xref: /linux/block/bfq-iosched.c (revision 09e61efd884ca68a768717d60858f138685b161b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/ktime.h>
121 #include <linux/rbtree.h>
122 #include <linux/ioprio.h>
123 #include <linux/sbitmap.h>
124 #include <linux/delay.h>
125 #include <linux/backing-dev.h>
126 
127 #include <trace/events/block.h>
128 
129 #include "elevator.h"
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 /*
368  * Maximum time between the creation of two queues, for stable merge
369  * to be activated (in ms)
370  */
371 static const unsigned long bfq_activation_stable_merging = 600;
372 /*
373  * Minimum time to be waited before evaluating delayed stable merge (in ms)
374  */
375 static const unsigned long bfq_late_stable_merging = 600;
376 
377 #define RQ_BIC(rq)		((struct bfq_io_cq *)((rq)->elv.priv[0]))
378 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
379 
380 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
381 {
382 	return bic->bfqq[is_sync];
383 }
384 
385 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
386 
387 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
388 {
389 	struct bfq_queue *old_bfqq = bic->bfqq[is_sync];
390 
391 	/* Clear bic pointer if bfqq is detached from this bic */
392 	if (old_bfqq && old_bfqq->bic == bic)
393 		old_bfqq->bic = NULL;
394 
395 	/*
396 	 * If bfqq != NULL, then a non-stable queue merge between
397 	 * bic->bfqq and bfqq is happening here. This causes troubles
398 	 * in the following case: bic->bfqq has also been scheduled
399 	 * for a possible stable merge with bic->stable_merge_bfqq,
400 	 * and bic->stable_merge_bfqq == bfqq happens to
401 	 * hold. Troubles occur because bfqq may then undergo a split,
402 	 * thereby becoming eligible for a stable merge. Yet, if
403 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
404 	 * would be stably merged with itself. To avoid this anomaly,
405 	 * we cancel the stable merge if
406 	 * bic->stable_merge_bfqq == bfqq.
407 	 */
408 	bic->bfqq[is_sync] = bfqq;
409 
410 	if (bfqq && bic->stable_merge_bfqq == bfqq) {
411 		/*
412 		 * Actually, these same instructions are executed also
413 		 * in bfq_setup_cooperator, in case of abort or actual
414 		 * execution of a stable merge. We could avoid
415 		 * repeating these instructions there too, but if we
416 		 * did so, we would nest even more complexity in this
417 		 * function.
418 		 */
419 		bfq_put_stable_ref(bic->stable_merge_bfqq);
420 
421 		bic->stable_merge_bfqq = NULL;
422 	}
423 }
424 
425 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
426 {
427 	return bic->icq.q->elevator->elevator_data;
428 }
429 
430 /**
431  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
432  * @icq: the iocontext queue.
433  */
434 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
435 {
436 	/* bic->icq is the first member, %NULL will convert to %NULL */
437 	return container_of(icq, struct bfq_io_cq, icq);
438 }
439 
440 /**
441  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
442  * @q: the request queue.
443  */
444 static struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q)
445 {
446 	struct bfq_io_cq *icq;
447 	unsigned long flags;
448 
449 	if (!current->io_context)
450 		return NULL;
451 
452 	spin_lock_irqsave(&q->queue_lock, flags);
453 	icq = icq_to_bic(ioc_lookup_icq(q));
454 	spin_unlock_irqrestore(&q->queue_lock, flags);
455 
456 	return icq;
457 }
458 
459 /*
460  * Scheduler run of queue, if there are requests pending and no one in the
461  * driver that will restart queueing.
462  */
463 void bfq_schedule_dispatch(struct bfq_data *bfqd)
464 {
465 	lockdep_assert_held(&bfqd->lock);
466 
467 	if (bfqd->queued != 0) {
468 		bfq_log(bfqd, "schedule dispatch");
469 		blk_mq_run_hw_queues(bfqd->queue, true);
470 	}
471 }
472 
473 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
474 
475 #define bfq_sample_valid(samples)	((samples) > 80)
476 
477 /*
478  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
479  * We choose the request that is closer to the head right now.  Distance
480  * behind the head is penalized and only allowed to a certain extent.
481  */
482 static struct request *bfq_choose_req(struct bfq_data *bfqd,
483 				      struct request *rq1,
484 				      struct request *rq2,
485 				      sector_t last)
486 {
487 	sector_t s1, s2, d1 = 0, d2 = 0;
488 	unsigned long back_max;
489 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
490 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
491 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
492 
493 	if (!rq1 || rq1 == rq2)
494 		return rq2;
495 	if (!rq2)
496 		return rq1;
497 
498 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
499 		return rq1;
500 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
501 		return rq2;
502 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
503 		return rq1;
504 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
505 		return rq2;
506 
507 	s1 = blk_rq_pos(rq1);
508 	s2 = blk_rq_pos(rq2);
509 
510 	/*
511 	 * By definition, 1KiB is 2 sectors.
512 	 */
513 	back_max = bfqd->bfq_back_max * 2;
514 
515 	/*
516 	 * Strict one way elevator _except_ in the case where we allow
517 	 * short backward seeks which are biased as twice the cost of a
518 	 * similar forward seek.
519 	 */
520 	if (s1 >= last)
521 		d1 = s1 - last;
522 	else if (s1 + back_max >= last)
523 		d1 = (last - s1) * bfqd->bfq_back_penalty;
524 	else
525 		wrap |= BFQ_RQ1_WRAP;
526 
527 	if (s2 >= last)
528 		d2 = s2 - last;
529 	else if (s2 + back_max >= last)
530 		d2 = (last - s2) * bfqd->bfq_back_penalty;
531 	else
532 		wrap |= BFQ_RQ2_WRAP;
533 
534 	/* Found required data */
535 
536 	/*
537 	 * By doing switch() on the bit mask "wrap" we avoid having to
538 	 * check two variables for all permutations: --> faster!
539 	 */
540 	switch (wrap) {
541 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
542 		if (d1 < d2)
543 			return rq1;
544 		else if (d2 < d1)
545 			return rq2;
546 
547 		if (s1 >= s2)
548 			return rq1;
549 		else
550 			return rq2;
551 
552 	case BFQ_RQ2_WRAP:
553 		return rq1;
554 	case BFQ_RQ1_WRAP:
555 		return rq2;
556 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
557 	default:
558 		/*
559 		 * Since both rqs are wrapped,
560 		 * start with the one that's further behind head
561 		 * (--> only *one* back seek required),
562 		 * since back seek takes more time than forward.
563 		 */
564 		if (s1 <= s2)
565 			return rq1;
566 		else
567 			return rq2;
568 	}
569 }
570 
571 #define BFQ_LIMIT_INLINE_DEPTH 16
572 
573 #ifdef CONFIG_BFQ_GROUP_IOSCHED
574 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
575 {
576 	struct bfq_data *bfqd = bfqq->bfqd;
577 	struct bfq_entity *entity = &bfqq->entity;
578 	struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH];
579 	struct bfq_entity **entities = inline_entities;
580 	int depth, level, alloc_depth = BFQ_LIMIT_INLINE_DEPTH;
581 	int class_idx = bfqq->ioprio_class - 1;
582 	struct bfq_sched_data *sched_data;
583 	unsigned long wsum;
584 	bool ret = false;
585 
586 	if (!entity->on_st_or_in_serv)
587 		return false;
588 
589 retry:
590 	spin_lock_irq(&bfqd->lock);
591 	/* +1 for bfqq entity, root cgroup not included */
592 	depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1;
593 	if (depth > alloc_depth) {
594 		spin_unlock_irq(&bfqd->lock);
595 		if (entities != inline_entities)
596 			kfree(entities);
597 		entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO);
598 		if (!entities)
599 			return false;
600 		alloc_depth = depth;
601 		goto retry;
602 	}
603 
604 	sched_data = entity->sched_data;
605 	/* Gather our ancestors as we need to traverse them in reverse order */
606 	level = 0;
607 	for_each_entity(entity) {
608 		/*
609 		 * If at some level entity is not even active, allow request
610 		 * queueing so that BFQ knows there's work to do and activate
611 		 * entities.
612 		 */
613 		if (!entity->on_st_or_in_serv)
614 			goto out;
615 		/* Uh, more parents than cgroup subsystem thinks? */
616 		if (WARN_ON_ONCE(level >= depth))
617 			break;
618 		entities[level++] = entity;
619 	}
620 	WARN_ON_ONCE(level != depth);
621 	for (level--; level >= 0; level--) {
622 		entity = entities[level];
623 		if (level > 0) {
624 			wsum = bfq_entity_service_tree(entity)->wsum;
625 		} else {
626 			int i;
627 			/*
628 			 * For bfqq itself we take into account service trees
629 			 * of all higher priority classes and multiply their
630 			 * weights so that low prio queue from higher class
631 			 * gets more requests than high prio queue from lower
632 			 * class.
633 			 */
634 			wsum = 0;
635 			for (i = 0; i <= class_idx; i++) {
636 				wsum = wsum * IOPRIO_BE_NR +
637 					sched_data->service_tree[i].wsum;
638 			}
639 		}
640 		limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum);
641 		if (entity->allocated >= limit) {
642 			bfq_log_bfqq(bfqq->bfqd, bfqq,
643 				"too many requests: allocated %d limit %d level %d",
644 				entity->allocated, limit, level);
645 			ret = true;
646 			break;
647 		}
648 	}
649 out:
650 	spin_unlock_irq(&bfqd->lock);
651 	if (entities != inline_entities)
652 		kfree(entities);
653 	return ret;
654 }
655 #else
656 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
657 {
658 	return false;
659 }
660 #endif
661 
662 /*
663  * Async I/O can easily starve sync I/O (both sync reads and sync
664  * writes), by consuming all tags. Similarly, storms of sync writes,
665  * such as those that sync(2) may trigger, can starve sync reads.
666  * Limit depths of async I/O and sync writes so as to counter both
667  * problems.
668  *
669  * Also if a bfq queue or its parent cgroup consume more tags than would be
670  * appropriate for their weight, we trim the available tag depth to 1. This
671  * avoids a situation where one cgroup can starve another cgroup from tags and
672  * thus block service differentiation among cgroups. Note that because the
673  * queue / cgroup already has many requests allocated and queued, this does not
674  * significantly affect service guarantees coming from the BFQ scheduling
675  * algorithm.
676  */
677 static void bfq_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
678 {
679 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
680 	struct bfq_io_cq *bic = bfq_bic_lookup(data->q);
681 	struct bfq_queue *bfqq = bic ? bic_to_bfqq(bic, op_is_sync(opf)) : NULL;
682 	int depth;
683 	unsigned limit = data->q->nr_requests;
684 
685 	/* Sync reads have full depth available */
686 	if (op_is_sync(opf) && !op_is_write(opf)) {
687 		depth = 0;
688 	} else {
689 		depth = bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(opf)];
690 		limit = (limit * depth) >> bfqd->full_depth_shift;
691 	}
692 
693 	/*
694 	 * Does queue (or any parent entity) exceed number of requests that
695 	 * should be available to it? Heavily limit depth so that it cannot
696 	 * consume more available requests and thus starve other entities.
697 	 */
698 	if (bfqq && bfqq_request_over_limit(bfqq, limit))
699 		depth = 1;
700 
701 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
702 		__func__, bfqd->wr_busy_queues, op_is_sync(opf), depth);
703 	if (depth)
704 		data->shallow_depth = depth;
705 }
706 
707 static struct bfq_queue *
708 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
709 		     sector_t sector, struct rb_node **ret_parent,
710 		     struct rb_node ***rb_link)
711 {
712 	struct rb_node **p, *parent;
713 	struct bfq_queue *bfqq = NULL;
714 
715 	parent = NULL;
716 	p = &root->rb_node;
717 	while (*p) {
718 		struct rb_node **n;
719 
720 		parent = *p;
721 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
722 
723 		/*
724 		 * Sort strictly based on sector. Smallest to the left,
725 		 * largest to the right.
726 		 */
727 		if (sector > blk_rq_pos(bfqq->next_rq))
728 			n = &(*p)->rb_right;
729 		else if (sector < blk_rq_pos(bfqq->next_rq))
730 			n = &(*p)->rb_left;
731 		else
732 			break;
733 		p = n;
734 		bfqq = NULL;
735 	}
736 
737 	*ret_parent = parent;
738 	if (rb_link)
739 		*rb_link = p;
740 
741 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
742 		(unsigned long long)sector,
743 		bfqq ? bfqq->pid : 0);
744 
745 	return bfqq;
746 }
747 
748 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
749 {
750 	return bfqq->service_from_backlogged > 0 &&
751 		time_is_before_jiffies(bfqq->first_IO_time +
752 				       bfq_merge_time_limit);
753 }
754 
755 /*
756  * The following function is not marked as __cold because it is
757  * actually cold, but for the same performance goal described in the
758  * comments on the likely() at the beginning of
759  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
760  * execution time for the case where this function is not invoked, we
761  * had to add an unlikely() in each involved if().
762  */
763 void __cold
764 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
765 {
766 	struct rb_node **p, *parent;
767 	struct bfq_queue *__bfqq;
768 
769 	if (bfqq->pos_root) {
770 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
771 		bfqq->pos_root = NULL;
772 	}
773 
774 	/* oom_bfqq does not participate in queue merging */
775 	if (bfqq == &bfqd->oom_bfqq)
776 		return;
777 
778 	/*
779 	 * bfqq cannot be merged any longer (see comments in
780 	 * bfq_setup_cooperator): no point in adding bfqq into the
781 	 * position tree.
782 	 */
783 	if (bfq_too_late_for_merging(bfqq))
784 		return;
785 
786 	if (bfq_class_idle(bfqq))
787 		return;
788 	if (!bfqq->next_rq)
789 		return;
790 
791 	bfqq->pos_root = &bfqq_group(bfqq)->rq_pos_tree;
792 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
793 			blk_rq_pos(bfqq->next_rq), &parent, &p);
794 	if (!__bfqq) {
795 		rb_link_node(&bfqq->pos_node, parent, p);
796 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
797 	} else
798 		bfqq->pos_root = NULL;
799 }
800 
801 /*
802  * The following function returns false either if every active queue
803  * must receive the same share of the throughput (symmetric scenario),
804  * or, as a special case, if bfqq must receive a share of the
805  * throughput lower than or equal to the share that every other active
806  * queue must receive.  If bfqq does sync I/O, then these are the only
807  * two cases where bfqq happens to be guaranteed its share of the
808  * throughput even if I/O dispatching is not plugged when bfqq remains
809  * temporarily empty (for more details, see the comments in the
810  * function bfq_better_to_idle()). For this reason, the return value
811  * of this function is used to check whether I/O-dispatch plugging can
812  * be avoided.
813  *
814  * The above first case (symmetric scenario) occurs when:
815  * 1) all active queues have the same weight,
816  * 2) all active queues belong to the same I/O-priority class,
817  * 3) all active groups at the same level in the groups tree have the same
818  *    weight,
819  * 4) all active groups at the same level in the groups tree have the same
820  *    number of children.
821  *
822  * Unfortunately, keeping the necessary state for evaluating exactly
823  * the last two symmetry sub-conditions above would be quite complex
824  * and time consuming. Therefore this function evaluates, instead,
825  * only the following stronger three sub-conditions, for which it is
826  * much easier to maintain the needed state:
827  * 1) all active queues have the same weight,
828  * 2) all active queues belong to the same I/O-priority class,
829  * 3) there is at most one active group.
830  * In particular, the last condition is always true if hierarchical
831  * support or the cgroups interface are not enabled, thus no state
832  * needs to be maintained in this case.
833  */
834 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
835 				   struct bfq_queue *bfqq)
836 {
837 	bool smallest_weight = bfqq &&
838 		bfqq->weight_counter &&
839 		bfqq->weight_counter ==
840 		container_of(
841 			rb_first_cached(&bfqd->queue_weights_tree),
842 			struct bfq_weight_counter,
843 			weights_node);
844 
845 	/*
846 	 * For queue weights to differ, queue_weights_tree must contain
847 	 * at least two nodes.
848 	 */
849 	bool varied_queue_weights = !smallest_weight &&
850 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
851 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
852 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
853 
854 	bool multiple_classes_busy =
855 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
856 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
857 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
858 
859 	return varied_queue_weights || multiple_classes_busy
860 #ifdef CONFIG_BFQ_GROUP_IOSCHED
861 	       || bfqd->num_groups_with_pending_reqs > 1
862 #endif
863 		;
864 }
865 
866 /*
867  * If the weight-counter tree passed as input contains no counter for
868  * the weight of the input queue, then add that counter; otherwise just
869  * increment the existing counter.
870  *
871  * Note that weight-counter trees contain few nodes in mostly symmetric
872  * scenarios. For example, if all queues have the same weight, then the
873  * weight-counter tree for the queues may contain at most one node.
874  * This holds even if low_latency is on, because weight-raised queues
875  * are not inserted in the tree.
876  * In most scenarios, the rate at which nodes are created/destroyed
877  * should be low too.
878  */
879 void bfq_weights_tree_add(struct bfq_queue *bfqq)
880 {
881 	struct rb_root_cached *root = &bfqq->bfqd->queue_weights_tree;
882 	struct bfq_entity *entity = &bfqq->entity;
883 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
884 	bool leftmost = true;
885 
886 	/*
887 	 * Do not insert if the queue is already associated with a
888 	 * counter, which happens if:
889 	 *   1) a request arrival has caused the queue to become both
890 	 *      non-weight-raised, and hence change its weight, and
891 	 *      backlogged; in this respect, each of the two events
892 	 *      causes an invocation of this function,
893 	 *   2) this is the invocation of this function caused by the
894 	 *      second event. This second invocation is actually useless,
895 	 *      and we handle this fact by exiting immediately. More
896 	 *      efficient or clearer solutions might possibly be adopted.
897 	 */
898 	if (bfqq->weight_counter)
899 		return;
900 
901 	while (*new) {
902 		struct bfq_weight_counter *__counter = container_of(*new,
903 						struct bfq_weight_counter,
904 						weights_node);
905 		parent = *new;
906 
907 		if (entity->weight == __counter->weight) {
908 			bfqq->weight_counter = __counter;
909 			goto inc_counter;
910 		}
911 		if (entity->weight < __counter->weight)
912 			new = &((*new)->rb_left);
913 		else {
914 			new = &((*new)->rb_right);
915 			leftmost = false;
916 		}
917 	}
918 
919 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
920 				       GFP_ATOMIC);
921 
922 	/*
923 	 * In the unlucky event of an allocation failure, we just
924 	 * exit. This will cause the weight of queue to not be
925 	 * considered in bfq_asymmetric_scenario, which, in its turn,
926 	 * causes the scenario to be deemed wrongly symmetric in case
927 	 * bfqq's weight would have been the only weight making the
928 	 * scenario asymmetric.  On the bright side, no unbalance will
929 	 * however occur when bfqq becomes inactive again (the
930 	 * invocation of this function is triggered by an activation
931 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
932 	 * if !bfqq->weight_counter.
933 	 */
934 	if (unlikely(!bfqq->weight_counter))
935 		return;
936 
937 	bfqq->weight_counter->weight = entity->weight;
938 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
939 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
940 				leftmost);
941 
942 inc_counter:
943 	bfqq->weight_counter->num_active++;
944 	bfqq->ref++;
945 }
946 
947 /*
948  * Decrement the weight counter associated with the queue, and, if the
949  * counter reaches 0, remove the counter from the tree.
950  * See the comments to the function bfq_weights_tree_add() for considerations
951  * about overhead.
952  */
953 void bfq_weights_tree_remove(struct bfq_queue *bfqq)
954 {
955 	struct rb_root_cached *root;
956 
957 	if (!bfqq->weight_counter)
958 		return;
959 
960 	root = &bfqq->bfqd->queue_weights_tree;
961 	bfqq->weight_counter->num_active--;
962 	if (bfqq->weight_counter->num_active > 0)
963 		goto reset_entity_pointer;
964 
965 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
966 	kfree(bfqq->weight_counter);
967 
968 reset_entity_pointer:
969 	bfqq->weight_counter = NULL;
970 	bfq_put_queue(bfqq);
971 }
972 
973 /*
974  * Return expired entry, or NULL to just start from scratch in rbtree.
975  */
976 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
977 				      struct request *last)
978 {
979 	struct request *rq;
980 
981 	if (bfq_bfqq_fifo_expire(bfqq))
982 		return NULL;
983 
984 	bfq_mark_bfqq_fifo_expire(bfqq);
985 
986 	rq = rq_entry_fifo(bfqq->fifo.next);
987 
988 	if (rq == last || ktime_get_ns() < rq->fifo_time)
989 		return NULL;
990 
991 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
992 	return rq;
993 }
994 
995 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
996 					struct bfq_queue *bfqq,
997 					struct request *last)
998 {
999 	struct rb_node *rbnext = rb_next(&last->rb_node);
1000 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1001 	struct request *next, *prev = NULL;
1002 
1003 	/* Follow expired path, else get first next available. */
1004 	next = bfq_check_fifo(bfqq, last);
1005 	if (next)
1006 		return next;
1007 
1008 	if (rbprev)
1009 		prev = rb_entry_rq(rbprev);
1010 
1011 	if (rbnext)
1012 		next = rb_entry_rq(rbnext);
1013 	else {
1014 		rbnext = rb_first(&bfqq->sort_list);
1015 		if (rbnext && rbnext != &last->rb_node)
1016 			next = rb_entry_rq(rbnext);
1017 	}
1018 
1019 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
1020 }
1021 
1022 /* see the definition of bfq_async_charge_factor for details */
1023 static unsigned long bfq_serv_to_charge(struct request *rq,
1024 					struct bfq_queue *bfqq)
1025 {
1026 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
1027 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
1028 		return blk_rq_sectors(rq);
1029 
1030 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
1031 }
1032 
1033 /**
1034  * bfq_updated_next_req - update the queue after a new next_rq selection.
