
6372 
6373 		spin_lock_irqsave(&bfqd->lock, flags);
6374 
6375 		if (rq == bfqd->waited_rq)
6376 			bfq_update_inject_limit(bfqd, bfqq);
6377 
6378 		bfq_completed_request(bfqq, bfqd);
6379 		bfq_finish_requeue_request_body(bfqq);
6380 
6381 		spin_unlock_irqrestore(&bfqd->lock, flags);
6382 	} else {
6383 		/*
6384 		 * Request rq may be still/already in the scheduler,
6385 		 * in which case we need to remove it (this should
6386 		 * never happen in case of requeue). And we cannot
6387 		 * defer such a check and removal, to avoid
6388 		 * inconsistencies in the time interval from the end
6389 		 * of this function to the start of the deferred work.
6390 		 * This situation seems to occur only in process
6391 		 * context, as a consequence of a merge. In the
6392 		 * current version of the code, this implies that the
6393 		 * lock is held.
6394 		 */
6395 
6396 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
6397 			bfq_remove_request(rq->q, rq);
6398 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
6399 						    rq->cmd_flags);
6400 		}
6401 		bfq_finish_requeue_request_body(bfqq);
6402 	}
6403 
6404 	/*
6405 	 * Reset private fields. In case of a requeue, this allows
6406 	 * this function to correctly do nothing if it is spuriously
6407 	 * invoked again on this same request (see the check at the
6408 	 * beginning of the function). Probably, a better general
6409 	 * design would be to prevent blk-mq from invoking the requeue
6410 	 * or finish hooks of an elevator, for a request that is not
6411 	 * referred by that elevator.
6412 	 *
6413 	 * Resetting the following fields would break the
6414 	 * request-insertion logic if rq is re-inserted into a bfq
6415 	 * internal queue, without a re-preparation. Here we assume
6416 	 * that re-insertions of requeued requests, without
6417 	 * re-preparation, can happen only for pass_through or at_head
6418 	 * requests (which are not re-inserted into bfq internal
6419 	 * queues).
6420 	 */
6421 	rq->elv.priv[0] = NULL;
6422 	rq->elv.priv[1] = NULL;
6423 }
6424 
6425 /*
6426  * Removes the association between the current task and bfqq, assuming
6427  * that bic points to the bfq iocontext of the task.
6428  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6429  * was the last process referring to that bfqq.
6430  */
6431 static struct bfq_queue *
6432 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6433 {
6434 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6435 
6436 	if (bfqq_process_refs(bfqq) == 1) {
6437 		bfqq->pid = current->pid;
6438 		bfq_clear_bfqq_coop(bfqq);
6439 		bfq_clear_bfqq_split_coop(bfqq);
6440 		return bfqq;
6441 	}
6442 
6443 	bic_set_bfqq(bic, NULL, 1);
6444 
6445 	bfq_put_cooperator(bfqq);
6446 
6447 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6448 	return NULL;
6449 }
6450 
6451 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6452 						   struct bfq_io_cq *bic,
6453 						   struct bio *bio,
6454 						   bool split, bool is_sync,
6455 						   bool *new_queue)
6456 {
6457 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6458 
6459 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6460 		return bfqq;
6461 
6462 	if (new_queue)
6463 		*new_queue = true;
6464 
6465 	if (bfqq)
6466 		bfq_put_queue(bfqq);
6467 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6468 
6469 	bic_set_bfqq(bic, bfqq, is_sync);
6470 	if (split && is_sync) {
6471 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6472 		    bic->saved_in_large_burst)
6473 			bfq_mark_bfqq_in_large_burst(bfqq);
6474 		else {
6475 			bfq_clear_bfqq_in_large_burst(bfqq);
6476 			if (bic->was_in_burst_list)
6477 				/*
6478 				 * If bfqq was in the current
6479 				 * burst list before being
6480 				 * merged, then we have to add
6481 				 * it back. And we do not need
6482 				 * to increase burst_size, as
6483 				 * we did not decrement
6484 				 * burst_size when we removed
6485 				 * bfqq from the burst list as
6486 				 * a consequence of a merge
6487 				 * (see comments in
6488 				 * bfq_put_queue). In this
6489 				 * respect, it would be rather
6490 				 * costly to know whether the
6491 				 * current burst list is still
6492 				 * the same burst list from
6493 				 * which bfqq was removed on
6494 				 * the merge. To avoid this
6495 				 * cost, if bfqq was in a
6496 				 * burst list, then we add
6497 				 * bfqq to the current burst
6498 				 * list without any further
6499 				 * check. This can cause
6500 				 * inappropriate insertions,
6501 				 * but rarely enough to not
6502 				 * harm the detection of large
6503 				 * bursts significantly.
6504 				 */
6505 				hlist_add_head(&bfqq->burst_list_node,
6506 					       &bfqd->burst_list);
6507 		}
6508 		bfqq->split_time = jiffies;
6509 	}
6510 
6511 	return bfqq;
6512 }
6513 
6514 /*
6515  * Only reset private fields. The actual request preparation will be
6516  * performed by bfq_init_rq, when rq is either inserted or merged. See
6517  * comments on bfq_init_rq for the reason behind this delayed
6518  * preparation.
6519  */
6520 static void bfq_prepare_request(struct request *rq)
6521 {
6522 	/*
6523 	 * Regardless of whether we have an icq attached, we have to
6524 	 * clear the scheduler pointers, as they might point to
6525 	 * previously allocated bic/bfqq structs.
6526 	 */
6527 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6528 }
6529 
6530 /*
6531  * If needed, init rq, allocate bfq data structures associated with
6532  * rq, and increment reference counters in the destination bfq_queue
6533  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6534  * not associated with any bfq_queue.
6535  *
6536  * This function is invoked by the functions that perform rq insertion
6537  * or merging. One may have expected the above preparation operations
6538  * to be performed in bfq_prepare_request, and not delayed to when rq
6539  * is inserted or merged. The rationale behind this delayed
6540  * preparation is that, after the prepare_request hook is invoked for
6541  * rq, rq may still be transformed into a request with no icq, i.e., a
6542  * request not associated with any queue. No bfq hook is invoked to
6543  * signal this transformation. As a consequence, should these
6544  * preparation operations be performed when the prepare_request hook
6545  * is invoked, and should rq be transformed one moment later, bfq
6546  * would end up in an inconsistent state, because it would have
6547  * incremented some queue counters for an rq destined to
6548  * transformation, without any chance to correctly lower these
6549  * counters back. In contrast, no transformation can still happen for
6550  * rq after rq has been inserted or merged. So, it is safe to execute
6551  * these preparation operations when rq is finally inserted or merged.
6552  */
6553 static struct bfq_queue *bfq_init_rq(struct request *rq)
6554 {
6555 	struct request_queue *q = rq->q;
6556 	struct bio *bio = rq->bio;
6557 	struct bfq_data *bfqd = q->elevator->elevator_data;
6558 	struct bfq_io_cq *bic;
6559 	const int is_sync = rq_is_sync(rq);
6560 	struct bfq_queue *bfqq;
6561 	bool new_queue = false;
6562 	bool bfqq_already_existing = false, split = false;
6563 
6564 	if (unlikely(!rq->elv.icq))
6565 		return NULL;
6566 
6567 	/*
6568 	 * Assuming that elv.priv[1] is set only if everything is set
6569 	 * for this rq. This holds true, because this function is
6570 	 * invoked only for insertion or merging, and, after such
6571 	 * events, a request cannot be manipulated any longer before
6572 	 * being removed from bfq.