1035  * @bfqd: the device data the queue belongs to.
1036  * @bfqq: the queue to update.
1037  *
1038  * If the first request of a queue changes we make sure that the queue
1039  * has enough budget to serve at least its first request (if the
1040  * request has grown).  We do this because if the queue has not enough
1041  * budget for its first request, it has to go through two dispatch
1042  * rounds to actually get it dispatched.
1043  */
1044 static void bfq_updated_next_req(struct bfq_data *bfqd,
1045 				 struct bfq_queue *bfqq)
1046 {
1047 	struct bfq_entity *entity = &bfqq->entity;
1048 	struct request *next_rq = bfqq->next_rq;
1049 	unsigned long new_budget;
1050 
1051 	if (!next_rq)
1052 		return;
1053 
1054 	if (bfqq == bfqd->in_service_queue)
1055 		/*
1056 		 * In order not to break guarantees, budgets cannot be
1057 		 * changed after an entity has been selected.
1058 		 */
1059 		return;
1060 
1061 	new_budget = max_t(unsigned long,
1062 			   max_t(unsigned long, bfqq->max_budget,
1063 				 bfq_serv_to_charge(next_rq, bfqq)),
1064 			   entity->service);
1065 	if (entity->budget != new_budget) {
1066 		entity->budget = new_budget;
1067 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1068 					 new_budget);
1069 		bfq_requeue_bfqq(bfqd, bfqq, false);
1070 	}
1071 }
1072 
1073 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1074 {
1075 	u64 dur;
1076 
1077 	if (bfqd->bfq_wr_max_time > 0)
1078 		return bfqd->bfq_wr_max_time;
1079 
1080 	dur = bfqd->rate_dur_prod;
1081 	do_div(dur, bfqd->peak_rate);
1082 
1083 	/*
1084 	 * Limit duration between 3 and 25 seconds. The upper limit
1085 	 * has been conservatively set after the following worst case:
1086 	 * on a QEMU/KVM virtual machine
1087 	 * - running in a slow PC
1088 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1089 	 * - serving a heavy I/O workload, such as the sequential reading
1090 	 *   of several files
1091 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1092 	 *
1093 	 * As for higher values than that accommodating the above bad
1094 	 * scenario, tests show that higher values would often yield
1095 	 * the opposite of the desired result, i.e., would worsen
1096 	 * responsiveness by allowing non-interactive applications to
1097 	 * preserve weight raising for too long.
1098 	 *
1099 	 * On the other end, lower values than 3 seconds make it
1100 	 * difficult for most interactive tasks to complete their jobs
1101 	 * before weight-raising finishes.
1102 	 */
1103 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1104 }
1105 
1106 /* switch back from soft real-time to interactive weight raising */
1107 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1108 					  struct bfq_data *bfqd)
1109 {
1110 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1111 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1112 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1113 }
1114 
1115 static void
1116 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1117 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1118 {
1119 	unsigned int old_wr_coeff = 1;
1120 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1121 
1122 	if (bic->saved_has_short_ttime)
1123 		bfq_mark_bfqq_has_short_ttime(bfqq);
1124 	else
1125 		bfq_clear_bfqq_has_short_ttime(bfqq);
1126 
1127 	if (bic->saved_IO_bound)
1128 		bfq_mark_bfqq_IO_bound(bfqq);
1129 	else
1130 		bfq_clear_bfqq_IO_bound(bfqq);
1131 
1132 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1133 	bfqq->inject_limit = bic->saved_inject_limit;
1134 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1135 
1136 	bfqq->entity.new_weight = bic->saved_weight;
1137 	bfqq->ttime = bic->saved_ttime;
1138 	bfqq->io_start_time = bic->saved_io_start_time;
1139 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1140 	/*
1141 	 * Restore weight coefficient only if low_latency is on
1142 	 */
1143 	if (bfqd->low_latency) {
1144 		old_wr_coeff = bfqq->wr_coeff;
1145 		bfqq->wr_coeff = bic->saved_wr_coeff;
1146 	}
1147 	bfqq->service_from_wr = bic->saved_service_from_wr;
1148 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1149 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1150 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1151 
1152 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1153 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1154 				   bfqq->wr_cur_max_time))) {
1155 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1156 		    !bfq_bfqq_in_large_burst(bfqq) &&
1157 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1158 					     bfq_wr_duration(bfqd))) {
1159 			switch_back_to_interactive_wr(bfqq, bfqd);
1160 		} else {
1161 			bfqq->wr_coeff = 1;
1162 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1163 				     "resume state: switching off wr");
1164 		}
1165 	}
1166 
1167 	/* make sure weight will be updated, however we got here */
1168 	bfqq->entity.prio_changed = 1;
1169 
1170 	if (likely(!busy))
1171 		return;
1172 
1173 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1174 		bfqd->wr_busy_queues++;
1175 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1176 		bfqd->wr_busy_queues--;
1177 }
1178 
1179 static int bfqq_process_refs(struct bfq_queue *bfqq)
1180 {
1181 	return bfqq->ref - bfqq->entity.allocated -
1182 		bfqq->entity.on_st_or_in_serv -
1183 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1184 }
1185 
1186 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1187 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1188 {
1189 	struct bfq_queue *item;
1190 	struct hlist_node *n;
1191 
1192 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1193 		hlist_del_init(&item->burst_list_node);
1194 
1195 	/*
1196 	 * Start the creation of a new burst list only if there is no
1197 	 * active queue. See comments on the conditional invocation of
1198 	 * bfq_handle_burst().
1199 	 */
1200 	if (bfq_tot_busy_queues(bfqd) == 0) {
1201 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1202 		bfqd->burst_size = 1;
1203 	} else
1204 		bfqd->burst_size = 0;
1205 
1206 	bfqd->burst_parent_entity = bfqq->entity.parent;
1207 }
1208 
1209 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1210 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1211 {
1212 	/* Increment burst size to take into account also bfqq */
1213 	bfqd->burst_size++;
1214 
1215 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1216 		struct bfq_queue *pos, *bfqq_item;
1217 		struct hlist_node *n;
1218 
1219 		/*
1220 		 * Enough queues have been activated shortly after each
1221 		 * other to consider this burst as large.
1222 		 */
1223 		bfqd->large_burst = true;
1224 
1225 		/*
1226 		 * We can now mark all queues in the burst list as
1227 		 * belonging to a large burst.
1228 		 */
1229 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1230 				     burst_list_node)
1231 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1232 		bfq_mark_bfqq_in_large_burst(bfqq);
1233 
1234 		/*
1235 		 * From now on, and until the current burst finishes, any
1236 		 * new queue being activated shortly after the last queue
1237 		 * was inserted in the burst can be immediately marked as
1238 		 * belonging to a large burst. So the burst list is not
1239 		 * needed any more. Remove it.
1240 		 */
1241 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1242 					  burst_list_node)
1243 			hlist_del_init(&pos->burst_list_node);
1244 	} else /*
1245 		* Burst not yet large: add bfqq to the burst list. Do
1246 		* not increment the ref counter for bfqq, because bfqq
1247 		* is removed from the burst list before freeing bfqq
1248 		* in put_queue.
1249 		*/
1250 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1251 }
1252 
1253 /*
1254  * If many queues belonging to the same group happen to be created
1255  * shortly after each other, then the processes associated with these
1256  * queues have typically a common goal. In particular, bursts of queue
1257  * creations are usually caused by services or applications that spawn
1258  * many parallel threads/processes. Examples are systemd during boot,
1259  * or git grep. To help these processes get their job done as soon as
1260  * possible, it is usually better to not grant either weight-raising
1261  * or device idling to their queues, unless these queues must be
1262  * protected from the I/O flowing through other active queues.
1263  *
1264  * In this comment we describe, firstly, the reasons why this fact
1265  * holds, and, secondly, the next function, which implements the main
1266  * steps needed to properly mark these queues so that they can then be
1267  * treated in a different way.
1268  *
1269  * The above services or applications benefit mostly from a high
1270  * throughput: the quicker the requests of the activated queues are
1271  * cumulatively served, the sooner the target job of these queues gets
1272  * completed. As a consequence, weight-raising any of these queues,
1273  * which also implies idling the device for it, is almost always
1274  * counterproductive, unless there are other active queues to isolate
1275  * these new queues from. If there no other active queues, then
1276  * weight-raising these new queues just lowers throughput in most
1277  * cases.
1278  *
1279  * On the other hand, a burst of queue creations may be caused also by
1280  * the start of an application that does not consist of a lot of
1281  * parallel I/O-bound threads. In fact, with a complex application,
1282  * several short processes may need to be executed to start-up the
1283  * application. In this respect, to start an application as quickly as
1284  * possible, the best thing to do is in any case to privilege the I/O
1285  * related to the application with respect to all other
1286  * I/O. Therefore, the best strategy to start as quickly as possible
1287  * an application that causes a burst of queue creations is to
1288  * weight-raise all the queues created during the burst. This is the
1289  * exact opposite of the best strategy for the other type of bursts.
1290  *
1291  * In the end, to take the best action for each of the two cases, the
1292  * two types of bursts need to be distinguished. Fortunately, this
1293  * seems relatively easy, by looking at the sizes of the bursts. In
1294  * particular, we found a threshold such that only bursts with a
1295  * larger size than that threshold are apparently caused by
1296  * services or commands such as systemd or git grep. For brevity,
1297  * hereafter we call just 'large' these bursts. BFQ *does not*
1298  * weight-raise queues whose creation occurs in a large burst. In
1299  * addition, for each of these queues BFQ performs or does not perform
1300  * idling depending on which choice boosts the throughput more. The
1301  * exact choice depends on the device and request pattern at
1302  * hand.
1303  *
1304  * Unfortunately, false positives may occur while an interactive task
1305  * is starting (e.g., an application is being started). The
1306  * consequence is that the queues associated with the task do not
1307  * enjoy weight raising as expected. Fortunately these false positives
1308  * are very rare. They typically occur if some service happens to
1309  * start doing I/O exactly when the interactive task starts.
1310  *
1311  * Turning back to the next function, it is invoked only if there are
1312  * no active queues (apart from active queues that would belong to the
1313  * same, possible burst bfqq would belong to), and it implements all
1314  * the steps needed to detect the occurrence of a large burst and to
1315  * properly mark all the queues belonging to it (so that they can then
1316  * be treated in a different way). This goal is achieved by
1317  * maintaining a "burst list" that holds, temporarily, the queues that
1318  * belong to the burst in progress. The list is then used to mark
1319  * these queues as belonging to a large burst if the burst does become
1320  * large. The main steps are the following.
1321  *
1322  * . when the very first queue is created, the queue is inserted into the
1323  *   list (as it could be the first queue in a possible burst)
1324  *
1325  * . if the current burst has not yet become large, and a queue Q that does
1326  *   not yet belong to the burst is activated shortly after the last time
1327  *   at which a new queue entered the burst list, then the function appends
1328  *   Q to the burst list
1329  *
1330  * . if, as a consequence of the previous step, the burst size reaches
1331  *   the large-burst threshold, then
1332  *
1333  *     . all the queues in the burst list are marked as belonging to a
1334  *       large burst
1335  *
1336  *     . the burst list is deleted; in fact, the burst list already served
1337  *       its purpose (keeping temporarily track of the queues in a burst,
1338  *       so as to be able to mark them as belonging to a large burst in the
1339  *       previous sub-step), and now is not needed any more
1340  *
1341  *     . the device enters a large-burst mode
1342  *
1343  * . if a queue Q that does not belong to the burst is created while
1344  *   the device is in large-burst mode and shortly after the last time
1345  *   at which a queue either entered the burst list or was marked as
1346  *   belonging to the current large burst, then Q is immediately marked
1347  *   as belonging to a large burst.
1348  *
1349  * . if a queue Q that does not belong to the burst is created a while
1350  *   later, i.e., not shortly after, than the last time at which a queue
1351  *   either entered the burst list or was marked as belonging to the
1352  *   current large burst, then the current burst is deemed as finished and:
1353  *
1354  *        . the large-burst mode is reset if set
1355  *
1356  *        . the burst list is emptied
1357  *
1358  *        . Q is inserted in the burst list, as Q may be the first queue
1359  *          in a possible new burst (then the burst list contains just Q
1360  *          after this step).
1361  */
1362 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1363 {
1364 	/*
1365 	 * If bfqq is already in the burst list or is part of a large
1366 	 * burst, or finally has just been split, then there is
1367 	 * nothing else to do.
1368 	 */
1369 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1370 	    bfq_bfqq_in_large_burst(bfqq) ||
1371 	    time_is_after_eq_jiffies(bfqq->split_time +
1372 				     msecs_to_jiffies(10)))
1373 		return;
1374 
1375 	/*
1376 	 * If bfqq's creation happens late enough, or bfqq belongs to
1377 	 * a different group than the burst group, then the current
1378 	 * burst is finished, and related data structures must be
1379 	 * reset.
1380 	 *
1381 	 * In this respect, consider the special case where bfqq is
1382 	 * the very first queue created after BFQ is selected for this
1383 	 * device. In this case, last_ins_in_burst and
1384 	 * burst_parent_entity are not yet significant when we get
1385 	 * here. But it is easy to verify that, whether or not the
1386 	 * following condition is true, bfqq will end up being
1387 	 * inserted into the burst list. In particular the list will
1388 	 * happen to contain only bfqq. And this is exactly what has
1389 	 * to happen, as bfqq may be the first queue of the first
1390 	 * burst.
1391 	 */
1392 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1393 	    bfqd->bfq_burst_interval) ||
1394 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1395 		bfqd->large_burst = false;
1396 		bfq_reset_burst_list(bfqd, bfqq);
1397 		goto end;
1398 	}
1399 
1400 	/*
1401 	 * If we get here, then bfqq is being activated shortly after the
1402 	 * last queue. So, if the current burst is also large, we can mark
1403 	 * bfqq as belonging to this large burst immediately.
1404 	 */
1405 	if (bfqd->large_burst) {
1406 		bfq_mark_bfqq_in_large_burst(bfqq);
1407 		goto end;
1408 	}
1409 
1410 	/*
1411 	 * If we get here, then a large-burst state has not yet been
1412 	 * reached, but bfqq is being activated shortly after the last
1413 	 * queue. Then we add bfqq to the burst.
1414 	 */
1415 	bfq_add_to_burst(bfqd, bfqq);
1416 end:
1417 	/*
1418 	 * At this point, bfqq either has been added to the current
1419 	 * burst or has caused the current burst to terminate and a
1420 	 * possible new burst to start. In particular, in the second
1421 	 * case, bfqq has become the first queue in the possible new
1422 	 * burst.  In both cases last_ins_in_burst needs to be moved
1423 	 * forward.
1424 	 */
1425 	bfqd->last_ins_in_burst = jiffies;
1426 }
1427 
1428 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1429 {
1430 	struct bfq_entity *entity = &bfqq->entity;
1431 
1432 	return entity->budget - entity->service;
1433 }
1434 
1435 /*
1436  * If enough samples have been computed, return the current max budget
1437  * stored in bfqd, which is dynamically updated according to the
1438  * estimated disk peak rate; otherwise return the default max budget
1439  */
1440 static int bfq_max_budget(struct bfq_data *bfqd)
1441 {
1442 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1443 		return bfq_default_max_budget;
1444 	else
1445 		return bfqd->bfq_max_budget;
1446 }
1447 
1448 /*
1449  * Return min budget, which is a fraction of the current or default
1450  * max budget (trying with 1/32)
1451  */
1452 static int bfq_min_budget(struct bfq_data *bfqd)
1453 {
1454 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1455 		return bfq_default_max_budget / 32;
1456 	else
1457 		return bfqd->bfq_max_budget / 32;
1458 }
1459 
1460 /*
1461  * The next function, invoked after the input queue bfqq switches from
1462  * idle to busy, updates the budget of bfqq. The function also tells
1463  * whether the in-service queue should be expired, by returning
1464  * true. The purpose of expiring the in-service queue is to give bfqq
1465  * the chance to possibly preempt the in-service queue, and the reason
1466  * for preempting the in-service queue is to achieve one of the two
1467  * goals below.
1468  *
1469  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1470  * expired because it has remained idle. In particular, bfqq may have
1471  * expired for one of the following two reasons:
1472  *
1473  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1474  *   and did not make it to issue a new request before its last
1475  *   request was served;
1476  *
1477  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1478  *   a new request before the expiration of the idling-time.
1479  *
1480  * Even if bfqq has expired for one of the above reasons, the process
1481  * associated with the queue may be however issuing requests greedily,
1482  * and thus be sensitive to the bandwidth it receives (bfqq may have
1483  * remained idle for other reasons: CPU high load, bfqq not enjoying
1484  * idling, I/O throttling somewhere in the path from the process to
1485  * the I/O scheduler, ...). But if, after every expiration for one of
1486  * the above two reasons, bfqq has to wait for the service of at least
1487  * one full budget of another queue before being served again, then
1488  * bfqq is likely to get a much lower bandwidth or resource time than
1489  * its reserved ones. To address this issue, two countermeasures need
1490  * to be taken.
1491  *
1492  * First, the budget and the timestamps of bfqq need to be updated in
1493  * a special way on bfqq reactivation: they need to be updated as if
1494  * bfqq did not remain idle and did not expire. In fact, if they are
1495  * computed as if bfqq expired and remained idle until reactivation,
1496  * then the process associated with bfqq is treated as if, instead of
1497  * being greedy, it stopped issuing requests when bfqq remained idle,
1498  * and restarts issuing requests only on this reactivation. In other
1499  * words, the scheduler does not help the process recover the "service
1500  * hole" between bfqq expiration and reactivation. As a consequence,
1501  * the process receives a lower bandwidth than its reserved one. In
1502  * contrast, to recover this hole, the budget must be updated as if
1503  * bfqq was not expired at all before this reactivation, i.e., it must
1504  * be set to the value of the remaining budget when bfqq was
1505  * expired. Along the same line, timestamps need to be assigned the
1506  * value they had the last time bfqq was selected for service, i.e.,
1507  * before last expiration. Thus timestamps need to be back-shifted
1508  * with respect to their normal computation (see [1] for more details
1509  * on this tricky aspect).
1510  *
1511  * Secondly, to allow the process to recover the hole, the in-service
1512  * queue must be expired too, to give bfqq the chance to preempt it
1513  * immediately. In fact, if bfqq has to wait for a full budget of the
1514  * in-service queue to be completed, then it may become impossible to
1515  * let the process recover the hole, even if the back-shifted
1516  * timestamps of bfqq are lower than those of the in-service queue. If
1517  * this happens for most or all of the holes, then the process may not
1518  * receive its reserved bandwidth. In this respect, it is worth noting
1519  * that, being the service of outstanding requests unpreemptible, a
1520  * little fraction of the holes may however be unrecoverable, thereby
1521  * causing a little loss of bandwidth.
1522  *
1523  * The last important point is detecting whether bfqq does need this
1524  * bandwidth recovery. In this respect, the next function deems the
1525  * process associated with bfqq greedy, and thus allows it to recover
1526  * the hole, if: 1) the process is waiting for the arrival of a new
1527  * request (which implies that bfqq expired for one of the above two
1528  * reasons), and 2) such a request has arrived soon. The first
1529  * condition is controlled through the flag non_blocking_wait_rq,
1530  * while the second through the flag arrived_in_time. If both
1531  * conditions hold, then the function computes the budget in the
1532  * above-described special way, and signals that the in-service queue
1533  * should be expired. Timestamp back-shifting is done later in
1534  * __bfq_activate_entity.
1535  *
1536  * 2. Reduce latency. Even if timestamps are not backshifted to let
1537  * the process associated with bfqq recover a service hole, bfqq may
1538  * however happen to have, after being (re)activated, a lower finish
1539  * timestamp than the in-service queue.	 That is, the next budget of
1540  * bfqq may have to be completed before the one of the in-service
1541  * queue. If this is the case, then preempting the in-service queue
1542  * allows this goal to be achieved, apart from the unpreemptible,
1543  * outstanding requests mentioned above.
1544  *
1545  * Unfortunately, regardless of which of the above two goals one wants
1546  * to achieve, service trees need first to be updated to know whether
1547  * the in-service queue must be preempted. To have service trees
1548  * correctly updated, the in-service queue must be expired and
1549  * rescheduled, and bfqq must be scheduled too. This is one of the
1550  * most costly operations (in future versions, the scheduling
1551  * mechanism may be re-designed in such a way to make it possible to
1552  * know whether preemption is needed without needing to update service
1553  * trees). In addition, queue preemptions almost always cause random
1554  * I/O, which may in turn cause loss of throughput. Finally, there may
1555  * even be no in-service queue when the next function is invoked (so,
1556  * no queue to compare timestamps with). Because of these facts, the
1557  * next function adopts the following simple scheme to avoid costly
1558  * operations, too frequent preemptions and too many dependencies on
1559  * the state of the scheduler: it requests the expiration of the
1560  * in-service queue (unconditionally) only for queues that need to
1561  * recover a hole. Then it delegates to other parts of the code the
1562  * responsibility of handling the above case 2.
1563  */
1564 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1565 						struct bfq_queue *bfqq,
1566 						bool arrived_in_time)
1567 {
1568 	struct bfq_entity *entity = &bfqq->entity;
1569 
1570 	/*
1571 	 * In the next compound condition, we check also whether there
1572 	 * is some budget left, because otherwise there is no point in
1573 	 * trying to go on serving bfqq with this same budget: bfqq
1574 	 * would be expired immediately after being selected for
1575 	 * service. This would only cause useless overhead.
1576 	 */
1577 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1578 	    bfq_bfqq_budget_left(bfqq) > 0) {
1579 		/*
1580 		 * We do not clear the flag non_blocking_wait_rq here, as
1581 		 * the latter is used in bfq_activate_bfqq to signal
1582 		 * that timestamps need to be back-shifted (and is
1583 		 * cleared right after).
1584 		 */
1585 
1586 		/*
1587 		 * In next assignment we rely on that either
1588 		 * entity->service or entity->budget are not updated
1589 		 * on expiration if bfqq is empty (see
1590 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1591 		 * remain unchanged after such an expiration, and the
1592 		 * following statement therefore assigns to
1593 		 * entity->budget the remaining budget on such an
1594 		 * expiration.
1595 		 */
1596 		entity->budget = min_t(unsigned long,
1597 				       bfq_bfqq_budget_left(bfqq),
1598 				       bfqq->max_budget);
1599 
1600 		/*
1601 		 * At this point, we have used entity->service to get
1602 		 * the budget left (needed for updating
1603 		 * entity->budget). Thus we finally can, and have to,
1604 		 * reset entity->service. The latter must be reset
1605 		 * because bfqq would otherwise be charged again for
1606 		 * the service it has received during its previous
1607 		 * service slot(s).
1608 		 */
1609 		entity->service = 0;
1610 
1611 		return true;
1612 	}
1613 
1614 	/*
1615 	 * We can finally complete expiration, by setting service to 0.
1616 	 */
1617 	entity->service = 0;
1618 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1619 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1620 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1621 	return false;
1622 }
1623 
1624 /*
1625  * Return the farthest past time instant according to jiffies
1626  * macros.
1627  */
1628 static unsigned long bfq_smallest_from_now(void)
1629 {
1630 	return jiffies - MAX_JIFFY_OFFSET;
1631 }
1632 
1633 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1634 					     struct bfq_queue *bfqq,
1635 					     unsigned int old_wr_coeff,
1636 					     bool wr_or_deserves_wr,
1637 					     bool interactive,
1638 					     bool in_burst,
1639 					     bool soft_rt)
1640 {
1641 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1642 		/* start a weight-raising period */
1643 		if (interactive) {
1644 			bfqq->service_from_wr = 0;
1645 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1646 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1647 		} else {
1648 			/*
1649 			 * No interactive weight raising in progress
1650 			 * here: assign minus infinity to
1651 			 * wr_start_at_switch_to_srt, to make sure
1652 			 * that, at the end of the soft-real-time
1653 			 * weight raising periods that is starting
1654 			 * now, no interactive weight-raising period
1655 			 * may be wrongly considered as still in
1656 			 * progress (and thus actually started by
1657 			 * mistake).
1658 			 */
1659 			bfqq->wr_start_at_switch_to_srt =
1660 				bfq_smallest_from_now();
1661 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1662 				BFQ_SOFTRT_WEIGHT_FACTOR;
1663 			bfqq->wr_cur_max_time =
1664 				bfqd->bfq_wr_rt_max_time;
1665 		}
1666 
1667 		/*
1668 		 * If needed, further reduce budget to make sure it is
1669 		 * close to bfqq's backlog, so as to reduce the
1670 		 * scheduling-error component due to a too large
1671 		 * budget. Do not care about throughput consequences,
1672 		 * but only about latency. Finally, do not assign a
1673 		 * too small budget either, to avoid increasing
1674 		 * latency by causing too frequent expirations.
1675 		 */
1676 		bfqq->entity.budget = min_t(unsigned long,
1677 					    bfqq->entity.budget,
1678 					    2 * bfq_min_budget(bfqd));
1679 	} else if (old_wr_coeff > 1) {
1680 		if (interactive) { /* update wr coeff and duration */
1681 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1682 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1683 		} else if (in_burst)
1684 			bfqq->wr_coeff = 1;
1685 		else if (soft_rt) {
1686 			/*
1687 			 * The application is now or still meeting the
1688 			 * requirements for being deemed soft rt.  We
1689 			 * can then correctly and safely (re)charge
1690 			 * the weight-raising duration for the
1691 			 * application with the weight-raising
1692 			 * duration for soft rt applications.
1693 			 *
1694 			 * In particular, doing this recharge now, i.e.,
1695 			 * before the weight-raising period for the
1696 			 * application finishes, reduces the probability
1697 			 * of the following negative scenario:
1698 			 * 1) the weight of a soft rt application is
1699 			 *    raised at startup (as for any newly
1700 			 *    created application),
1701 			 * 2) since the application is not interactive,
1702 			 *    at a certain time weight-raising is
1703 			 *    stopped for the application,
1704 			 * 3) at that time the application happens to
1705 			 *    still have pending requests, and hence
1706 			 *    is destined to not have a chance to be
1707 			 *    deemed soft rt before these requests are
1708 			 *    completed (see the comments to the
1709 			 *    function bfq_bfqq_softrt_next_start()
1710 			 *    for details on soft rt detection),
1711 			 * 4) these pending requests experience a high
1712 			 *    latency because the application is not
1713 			 *    weight-raised while they are pending.
1714 			 */
1715 			if (bfqq->wr_cur_max_time !=
1716 				bfqd->bfq_wr_rt_max_time) {
1717 				bfqq->wr_start_at_switch_to_srt =
1718 					bfqq->last_wr_start_finish;
1719 
1720 				bfqq->wr_cur_max_time =
1721 					bfqd->bfq_wr_rt_max_time;
1722 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1723 					BFQ_SOFTRT_WEIGHT_FACTOR;
1724 			}
1725 			bfqq->last_wr_start_finish = jiffies;
1726 		}
1727 	}
1728 }
1729 
1730 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1731 					struct bfq_queue *bfqq)
1732 {
1733 	return bfqq->dispatched == 0 &&
1734 		time_is_before_jiffies(
1735 			bfqq->budget_timeout +
1736 			bfqd->bfq_wr_min_idle_time);
1737 }
1738 
1739 
1740 /*
1741  * Return true if bfqq is in a higher priority class, or has a higher
1742  * weight than the in-service queue.
1743  */
1744 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1745 					    struct bfq_queue *in_serv_bfqq)
1746 {
1747 	int bfqq_weight, in_serv_weight;
1748 
1749 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1750 		return true;
1751 
1752 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1753 		bfqq_weight = bfqq->entity.weight;
1754 		in_serv_weight = in_serv_bfqq->entity.weight;
1755 	} else {
1756 		if (bfqq->entity.parent)
1757 			bfqq_weight = bfqq->entity.parent->weight;
1758 		else
1759 			bfqq_weight = bfqq->entity.weight;
1760 		if (in_serv_bfqq->entity.parent)
1761 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1762 		else
1763 			in_serv_weight = in_serv_bfqq->entity.weight;
1764 	}
1765 
1766 	return bfqq_weight > in_serv_weight;
1767 }
1768 
1769 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1770 
1771 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1772 					     struct bfq_queue *bfqq,
1773 					     int old_wr_coeff,
1774 					     struct request *rq,
1775 					     bool *interactive)
1776 {
1777 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1778 		bfqq_wants_to_preempt,
1779 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1780 		/*
1781 		 * See the comments on
1782 		 * bfq_bfqq_update_budg_for_activation for
1783 		 * details on the usage of the next variable.
1784 		 */
1785 		arrived_in_time =  ktime_get_ns() <=
1786 			bfqq->ttime.last_end_request +
1787 			bfqd->bfq_slice_idle * 3;
1788 
1789 
1790 	/*
1791 	 * bfqq deserves to be weight-raised if:
1792 	 * - it is sync,
1793 	 * - it does not belong to a large burst,
1794 	 * - it has been idle for enough time or is soft real-time,
1795 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1796 	 * - has a default weight (otherwise we assume the user wanted
1797 	 *   to control its weight explicitly)
1798 	 */
1799 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1800 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1801 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1802 		!in_burst &&
1803 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1804 		bfqq->dispatched == 0 &&
1805 		bfqq->entity.new_weight == 40;
1806 	*interactive = !in_burst && idle_for_long_time &&
1807 		bfqq->entity.new_weight == 40;
1808 	/*
1809 	 * Merged bfq_queues are kept out of weight-raising
1810 	 * (low-latency) mechanisms. The reason is that these queues
1811 	 * are usually created for non-interactive and
1812 	 * non-soft-real-time tasks. Yet this is not the case for
1813 	 * stably-merged queues. These queues are merged just because
1814 	 * they are created shortly after each other. So they may
1815 	 * easily serve the I/O of an interactive or soft-real time
1816 	 * application, if the application happens to spawn multiple
1817 	 * processes. So let also stably-merged queued enjoy weight
1818 	 * raising.
1819 	 */
1820 	wr_or_deserves_wr = bfqd->low_latency &&
1821 		(bfqq->wr_coeff > 1 ||
1822 		 (bfq_bfqq_sync(bfqq) &&
1823 		  (bfqq->bic || RQ_BIC(rq)->stably_merged) &&
1824 		   (*interactive || soft_rt)));
1825 
1826 	/*
1827 	 * Using the last flag, update budget and check whether bfqq
1828 	 * may want to preempt the in-service queue.
1829 	 */
1830 	bfqq_wants_to_preempt =
1831 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1832 						    arrived_in_time);
1833 
1834 	/*
1835 	 * If bfqq happened to be activated in a burst, but has been
1836 	 * idle for much more than an interactive queue, then we
1837 	 * assume that, in the overall I/O initiated in the burst, the
1838 	 * I/O associated with bfqq is finished. So bfqq does not need
1839 	 * to be treated as a queue belonging to a burst
1840 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1841 	 * if set, and remove bfqq from the burst list if it's
1842 	 * there. We do not decrement burst_size, because the fact
1843 	 * that bfqq does not need to belong to the burst list any
1844 	 * more does not invalidate the fact that bfqq was created in
1845 	 * a burst.
1846 	 */
1847 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1848 	    idle_for_long_time &&
1849 	    time_is_before_jiffies(
1850 		    bfqq->budget_timeout +
1851 		    msecs_to_jiffies(10000))) {
1852 		hlist_del_init(&bfqq->burst_list_node);
1853 		bfq_clear_bfqq_in_large_burst(bfqq);
1854 	}
1855 
1856 	bfq_clear_bfqq_just_created(bfqq);
1857 
1858 	if (bfqd->low_latency) {
1859 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1860 			/* wraparound */
1861 			bfqq->split_time =
1862 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1863 
1864 		if (time_is_before_jiffies(bfqq->split_time +
1865 					   bfqd->bfq_wr_min_idle_time)) {
1866 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1867 							 old_wr_coeff,
1868 							 wr_or_deserves_wr,
1869 							 *interactive,
1870 							 in_burst,
1871 							 soft_rt);
1872 
1873 			if (old_wr_coeff != bfqq->wr_coeff)
1874 				bfqq->entity.prio_changed = 1;
1875 		}
1876 	}
1877 
1878 	bfqq->last_idle_bklogged = jiffies;
1879 	bfqq->service_from_backlogged = 0;
1880 	bfq_clear_bfqq_softrt_update(bfqq);
1881 
1882 	bfq_add_bfqq_busy(bfqq);
1883 
1884 	/*
1885 	 * Expire in-service queue if preemption may be needed for
1886 	 * guarantees or throughput. As for guarantees, we care
1887 	 * explicitly about two cases. The first is that bfqq has to
1888 	 * recover a service hole, as explained in the comments on
1889 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1890 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1891 	 * carry time-critical I/O, then bfqq's bandwidth is less
1892 	 * important than that of queues that carry time-critical I/O.
1893 	 * So, as a further constraint, we consider this case only if
1894 	 * bfqq is at least as weight-raised, i.e., at least as time
1895 	 * critical, as the in-service queue.
1896 	 *
1897 	 * The second case is that bfqq is in a higher priority class,
1898 	 * or has a higher weight than the in-service queue. If this
1899 	 * condition does not hold, we don't care because, even if
1900 	 * bfqq does not start to be served immediately, the resulting
1901 	 * delay for bfqq's I/O is however lower or much lower than
1902 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1903 	 *
1904 	 * In both cases, preemption is needed only if, according to
1905 	 * the timestamps of both bfqq and of the in-service queue,
1906 	 * bfqq actually is the next queue to serve. So, to reduce
1907 	 * useless preemptions, the return value of
1908 	 * next_queue_may_preempt() is considered in the next compound
1909 	 * condition too. Yet next_queue_may_preempt() just checks a
1910 	 * simple, necessary condition for bfqq to be the next queue
1911 	 * to serve. In fact, to evaluate a sufficient condition, the
1912 	 * timestamps of the in-service queue would need to be
1913 	 * updated, and this operation is quite costly (see the
1914 	 * comments on bfq_bfqq_update_budg_for_activation()).
1915 	 *
1916 	 * As for throughput, we ask bfq_better_to_idle() whether we
1917 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1918 	 * says no, then plugging is not needed any longer, either to
1919 	 * boost throughput or to perserve service guarantees. Then
1920 	 * the best option is to stop plugging I/O, as not doing so
1921 	 * would certainly lower throughput. We may end up in this
1922 	 * case if: (1) upon a dispatch attempt, we detected that it
1923 	 * was better to plug I/O dispatch, and to wait for a new
1924 	 * request to arrive for the currently in-service queue, but
1925 	 * (2) this switch of bfqq to busy changes the scenario.
1926 	 */
1927 	if (bfqd->in_service_queue &&
1928 	    ((bfqq_wants_to_preempt &&
1929 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1930 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1931 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1932 	    next_queue_may_preempt(bfqd))
1933 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1934 				false, BFQQE_PREEMPTED);
1935 }
1936 
1937 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1938 				   struct bfq_queue *bfqq)
1939 {
1940 	/* invalidate baseline total service time */
1941 	bfqq->last_serv_time_ns = 0;
1942 
1943 	/*
1944 	 * Reset pointer in case we are waiting for
1945 	 * some request completion.
1946 	 */
1947 	bfqd->waited_rq = NULL;
1948 
1949 	/*
1950 	 * If bfqq has a short think time, then start by setting the
1951 	 * inject limit to 0 prudentially, because the service time of
1952 	 * an injected I/O request may be higher than the think time
1953 	 * of bfqq, and therefore, if one request was injected when
1954 	 * bfqq remains empty, this injected request might delay the
1955 	 * service of the next I/O request for bfqq significantly. In
1956 	 * case bfqq can actually tolerate some injection, then the
1957 	 * adaptive update will however raise the limit soon. This
1958 	 * lucky circumstance holds exactly because bfqq has a short
1959 	 * think time, and thus, after remaining empty, is likely to
1960 	 * get new I/O enqueued---and then completed---before being
1961 	 * expired. This is the very pattern that gives the
1962 	 * limit-update algorithm the chance to measure the effect of
1963 	 * injection on request service times, and then to update the
1964 	 * limit accordingly.
1965 	 *
1966 	 * However, in the following special case, the inject limit is
1967 	 * left to 1 even if the think time is short: bfqq's I/O is
1968 	 * synchronized with that of some other queue, i.e., bfqq may
1969 	 * receive new I/O only after the I/O of the other queue is
1970 	 * completed. Keeping the inject limit to 1 allows the
1971 	 * blocking I/O to be served while bfqq is in service. And
1972 	 * this is very convenient both for bfqq and for overall
1973 	 * throughput, as explained in detail in the comments in
1974 	 * bfq_update_has_short_ttime().
1975 	 *
1976 	 * On the opposite end, if bfqq has a long think time, then
1977 	 * start directly by 1, because:
1978 	 * a) on the bright side, keeping at most one request in
1979 	 * service in the drive is unlikely to cause any harm to the
1980 	 * latency of bfqq's requests, as the service time of a single
1981 	 * request is likely to be lower than the think time of bfqq;
1982 	 * b) on the downside, after becoming empty, bfqq is likely to
1983 	 * expire before getting its next request. With this request
1984 	 * arrival pattern, it is very hard to sample total service
1985 	 * times and update the inject limit accordingly (see comments
1986 	 * on bfq_update_inject_limit()). So the limit is likely to be
1987 	 * never, or at least seldom, updated.  As a consequence, by
1988 	 * setting the limit to 1, we avoid that no injection ever
1989 	 * occurs with bfqq. On the downside, this proactive step
1990 	 * further reduces chances to actually compute the baseline
1991 	 * total service time. Thus it reduces chances to execute the
1992 	 * limit-update algorithm and possibly raise the limit to more
1993 	 * than 1.
1994 	 */
1995 	if (bfq_bfqq_has_short_ttime(bfqq))
1996 		bfqq->inject_limit = 0;
1997 	else
1998 		bfqq->inject_limit = 1;
1999 
2000 	bfqq->decrease_time_jif = jiffies;
2001 }
2002 
2003 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
2004 {
2005 	u64 tot_io_time = now_ns - bfqq->io_start_time;
2006 
2007 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
2008 		bfqq->tot_idle_time +=
2009 			now_ns - bfqq->ttime.last_end_request;
2010 
2011 	if (unlikely(bfq_bfqq_just_created(bfqq)))
2012 		return;
2013 
2014 	/*
2015 	 * Must be busy for at least about 80% of the time to be
2016 	 * considered I/O bound.
2017 	 */
2018 	if (bfqq->tot_idle_time * 5 > tot_io_time)
2019 		bfq_clear_bfqq_IO_bound(bfqq);
2020 	else
2021 		bfq_mark_bfqq_IO_bound(bfqq);
2022 
2023 	/*
2024 	 * Keep an observation window of at most 200 ms in the past
2025 	 * from now.
2026 	 */
2027 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
2028 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
2029 		bfqq->tot_idle_time >>= 1;
2030 	}
2031 }
2032 
2033 /*
2034  * Detect whether bfqq's I/O seems synchronized with that of some
2035  * other queue, i.e., whether bfqq, after remaining empty, happens to
2036  * receive new I/O only right after some I/O request of the other
2037  * queue has been completed. We call waker queue the other queue, and
2038  * we assume, for simplicity, that bfqq may have at most one waker
2039  * queue.
2040  *
2041  * A remarkable throughput boost can be reached by unconditionally
2042  * injecting the I/O of the waker queue, every time a new
2043  * bfq_dispatch_request happens to be invoked while I/O is being
2044  * plugged for bfqq.  In addition to boosting throughput, this
2045  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
2046  * bfqq. Note that these same results may be achieved with the general
2047  * injection mechanism, but less effectively. For details on this
2048  * aspect, see the comments on the choice of the queue for injection
2049  * in bfq_select_queue().
2050  *
2051  * Turning back to the detection of a waker queue, a queue Q is deemed as a
2052  * waker queue for bfqq if, for three consecutive times, bfqq happens to become
2053  * non empty right after a request of Q has been completed within given
2054  * timeout. In this respect, even if bfqq is empty, we do not check for a waker
2055  * if it still has some in-flight I/O. In fact, in this case bfqq is actually
2056  * still being served by the drive, and may receive new I/O on the completion
2057  * of some of the in-flight requests. In particular, on the first time, Q is
2058  * tentatively set as a candidate waker queue, while on the third consecutive
2059  * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q
2060  * is a waker queue for bfqq. These detection steps are performed only if bfqq
2061  * has a long think time, so as to make it more likely that bfqq's I/O is
2062  * actually being blocked by a synchronization. This last filter, plus the
2063  * above three-times requirement and time limit for detection, make false
2064  * positives less likely.
2065  *
2066  * NOTE
2067  *
2068  * The sooner a waker queue is detected, the sooner throughput can be
2069  * boosted by injecting I/O from the waker queue. Fortunately,
2070  * detection is likely to be actually fast, for the following
2071  * reasons. While blocked by synchronization, bfqq has a long think
2072  * time. This implies that bfqq's inject limit is at least equal to 1
2073  * (see the comments in bfq_update_inject_limit()). So, thanks to
2074  * injection, the waker queue is likely to be served during the very
2075  * first I/O-plugging time interval for bfqq. This triggers the first
2076  * step of the detection mechanism. Thanks again to injection, the
2077  * candidate waker queue is then likely to be confirmed no later than
2078  * during the next I/O-plugging interval for bfqq.
2079  *
2080  * ISSUE
2081  *
2082  * On queue merging all waker information is lost.