6573 	 */
6574 	if (rq->elv.priv[1])
6575 		return rq->elv.priv[1];
6576 
6577 	bic = icq_to_bic(rq->elv.icq);
6578 
6579 	bfq_check_ioprio_change(bic, bio);
6580 
6581 	bfq_bic_update_cgroup(bic, bio);
6582 
6583 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6584 					 &new_queue);
6585 
6586 	if (likely(!new_queue)) {
6587 		/* If the queue was seeky for too long, break it apart. */
6588 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6589 			!bic->stably_merged) {
6590 			struct bfq_queue *old_bfqq = bfqq;
6591 
6592 			/* Update bic before losing reference to bfqq */
6593 			if (bfq_bfqq_in_large_burst(bfqq))
6594 				bic->saved_in_large_burst = true;
6595 
6596 			bfqq = bfq_split_bfqq(bic, bfqq);
6597 			split = true;
6598 
6599 			if (!bfqq) {
6600 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6601 								 true, is_sync,
6602 								 NULL);
6603 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6604 				bfqq->tentative_waker_bfqq = NULL;
6605 
6606 				/*
6607 				 * If the waker queue disappears, then
6608 				 * new_bfqq->waker_bfqq must be
6609 				 * reset. So insert new_bfqq into the
6610 				 * woken_list of the waker. See
6611 				 * bfq_check_waker for details.
6612 				 */
6613 				if (bfqq->waker_bfqq)
6614 					hlist_add_head(&bfqq->woken_list_node,
6615 						       &bfqq->waker_bfqq->woken_list);
6616 			} else
6617 				bfqq_already_existing = true;
6618 		}
6619 	}
6620 
6621 	bfqq->allocated++;
6622 	bfqq->ref++;
6623 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6624 		     rq, bfqq, bfqq->ref);
6625 
6626 	rq->elv.priv[0] = bic;
6627 	rq->elv.priv[1] = bfqq;
6628 
6629 	/*
6630 	 * If a bfq_queue has only one process reference, it is owned
6631 	 * by only this bic: we can then set bfqq->bic = bic. in
6632 	 * addition, if the queue has also just been split, we have to
6633 	 * resume its state.
6634 	 */
6635 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6636 		bfqq->bic = bic;
6637 		if (split) {
6638 			/*
6639 			 * The queue has just been split from a shared
6640 			 * queue: restore the idle window and the
6641 			 * possible weight raising period.
6642 			 */
6643 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6644 					      bfqq_already_existing);
6645 		}
6646 	}
6647 
6648 	/*
6649 	 * Consider bfqq as possibly belonging to a burst of newly
6650 	 * created queues only if:
6651 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6652 	 * or
6653 	 * 2) There is no other active queue. In fact, if, in
6654 	 *    contrast, there are active queues not belonging to the
6655 	 *    possible burst bfqq may belong to, then there is no gain
6656 	 *    in considering bfqq as belonging to a burst, and
6657 	 *    therefore in not weight-raising bfqq. See comments on
6658 	 *    bfq_handle_burst().
6659 	 *
6660 	 * This filtering also helps eliminating false positives,
6661 	 * occurring when bfqq does not belong to an actual large
6662 	 * burst, but some background task (e.g., a service) happens
6663 	 * to trigger the creation of new queues very close to when
6664 	 * bfqq and its possible companion queues are created. See
6665 	 * comments on bfq_handle_burst() for further details also on
6666 	 * this issue.
6667 	 */
6668 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6669 		     (bfqd->burst_size > 0 ||
6670 		      bfq_tot_busy_queues(bfqd) == 0)))
6671 		bfq_handle_burst(bfqd, bfqq);
6672 
6673 	return bfqq;
6674 }
6675 
6676 static void
6677 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6678 {
6679 	enum bfqq_expiration reason;
6680 	unsigned long flags;
6681 
6682 	spin_lock_irqsave(&bfqd->lock, flags);
6683 
6684 	/*
6685 	 * Considering that bfqq may be in race, we should firstly check
6686 	 * whether bfqq is in service before doing something on it. If
6687 	 * the bfqq in race is not in service, it has already been expired
6688 	 * through __bfq_bfqq_expire func and its wait_request flags has
6689 	 * been cleared in __bfq_bfqd_reset_in_service func.
6690 	 */
6691 	if (bfqq != bfqd->in_service_queue) {
6692 		spin_unlock_irqrestore(&bfqd->lock, flags);
6693 		return;
6694 	}
6695 
6696 	bfq_clear_bfqq_wait_request(bfqq);
6697 
6698 	if (bfq_bfqq_budget_timeout(bfqq))
6699 		/*
6700 		 * Also here the queue can be safely expired
6701 		 * for budget timeout without wasting
6702 		 * guarantees
6703 		 */
6704 		reason = BFQQE_BUDGET_TIMEOUT;
6705 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6706 		/*
6707 		 * The queue may not be empty upon timer expiration,
6708 		 * because we may not disable the timer when the
6709 		 * first request of the in-service queue arrives
6710 		 * during disk idling.
6711 		 */
6712 		reason = BFQQE_TOO_IDLE;
6713 	else
6714 		goto schedule_dispatch;
6715 
6716 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6717 
6718 schedule_dispatch:
6719 	spin_unlock_irqrestore(&bfqd->lock, flags);
6720 	bfq_schedule_dispatch(bfqd);
6721 }
6722 
6723 /*
6724  * Handler of the expiration of the timer running if the in-service queue
6725  * is idling inside its time slice.
6726  */
6727 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6728 {
6729 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6730 					     idle_slice_timer);
6731 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6732 
6733 	/*
6734 	 * Theoretical race here: the in-service queue can be NULL or
6735 	 * different from the queue that was idling if a new request
6736 	 * arrives for the current queue and there is a full dispatch
6737 	 * cycle that changes the in-service queue.  This can hardly
6738 	 * happen, but in the worst case we just expire a queue too
6739 	 * early.
6740 	 */
6741 	if (bfqq)
6742 		bfq_idle_slice_timer_body(bfqd, bfqq);
6743 
6744 	return HRTIMER_NORESTART;
6745 }
6746 
6747 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6748 				 struct bfq_queue **bfqq_ptr)
6749 {
6750 	struct bfq_queue *bfqq = *bfqq_ptr;
6751 
6752 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6753 	if (bfqq) {
6754 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6755 
6756 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6757 			     bfqq, bfqq->ref);
6758 		bfq_put_queue(bfqq);
6759 		*bfqq_ptr = NULL;
6760 	}
6761 }
6762 
6763 /*
6764  * Release all the bfqg references to its async queues.  If we are
6765  * deallocating the group these queues may still contain requests, so
6766  * we reparent them to the root cgroup (i.e., the only one that will
6767  * exist for sure until all the requests on a device are gone).
6768  */
6769 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6770 {
6771 	int i, j;
6772 
6773 	for (i = 0; i < 2; i++)
6774 		for (j = 0; j < IOPRIO_BE_NR; j++)
6775 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6776 
6777 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6778 }
6779 
6780 /*
6781  * See the comments on bfq_limit_depth for the purpose of
6782  * the depths set in the function. Return minimum shallow depth we'll use.
6783  */
6784 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6785 				      struct sbitmap_queue *bt)
6786 {
6787 	unsigned int i, j, min_shallow = UINT_MAX;
6788 
6789 	/*
6790 	 * In-word depths if no bfq_queue is being weight-raised:
6791 	 * leaving 25% of tags only for sync reads.
6792 	 *
6793 	 * In next formulas, right-shift the value
6794 	 * (1U<<bt->sb.shift), instead of computing directly
6795 	 * (1U<<(bt->sb.shift - something)), to be robust against
6796 	 * any possible value of bt->sb.shift, without having to
6797 	 * limit 'something'.
6798 	 */
6799 	/* no more than 50% of tags for async I/O */
6800 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6801 	/*
6802 	 * no more than 75% of tags for sync writes (25% extra tags
6803 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6804 	 * writes)
6805 	 */
6806 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6807 
6808 	/*
6809 	 * In-word depths in case some bfq_queue is being weight-
6810 	 * raised: leaving ~63% of tags for sync reads. This is the
6811 	 * highest percentage for which, in our tests, application
6812 	 * start-up times didn't suffer from any regression due to tag
6813 	 * shortage.