2083  */
2084 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2085 			    u64 now_ns)
2086 {
2087 	char waker_name[MAX_BFQQ_NAME_LENGTH];
2088 
2089 	if (!bfqd->last_completed_rq_bfqq ||
2090 	    bfqd->last_completed_rq_bfqq == bfqq ||
2091 	    bfq_bfqq_has_short_ttime(bfqq) ||
2092 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
2093 	    bfqd->last_completed_rq_bfqq == &bfqd->oom_bfqq ||
2094 	    bfqq == &bfqd->oom_bfqq)
2095 		return;
2096 
2097 	/*
2098 	 * We reset waker detection logic also if too much time has passed
2099  	 * since the first detection. If wakeups are rare, pointless idling
2100 	 * doesn't hurt throughput that much. The condition below makes sure
2101 	 * we do not uselessly idle blocking waker in more than 1/64 cases.
2102 	 */
2103 	if (bfqd->last_completed_rq_bfqq !=
2104 	    bfqq->tentative_waker_bfqq ||
2105 	    now_ns > bfqq->waker_detection_started +
2106 					128 * (u64)bfqd->bfq_slice_idle) {
2107 		/*
2108 		 * First synchronization detected with a
2109 		 * candidate waker queue, or with a different
2110 		 * candidate waker queue from the current one.
2111 		 */
2112 		bfqq->tentative_waker_bfqq =
2113 			bfqd->last_completed_rq_bfqq;
2114 		bfqq->num_waker_detections = 1;
2115 		bfqq->waker_detection_started = now_ns;
2116 		bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name,
2117 			      MAX_BFQQ_NAME_LENGTH);
2118 		bfq_log_bfqq(bfqd, bfqq, "set tentative waker %s", waker_name);
2119 	} else /* Same tentative waker queue detected again */
2120 		bfqq->num_waker_detections++;
2121 
2122 	if (bfqq->num_waker_detections == 3) {
2123 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2124 		bfqq->tentative_waker_bfqq = NULL;
2125 		bfq_bfqq_name(bfqq->waker_bfqq, waker_name,
2126 			      MAX_BFQQ_NAME_LENGTH);
2127 		bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name);
2128 
2129 		/*
2130 		 * If the waker queue disappears, then
2131 		 * bfqq->waker_bfqq must be reset. To
2132 		 * this goal, we maintain in each
2133 		 * waker queue a list, woken_list, of
2134 		 * all the queues that reference the
2135 		 * waker queue through their
2136 		 * waker_bfqq pointer. When the waker
2137 		 * queue exits, the waker_bfqq pointer
2138 		 * of all the queues in the woken_list
2139 		 * is reset.
2140 		 *
2141 		 * In addition, if bfqq is already in
2142 		 * the woken_list of a waker queue,
2143 		 * then, before being inserted into
2144 		 * the woken_list of a new waker
2145 		 * queue, bfqq must be removed from
2146 		 * the woken_list of the old waker
2147 		 * queue.
2148 		 */
2149 		if (!hlist_unhashed(&bfqq->woken_list_node))
2150 			hlist_del_init(&bfqq->woken_list_node);
2151 		hlist_add_head(&bfqq->woken_list_node,
2152 			       &bfqd->last_completed_rq_bfqq->woken_list);
2153 	}
2154 }
2155 
2156 static void bfq_add_request(struct request *rq)
2157 {
2158 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2159 	struct bfq_data *bfqd = bfqq->bfqd;
2160 	struct request *next_rq, *prev;
2161 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2162 	bool interactive = false;
2163 	u64 now_ns = ktime_get_ns();
2164 
2165 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2166 	bfqq->queued[rq_is_sync(rq)]++;
2167 	/*
2168 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2169 	 * may be read without holding the lock in bfq_has_work().
2170 	 */
2171 	WRITE_ONCE(bfqd->queued, bfqd->queued + 1);
2172 
2173 	if (bfq_bfqq_sync(bfqq) && RQ_BIC(rq)->requests <= 1) {
2174 		bfq_check_waker(bfqd, bfqq, now_ns);
2175 
2176 		/*
2177 		 * Periodically reset inject limit, to make sure that
2178 		 * the latter eventually drops in case workload
2179 		 * changes, see step (3) in the comments on
2180 		 * bfq_update_inject_limit().
2181 		 */
2182 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2183 					     msecs_to_jiffies(1000)))
2184 			bfq_reset_inject_limit(bfqd, bfqq);
2185 
2186 		/*
2187 		 * The following conditions must hold to setup a new
2188 		 * sampling of total service time, and then a new
2189 		 * update of the inject limit:
2190 		 * - bfqq is in service, because the total service
2191 		 *   time is evaluated only for the I/O requests of
2192 		 *   the queues in service;
2193 		 * - this is the right occasion to compute or to
2194 		 *   lower the baseline total service time, because
2195 		 *   there are actually no requests in the drive,
2196 		 *   or
2197 		 *   the baseline total service time is available, and
2198 		 *   this is the right occasion to compute the other
2199 		 *   quantity needed to update the inject limit, i.e.,
2200 		 *   the total service time caused by the amount of
2201 		 *   injection allowed by the current value of the
2202 		 *   limit. It is the right occasion because injection
2203 		 *   has actually been performed during the service
2204 		 *   hole, and there are still in-flight requests,
2205 		 *   which are very likely to be exactly the injected
2206 		 *   requests, or part of them;
2207 		 * - the minimum interval for sampling the total
2208 		 *   service time and updating the inject limit has
2209 		 *   elapsed.
2210 		 */
2211 		if (bfqq == bfqd->in_service_queue &&
2212 		    (bfqd->rq_in_driver == 0 ||
2213 		     (bfqq->last_serv_time_ns > 0 &&
2214 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2215 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2216 					      msecs_to_jiffies(10))) {
2217 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2218 			/*
2219 			 * Start the state machine for measuring the
2220 			 * total service time of rq: setting
2221 			 * wait_dispatch will cause bfqd->waited_rq to
2222 			 * be set when rq will be dispatched.
2223 			 */
2224 			bfqd->wait_dispatch = true;
2225 			/*
2226 			 * If there is no I/O in service in the drive,
2227 			 * then possible injection occurred before the
2228 			 * arrival of rq will not affect the total
2229 			 * service time of rq. So the injection limit
2230 			 * must not be updated as a function of such
2231 			 * total service time, unless new injection
2232 			 * occurs before rq is completed. To have the
2233 			 * injection limit updated only in the latter
2234 			 * case, reset rqs_injected here (rqs_injected
2235 			 * will be set in case injection is performed
2236 			 * on bfqq before rq is completed).
2237 			 */
2238 			if (bfqd->rq_in_driver == 0)
2239 				bfqd->rqs_injected = false;
2240 		}
2241 	}
2242 
2243 	if (bfq_bfqq_sync(bfqq))
2244 		bfq_update_io_intensity(bfqq, now_ns);
2245 
2246 	elv_rb_add(&bfqq->sort_list, rq);
2247 
2248 	/*
2249 	 * Check if this request is a better next-serve candidate.
2250 	 */
2251 	prev = bfqq->next_rq;
2252 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2253 	bfqq->next_rq = next_rq;
2254 
2255 	/*
2256 	 * Adjust priority tree position, if next_rq changes.
2257 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2258 	 */
2259 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2260 		bfq_pos_tree_add_move(bfqd, bfqq);
2261 
2262 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2263 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2264 						 rq, &interactive);
2265 	else {
2266 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2267 		    time_is_before_jiffies(
2268 				bfqq->last_wr_start_finish +
2269 				bfqd->bfq_wr_min_inter_arr_async)) {
2270 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2271 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2272 
2273 			bfqd->wr_busy_queues++;
2274 			bfqq->entity.prio_changed = 1;
2275 		}
2276 		if (prev != bfqq->next_rq)
2277 			bfq_updated_next_req(bfqd, bfqq);
2278 	}
2279 
2280 	/*
2281 	 * Assign jiffies to last_wr_start_finish in the following
2282 	 * cases:
2283 	 *
2284 	 * . if bfqq is not going to be weight-raised, because, for
2285 	 *   non weight-raised queues, last_wr_start_finish stores the
2286 	 *   arrival time of the last request; as of now, this piece
2287 	 *   of information is used only for deciding whether to
2288 	 *   weight-raise async queues
2289 	 *
2290 	 * . if bfqq is not weight-raised, because, if bfqq is now
2291 	 *   switching to weight-raised, then last_wr_start_finish
2292 	 *   stores the time when weight-raising starts
2293 	 *
2294 	 * . if bfqq is interactive, because, regardless of whether
2295 	 *   bfqq is currently weight-raised, the weight-raising
2296 	 *   period must start or restart (this case is considered
2297 	 *   separately because it is not detected by the above
2298 	 *   conditions, if bfqq is already weight-raised)
2299 	 *
2300 	 * last_wr_start_finish has to be updated also if bfqq is soft
2301 	 * real-time, because the weight-raising period is constantly
2302 	 * restarted on idle-to-busy transitions for these queues, but
2303 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2304 	 * needed.
2305 	 */
2306 	if (bfqd->low_latency &&
2307 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2308 		bfqq->last_wr_start_finish = jiffies;
2309 }
2310 
2311 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2312 					  struct bio *bio,
2313 					  struct request_queue *q)
2314 {
2315 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2316 
2317 
2318 	if (bfqq)
2319 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2320 
2321 	return NULL;
2322 }
2323 
2324 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2325 {
2326 	if (last_pos)
2327 		return abs(blk_rq_pos(rq) - last_pos);
2328 
2329 	return 0;
2330 }
2331 
2332 static void bfq_remove_request(struct request_queue *q,
2333 			       struct request *rq)
2334 {
2335 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2336 	struct bfq_data *bfqd = bfqq->bfqd;
2337 	const int sync = rq_is_sync(rq);
2338 
2339 	if (bfqq->next_rq == rq) {
2340 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2341 		bfq_updated_next_req(bfqd, bfqq);
2342 	}
2343 
2344 	if (rq->queuelist.prev != &rq->queuelist)
2345 		list_del_init(&rq->queuelist);
2346 	bfqq->queued[sync]--;
2347 	/*
2348 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2349 	 * may be read without holding the lock in bfq_has_work().
2350 	 */
2351 	WRITE_ONCE(bfqd->queued, bfqd->queued - 1);
2352 	elv_rb_del(&bfqq->sort_list, rq);
2353 
2354 	elv_rqhash_del(q, rq);
2355 	if (q->last_merge == rq)
2356 		q->last_merge = NULL;
2357 
2358 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2359 		bfqq->next_rq = NULL;
2360 
2361 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2362 			bfq_del_bfqq_busy(bfqq, false);
2363 			/*
2364 			 * bfqq emptied. In normal operation, when
2365 			 * bfqq is empty, bfqq->entity.service and
2366 			 * bfqq->entity.budget must contain,
2367 			 * respectively, the service received and the
2368 			 * budget used last time bfqq emptied. These
2369 			 * facts do not hold in this case, as at least
2370 			 * this last removal occurred while bfqq is
2371 			 * not in service. To avoid inconsistencies,
2372 			 * reset both bfqq->entity.service and
2373 			 * bfqq->entity.budget, if bfqq has still a
2374 			 * process that may issue I/O requests to it.
2375 			 */
2376 			bfqq->entity.budget = bfqq->entity.service = 0;
2377 		}
2378 
2379 		/*
2380 		 * Remove queue from request-position tree as it is empty.
2381 		 */
2382 		if (bfqq->pos_root) {
2383 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2384 			bfqq->pos_root = NULL;
2385 		}
2386 	} else {
2387 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2388 		if (unlikely(!bfqd->nonrot_with_queueing))
2389 			bfq_pos_tree_add_move(bfqd, bfqq);
2390 	}
2391 
2392 	if (rq->cmd_flags & REQ_META)
2393 		bfqq->meta_pending--;
2394 
2395 }
2396 
2397 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2398 		unsigned int nr_segs)
2399 {
2400 	struct bfq_data *bfqd = q->elevator->elevator_data;
2401 	struct request *free = NULL;
2402 	/*
2403 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2404 	 * store its return value for later use, to avoid nesting
2405 	 * queue_lock inside the bfqd->lock. We assume that the bic
2406 	 * returned by bfq_bic_lookup does not go away before
2407 	 * bfqd->lock is taken.
2408 	 */
2409 	struct bfq_io_cq *bic = bfq_bic_lookup(q);
2410 	bool ret;
2411 
2412 	spin_lock_irq(&bfqd->lock);
2413 
2414 	if (bic) {
2415 		/*
2416 		 * Make sure cgroup info is uptodate for current process before
2417 		 * considering the merge.
2418 		 */
2419 		bfq_bic_update_cgroup(bic, bio);
2420 
2421 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2422 	} else {
2423 		bfqd->bio_bfqq = NULL;
2424 	}
2425 	bfqd->bio_bic = bic;
2426 
2427 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2428 
2429 	spin_unlock_irq(&bfqd->lock);
2430 	if (free)
2431 		blk_mq_free_request(free);
2432 
2433 	return ret;
2434 }
2435 
2436 static int bfq_request_merge(struct request_queue *q, struct request **req,
2437 			     struct bio *bio)
2438 {
2439 	struct bfq_data *bfqd = q->elevator->elevator_data;
2440 	struct request *__rq;
2441 
2442 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2443 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2444 		*req = __rq;
2445 
2446 		if (blk_discard_mergable(__rq))
2447 			return ELEVATOR_DISCARD_MERGE;
2448 		return ELEVATOR_FRONT_MERGE;
2449 	}
2450 
2451 	return ELEVATOR_NO_MERGE;
2452 }
2453 
2454 static void bfq_request_merged(struct request_queue *q, struct request *req,
2455 			       enum elv_merge type)
2456 {
2457 	if (type == ELEVATOR_FRONT_MERGE &&
2458 	    rb_prev(&req->rb_node) &&
2459 	    blk_rq_pos(req) <
2460 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2461 				    struct request, rb_node))) {
2462 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2463 		struct bfq_data *bfqd;
2464 		struct request *prev, *next_rq;
2465 
2466 		if (!bfqq)
2467 			return;
2468 
2469 		bfqd = bfqq->bfqd;
2470 
2471 		/* Reposition request in its sort_list */
2472 		elv_rb_del(&bfqq->sort_list, req);
2473 		elv_rb_add(&bfqq->sort_list, req);
2474 
2475 		/* Choose next request to be served for bfqq */
2476 		prev = bfqq->next_rq;
2477 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2478 					 bfqd->last_position);
2479 		bfqq->next_rq = next_rq;
2480 		/*
2481 		 * If next_rq changes, update both the queue's budget to
2482 		 * fit the new request and the queue's position in its
2483 		 * rq_pos_tree.
2484 		 */
2485 		if (prev != bfqq->next_rq) {
2486 			bfq_updated_next_req(bfqd, bfqq);
2487 			/*
2488 			 * See comments on bfq_pos_tree_add_move() for
2489 			 * the unlikely().
2490 			 */
2491 			if (unlikely(!bfqd->nonrot_with_queueing))
2492 				bfq_pos_tree_add_move(bfqd, bfqq);
2493 		}
2494 	}
2495 }
2496 
2497 /*
2498  * This function is called to notify the scheduler that the requests
2499  * rq and 'next' have been merged, with 'next' going away.  BFQ
2500  * exploits this hook to address the following issue: if 'next' has a
2501  * fifo_time lower that rq, then the fifo_time of rq must be set to
2502  * the value of 'next', to not forget the greater age of 'next'.
2503  *
2504  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2505  * on that rq is picked from the hash table q->elevator->hash, which,
2506  * in its turn, is filled only with I/O requests present in
2507  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2508  * the function that fills this hash table (elv_rqhash_add) is called
2509  * only by bfq_insert_request.
2510  */
2511 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2512 				struct request *next)
2513 {
2514 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2515 		*next_bfqq = RQ_BFQQ(next);
2516 
2517 	if (!bfqq)
2518 		goto remove;
2519 
2520 	/*
2521 	 * If next and rq belong to the same bfq_queue and next is older
2522 	 * than rq, then reposition rq in the fifo (by substituting next
2523 	 * with rq). Otherwise, if next and rq belong to different
2524 	 * bfq_queues, never reposition rq: in fact, we would have to
2525 	 * reposition it with respect to next's position in its own fifo,
2526 	 * which would most certainly be too expensive with respect to
2527 	 * the benefits.
2528 	 */
2529 	if (bfqq == next_bfqq &&
2530 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2531 	    next->fifo_time < rq->fifo_time) {
2532 		list_del_init(&rq->queuelist);
2533 		list_replace_init(&next->queuelist, &rq->queuelist);
2534 		rq->fifo_time = next->fifo_time;
2535 	}
2536 
2537 	if (bfqq->next_rq == next)
2538 		bfqq->next_rq = rq;
2539 
2540 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2541 remove:
2542 	/* Merged request may be in the IO scheduler. Remove it. */
2543 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2544 		bfq_remove_request(next->q, next);
2545 		if (next_bfqq)
2546 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2547 						    next->cmd_flags);
2548 	}
2549 }
2550 
2551 /* Must be called with bfqq != NULL */
2552 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2553 {
2554 	/*
2555 	 * If bfqq has been enjoying interactive weight-raising, then
2556 	 * reset soft_rt_next_start. We do it for the following
2557 	 * reason. bfqq may have been conveying the I/O needed to load
2558 	 * a soft real-time application. Such an application actually
2559 	 * exhibits a soft real-time I/O pattern after it finishes
2560 	 * loading, and finally starts doing its job. But, if bfqq has
2561 	 * been receiving a lot of bandwidth so far (likely to happen
2562 	 * on a fast device), then soft_rt_next_start now contains a
2563 	 * high value that. So, without this reset, bfqq would be
2564 	 * prevented from being possibly considered as soft_rt for a
2565 	 * very long time.
2566 	 */
2567 
2568 	if (bfqq->wr_cur_max_time !=
2569 	    bfqq->bfqd->bfq_wr_rt_max_time)
2570 		bfqq->soft_rt_next_start = jiffies;
2571 
2572 	if (bfq_bfqq_busy(bfqq))
2573 		bfqq->bfqd->wr_busy_queues--;
2574 	bfqq->wr_coeff = 1;
2575 	bfqq->wr_cur_max_time = 0;
2576 	bfqq->last_wr_start_finish = jiffies;
2577 	/*
2578 	 * Trigger a weight change on the next invocation of
2579 	 * __bfq_entity_update_weight_prio.
2580 	 */
2581 	bfqq->entity.prio_changed = 1;
2582 }
2583 
2584 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2585 			     struct bfq_group *bfqg)
2586 {
2587 	int i, j;
2588 
2589 	for (i = 0; i < 2; i++)
2590 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2591 			if (bfqg->async_bfqq[i][j])
2592 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2593 	if (bfqg->async_idle_bfqq)
2594 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2595 }
2596 
2597 static void bfq_end_wr(struct bfq_data *bfqd)
2598 {
2599 	struct bfq_queue *bfqq;
2600 
2601 	spin_lock_irq(&bfqd->lock);
2602 
2603 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2604 		bfq_bfqq_end_wr(bfqq);
2605 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2606 		bfq_bfqq_end_wr(bfqq);
2607 	bfq_end_wr_async(bfqd);
2608 
2609 	spin_unlock_irq(&bfqd->lock);
2610 }
2611 
2612 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2613 {
2614 	if (request)
2615 		return blk_rq_pos(io_struct);
2616 	else
2617 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2618 }
2619 
2620 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2621 				  sector_t sector)
2622 {
2623 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2624 	       BFQQ_CLOSE_THR;
2625 }
2626 
2627 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2628 					 struct bfq_queue *bfqq,
2629 					 sector_t sector)
2630 {
2631 	struct rb_root *root = &bfqq_group(bfqq)->rq_pos_tree;
2632 	struct rb_node *parent, *node;
2633 	struct bfq_queue *__bfqq;
2634 
2635 	if (RB_EMPTY_ROOT(root))
2636 		return NULL;
2637 
2638 	/*
2639 	 * First, if we find a request starting at the end of the last
2640 	 * request, choose it.
2641 	 */
2642 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2643 	if (__bfqq)
2644 		return __bfqq;
2645 
2646 	/*
2647 	 * If the exact sector wasn't found, the parent of the NULL leaf
2648 	 * will contain the closest sector (rq_pos_tree sorted by
2649 	 * next_request position).
2650 	 */
2651 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2652 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2653 		return __bfqq;
2654 
2655 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2656 		node = rb_next(&__bfqq->pos_node);
2657 	else
2658 		node = rb_prev(&__bfqq->pos_node);
2659 	if (!node)
2660 		return NULL;
2661 
2662 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2663 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2664 		return __bfqq;
2665 
2666 	return NULL;
2667 }
2668 
2669 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2670 						   struct bfq_queue *cur_bfqq,
2671 						   sector_t sector)
2672 {
2673 	struct bfq_queue *bfqq;
2674 
2675 	/*
2676 	 * We shall notice if some of the queues are cooperating,
2677 	 * e.g., working closely on the same area of the device. In
2678 	 * that case, we can group them together and: 1) don't waste
2679 	 * time idling, and 2) serve the union of their requests in
2680 	 * the best possible order for throughput.