6814 	 */
6815 	/* no more than ~18% of tags for async I/O */
6816 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6817 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6818 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6819 
6820 	for (i = 0; i < 2; i++)
6821 		for (j = 0; j < 2; j++)
6822 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6823 
6824 	return min_shallow;
6825 }
6826 
6827 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6828 {
6829 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6830 	struct blk_mq_tags *tags = hctx->sched_tags;
6831 	unsigned int min_shallow;
6832 
6833 	min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6834 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
6835 }
6836 
6837 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6838 {
6839 	bfq_depth_updated(hctx);
6840 	return 0;
6841 }
6842 
6843 static void bfq_exit_queue(struct elevator_queue *e)
6844 {
6845 	struct bfq_data *bfqd = e->elevator_data;
6846 	struct bfq_queue *bfqq, *n;
6847 
6848 	hrtimer_cancel(&bfqd->idle_slice_timer);
6849 
6850 	spin_lock_irq(&bfqd->lock);
6851 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6852 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6853 	spin_unlock_irq(&bfqd->lock);
6854 
6855 	hrtimer_cancel(&bfqd->idle_slice_timer);
6856 
6857 	/* release oom-queue reference to root group */
6858 	bfqg_and_blkg_put(bfqd->root_group);
6859 
6860 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6861 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6862 #else
6863 	spin_lock_irq(&bfqd->lock);
6864 	bfq_put_async_queues(bfqd, bfqd->root_group);
6865 	kfree(bfqd->root_group);
6866 	spin_unlock_irq(&bfqd->lock);
6867 #endif
6868 
6869 	kfree(bfqd);
6870 }
6871 
6872 static void bfq_init_root_group(struct bfq_group *root_group,
6873 				struct bfq_data *bfqd)
6874 {
6875 	int i;
6876 
6877 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6878 	root_group->entity.parent = NULL;
6879 	root_group->my_entity = NULL;
6880 	root_group->bfqd = bfqd;
6881 #endif
6882 	root_group->rq_pos_tree = RB_ROOT;
6883 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6884 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6885 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6886 }
6887 
6888 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6889 {
6890 	struct bfq_data *bfqd;
6891 	struct elevator_queue *eq;
6892 
6893 	eq = elevator_alloc(q, e);
6894 	if (!eq)
6895 		return -ENOMEM;
6896 
6897 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6898 	if (!bfqd) {
6899 		kobject_put(&eq->kobj);
6900 		return -ENOMEM;
6901 	}
6902 	eq->elevator_data = bfqd;
6903 
6904 	spin_lock_irq(&q->queue_lock);
6905 	q->elevator = eq;
6906 	spin_unlock_irq(&q->queue_lock);
6907 
6908 	/*
6909 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6910 	 * Grab a permanent reference to it, so that the normal code flow
6911 	 * will not attempt to free it.
6912 	 */
6913 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6914 	bfqd->oom_bfqq.ref++;
6915 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6916 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6917 	bfqd->oom_bfqq.entity.new_weight =
6918 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6919 
6920 	/* oom_bfqq does not participate to bursts */
6921 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6922 
6923 	/*
6924 	 * Trigger weight initialization, according to ioprio, at the
6925 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6926 	 * class won't be changed any more.
6927 	 */
6928 	bfqd->oom_bfqq.entity.prio_changed = 1;
6929 
6930 	bfqd->queue = q;
6931 
6932 	INIT_LIST_HEAD(&bfqd->dispatch);
6933 
6934 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6935 		     HRTIMER_MODE_REL);
6936 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6937 
6938 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6939 	bfqd->num_groups_with_pending_reqs = 0;
6940 
6941 	INIT_LIST_HEAD(&bfqd->active_list);
6942 	INIT_LIST_HEAD(&bfqd->idle_list);
6943 	INIT_HLIST_HEAD(&bfqd->burst_list);
6944 
6945 	bfqd->hw_tag = -1;
6946 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6947 
6948 	bfqd->bfq_max_budget = bfq_default_max_budget;
6949 
6950 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6951 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6952 	bfqd->bfq_back_max = bfq_back_max;
6953 	bfqd->bfq_back_penalty = bfq_back_penalty;
6954 	bfqd->bfq_slice_idle = bfq_slice_idle;
6955 	bfqd->bfq_timeout = bfq_timeout;
6956 
6957 	bfqd->bfq_large_burst_thresh = 8;
6958 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6959 
6960 	bfqd->low_latency = true;
6961 
6962 	/*
6963 	 * Trade-off between responsiveness and fairness.