2681 	 */
2682 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2683 	if (!bfqq || bfqq == cur_bfqq)
2684 		return NULL;
2685 
2686 	return bfqq;
2687 }
2688 
2689 static struct bfq_queue *
2690 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2691 {
2692 	int process_refs, new_process_refs;
2693 	struct bfq_queue *__bfqq;
2694 
2695 	/*
2696 	 * If there are no process references on the new_bfqq, then it is
2697 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2698 	 * may have dropped their last reference (not just their last process
2699 	 * reference).
2700 	 */
2701 	if (!bfqq_process_refs(new_bfqq))
2702 		return NULL;
2703 
2704 	/* Avoid a circular list and skip interim queue merges. */
2705 	while ((__bfqq = new_bfqq->new_bfqq)) {
2706 		if (__bfqq == bfqq)
2707 			return NULL;
2708 		new_bfqq = __bfqq;
2709 	}
2710 
2711 	process_refs = bfqq_process_refs(bfqq);
2712 	new_process_refs = bfqq_process_refs(new_bfqq);
2713 	/*
2714 	 * If the process for the bfqq has gone away, there is no
2715 	 * sense in merging the queues.
2716 	 */
2717 	if (process_refs == 0 || new_process_refs == 0)
2718 		return NULL;
2719 
2720 	/*
2721 	 * Make sure merged queues belong to the same parent. Parents could
2722 	 * have changed since the time we decided the two queues are suitable
2723 	 * for merging.
2724 	 */
2725 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2726 		return NULL;
2727 
2728 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2729 		new_bfqq->pid);
2730 
2731 	/*
2732 	 * Merging is just a redirection: the requests of the process
2733 	 * owning one of the two queues are redirected to the other queue.
2734 	 * The latter queue, in its turn, is set as shared if this is the
2735 	 * first time that the requests of some process are redirected to
2736 	 * it.
2737 	 *
2738 	 * We redirect bfqq to new_bfqq and not the opposite, because
2739 	 * we are in the context of the process owning bfqq, thus we
2740 	 * have the io_cq of this process. So we can immediately
2741 	 * configure this io_cq to redirect the requests of the
2742 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2743 	 * not available any more (new_bfqq->bic == NULL).
2744 	 *
2745 	 * Anyway, even in case new_bfqq coincides with the in-service
2746 	 * queue, redirecting requests the in-service queue is the
2747 	 * best option, as we feed the in-service queue with new
2748 	 * requests close to the last request served and, by doing so,
2749 	 * are likely to increase the throughput.
2750 	 */
2751 	bfqq->new_bfqq = new_bfqq;
2752 	/*
2753 	 * The above assignment schedules the following redirections:
2754 	 * each time some I/O for bfqq arrives, the process that
2755 	 * generated that I/O is disassociated from bfqq and
2756 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2757 	 * in advance, adding the number of processes that are
2758 	 * expected to be associated with new_bfqq as they happen to
2759 	 * issue I/O.
2760 	 */
2761 	new_bfqq->ref += process_refs;
2762 	return new_bfqq;
2763 }
2764 
2765 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2766 					struct bfq_queue *new_bfqq)
2767 {
2768 	if (bfq_too_late_for_merging(new_bfqq))
2769 		return false;
2770 
2771 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2772 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2773 		return false;
2774 
2775 	/*
2776 	 * If either of the queues has already been detected as seeky,
2777 	 * then merging it with the other queue is unlikely to lead to
2778 	 * sequential I/O.
2779 	 */
2780 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2781 		return false;
2782 
2783 	/*
2784 	 * Interleaved I/O is known to be done by (some) applications
2785 	 * only for reads, so it does not make sense to merge async
2786 	 * queues.
2787 	 */
2788 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2789 		return false;
2790 
2791 	return true;
2792 }
2793 
2794 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2795 					     struct bfq_queue *bfqq);
2796 
2797 /*
2798  * Attempt to schedule a merge of bfqq with the currently in-service
2799  * queue or with a close queue among the scheduled queues.  Return
2800  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2801  * structure otherwise.
2802  *
2803  * The OOM queue is not allowed to participate to cooperation: in fact, since
2804  * the requests temporarily redirected to the OOM queue could be redirected
2805  * again to dedicated queues at any time, the state needed to correctly
2806  * handle merging with the OOM queue would be quite complex and expensive
2807  * to maintain. Besides, in such a critical condition as an out of memory,
2808  * the benefits of queue merging may be little relevant, or even negligible.
2809  *
2810  * WARNING: queue merging may impair fairness among non-weight raised
2811  * queues, for at least two reasons: 1) the original weight of a
2812  * merged queue may change during the merged state, 2) even being the
2813  * weight the same, a merged queue may be bloated with many more
2814  * requests than the ones produced by its originally-associated
2815  * process.
2816  */
2817 static struct bfq_queue *
2818 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2819 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2820 {
2821 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2822 
2823 	/* if a merge has already been setup, then proceed with that first */
2824 	if (bfqq->new_bfqq)
2825 		return bfqq->new_bfqq;
2826 
2827 	/*
2828 	 * Check delayed stable merge for rotational or non-queueing
2829 	 * devs. For this branch to be executed, bfqq must not be
2830 	 * currently merged with some other queue (i.e., bfqq->bic
2831 	 * must be non null). If we considered also merged queues,
2832 	 * then we should also check whether bfqq has already been
2833 	 * merged with bic->stable_merge_bfqq. But this would be
2834 	 * costly and complicated.
2835 	 */
2836 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2837 		/*
2838 		 * Make sure also that bfqq is sync, because
2839 		 * bic->stable_merge_bfqq may point to some queue (for
2840 		 * stable merging) also if bic is associated with a
2841 		 * sync queue, but this bfqq is async
2842 		 */
2843 		if (bfq_bfqq_sync(bfqq) && bic->stable_merge_bfqq &&
2844 		    !bfq_bfqq_just_created(bfqq) &&
2845 		    time_is_before_jiffies(bfqq->split_time +
2846 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2847 		    time_is_before_jiffies(bfqq->creation_time +
2848 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2849 			struct bfq_queue *stable_merge_bfqq =
2850 				bic->stable_merge_bfqq;
2851 			int proc_ref = min(bfqq_process_refs(bfqq),
2852 					   bfqq_process_refs(stable_merge_bfqq));
2853 
2854 			/* deschedule stable merge, because done or aborted here */
2855 			bfq_put_stable_ref(stable_merge_bfqq);
2856 
2857 			bic->stable_merge_bfqq = NULL;
2858 
2859 			if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2860 			    proc_ref > 0) {
2861 				/* next function will take at least one ref */
2862 				struct bfq_queue *new_bfqq =
2863 					bfq_setup_merge(bfqq, stable_merge_bfqq);
2864 
2865 				if (new_bfqq) {
2866 					bic->stably_merged = true;
2867 					if (new_bfqq->bic)
2868 						new_bfqq->bic->stably_merged =
2869 									true;
2870 				}
2871 				return new_bfqq;
2872 			} else
2873 				return NULL;
2874 		}
2875 	}
2876 
2877 	/*
2878 	 * Do not perform queue merging if the device is non
2879 	 * rotational and performs internal queueing. In fact, such a
2880 	 * device reaches a high speed through internal parallelism
2881 	 * and pipelining. This means that, to reach a high
2882 	 * throughput, it must have many requests enqueued at the same
2883 	 * time. But, in this configuration, the internal scheduling
2884 	 * algorithm of the device does exactly the job of queue
2885 	 * merging: it reorders requests so as to obtain as much as
2886 	 * possible a sequential I/O pattern. As a consequence, with
2887 	 * the workload generated by processes doing interleaved I/O,
2888 	 * the throughput reached by the device is likely to be the
2889 	 * same, with and without queue merging.
2890 	 *
2891 	 * Disabling merging also provides a remarkable benefit in
2892 	 * terms of throughput. Merging tends to make many workloads
2893 	 * artificially more uneven, because of shared queues
2894 	 * remaining non empty for incomparably more time than
2895 	 * non-merged queues. This may accentuate workload
2896 	 * asymmetries. For example, if one of the queues in a set of
2897 	 * merged queues has a higher weight than a normal queue, then
2898 	 * the shared queue may inherit such a high weight and, by
2899 	 * staying almost always active, may force BFQ to perform I/O
2900 	 * plugging most of the time. This evidently makes it harder
2901 	 * for BFQ to let the device reach a high throughput.
2902 	 *
2903 	 * Finally, the likely() macro below is not used because one
2904 	 * of the two branches is more likely than the other, but to
2905 	 * have the code path after the following if() executed as
2906 	 * fast as possible for the case of a non rotational device
2907 	 * with queueing. We want it because this is the fastest kind
2908 	 * of device. On the opposite end, the likely() may lengthen
2909 	 * the execution time of BFQ for the case of slower devices
2910 	 * (rotational or at least without queueing). But in this case
2911 	 * the execution time of BFQ matters very little, if not at
2912 	 * all.
2913 	 */
2914 	if (likely(bfqd->nonrot_with_queueing))
2915 		return NULL;
2916 
2917 	/*
2918 	 * Prevent bfqq from being merged if it has been created too
2919 	 * long ago. The idea is that true cooperating processes, and
2920 	 * thus their associated bfq_queues, are supposed to be
2921 	 * created shortly after each other. This is the case, e.g.,
2922 	 * for KVM/QEMU and dump I/O threads. Basing on this
2923 	 * assumption, the following filtering greatly reduces the
2924 	 * probability that two non-cooperating processes, which just
2925 	 * happen to do close I/O for some short time interval, have
2926 	 * their queues merged by mistake.
2927 	 */
2928 	if (bfq_too_late_for_merging(bfqq))
2929 		return NULL;
2930 
2931 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2932 		return NULL;
2933 
2934 	/* If there is only one backlogged queue, don't search. */
2935 	if (bfq_tot_busy_queues(bfqd) == 1)
2936 		return NULL;
2937 
2938 	in_service_bfqq = bfqd->in_service_queue;
2939 
2940 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2941 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2942 	    bfq_rq_close_to_sector(io_struct, request,
2943 				   bfqd->in_serv_last_pos) &&
2944 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2945 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2946 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2947 		if (new_bfqq)
2948 			return new_bfqq;
2949 	}
2950 	/*
2951 	 * Check whether there is a cooperator among currently scheduled
2952 	 * queues. The only thing we need is that the bio/request is not
2953 	 * NULL, as we need it to establish whether a cooperator exists.
2954 	 */
2955 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2956 			bfq_io_struct_pos(io_struct, request));
2957 
2958 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2959 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2960 		return bfq_setup_merge(bfqq, new_bfqq);
2961 
2962 	return NULL;
2963 }
2964 
2965 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2966 {
2967 	struct bfq_io_cq *bic = bfqq->bic;
2968 
2969 	/*
2970 	 * If !bfqq->bic, the queue is already shared or its requests
2971 	 * have already been redirected to a shared queue; both idle window
2972 	 * and weight raising state have already been saved. Do nothing.
2973 	 */
2974 	if (!bic)
2975 		return;
2976 
2977 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
2978 	bic->saved_inject_limit = bfqq->inject_limit;
2979 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
2980 
2981 	bic->saved_weight = bfqq->entity.orig_weight;
2982 	bic->saved_ttime = bfqq->ttime;
2983 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2984 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2985 	bic->saved_io_start_time = bfqq->io_start_time;
2986 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
2987 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2988 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2989 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2990 		     !bfq_bfqq_in_large_burst(bfqq) &&
2991 		     bfqq->bfqd->low_latency)) {
2992 		/*
2993 		 * bfqq being merged right after being created: bfqq
2994 		 * would have deserved interactive weight raising, but
2995 		 * did not make it to be set in a weight-raised state,
2996 		 * because of this early merge.	Store directly the
2997 		 * weight-raising state that would have been assigned
2998 		 * to bfqq, so that to avoid that bfqq unjustly fails
2999 		 * to enjoy weight raising if split soon.
3000 		 */
3001 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
3002 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
3003 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
3004 		bic->saved_last_wr_start_finish = jiffies;
3005 	} else {
3006 		bic->saved_wr_coeff = bfqq->wr_coeff;
3007 		bic->saved_wr_start_at_switch_to_srt =
3008 			bfqq->wr_start_at_switch_to_srt;
3009 		bic->saved_service_from_wr = bfqq->service_from_wr;
3010 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
3011 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
3012 	}
3013 }
3014 
3015 
3016 static void
3017 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
3018 {
3019 	if (cur_bfqq->entity.parent &&
3020 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
3021 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
3022 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
3023 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
3024 }
3025 
3026 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3027 {
3028 	/*
3029 	 * To prevent bfqq's service guarantees from being violated,
3030 	 * bfqq may be left busy, i.e., queued for service, even if
3031 	 * empty (see comments in __bfq_bfqq_expire() for
3032 	 * details). But, if no process will send requests to bfqq any
3033 	 * longer, then there is no point in keeping bfqq queued for
3034 	 * service. In addition, keeping bfqq queued for service, but
3035 	 * with no process ref any longer, may have caused bfqq to be
3036 	 * freed when dequeued from service. But this is assumed to
3037 	 * never happen.
3038 	 */
3039 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
3040 	    bfqq != bfqd->in_service_queue)
3041 		bfq_del_bfqq_busy(bfqq, false);
3042 
3043 	bfq_reassign_last_bfqq(bfqq, NULL);
3044 
3045 	bfq_put_queue(bfqq);
3046 }
3047 
3048 static void
3049 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
3050 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
3051 {
3052 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
3053 		(unsigned long)new_bfqq->pid);
3054 	/* Save weight raising and idle window of the merged queues */
3055 	bfq_bfqq_save_state(bfqq);
3056 	bfq_bfqq_save_state(new_bfqq);
3057 	if (bfq_bfqq_IO_bound(bfqq))
3058 		bfq_mark_bfqq_IO_bound(new_bfqq);
3059 	bfq_clear_bfqq_IO_bound(bfqq);
3060 
3061 	/*
3062 	 * The processes associated with bfqq are cooperators of the
3063 	 * processes associated with new_bfqq. So, if bfqq has a
3064 	 * waker, then assume that all these processes will be happy
3065 	 * to let bfqq's waker freely inject I/O when they have no
3066 	 * I/O.
3067 	 */
3068 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3069 	    bfqq->waker_bfqq != new_bfqq) {
3070 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3071 		new_bfqq->tentative_waker_bfqq = NULL;
3072 
3073 		/*
3074 		 * If the waker queue disappears, then
3075 		 * new_bfqq->waker_bfqq must be reset. So insert
3076 		 * new_bfqq into the woken_list of the waker. See
3077 		 * bfq_check_waker for details.
3078 		 */
3079 		hlist_add_head(&new_bfqq->woken_list_node,
3080 			       &new_bfqq->waker_bfqq->woken_list);
3081 
3082 	}
3083 
3084 	/*
3085 	 * If bfqq is weight-raised, then let new_bfqq inherit
3086 	 * weight-raising. To reduce false positives, neglect the case
3087 	 * where bfqq has just been created, but has not yet made it
3088 	 * to be weight-raised (which may happen because EQM may merge
3089 	 * bfqq even before bfq_add_request is executed for the first
3090 	 * time for bfqq). Handling this case would however be very
3091 	 * easy, thanks to the flag just_created.
3092 	 */
3093 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3094 		new_bfqq->wr_coeff = bfqq->wr_coeff;
3095 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3096 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3097 		new_bfqq->wr_start_at_switch_to_srt =
3098 			bfqq->wr_start_at_switch_to_srt;
3099 		if (bfq_bfqq_busy(new_bfqq))
3100 			bfqd->wr_busy_queues++;
3101 		new_bfqq->entity.prio_changed = 1;
3102 	}
3103 
3104 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3105 		bfqq->wr_coeff = 1;
3106 		bfqq->entity.prio_changed = 1;
3107 		if (bfq_bfqq_busy(bfqq))
3108 			bfqd->wr_busy_queues--;
3109 	}
3110 
3111 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3112 		     bfqd->wr_busy_queues);
3113 
3114 	/*
3115 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3116 	 */
3117 	bic_set_bfqq(bic, new_bfqq, true);
3118 	bfq_mark_bfqq_coop(new_bfqq);
3119 	/*
3120 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3121 	 * set new_bfqq->bic to NULL. bfqq either:
3122 	 * - does not belong to any bic any more, and hence bfqq->bic must
3123 	 *   be set to NULL, or
3124 	 * - is a queue whose owning bics have already been redirected to a
3125 	 *   different queue, hence the queue is destined to not belong to
3126 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3127 	 *   assignment causes no harm).
3128 	 */
3129 	new_bfqq->bic = NULL;
3130 	/*
3131 	 * If the queue is shared, the pid is the pid of one of the associated
3132 	 * processes. Which pid depends on the exact sequence of merge events
3133 	 * the queue underwent. So printing such a pid is useless and confusing
3134 	 * because it reports a random pid between those of the associated
3135 	 * processes.
3136 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3137 	 * a pid in logging messages.
3138 	 */
3139 	new_bfqq->pid = -1;
3140 	bfqq->bic = NULL;
3141 
3142 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3143 
3144 	bfq_release_process_ref(bfqd, bfqq);
3145 }
3146 
3147 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3148 				struct bio *bio)
3149 {
3150 	struct bfq_data *bfqd = q->elevator->elevator_data;
3151 	bool is_sync = op_is_sync(bio->bi_opf);
3152 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3153 
3154 	/*
3155 	 * Disallow merge of a sync bio into an async request.
3156 	 */
3157 	if (is_sync && !rq_is_sync(rq))
3158 		return false;
3159 
3160 	/*
3161 	 * Lookup the bfqq that this bio will be queued with. Allow
3162 	 * merge only if rq is queued there.
3163 	 */
3164 	if (!bfqq)
3165 		return false;
3166 
3167 	/*
3168 	 * We take advantage of this function to perform an early merge
3169 	 * of the queues of possible cooperating processes.
3170 	 */
3171 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3172 	if (new_bfqq) {
3173 		/*
3174 		 * bic still points to bfqq, then it has not yet been
3175 		 * redirected to some other bfq_queue, and a queue
3176 		 * merge between bfqq and new_bfqq can be safely
3177 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3178 		 * and bfqq can be put.
3179 		 */
3180 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3181 				new_bfqq);
3182 		/*
3183 		 * If we get here, bio will be queued into new_queue,
3184 		 * so use new_bfqq to decide whether bio and rq can be
3185 		 * merged.
3186 		 */
3187 		bfqq = new_bfqq;
3188 
3189 		/*
3190 		 * Change also bqfd->bio_bfqq, as
3191 		 * bfqd->bio_bic now points to new_bfqq, and
3192 		 * this function may be invoked again (and then may
3193 		 * use again bqfd->bio_bfqq).
3194 		 */
3195 		bfqd->bio_bfqq = bfqq;
3196 	}
3197 
3198 	return bfqq == RQ_BFQQ(rq);
3199 }
3200 
3201 /*
3202  * Set the maximum time for the in-service queue to consume its
3203  * budget. This prevents seeky processes from lowering the throughput.
3204  * In practice, a time-slice service scheme is used with seeky
3205  * processes.
3206  */
3207 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3208 				   struct bfq_queue *bfqq)
3209 {
3210 	unsigned int timeout_coeff;
3211 
3212 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3213 		timeout_coeff = 1;
3214 	else
3215 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3216 
3217 	bfqd->last_budget_start = ktime_get();
3218 
3219 	bfqq->budget_timeout = jiffies +
3220 		bfqd->bfq_timeout * timeout_coeff;
3221 }
3222 
3223 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3224 				       struct bfq_queue *bfqq)
3225 {
3226 	if (bfqq) {
3227 		bfq_clear_bfqq_fifo_expire(bfqq);
3228 
3229 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3230 
3231 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3232 		    bfqq->wr_coeff > 1 &&
3233 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3234 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3235 			/*
3236 			 * For soft real-time queues, move the start
3237 			 * of the weight-raising period forward by the
3238 			 * time the queue has not received any
3239 			 * service. Otherwise, a relatively long
3240 			 * service delay is likely to cause the
3241 			 * weight-raising period of the queue to end,
3242 			 * because of the short duration of the
3243 			 * weight-raising period of a soft real-time
3244 			 * queue.  It is worth noting that this move
3245 			 * is not so dangerous for the other queues,
3246 			 * because soft real-time queues are not
3247 			 * greedy.
3248 			 *
3249 			 * To not add a further variable, we use the
3250 			 * overloaded field budget_timeout to
3251 			 * determine for how long the queue has not
3252 			 * received service, i.e., how much time has
3253 			 * elapsed since the queue expired. However,
3254 			 * this is a little imprecise, because
3255 			 * budget_timeout is set to jiffies if bfqq
3256 			 * not only expires, but also remains with no
3257 			 * request.
3258 			 */
3259 			if (time_after(bfqq->budget_timeout,
3260 				       bfqq->last_wr_start_finish))
3261 				bfqq->last_wr_start_finish +=
3262 					jiffies - bfqq->budget_timeout;
3263 			else
3264 				bfqq->last_wr_start_finish = jiffies;
3265 		}
3266 
3267 		bfq_set_budget_timeout(bfqd, bfqq);
3268 		bfq_log_bfqq(bfqd, bfqq,
3269 			     "set_in_service_queue, cur-budget = %d",
3270 			     bfqq->entity.budget);
3271 	}
3272 
3273 	bfqd->in_service_queue = bfqq;
3274 	bfqd->in_serv_last_pos = 0;
3275 }
3276 
3277 /*
3278  * Get and set a new queue for service.
3279  */
3280 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3281 {
3282 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3283 
3284 	__bfq_set_in_service_queue(bfqd, bfqq);
3285 	return bfqq;
3286 }
3287 
3288 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3289 {
3290 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3291 	u32 sl;
3292 
3293 	bfq_mark_bfqq_wait_request(bfqq);
3294 
3295 	/*
3296 	 * We don't want to idle for seeks, but we do want to allow
3297 	 * fair distribution of slice time for a process doing back-to-back
3298 	 * seeks. So allow a little bit of time for him to submit a new rq.
3299 	 */
3300 	sl = bfqd->bfq_slice_idle;
3301 	/*
3302 	 * Unless the queue is being weight-raised or the scenario is
3303 	 * asymmetric, grant only minimum idle time if the queue
3304 	 * is seeky. A long idling is preserved for a weight-raised
3305 	 * queue, or, more in general, in an asymmetric scenario,
3306 	 * because a long idling is needed for guaranteeing to a queue
3307 	 * its reserved share of the throughput (in particular, it is
3308 	 * needed if the queue has a higher weight than some other
3309 	 * queue).
3310 	 */
3311 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3312 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3313 		sl = min_t(u64, sl, BFQ_MIN_TT);
3314 	else if (bfqq->wr_coeff > 1)
3315 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3316 
3317 	bfqd->last_idling_start = ktime_get();
3318 	bfqd->last_idling_start_jiffies = jiffies;
3319 
3320 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3321 		      HRTIMER_MODE_REL);
3322 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3323 }
3324 
3325 /*
3326  * In autotuning mode, max_budget is dynamically recomputed as the
3327  * amount of sectors transferred in timeout at the estimated peak
3328  * rate. This enables BFQ to utilize a full timeslice with a full
3329  * budget, even if the in-service queue is served at peak rate. And
3330  * this maximises throughput with sequential workloads.
3331  */
3332 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3333 {
3334 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3335 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3336 }
3337 
3338 /*
3339  * Update parameters related to throughput and responsiveness, as a
3340  * function of the estimated peak rate. See comments on
3341  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3342  */
3343 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3344 {
3345 	if (bfqd->bfq_user_max_budget == 0) {
3346 		bfqd->bfq_max_budget =
3347 			bfq_calc_max_budget(bfqd);
3348 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3349 	}
3350 }
3351 
3352 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3353 				       struct request *rq)
3354 {
3355 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3356 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3357 		bfqd->peak_rate_samples = 1;
3358 		bfqd->sequential_samples = 0;
3359 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3360 			blk_rq_sectors(rq);
3361 	} else /* no new rq dispatched, just reset the number of samples */
3362 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3363 
3364 	bfq_log(bfqd,
3365 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3366 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3367 		bfqd->tot_sectors_dispatched);
3368 }
3369 
3370 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3371 {
3372 	u32 rate, weight, divisor;
3373 
3374 	/*
3375 	 * For the convergence property to hold (see comments on
3376 	 * bfq_update_peak_rate()) and for the assessment to be
3377 	 * reliable, a minimum number of samples must be present, and
3378 	 * a minimum amount of time must have elapsed. If not so, do
3379 	 * not compute new rate. Just reset parameters, to get ready
3380 	 * for a new evaluation attempt.
3381 	 */
3382 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3383 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3384 		goto reset_computation;
3385 
3386 	/*
3387 	 * If a new request completion has occurred after last
3388 	 * dispatch, then, to approximate the rate at which requests
3389 	 * have been served by the device, it is more precise to
3390 	 * extend the observation interval to the last completion.
3391 	 */
3392 	bfqd->delta_from_first =
3393 		max_t(u64, bfqd->delta_from_first,
3394 		      bfqd->last_completion - bfqd->first_dispatch);
3395 
3396 	/*
3397 	 * Rate computed in sects/usec, and not sects/nsec, for
3398 	 * precision issues.
3399 	 */
3400 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3401 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3402 
3403 	/*
3404 	 * Peak rate not updated if:
3405 	 * - the percentage of sequential dispatches is below 3/4 of the
3406 	 *   total, and rate is below the current estimated peak rate
3407 	 * - rate is unreasonably high (> 20M sectors/sec)
3408 	 */
3409 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3410 	     rate <= bfqd->peak_rate) ||
3411 		rate > 20<<BFQ_RATE_SHIFT)
3412 		goto reset_computation;
3413 
3414 	/*
3415 	 * We have to update the peak rate, at last! To this purpose,
3416 	 * we use a low-pass filter. We compute the smoothing constant
3417 	 * of the filter as a function of the 'weight' of the new
3418 	 * measured rate.
3419 	 *
3420 	 * As can be seen in next formulas, we define this weight as a
3421 	 * quantity proportional to how sequential the workload is,
3422 	 * and to how long the observation time interval is.
3423 	 *
3424 	 * The weight runs from 0 to 8. The maximum value of the
3425 	 * weight, 8, yields the minimum value for the smoothing
3426 	 * constant. At this minimum value for the smoothing constant,
3427 	 * the measured rate contributes for half of the next value of
3428 	 * the estimated peak rate.
3429 	 *
3430 	 * So, the first step is to compute the weight as a function
3431 	 * of how sequential the workload is. Note that the weight
3432 	 * cannot reach 9, because bfqd->sequential_samples cannot
3433 	 * become equal to bfqd->peak_rate_samples, which, in its
3434 	 * turn, holds true because bfqd->sequential_samples is not
3435 	 * incremented for the first sample.
3436 	 */
3437 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3438 
3439 	/*
3440 	 * Second step: further refine the weight as a function of the
3441 	 * duration of the observation interval.
3442 	 */
3443 	weight = min_t(u32, 8,
3444 		       div_u64(weight * bfqd->delta_from_first,
3445 			       BFQ_RATE_REF_INTERVAL));
3446 
3447 	/*
3448 	 * Divisor ranging from 10, for minimum weight, to 2, for
3449 	 * maximum weight.
3450 	 */
3451 	divisor = 10 - weight;
3452 
3453 	/*
3454 	 * Finally, update peak rate:
3455 	 *
3456 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3457 	 */
3458 	bfqd->peak_rate *= divisor-1;
3459 	bfqd->peak_rate /= divisor;
3460 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3461 
3462 	bfqd->peak_rate += rate;
3463 
3464 	/*
3465 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3466 	 * the minimum representable values reported in the comments
3467 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3468 	 * divisions by zero where bfqd->peak_rate is used as a
3469 	 * divisor.
3470 	 */
3471 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3472 
3473 	update_thr_responsiveness_params(bfqd);
3474 
3475 reset_computation:
3476 	bfq_reset_rate_computation(bfqd, rq);
3477 }
3478 
3479 /*
3480  * Update the read/write peak rate (the main quantity used for
3481  * auto-tuning, see update_thr_responsiveness_params()).
3482  *
3483  * It is not trivial to estimate the peak rate (correctly): because of
3484  * the presence of sw and hw queues between the scheduler and the
3485  * device components that finally serve I/O requests, it is hard to
3486  * say exactly when a given dispatched request is served inside the
3487  * device, and for how long. As a consequence, it is hard to know
3488  * precisely at what rate a given set of requests is actually served
3489  * by the device.
3490  *
3491  * On the opposite end, the dispatch time of any request is trivially
3492  * available, and, from this piece of information, the "dispatch rate"
3493  * of requests can be immediately computed. So, the idea in the next
3494  * function is to use what is known, namely request dispatch times
3495  * (plus, when useful, request completion times), to estimate what is
3496  * unknown, namely in-device request service rate.
3497  *
3498  * The main issue is that, because of the above facts, the rate at
3499  * which a certain set of requests is dispatched over a certain time
3500  * interval can vary greatly with respect to the rate at which the
3501  * same requests are then served. But, since the size of any
3502  * intermediate queue is limited, and the service scheme is lossless
3503  * (no request is silently dropped), the following obvious convergence
3504  * property holds: the number of requests dispatched MUST become
3505  * closer and closer to the number of requests completed as the
3506  * observation interval grows. This is the key property used in
3507  * the next function to estimate the peak service rate as a function
3508  * of the observed dispatch rate. The function assumes to be invoked
3509  * on every request dispatch.
3510  */
3511 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3512 {
3513 	u64 now_ns = ktime_get_ns();
3514 
3515 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3516 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3517 			bfqd->peak_rate_samples);
3518 		bfq_reset_rate_computation(bfqd, rq);
3519 		goto update_last_values; /* will add one sample */
3520 	}
3521 
3522 	/*
3523 	 * Device idle for very long: the observation interval lasting
3524 	 * up to this dispatch cannot be a valid observation interval
3525 	 * for computing a new peak rate (similarly to the late-
3526 	 * completion event in bfq_completed_request()). Go to
3527 	 * update_rate_and_reset to have the following three steps
3528 	 * taken:
3529 	 * - close the observation interval at the last (previous)
3530 	 *   request dispatch or completion
3531 	 * - compute rate, if possible, for that observation interval
3532 	 * - start a new observation interval with this dispatch
3533 	 */
3534 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3535 	    bfqd->rq_in_driver == 0)
3536 		goto update_rate_and_reset;
3537 
3538 	/* Update sampling information */
3539 	bfqd->peak_rate_samples++;
3540 
3541 	if ((bfqd->rq_in_driver > 0 ||
3542 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3543 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3544 		bfqd->sequential_samples++;
3545 
3546 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3547 
3548 	/* Reset max observed rq size every 32 dispatches */
3549 	if (likely(bfqd->peak_rate_samples % 32))
3550 		bfqd->last_rq_max_size =
3551 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3552 	else
3553 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3554 
3555 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3556 
3557 	/* Target observation interval not yet reached, go on sampling */
3558 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3559 		goto update_last_values;
3560 
3561 update_rate_and_reset:
3562 	bfq_update_rate_reset(bfqd, rq);
3563 update_last_values:
3564 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3565 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3566 		bfqd->in_serv_last_pos = bfqd->last_position;
3567 	bfqd->last_dispatch = now_ns;
3568 }
3569 
3570 /*
3571  * Remove request from internal lists.
3572  */
3573 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3574 {
3575 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3576 
3577 	/*
3578 	 * For consistency, the next instruction should have been
3579 	 * executed after removing the request from the queue and
3580 	 * dispatching it.  We execute instead this instruction before
3581 	 * bfq_remove_request() (and hence introduce a temporary
3582 	 * inconsistency), for efficiency.  In fact, should this
3583 	 * dispatch occur for a non in-service bfqq, this anticipated
3584 	 * increment prevents two counters related to bfqq->dispatched
3585 	 * from risking to be, first, uselessly decremented, and then
3586 	 * incremented again when the (new) value of bfqq->dispatched
3587 	 * happens to be taken into account.
3588 	 */
3589 	bfqq->dispatched++;
3590 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3591 
3592 	bfq_remove_request(q, rq);
3593 }
3594 
3595 /*
3596  * There is a case where idling does not have to be performed for
3597  * throughput concerns, but to preserve the throughput share of
3598  * the process associated with bfqq.
3599  *
3600  * To introduce this case, we can note that allowing the drive
3601  * to enqueue more than one request at a time, and hence
3602  * delegating de facto final scheduling decisions to the
3603  * drive's internal scheduler, entails loss of control on the
3604  * actual request service order. In particular, the critical
3605  * situation is when requests from different processes happen
3606  * to be present, at the same time, in the internal queue(s)
3607  * of the drive. In such a situation, the drive, by deciding
3608  * the service order of the internally-queued requests, does
3609  * determine also the actual throughput distribution among
3610  * these processes. But the drive typically has no notion or
3611  * concern about per-process throughput distribution, and
3612  * makes its decisions only on a per-request basis. Therefore,
3613  * the service distribution enforced by the drive's internal
3614  * scheduler is likely to coincide with the desired throughput
3615  * distribution only in a completely symmetric, or favorably
3616  * skewed scenario where:
3617  * (i-a) each of these processes must get the same throughput as
3618  *	 the others,
3619  * (i-b) in case (i-a) does not hold, it holds that the process
3620  *       associated with bfqq must receive a lower or equal
3621  *	 throughput than any of the other processes;
3622  * (ii)  the I/O of each process has the same properties, in
3623  *       terms of locality (sequential or random), direction
3624  *       (reads or writes), request sizes, greediness
3625  *       (from I/O-bound to sporadic), and so on;
3626 
3627  * In fact, in such a scenario, the drive tends to treat the requests
3628  * of each process in about the same way as the requests of the
3629  * others, and thus to provide each of these processes with about the
3630  * same throughput.  This is exactly the desired throughput
3631  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3632  * even more convenient distribution for (the process associated with)
3633  * bfqq.
3634  *
3635  * In contrast, in any asymmetric or unfavorable scenario, device
3636  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3637  * that bfqq receives its assigned fraction of the device throughput
3638  * (see [1] for details).
3639  *
3640  * The problem is that idling may significantly reduce throughput with
3641  * certain combinations of types of I/O and devices. An important
3642  * example is sync random I/O on flash storage with command
3643  * queueing. So, unless bfqq falls in cases where idling also boosts
3644  * throughput, it is important to check conditions (i-a), i(-b) and
3645  * (ii) accurately, so as to avoid idling when not strictly needed for
3646  * service guarantees.
3647  *
3648  * Unfortunately, it is extremely difficult to thoroughly check
3649  * condition (ii). And, in case there are active groups, it becomes
3650  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3651  * if there are active groups, then, for conditions (i-a) or (i-b) to
3652  * become false 'indirectly', it is enough that an active group
3653  * contains more active processes or sub-groups than some other active
3654  * group. More precisely, for conditions (i-a) or (i-b) to become
3655  * false because of such a group, it is not even necessary that the
3656  * group is (still) active: it is sufficient that, even if the group
3657  * has become inactive, some of its descendant processes still have
3658  * some request already dispatched but still waiting for
3659  * completion. In fact, requests have still to be guaranteed their
3660  * share of the throughput even after being dispatched. In this
3661  * respect, it is easy to show that, if a group frequently becomes
3662  * inactive while still having in-flight requests, and if, when this
3663  * happens, the group is not considered in the calculation of whether
3664  * the scenario is asymmetric, then the group may fail to be
3665  * guaranteed its fair share of the throughput (basically because
3666  * idling may not be performed for the descendant processes of the
3667  * group, but it had to be).  We address this issue with the following
3668  * bi-modal behavior, implemented in the function
3669  * bfq_asymmetric_scenario().
3670  *
3671  * If there are groups with requests waiting for completion
3672  * (as commented above, some of these groups may even be
3673  * already inactive), then the scenario is tagged as
3674  * asymmetric, conservatively, without checking any of the
3675  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3676  * This behavior matches also the fact that groups are created
3677  * exactly if controlling I/O is a primary concern (to
3678  * preserve bandwidth and latency guarantees).
3679  *
3680  * On the opposite end, if there are no groups with requests waiting
3681  * for completion, then only conditions (i-a) and (i-b) are actually
3682  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3683  * idling is not performed, regardless of whether condition (ii)
3684  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3685  * hold, then idling is allowed, and the device tends to be prevented
3686  * from queueing many requests, possibly of several processes. Since
3687  * there are no groups with requests waiting for completion, then, to
3688  * control conditions (i-a) and (i-b) it is enough to check just
3689  * whether all the queues with requests waiting for completion also
3690  * have the same weight.
3691  *
3692  * Not checking condition (ii) evidently exposes bfqq to the
3693  * risk of getting less throughput than its fair share.
3694  * However, for queues with the same weight, a further
3695  * mechanism, preemption, mitigates or even eliminates this
3696  * problem. And it does so without consequences on overall
3697  * throughput. This mechanism and its benefits are explained
3698  * in the next three paragraphs.
3699  *
3700  * Even if a queue, say Q, is expired when it remains idle, Q
3701  * can still preempt the new in-service queue if the next
3702  * request of Q arrives soon (see the comments on
3703  * bfq_bfqq_update_budg_for_activation). If all queues and
3704  * groups have the same weight, this form of preemption,
3705  * combined with the hole-recovery heuristic described in the
3706  * comments on function bfq_bfqq_update_budg_for_activation,
3707  * are enough to preserve a correct bandwidth distribution in
3708  * the mid term, even without idling. In fact, even if not
3709  * idling allows the internal queues of the device to contain
3710  * many requests, and thus to reorder requests, we can rather
3711  * safely assume that the internal scheduler still preserves a
3712  * minimum of mid-term fairness.
3713  *
3714  * More precisely, this preemption-based, idleless approach
3715  * provides fairness in terms of IOPS, and not sectors per
3716  * second. This can be seen with a simple example. Suppose
3717  * that there are two queues with the same weight, but that
3718  * the first queue receives requests of 8 sectors, while the
3719  * second queue receives requests of 1024 sectors. In
3720  * addition, suppose that each of the two queues contains at
3721  * most one request at a time, which implies that each queue
3722  * always remains idle after it is served. Finally, after
3723  * remaining idle, each queue receives very quickly a new
3724  * request. It follows that the two queues are served
3725  * alternatively, preempting each other if needed. This
3726  * implies that, although both queues have the same weight,
3727  * the queue with large requests receives a service that is
3728  * 1024/8 times as high as the service received by the other
3729  * queue.
3730  *
3731  * The motivation for using preemption instead of idling (for
3732  * queues with the same weight) is that, by not idling,
3733  * service guarantees are preserved (completely or at least in
3734  * part) without minimally sacrificing throughput. And, if
3735  * there is no active group, then the primary expectation for
3736  * this device is probably a high throughput.
3737  *
3738  * We are now left only with explaining the two sub-conditions in the
3739  * additional compound condition that is checked below for deciding
3740  * whether the scenario is asymmetric. To explain the first
3741  * sub-condition, we need to add that the function
3742  * bfq_asymmetric_scenario checks the weights of only
3743  * non-weight-raised queues, for efficiency reasons (see comments on
3744  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3745  * is checked explicitly here. More precisely, the compound condition
3746  * below takes into account also the fact that, even if bfqq is being
3747  * weight-raised, the scenario is still symmetric if all queues with
3748  * requests waiting for completion happen to be
3749  * weight-raised. Actually, we should be even more precise here, and
3750  * differentiate between interactive weight raising and soft real-time
3751  * weight raising.
3752  *
3753  * The second sub-condition checked in the compound condition is
3754  * whether there is a fair amount of already in-flight I/O not
3755  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3756  * following reason. The drive may decide to serve in-flight
3757  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3758  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3759  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3760  * basically uncontrolled amount of I/O from other queues may be
3761  * dispatched too, possibly causing the service of bfqq's I/O to be
3762  * delayed even longer in the drive. This problem gets more and more
3763  * serious as the speed and the queue depth of the drive grow,
3764  * because, as these two quantities grow, the probability to find no
3765  * queue busy but many requests in flight grows too. By contrast,
3766  * plugging I/O dispatching minimizes the delay induced by already
3767  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3768  * lose because of this delay.
3769  *
3770  * As a side note, it is worth considering that the above
3771  * device-idling countermeasures may however fail in the following
3772  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3773  * in a time period during which all symmetry sub-conditions hold, and
3774  * therefore the device is allowed to enqueue many requests, but at
3775  * some later point in time some sub-condition stops to hold, then it
3776  * may become impossible to make requests be served in the desired
3777  * order until all the requests already queued in the device have been
3778  * served. The last sub-condition commented above somewhat mitigates
3779  * this problem for weight-raised queues.
3780  *
3781  * However, as an additional mitigation for this problem, we preserve
3782  * plugging for a special symmetric case that may suddenly turn into
3783  * asymmetric: the case where only bfqq is busy. In this case, not
3784  * expiring bfqq does not cause any harm to any other queues in terms
3785  * of service guarantees. In contrast, it avoids the following unlucky
3786  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3787  * lower weight than bfqq becomes busy (or more queues), (3) the new
3788  * queue is served until a new request arrives for bfqq, (4) when bfqq
3789  * is finally served, there are so many requests of the new queue in
3790  * the drive that the pending requests for bfqq take a lot of time to
3791  * be served. In particular, event (2) may case even already
3792  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3793  * avoid this series of events, the scenario is preventively declared
3794  * as asymmetric also if bfqq is the only busy queues
3795  */
3796 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3797 						 struct bfq_queue *bfqq)
3798 {
3799 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3800 
3801 	/* No point in idling for bfqq if it won't get requests any longer */
3802 	if (unlikely(!bfqq_process_refs(bfqq)))
3803 		return false;
3804 
3805 	return (bfqq->wr_coeff > 1 &&
3806 		(bfqd->wr_busy_queues <
3807 		 tot_busy_queues ||
3808 		 bfqd->rq_in_driver >=
3809 		 bfqq->dispatched + 4)) ||
3810 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3811 		tot_busy_queues == 1;
3812 }
3813 
3814 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3815 			      enum bfqq_expiration reason)
3816 {
3817 	/*
3818 	 * If this bfqq is shared between multiple processes, check
3819 	 * to make sure that those processes are still issuing I/Os
3820 	 * within the mean seek distance. If not, it may be time to
3821 	 * break the queues apart again.