6964 	 */
6965 	bfqd->bfq_wr_coeff = 30;
6966 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6967 	bfqd->bfq_wr_max_time = 0;
6968 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6969 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6970 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6971 					      * Approximate rate required
6972 					      * to playback or record a
6973 					      * high-definition compressed
6974 					      * video.
6975 					      */
6976 	bfqd->wr_busy_queues = 0;
6977 
6978 	/*
6979 	 * Begin by assuming, optimistically, that the device peak
6980 	 * rate is equal to 2/3 of the highest reference rate.
6981 	 */
6982 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6983 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6984 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
6985 
6986 	spin_lock_init(&bfqd->lock);
6987 
6988 	/*
6989 	 * The invocation of the next bfq_create_group_hierarchy
6990 	 * function is the head of a chain of function calls
6991 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6992 	 * blk_mq_freeze_queue) that may lead to the invocation of the
6993 	 * has_work hook function. For this reason,
6994 	 * bfq_create_group_hierarchy is invoked only after all
6995 	 * scheduler data has been initialized, apart from the fields
6996 	 * that can be initialized only after invoking
6997 	 * bfq_create_group_hierarchy. This, in particular, enables
6998 	 * has_work to correctly return false. Of course, to avoid
6999 	 * other inconsistencies, the blk-mq stack must then refrain
7000 	 * from invoking further scheduler hooks before this init
7001 	 * function is finished.
7002 	 */
7003 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7004 	if (!bfqd->root_group)
7005 		goto out_free;
7006 	bfq_init_root_group(bfqd->root_group, bfqd);
7007 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7008 
7009 	wbt_disable_default(q);
7010 	return 0;
7011 
7012 out_free:
7013 	kfree(bfqd);
7014 	kobject_put(&eq->kobj);
7015 	return -ENOMEM;
7016 }
7017 
7018 static void bfq_slab_kill(void)
7019 {
7020 	kmem_cache_destroy(bfq_pool);
7021 }
7022 
7023 static int __init bfq_slab_setup(void)
7024 {
7025 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7026 	if (!bfq_pool)
7027 		return -ENOMEM;
7028 	return 0;
7029 }
7030 
7031 static ssize_t bfq_var_show(unsigned int var, char *page)
7032 {
7033 	return sprintf(page, "%u\n", var);
7034 }
7035 
7036 static int bfq_var_store(unsigned long *var, const char *page)
7037 {
7038 	unsigned long new_val;
7039 	int ret = kstrtoul(page, 10, &new_val);
7040 
7041 	if (ret)
7042 		return ret;
7043 	*var = new_val;
7044 	return 0;
7045 }
7046 
7047 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7048 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7049 {									\
7050 	struct bfq_data *bfqd = e->elevator_data;			\
7051 	u64 __data = __VAR;						\
7052 	if (__CONV == 1)						\
7053 		__data = jiffies_to_msecs(__data);			\
7054 	else if (__CONV == 2)						\
7055 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7056 	return bfq_var_show(__data, (page));				\
7057 }
7058 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7059 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7060 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7061 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7062 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7063 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7064 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7065 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7066 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7067 #undef SHOW_FUNCTION
7068 
7069 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7070 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7071 {									\
7072 	struct bfq_data *bfqd = e->elevator_data;			\
7073 	u64 __data = __VAR;						\
7074 	__data = div_u64(__data, NSEC_PER_USEC);			\