3822 	 */
3823 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3824 		bfq_mark_bfqq_split_coop(bfqq);
3825 
3826 	/*
3827 	 * Consider queues with a higher finish virtual time than
3828 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3829 	 * true, then bfqq's bandwidth would be violated if an
3830 	 * uncontrolled amount of I/O from these queues were
3831 	 * dispatched while bfqq is waiting for its new I/O to
3832 	 * arrive. This is exactly what may happen if this is a forced
3833 	 * expiration caused by a preemption attempt, and if bfqq is
3834 	 * not re-scheduled. To prevent this from happening, re-queue
3835 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3836 	 * empty. By doing so, bfqq is granted to be served before the
3837 	 * above queues (provided that bfqq is of course eligible).
3838 	 */
3839 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3840 	    !(reason == BFQQE_PREEMPTED &&
3841 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3842 		if (bfqq->dispatched == 0)
3843 			/*
3844 			 * Overloading budget_timeout field to store
3845 			 * the time at which the queue remains with no
3846 			 * backlog and no outstanding request; used by
3847 			 * the weight-raising mechanism.
3848 			 */
3849 			bfqq->budget_timeout = jiffies;
3850 
3851 		bfq_del_bfqq_busy(bfqq, true);
3852 	} else {
3853 		bfq_requeue_bfqq(bfqd, bfqq, true);
3854 		/*
3855 		 * Resort priority tree of potential close cooperators.
3856 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3857 		 */
3858 		if (unlikely(!bfqd->nonrot_with_queueing &&
3859 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3860 			bfq_pos_tree_add_move(bfqd, bfqq);
3861 	}
3862 
3863 	/*
3864 	 * All in-service entities must have been properly deactivated
3865 	 * or requeued before executing the next function, which
3866 	 * resets all in-service entities as no more in service. This
3867 	 * may cause bfqq to be freed. If this happens, the next
3868 	 * function returns true.
3869 	 */
3870 	return __bfq_bfqd_reset_in_service(bfqd);
3871 }
3872 
3873 /**
3874  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3875  * @bfqd: device data.
3876  * @bfqq: queue to update.
3877  * @reason: reason for expiration.
3878  *
3879  * Handle the feedback on @bfqq budget at queue expiration.
3880  * See the body for detailed comments.
3881  */
3882 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3883 				     struct bfq_queue *bfqq,
3884 				     enum bfqq_expiration reason)
3885 {
3886 	struct request *next_rq;
3887 	int budget, min_budget;
3888 
3889 	min_budget = bfq_min_budget(bfqd);
3890 
3891 	if (bfqq->wr_coeff == 1)
3892 		budget = bfqq->max_budget;
3893 	else /*
3894 	      * Use a constant, low budget for weight-raised queues,
3895 	      * to help achieve a low latency. Keep it slightly higher
3896 	      * than the minimum possible budget, to cause a little
3897 	      * bit fewer expirations.
3898 	      */
3899 		budget = 2 * min_budget;
3900 
3901 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3902 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3903 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3904 		budget, bfq_min_budget(bfqd));
3905 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3906 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3907 
3908 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3909 		switch (reason) {
3910 		/*
3911 		 * Caveat: in all the following cases we trade latency
3912 		 * for throughput.
3913 		 */
3914 		case BFQQE_TOO_IDLE:
3915 			/*
3916 			 * This is the only case where we may reduce
3917 			 * the budget: if there is no request of the
3918 			 * process still waiting for completion, then
3919 			 * we assume (tentatively) that the timer has
3920 			 * expired because the batch of requests of
3921 			 * the process could have been served with a
3922 			 * smaller budget.  Hence, betting that
3923 			 * process will behave in the same way when it
3924 			 * becomes backlogged again, we reduce its
3925 			 * next budget.  As long as we guess right,
3926 			 * this budget cut reduces the latency
3927 			 * experienced by the process.
3928 			 *
3929 			 * However, if there are still outstanding
3930 			 * requests, then the process may have not yet
3931 			 * issued its next request just because it is
3932 			 * still waiting for the completion of some of
3933 			 * the still outstanding ones.  So in this
3934 			 * subcase we do not reduce its budget, on the
3935 			 * contrary we increase it to possibly boost
3936 			 * the throughput, as discussed in the
3937 			 * comments to the BUDGET_TIMEOUT case.
3938 			 */
3939 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3940 				budget = min(budget * 2, bfqd->bfq_max_budget);
3941 			else {
3942 				if (budget > 5 * min_budget)
3943 					budget -= 4 * min_budget;
3944 				else
3945 					budget = min_budget;
3946 			}
3947 			break;
3948 		case BFQQE_BUDGET_TIMEOUT:
3949 			/*
3950 			 * We double the budget here because it gives
3951 			 * the chance to boost the throughput if this
3952 			 * is not a seeky process (and has bumped into
3953 			 * this timeout because of, e.g., ZBR).
3954 			 */
3955 			budget = min(budget * 2, bfqd->bfq_max_budget);
3956 			break;
3957 		case BFQQE_BUDGET_EXHAUSTED:
3958 			/*
3959 			 * The process still has backlog, and did not
3960 			 * let either the budget timeout or the disk
3961 			 * idling timeout expire. Hence it is not
3962 			 * seeky, has a short thinktime and may be
3963 			 * happy with a higher budget too. So
3964 			 * definitely increase the budget of this good
3965 			 * candidate to boost the disk throughput.
3966 			 */
3967 			budget = min(budget * 4, bfqd->bfq_max_budget);
3968 			break;
3969 		case BFQQE_NO_MORE_REQUESTS:
3970 			/*
3971 			 * For queues that expire for this reason, it
3972 			 * is particularly important to keep the
3973 			 * budget close to the actual service they
3974 			 * need. Doing so reduces the timestamp
3975 			 * misalignment problem described in the
3976 			 * comments in the body of
3977 			 * __bfq_activate_entity. In fact, suppose
3978 			 * that a queue systematically expires for
3979 			 * BFQQE_NO_MORE_REQUESTS and presents a
3980 			 * new request in time to enjoy timestamp
3981 			 * back-shifting. The larger the budget of the
3982 			 * queue is with respect to the service the
3983 			 * queue actually requests in each service
3984 			 * slot, the more times the queue can be
3985 			 * reactivated with the same virtual finish
3986 			 * time. It follows that, even if this finish
3987 			 * time is pushed to the system virtual time
3988 			 * to reduce the consequent timestamp
3989 			 * misalignment, the queue unjustly enjoys for
3990 			 * many re-activations a lower finish time
3991 			 * than all newly activated queues.
3992 			 *
3993 			 * The service needed by bfqq is measured
3994 			 * quite precisely by bfqq->entity.service.
3995 			 * Since bfqq does not enjoy device idling,
3996 			 * bfqq->entity.service is equal to the number
3997 			 * of sectors that the process associated with
3998 			 * bfqq requested to read/write before waiting
3999 			 * for request completions, or blocking for
4000 			 * other reasons.
4001 			 */
4002 			budget = max_t(int, bfqq->entity.service, min_budget);
4003 			break;
4004 		default:
4005 			return;
4006 		}
4007 	} else if (!bfq_bfqq_sync(bfqq)) {
4008 		/*
4009 		 * Async queues get always the maximum possible
4010 		 * budget, as for them we do not care about latency
4011 		 * (in addition, their ability to dispatch is limited
4012 		 * by the charging factor).
4013 		 */
4014 		budget = bfqd->bfq_max_budget;
4015 	}
4016 
4017 	bfqq->max_budget = budget;
4018 
4019 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4020 	    !bfqd->bfq_user_max_budget)
4021 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4022 
4023 	/*
4024 	 * If there is still backlog, then assign a new budget, making
4025 	 * sure that it is large enough for the next request.  Since
4026 	 * the finish time of bfqq must be kept in sync with the
4027 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
4028 	 * update.
4029 	 *
4030 	 * If there is no backlog, then no need to update the budget;
4031 	 * it will be updated on the arrival of a new request.
4032 	 */
4033 	next_rq = bfqq->next_rq;
4034 	if (next_rq)
4035 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4036 					    bfq_serv_to_charge(next_rq, bfqq));
4037 
4038 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4039 			next_rq ? blk_rq_sectors(next_rq) : 0,
4040 			bfqq->entity.budget);
4041 }
4042 
4043 /*
4044  * Return true if the process associated with bfqq is "slow". The slow
4045  * flag is used, in addition to the budget timeout, to reduce the
4046  * amount of service provided to seeky processes, and thus reduce
4047  * their chances to lower the throughput. More details in the comments
4048  * on the function bfq_bfqq_expire().
4049  *
4050  * An important observation is in order: as discussed in the comments
4051  * on the function bfq_update_peak_rate(), with devices with internal
4052  * queues, it is hard if ever possible to know when and for how long
4053  * an I/O request is processed by the device (apart from the trivial
4054  * I/O pattern where a new request is dispatched only after the
4055  * previous one has been completed). This makes it hard to evaluate
4056  * the real rate at which the I/O requests of each bfq_queue are
4057  * served.  In fact, for an I/O scheduler like BFQ, serving a
4058  * bfq_queue means just dispatching its requests during its service
4059  * slot (i.e., until the budget of the queue is exhausted, or the
4060  * queue remains idle, or, finally, a timeout fires). But, during the
4061  * service slot of a bfq_queue, around 100 ms at most, the device may
4062  * be even still processing requests of bfq_queues served in previous
4063  * service slots. On the opposite end, the requests of the in-service
4064  * bfq_queue may be completed after the service slot of the queue
4065  * finishes.
4066  *
4067  * Anyway, unless more sophisticated solutions are used
4068  * (where possible), the sum of the sizes of the requests dispatched
4069  * during the service slot of a bfq_queue is probably the only
4070  * approximation available for the service received by the bfq_queue
4071  * during its service slot. And this sum is the quantity used in this
4072  * function to evaluate the I/O speed of a process.
4073  */
4074 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4075 				 bool compensate, enum bfqq_expiration reason,
4076 				 unsigned long *delta_ms)
4077 {
4078 	ktime_t delta_ktime;
4079 	u32 delta_usecs;
4080 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4081 
4082 	if (!bfq_bfqq_sync(bfqq))
4083 		return false;
4084 
4085 	if (compensate)
4086 		delta_ktime = bfqd->last_idling_start;
4087 	else
4088 		delta_ktime = ktime_get();
4089 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4090 	delta_usecs = ktime_to_us(delta_ktime);
4091 
4092 	/* don't use too short time intervals */
4093 	if (delta_usecs < 1000) {
4094 		if (blk_queue_nonrot(bfqd->queue))
4095 			 /*
4096 			  * give same worst-case guarantees as idling
4097 			  * for seeky
4098 			  */
4099 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4100 		else /* charge at least one seek */
4101 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4102 
4103 		return slow;
4104 	}
4105 
4106 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4107 
4108 	/*
4109 	 * Use only long (> 20ms) intervals to filter out excessive
4110 	 * spikes in service rate estimation.
4111 	 */
4112 	if (delta_usecs > 20000) {
4113 		/*
4114 		 * Caveat for rotational devices: processes doing I/O
4115 		 * in the slower disk zones tend to be slow(er) even
4116 		 * if not seeky. In this respect, the estimated peak
4117 		 * rate is likely to be an average over the disk
4118 		 * surface. Accordingly, to not be too harsh with
4119 		 * unlucky processes, a process is deemed slow only if
4120 		 * its rate has been lower than half of the estimated
4121 		 * peak rate.
4122 		 */
4123 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4124 	}
4125 
4126 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4127 
4128 	return slow;
4129 }
4130 
4131 /*
4132  * To be deemed as soft real-time, an application must meet two
4133  * requirements. First, the application must not require an average
4134  * bandwidth higher than the approximate bandwidth required to playback or
4135  * record a compressed high-definition video.
4136  * The next function is invoked on the completion of the last request of a
4137  * batch, to compute the next-start time instant, soft_rt_next_start, such
4138  * that, if the next request of the application does not arrive before
4139  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4140  *
4141  * The second requirement is that the request pattern of the application is
4142  * isochronous, i.e., that, after issuing a request or a batch of requests,
4143  * the application stops issuing new requests until all its pending requests
4144  * have been completed. After that, the application may issue a new batch,
4145  * and so on.
4146  * For this reason the next function is invoked to compute
4147  * soft_rt_next_start only for applications that meet this requirement,
4148  * whereas soft_rt_next_start is set to infinity for applications that do
4149  * not.
4150  *
4151  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4152  * happen to meet, occasionally or systematically, both the above
4153  * bandwidth and isochrony requirements. This may happen at least in
4154  * the following circumstances. First, if the CPU load is high. The
4155  * application may stop issuing requests while the CPUs are busy
4156  * serving other processes, then restart, then stop again for a while,
4157  * and so on. The other circumstances are related to the storage
4158  * device: the storage device is highly loaded or reaches a low-enough
4159  * throughput with the I/O of the application (e.g., because the I/O
4160  * is random and/or the device is slow). In all these cases, the
4161  * I/O of the application may be simply slowed down enough to meet
4162  * the bandwidth and isochrony requirements. To reduce the probability
4163  * that greedy applications are deemed as soft real-time in these
4164  * corner cases, a further rule is used in the computation of
4165  * soft_rt_next_start: the return value of this function is forced to
4166  * be higher than the maximum between the following two quantities.
4167  *
4168  * (a) Current time plus: (1) the maximum time for which the arrival
4169  *     of a request is waited for when a sync queue becomes idle,
4170  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4171  *     postpone for a moment the reason for adding a few extra
4172  *     jiffies; we get back to it after next item (b).  Lower-bounding
4173  *     the return value of this function with the current time plus
4174  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4175  *     because the latter issue their next request as soon as possible
4176  *     after the last one has been completed. In contrast, a soft
4177  *     real-time application spends some time processing data, after a
4178  *     batch of its requests has been completed.
4179  *
4180  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4181  *     above, greedy applications may happen to meet both the
4182  *     bandwidth and isochrony requirements under heavy CPU or
4183  *     storage-device load. In more detail, in these scenarios, these
4184  *     applications happen, only for limited time periods, to do I/O
4185  *     slowly enough to meet all the requirements described so far,
4186  *     including the filtering in above item (a). These slow-speed
4187  *     time intervals are usually interspersed between other time
4188  *     intervals during which these applications do I/O at a very high
4189  *     speed. Fortunately, exactly because of the high speed of the
4190  *     I/O in the high-speed intervals, the values returned by this
4191  *     function happen to be so high, near the end of any such
4192  *     high-speed interval, to be likely to fall *after* the end of
4193  *     the low-speed time interval that follows. These high values are
4194  *     stored in bfqq->soft_rt_next_start after each invocation of
4195  *     this function. As a consequence, if the last value of
4196  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4197  *     next value that this function may return, then, from the very
4198  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4199  *     likely to be constantly kept so high that any I/O request
4200  *     issued during the low-speed interval is considered as arriving
4201  *     to soon for the application to be deemed as soft
4202  *     real-time. Then, in the high-speed interval that follows, the
4203  *     application will not be deemed as soft real-time, just because
4204  *     it will do I/O at a high speed. And so on.
4205  *
4206  * Getting back to the filtering in item (a), in the following two
4207  * cases this filtering might be easily passed by a greedy
4208  * application, if the reference quantity was just
4209  * bfqd->bfq_slice_idle:
4210  * 1) HZ is so low that the duration of a jiffy is comparable to or
4211  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4212  *    devices with HZ=100. The time granularity may be so coarse
4213  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4214  *    is rather lower than the exact value.
4215  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4216  *    for a while, then suddenly 'jump' by several units to recover the lost
4217  *    increments. This seems to happen, e.g., inside virtual machines.
4218  * To address this issue, in the filtering in (a) we do not use as a
4219  * reference time interval just bfqd->bfq_slice_idle, but
4220  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4221  * minimum number of jiffies for which the filter seems to be quite
4222  * precise also in embedded systems and KVM/QEMU virtual machines.
4223  */
4224 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4225 						struct bfq_queue *bfqq)
4226 {
4227 	return max3(bfqq->soft_rt_next_start,
4228 		    bfqq->last_idle_bklogged +
4229 		    HZ * bfqq->service_from_backlogged /
4230 		    bfqd->bfq_wr_max_softrt_rate,
4231 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4232 }
4233 
4234 /**
4235  * bfq_bfqq_expire - expire a queue.
4236  * @bfqd: device owning the queue.
4237  * @bfqq: the queue to expire.
4238  * @compensate: if true, compensate for the time spent idling.
4239  * @reason: the reason causing the expiration.
4240  *
4241  * If the process associated with bfqq does slow I/O (e.g., because it
4242  * issues random requests), we charge bfqq with the time it has been
4243  * in service instead of the service it has received (see
4244  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4245  * a consequence, bfqq will typically get higher timestamps upon
4246  * reactivation, and hence it will be rescheduled as if it had
4247  * received more service than what it has actually received. In the
4248  * end, bfqq receives less service in proportion to how slowly its
4249  * associated process consumes its budgets (and hence how seriously it
4250  * tends to lower the throughput). In addition, this time-charging
4251  * strategy guarantees time fairness among slow processes. In
4252  * contrast, if the process associated with bfqq is not slow, we
4253  * charge bfqq exactly with the service it has received.
4254  *
4255  * Charging time to the first type of queues and the exact service to
4256  * the other has the effect of using the WF2Q+ policy to schedule the
4257  * former on a timeslice basis, without violating service domain
4258  * guarantees among the latter.
4259  */
4260 void bfq_bfqq_expire(struct bfq_data *bfqd,
4261 		     struct bfq_queue *bfqq,
4262 		     bool compensate,
4263 		     enum bfqq_expiration reason)
4264 {
4265 	bool slow;
4266 	unsigned long delta = 0;
4267 	struct bfq_entity *entity = &bfqq->entity;
4268 
4269 	/*
4270 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4271 	 */
4272 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4273 
4274 	/*
4275 	 * As above explained, charge slow (typically seeky) and
4276 	 * timed-out queues with the time and not the service
4277 	 * received, to favor sequential workloads.
4278 	 *
4279 	 * Processes doing I/O in the slower disk zones will tend to
4280 	 * be slow(er) even if not seeky. Therefore, since the
4281 	 * estimated peak rate is actually an average over the disk
4282 	 * surface, these processes may timeout just for bad luck. To
4283 	 * avoid punishing them, do not charge time to processes that
4284 	 * succeeded in consuming at least 2/3 of their budget. This
4285 	 * allows BFQ to preserve enough elasticity to still perform
4286 	 * bandwidth, and not time, distribution with little unlucky
4287 	 * or quasi-sequential processes.
4288 	 */
4289 	if (bfqq->wr_coeff == 1 &&
4290 	    (slow ||
4291 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4292 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4293 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4294 
4295 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4296 		bfqq->last_wr_start_finish = jiffies;
4297 
4298 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4299 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4300 		/*
4301 		 * If we get here, and there are no outstanding
4302 		 * requests, then the request pattern is isochronous
4303 		 * (see the comments on the function
4304 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4305 		 * compute soft_rt_next_start.
4306 		 *
4307 		 * If, instead, the queue still has outstanding
4308 		 * requests, then we have to wait for the completion
4309 		 * of all the outstanding requests to discover whether
4310 		 * the request pattern is actually isochronous.
4311 		 */
4312 		if (bfqq->dispatched == 0)
4313 			bfqq->soft_rt_next_start =
4314 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4315 		else if (bfqq->dispatched > 0) {
4316 			/*
4317 			 * Schedule an update of soft_rt_next_start to when
4318 			 * the task may be discovered to be isochronous.
4319 			 */
4320 			bfq_mark_bfqq_softrt_update(bfqq);
4321 		}
4322 	}
4323 
4324 	bfq_log_bfqq(bfqd, bfqq,
4325 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4326 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4327 
4328 	/*
4329 	 * bfqq expired, so no total service time needs to be computed
4330 	 * any longer: reset state machine for measuring total service
4331 	 * times.
4332 	 */
4333 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4334 	bfqd->waited_rq = NULL;
4335 
4336 	/*
4337 	 * Increase, decrease or leave budget unchanged according to
4338 	 * reason.
4339 	 */
4340 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4341 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4342 		/* bfqq is gone, no more actions on it */
4343 		return;
4344 
4345 	/* mark bfqq as waiting a request only if a bic still points to it */
4346 	if (!bfq_bfqq_busy(bfqq) &&
4347 	    reason != BFQQE_BUDGET_TIMEOUT &&
4348 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4349 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4350 		/*
4351 		 * Not setting service to 0, because, if the next rq
4352 		 * arrives in time, the queue will go on receiving
4353 		 * service with this same budget (as if it never expired)
4354 		 */
4355 	} else
4356 		entity->service = 0;
4357 
4358 	/*
4359 	 * Reset the received-service counter for every parent entity.
4360 	 * Differently from what happens with bfqq->entity.service,
4361 	 * the resetting of this counter never needs to be postponed
4362 	 * for parent entities. In fact, in case bfqq may have a
4363 	 * chance to go on being served using the last, partially
4364 	 * consumed budget, bfqq->entity.service needs to be kept,
4365 	 * because if bfqq then actually goes on being served using
4366 	 * the same budget, the last value of bfqq->entity.service is
4367 	 * needed to properly decrement bfqq->entity.budget by the
4368 	 * portion already consumed. In contrast, it is not necessary
4369 	 * to keep entity->service for parent entities too, because
4370 	 * the bubble up of the new value of bfqq->entity.budget will
4371 	 * make sure that the budgets of parent entities are correct,
4372 	 * even in case bfqq and thus parent entities go on receiving
4373 	 * service with the same budget.