7075 	return bfq_var_show(__data, (page));				\
7076 }
7077 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7078 #undef USEC_SHOW_FUNCTION
7079 
7080 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7081 static ssize_t								\
7082 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7083 {									\
7084 	struct bfq_data *bfqd = e->elevator_data;			\
7085 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7086 	int ret;							\
7087 									\
7088 	ret = bfq_var_store(&__data, (page));				\
7089 	if (ret)							\
7090 		return ret;						\
7091 	if (__data < __min)						\
7092 		__data = __min;						\
7093 	else if (__data > __max)					\
7094 		__data = __max;						\
7095 	if (__CONV == 1)						\
7096 		*(__PTR) = msecs_to_jiffies(__data);			\
7097 	else if (__CONV == 2)						\
7098 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7099 	else								\
7100 		*(__PTR) = __data;					\
7101 	return count;							\
7102 }
7103 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7104 		INT_MAX, 2);
7105 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7106 		INT_MAX, 2);
7107 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7108 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7109 		INT_MAX, 0);
7110 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7111 #undef STORE_FUNCTION
7112 
7113 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7114 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7115 {									\
7116 	struct bfq_data *bfqd = e->elevator_data;			\
7117 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7118 	int ret;							\
7119 									\
7120 	ret = bfq_var_store(&__data, (page));				\
7121 	if (ret)							\
7122 		return ret;						\
7123 	if (__data < __min)						\
7124 		__data = __min;						\
7125 	else if (__data > __max)					\
7126 		__data = __max;						\
7127 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7128 	return count;							\
7129 }
7130 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7131 		    UINT_MAX);
7132 #undef USEC_STORE_FUNCTION
7133 
7134 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7135 				    const char *page, size_t count)
7136 {
7137 	struct bfq_data *bfqd = e->elevator_data;
7138 	unsigned long __data;
7139 	int ret;
7140 
7141 	ret = bfq_var_store(&__data, (page));
7142 	if (ret)
7143 		return ret;
7144 
7145 	if (__data == 0)
7146 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7147 	else {
7148 		if (__data > INT_MAX)
7149 			__data = INT_MAX;
7150 		bfqd->bfq_max_budget = __data;
7151 	}
7152 
7153 	bfqd->bfq_user_max_budget = __data;
7154 
7155 	return count;
7156 }
7157 
7158 /*
7159  * Leaving this name to preserve name compatibility with cfq
7160  * parameters, but this timeout is used for both sync and async.
7161  */
7162 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7163 				      const char *page, size_t count)
7164 {
7165 	struct bfq_data *bfqd = e->elevator_data;
7166 	unsigned long __data;
7167 	int ret;
7168 
7169 	ret = bfq_var_store(&__data, (page));
7170 	if (ret)
7171 		return ret;
7172 
7173 	if (__data < 1)
7174 		__data = 1;
7175 	else if (__data > INT_MAX)
7176 		__data = INT_MAX;
7177 
7178 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7179 	if (bfqd->bfq_user_max_budget == 0)
7180 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7181 
7182 	return count;
7183 }
7184 
7185 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7186 				     const char *page, size_t count)
7187 {
7188 	struct bfq_data *bfqd = e->elevator_data;
7189 	unsigned long __data;
7190 	int ret;
7191 
7192 	ret = bfq_var_store(&__data, (page));
7193 	if (ret)
7194 		return ret;
7195 
7196 	if (__data > 1)
7197 		__data = 1;
7198 	if (!bfqd->strict_guarantees && __data == 1
7199 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7200 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7201 
7202 	bfqd->strict_guarantees = __data;
7203 
7204 	return count;
7205 }
7206 
7207 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7208 				     const char *page, size_t count)
7209 {
7210 	struct bfq_data *bfqd = e->elevator_data;
7211 	unsigned long __data;
7212 	int ret;
7213 
7214 	ret = bfq_var_store(&__data, (page));
7215 	if (ret)
7216 		return ret;
7217 
7218 	if (__data > 1)
7219 		__data = 1;
7220 	if (__data == 0 && bfqd->low_latency != 0)
7221 		bfq_end_wr(bfqd);
7222 	bfqd->low_latency = __data;
7223 
7224 	return count;
7225 }
7226 
7227 #define BFQ_ATTR(name) \
7228 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7229 
7230 static struct elv_fs_entry bfq_attrs[] = {
7231 	BFQ_ATTR(fifo_expire_sync),
7232 	BFQ_ATTR(fifo_expire_async),
7233 	BFQ_ATTR(back_seek_max),
7234 	BFQ_ATTR(back_seek_penalty),
7235 	BFQ_ATTR(slice_idle),
7236 	BFQ_ATTR(slice_idle_us),
7237 	BFQ_ATTR(max_budget),
7238 	BFQ_ATTR(timeout_sync),
7239 	BFQ_ATTR(strict_guarantees),
7240 	BFQ_ATTR(low_latency),
7241 	__ATTR_NULL
7242 };
7243 
7244 static struct elevator_type iosched_bfq_mq = {
7245 	.ops = {
7246 		.limit_depth		= bfq_limit_depth,
7247 		.prepare_request	= bfq_prepare_request,
7248 		.requeue_request        = bfq_finish_requeue_request,
7249 		.finish_request		= bfq_finish_requeue_request,
7250 		.exit_icq		= bfq_exit_icq,
7251 		.insert_requests	= bfq_insert_requests,
7252 		.dispatch_request	= bfq_dispatch_request,
7253 		.next_request		= elv_rb_latter_request,
7254 		.former_request		= elv_rb_former_request,
7255 		.allow_merge		= bfq_allow_bio_merge,
7256 		.bio_merge		= bfq_bio_merge,
7257 		.request_merge		= bfq_request_merge,
7258 		.requests_merged	= bfq_requests_merged,
7259 		.request_merged		= bfq_request_merged,
7260 		.has_work		= bfq_has_work,
7261 		.depth_updated		= bfq_depth_updated,
7262 		.init_hctx		= bfq_init_hctx,
7263 		.init_sched		= bfq_init_queue,
7264 		.exit_sched		= bfq_exit_queue,
7265 	},
7266 
7267 	.icq_size =		sizeof(struct bfq_io_cq),
7268 	.icq_align =		__alignof__(struct bfq_io_cq),
7269 	.elevator_attrs =	bfq_attrs,
7270 	.elevator_name =	"bfq",
7271 	.elevator_owner =	THIS_MODULE,
7272 };
7273 MODULE_ALIAS("bfq-iosched");
7274 
7275 static int __init bfq_init(void)
7276 {
7277 	int ret;
7278 
7279 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7280 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7281 	if (ret)
7282 		return ret;
7283 #endif
7284 
7285 	ret = -ENOMEM;
7286 	if (bfq_slab_setup())
7287 		goto err_pol_unreg;
7288 
7289 	/*
7290 	 * Times to load large popular applications for the typical
7291 	 * systems installed on the reference devices (see the
7292 	 * comments before the definition of the next
7293 	 * array). Actually, we use slightly lower values, as the
7294 	 * estimated peak rate tends to be smaller than the actual
7295 	 * peak rate.  The reason for this last fact is that estimates
7296 	 * are computed over much shorter time intervals than the long
7297 	 * intervals typically used for benchmarking. Why? First, to
7298 	 * adapt more quickly to variations. Second, because an I/O
7299 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7300 	 * be run for a long time.
7301 	 */
7302 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7303 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7304 
7305 	ret = elv_register(&iosched_bfq_mq);
7306 	if (ret)
7307 		goto slab_kill;
7308 
7309 	return 0;
7310 
7311 slab_kill:
7312 	bfq_slab_kill();
7313 err_pol_unreg:
7314 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7315 	blkcg_policy_unregister(&blkcg_policy_bfq);
7316 #endif
7317 	return ret;
7318 }
7319 
7320 static void __exit bfq_exit(void)
7321 {
7322 	elv_unregister(&iosched_bfq_mq);
7323 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7324 	blkcg_policy_unregister(&blkcg_policy_bfq);
7325 #endif
7326 	bfq_slab_kill();
7327 }
7328 
7329 module_init(bfq_init);
7330 module_exit(bfq_exit);
7331 
7332 MODULE_AUTHOR("Paolo Valente");
7333 MODULE_LICENSE("GPL");
7334 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7335