4374 	 */
4375 	entity = entity->parent;
4376 	for_each_entity(entity)
4377 		entity->service = 0;
4378 }
4379 
4380 /*
4381  * Budget timeout is not implemented through a dedicated timer, but
4382  * just checked on request arrivals and completions, as well as on
4383  * idle timer expirations.
4384  */
4385 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4386 {
4387 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4388 }
4389 
4390 /*
4391  * If we expire a queue that is actively waiting (i.e., with the
4392  * device idled) for the arrival of a new request, then we may incur
4393  * the timestamp misalignment problem described in the body of the
4394  * function __bfq_activate_entity. Hence we return true only if this
4395  * condition does not hold, or if the queue is slow enough to deserve
4396  * only to be kicked off for preserving a high throughput.
4397  */
4398 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4399 {
4400 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4401 		"may_budget_timeout: wait_request %d left %d timeout %d",
4402 		bfq_bfqq_wait_request(bfqq),
4403 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4404 		bfq_bfqq_budget_timeout(bfqq));
4405 
4406 	return (!bfq_bfqq_wait_request(bfqq) ||
4407 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4408 		&&
4409 		bfq_bfqq_budget_timeout(bfqq);
4410 }
4411 
4412 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4413 					     struct bfq_queue *bfqq)
4414 {
4415 	bool rot_without_queueing =
4416 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4417 		bfqq_sequential_and_IO_bound,
4418 		idling_boosts_thr;
4419 
4420 	/* No point in idling for bfqq if it won't get requests any longer */
4421 	if (unlikely(!bfqq_process_refs(bfqq)))
4422 		return false;
4423 
4424 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4425 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4426 
4427 	/*
4428 	 * The next variable takes into account the cases where idling
4429 	 * boosts the throughput.
4430 	 *
4431 	 * The value of the variable is computed considering, first, that
4432 	 * idling is virtually always beneficial for the throughput if:
4433 	 * (a) the device is not NCQ-capable and rotational, or
4434 	 * (b) regardless of the presence of NCQ, the device is rotational and
4435 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4436 	 * (c) regardless of whether it is rotational, the device is
4437 	 *     not NCQ-capable and the request pattern for bfqq is
4438 	 *     I/O-bound and sequential.
4439 	 *
4440 	 * Secondly, and in contrast to the above item (b), idling an
4441 	 * NCQ-capable flash-based device would not boost the
4442 	 * throughput even with sequential I/O; rather it would lower
4443 	 * the throughput in proportion to how fast the device
4444 	 * is. Accordingly, the next variable is true if any of the
4445 	 * above conditions (a), (b) or (c) is true, and, in
4446 	 * particular, happens to be false if bfqd is an NCQ-capable
4447 	 * flash-based device.
4448 	 */
4449 	idling_boosts_thr = rot_without_queueing ||
4450 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4451 		 bfqq_sequential_and_IO_bound);
4452 
4453 	/*
4454 	 * The return value of this function is equal to that of
4455 	 * idling_boosts_thr, unless a special case holds. In this
4456 	 * special case, described below, idling may cause problems to
4457 	 * weight-raised queues.
4458 	 *
4459 	 * When the request pool is saturated (e.g., in the presence
4460 	 * of write hogs), if the processes associated with
4461 	 * non-weight-raised queues ask for requests at a lower rate,
4462 	 * then processes associated with weight-raised queues have a
4463 	 * higher probability to get a request from the pool
4464 	 * immediately (or at least soon) when they need one. Thus
4465 	 * they have a higher probability to actually get a fraction
4466 	 * of the device throughput proportional to their high
4467 	 * weight. This is especially true with NCQ-capable drives,
4468 	 * which enqueue several requests in advance, and further
4469 	 * reorder internally-queued requests.
4470 	 *
4471 	 * For this reason, we force to false the return value if
4472 	 * there are weight-raised busy queues. In this case, and if
4473 	 * bfqq is not weight-raised, this guarantees that the device
4474 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4475 	 * then idling will be guaranteed by another variable, see
4476 	 * below). Combined with the timestamping rules of BFQ (see
4477 	 * [1] for details), this behavior causes bfqq, and hence any
4478 	 * sync non-weight-raised queue, to get a lower number of
4479 	 * requests served, and thus to ask for a lower number of
4480 	 * requests from the request pool, before the busy
4481 	 * weight-raised queues get served again. This often mitigates
4482 	 * starvation problems in the presence of heavy write
4483 	 * workloads and NCQ, thereby guaranteeing a higher
4484 	 * application and system responsiveness in these hostile
4485 	 * scenarios.
4486 	 */
4487 	return idling_boosts_thr &&
4488 		bfqd->wr_busy_queues == 0;
4489 }
4490 
4491 /*
4492  * For a queue that becomes empty, device idling is allowed only if
4493  * this function returns true for that queue. As a consequence, since
4494  * device idling plays a critical role for both throughput boosting
4495  * and service guarantees, the return value of this function plays a
4496  * critical role as well.
4497  *
4498  * In a nutshell, this function returns true only if idling is
4499  * beneficial for throughput or, even if detrimental for throughput,
4500  * idling is however necessary to preserve service guarantees (low
4501  * latency, desired throughput distribution, ...). In particular, on
4502  * NCQ-capable devices, this function tries to return false, so as to
4503  * help keep the drives' internal queues full, whenever this helps the
4504  * device boost the throughput without causing any service-guarantee
4505  * issue.
4506  *
4507  * Most of the issues taken into account to get the return value of
4508  * this function are not trivial. We discuss these issues in the two
4509  * functions providing the main pieces of information needed by this
4510  * function.
4511  */
4512 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4513 {
4514 	struct bfq_data *bfqd = bfqq->bfqd;
4515 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4516 
4517 	/* No point in idling for bfqq if it won't get requests any longer */
4518 	if (unlikely(!bfqq_process_refs(bfqq)))
4519 		return false;
4520 
4521 	if (unlikely(bfqd->strict_guarantees))
4522 		return true;
4523 
4524 	/*
4525 	 * Idling is performed only if slice_idle > 0. In addition, we
4526 	 * do not idle if
4527 	 * (a) bfqq is async
4528 	 * (b) bfqq is in the idle io prio class: in this case we do
4529 	 * not idle because we want to minimize the bandwidth that
4530 	 * queues in this class can steal to higher-priority queues
4531 	 */
4532 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4533 	   bfq_class_idle(bfqq))
4534 		return false;
4535 
4536 	idling_boosts_thr_with_no_issue =
4537 		idling_boosts_thr_without_issues(bfqd, bfqq);
4538 
4539 	idling_needed_for_service_guar =
4540 		idling_needed_for_service_guarantees(bfqd, bfqq);
4541 
4542 	/*
4543 	 * We have now the two components we need to compute the
4544 	 * return value of the function, which is true only if idling
4545 	 * either boosts the throughput (without issues), or is
4546 	 * necessary to preserve service guarantees.
4547 	 */
4548 	return idling_boosts_thr_with_no_issue ||
4549 		idling_needed_for_service_guar;
4550 }
4551 
4552 /*
4553  * If the in-service queue is empty but the function bfq_better_to_idle
4554  * returns true, then:
4555  * 1) the queue must remain in service and cannot be expired, and
4556  * 2) the device must be idled to wait for the possible arrival of a new
4557  *    request for the queue.
4558  * See the comments on the function bfq_better_to_idle for the reasons
4559  * why performing device idling is the best choice to boost the throughput
4560  * and preserve service guarantees when bfq_better_to_idle itself
4561  * returns true.
4562  */
4563 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4564 {
4565 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4566 }
4567 
4568 /*
4569  * This function chooses the queue from which to pick the next extra
4570  * I/O request to inject, if it finds a compatible queue. See the
4571  * comments on bfq_update_inject_limit() for details on the injection
4572  * mechanism, and for the definitions of the quantities mentioned
4573  * below.
4574  */
4575 static struct bfq_queue *
4576 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4577 {
4578 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4579 	unsigned int limit = in_serv_bfqq->inject_limit;
4580 	/*
4581 	 * If
4582 	 * - bfqq is not weight-raised and therefore does not carry
4583 	 *   time-critical I/O,
4584 	 * or
4585 	 * - regardless of whether bfqq is weight-raised, bfqq has
4586 	 *   however a long think time, during which it can absorb the
4587 	 *   effect of an appropriate number of extra I/O requests
4588 	 *   from other queues (see bfq_update_inject_limit for
4589 	 *   details on the computation of this number);
4590 	 * then injection can be performed without restrictions.
4591 	 */
4592 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4593 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4594 
4595 	/*
4596 	 * If
4597 	 * - the baseline total service time could not be sampled yet,
4598 	 *   so the inject limit happens to be still 0, and
4599 	 * - a lot of time has elapsed since the plugging of I/O
4600 	 *   dispatching started, so drive speed is being wasted
4601 	 *   significantly;
4602 	 * then temporarily raise inject limit to one request.
4603 	 */
4604 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4605 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4606 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4607 				      bfqd->bfq_slice_idle)
4608 		)
4609 		limit = 1;
4610 
4611 	if (bfqd->rq_in_driver >= limit)
4612 		return NULL;
4613 
4614 	/*
4615 	 * Linear search of the source queue for injection; but, with
4616 	 * a high probability, very few steps are needed to find a
4617 	 * candidate queue, i.e., a queue with enough budget left for
4618 	 * its next request. In fact:
4619 	 * - BFQ dynamically updates the budget of every queue so as
4620 	 *   to accommodate the expected backlog of the queue;
4621 	 * - if a queue gets all its requests dispatched as injected
4622 	 *   service, then the queue is removed from the active list
4623 	 *   (and re-added only if it gets new requests, but then it
4624 	 *   is assigned again enough budget for its new backlog).
4625 	 */
4626 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4627 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4628 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4629 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4630 		    bfq_bfqq_budget_left(bfqq)) {
4631 			/*
4632 			 * Allow for only one large in-flight request
4633 			 * on non-rotational devices, for the
4634 			 * following reason. On non-rotationl drives,
4635 			 * large requests take much longer than
4636 			 * smaller requests to be served. In addition,
4637 			 * the drive prefers to serve large requests
4638 			 * w.r.t. to small ones, if it can choose. So,
4639 			 * having more than one large requests queued
4640 			 * in the drive may easily make the next first
4641 			 * request of the in-service queue wait for so
4642 			 * long to break bfqq's service guarantees. On
4643 			 * the bright side, large requests let the
4644 			 * drive reach a very high throughput, even if
4645 			 * there is only one in-flight large request
4646 			 * at a time.
4647 			 */
4648 			if (blk_queue_nonrot(bfqd->queue) &&
4649 			    blk_rq_sectors(bfqq->next_rq) >=
4650 			    BFQQ_SECT_THR_NONROT)
4651 				limit = min_t(unsigned int, 1, limit);
4652 			else
4653 				limit = in_serv_bfqq->inject_limit;
4654 
4655 			if (bfqd->rq_in_driver < limit) {
4656 				bfqd->rqs_injected = true;
4657 				return bfqq;
4658 			}
4659 		}
4660 
4661 	return NULL;
4662 }
4663 
4664 /*
4665  * Select a queue for service.  If we have a current queue in service,
4666  * check whether to continue servicing it, or retrieve and set a new one.
4667  */
4668 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4669 {
4670 	struct bfq_queue *bfqq;
4671 	struct request *next_rq;
4672 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4673 
4674 	bfqq = bfqd->in_service_queue;
4675 	if (!bfqq)
4676 		goto new_queue;
4677 
4678 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4679 
4680 	/*
4681 	 * Do not expire bfqq for budget timeout if bfqq may be about
4682 	 * to enjoy device idling. The reason why, in this case, we
4683 	 * prevent bfqq from expiring is the same as in the comments
4684 	 * on the case where bfq_bfqq_must_idle() returns true, in
4685 	 * bfq_completed_request().
4686 	 */
4687 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4688 	    !bfq_bfqq_must_idle(bfqq))
4689 		goto expire;
4690 
4691 check_queue:
4692 	/*
4693 	 * This loop is rarely executed more than once. Even when it
4694 	 * happens, it is much more convenient to re-execute this loop
4695 	 * than to return NULL and trigger a new dispatch to get a
4696 	 * request served.
4697 	 */
4698 	next_rq = bfqq->next_rq;
4699 	/*
4700 	 * If bfqq has requests queued and it has enough budget left to
4701 	 * serve them, keep the queue, otherwise expire it.
4702 	 */
4703 	if (next_rq) {
4704 		if (bfq_serv_to_charge(next_rq, bfqq) >
4705 			bfq_bfqq_budget_left(bfqq)) {
4706 			/*
4707 			 * Expire the queue for budget exhaustion,
4708 			 * which makes sure that the next budget is
4709 			 * enough to serve the next request, even if
4710 			 * it comes from the fifo expired path.
4711 			 */
4712 			reason = BFQQE_BUDGET_EXHAUSTED;
4713 			goto expire;
4714 		} else {
4715 			/*
4716 			 * The idle timer may be pending because we may
4717 			 * not disable disk idling even when a new request
4718 			 * arrives.
4719 			 */
4720 			if (bfq_bfqq_wait_request(bfqq)) {
4721 				/*
4722 				 * If we get here: 1) at least a new request
4723 				 * has arrived but we have not disabled the
4724 				 * timer because the request was too small,
4725 				 * 2) then the block layer has unplugged
4726 				 * the device, causing the dispatch to be
4727 				 * invoked.
4728 				 *
4729 				 * Since the device is unplugged, now the
4730 				 * requests are probably large enough to
4731 				 * provide a reasonable throughput.
4732 				 * So we disable idling.
4733 				 */
4734 				bfq_clear_bfqq_wait_request(bfqq);
4735 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4736 			}
4737 			goto keep_queue;
4738 		}
4739 	}
4740 
4741 	/*
4742 	 * No requests pending. However, if the in-service queue is idling
4743 	 * for a new request, or has requests waiting for a completion and
4744 	 * may idle after their completion, then keep it anyway.
4745 	 *
4746 	 * Yet, inject service from other queues if it boosts
4747 	 * throughput and is possible.
4748 	 */
4749 	if (bfq_bfqq_wait_request(bfqq) ||
4750 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4751 		struct bfq_queue *async_bfqq =
4752 			bfqq->bic && bfqq->bic->bfqq[0] &&
4753 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4754 			bfqq->bic->bfqq[0]->next_rq ?
4755 			bfqq->bic->bfqq[0] : NULL;
4756 		struct bfq_queue *blocked_bfqq =
4757 			!hlist_empty(&bfqq->woken_list) ?
4758 			container_of(bfqq->woken_list.first,
4759 				     struct bfq_queue,
4760 				     woken_list_node)
4761 			: NULL;
4762 
4763 		/*
4764 		 * The next four mutually-exclusive ifs decide
4765 		 * whether to try injection, and choose the queue to
4766 		 * pick an I/O request from.
4767 		 *
4768 		 * The first if checks whether the process associated
4769 		 * with bfqq has also async I/O pending. If so, it
4770 		 * injects such I/O unconditionally. Injecting async
4771 		 * I/O from the same process can cause no harm to the
4772 		 * process. On the contrary, it can only increase
4773 		 * bandwidth and reduce latency for the process.
4774 		 *
4775 		 * The second if checks whether there happens to be a
4776 		 * non-empty waker queue for bfqq, i.e., a queue whose
4777 		 * I/O needs to be completed for bfqq to receive new
4778 		 * I/O. This happens, e.g., if bfqq is associated with
4779 		 * a process that does some sync. A sync generates
4780 		 * extra blocking I/O, which must be completed before
4781 		 * the process associated with bfqq can go on with its
4782 		 * I/O. If the I/O of the waker queue is not served,
4783 		 * then bfqq remains empty, and no I/O is dispatched,
4784 		 * until the idle timeout fires for bfqq. This is
4785 		 * likely to result in lower bandwidth and higher
4786 		 * latencies for bfqq, and in a severe loss of total
4787 		 * throughput. The best action to take is therefore to
4788 		 * serve the waker queue as soon as possible. So do it
4789 		 * (without relying on the third alternative below for
4790 		 * eventually serving waker_bfqq's I/O; see the last
4791 		 * paragraph for further details). This systematic
4792 		 * injection of I/O from the waker queue does not
4793 		 * cause any delay to bfqq's I/O. On the contrary,
4794 		 * next bfqq's I/O is brought forward dramatically,
4795 		 * for it is not blocked for milliseconds.
4796 		 *
4797 		 * The third if checks whether there is a queue woken
4798 		 * by bfqq, and currently with pending I/O. Such a
4799 		 * woken queue does not steal bandwidth from bfqq,
4800 		 * because it remains soon without I/O if bfqq is not
4801 		 * served. So there is virtually no risk of loss of
4802 		 * bandwidth for bfqq if this woken queue has I/O
4803 		 * dispatched while bfqq is waiting for new I/O.
4804 		 *
4805 		 * The fourth if checks whether bfqq is a queue for
4806 		 * which it is better to avoid injection. It is so if
4807 		 * bfqq delivers more throughput when served without
4808 		 * any further I/O from other queues in the middle, or
4809 		 * if the service times of bfqq's I/O requests both
4810 		 * count more than overall throughput, and may be
4811 		 * easily increased by injection (this happens if bfqq
4812 		 * has a short think time). If none of these
4813 		 * conditions holds, then a candidate queue for
4814 		 * injection is looked for through
4815 		 * bfq_choose_bfqq_for_injection(). Note that the
4816 		 * latter may return NULL (for example if the inject
4817 		 * limit for bfqq is currently 0).
4818 		 *
4819 		 * NOTE: motivation for the second alternative
4820 		 *
4821 		 * Thanks to the way the inject limit is updated in
4822 		 * bfq_update_has_short_ttime(), it is rather likely
4823 		 * that, if I/O is being plugged for bfqq and the
4824 		 * waker queue has pending I/O requests that are
4825 		 * blocking bfqq's I/O, then the fourth alternative
4826 		 * above lets the waker queue get served before the
4827 		 * I/O-plugging timeout fires. So one may deem the
4828 		 * second alternative superfluous. It is not, because
4829 		 * the fourth alternative may be way less effective in
4830 		 * case of a synchronization. For two main
4831 		 * reasons. First, throughput may be low because the
4832 		 * inject limit may be too low to guarantee the same
4833 		 * amount of injected I/O, from the waker queue or
4834 		 * other queues, that the second alternative
4835 		 * guarantees (the second alternative unconditionally
4836 		 * injects a pending I/O request of the waker queue
4837 		 * for each bfq_dispatch_request()). Second, with the
4838 		 * fourth alternative, the duration of the plugging,
4839 		 * i.e., the time before bfqq finally receives new I/O,
4840 		 * may not be minimized, because the waker queue may
4841 		 * happen to be served only after other queues.
4842 		 */
4843 		if (async_bfqq &&
4844 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4845 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4846 		    bfq_bfqq_budget_left(async_bfqq))
4847 			bfqq = bfqq->bic->bfqq[0];
4848 		else if (bfqq->waker_bfqq &&
4849 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4850 			   bfqq->waker_bfqq->next_rq &&
4851 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4852 					      bfqq->waker_bfqq) <=
4853 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4854 			)
4855 			bfqq = bfqq->waker_bfqq;
4856 		else if (blocked_bfqq &&
4857 			   bfq_bfqq_busy(blocked_bfqq) &&
4858 			   blocked_bfqq->next_rq &&
4859 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
4860 					      blocked_bfqq) <=
4861 			   bfq_bfqq_budget_left(blocked_bfqq)
4862 			)
4863 			bfqq = blocked_bfqq;
4864 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4865 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4866 			  !bfq_bfqq_has_short_ttime(bfqq)))
4867 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4868 		else
4869 			bfqq = NULL;
4870 
4871 		goto keep_queue;
4872 	}
4873 
4874 	reason = BFQQE_NO_MORE_REQUESTS;
4875 expire:
4876 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4877 new_queue:
4878 	bfqq = bfq_set_in_service_queue(bfqd);
4879 	if (bfqq) {
4880 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4881 		goto check_queue;
4882 	}
4883 keep_queue:
4884 	if (bfqq)
4885 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4886 	else
4887 		bfq_log(bfqd, "select_queue: no queue returned");
4888 
4889 	return bfqq;
4890 }
4891 
4892 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4893 {
4894 	struct bfq_entity *entity = &bfqq->entity;
4895 
4896 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4897 		bfq_log_bfqq(bfqd, bfqq,
4898 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4899 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4900 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4901 			bfqq->wr_coeff,
4902 			bfqq->entity.weight, bfqq->entity.orig_weight);
4903 
4904 		if (entity->prio_changed)
4905 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4906 
4907 		/*
4908 		 * If the queue was activated in a burst, or too much
4909 		 * time has elapsed from the beginning of this
4910 		 * weight-raising period, then end weight raising.
4911 		 */
4912 		if (bfq_bfqq_in_large_burst(bfqq))
4913 			bfq_bfqq_end_wr(bfqq);
4914 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4915 						bfqq->wr_cur_max_time)) {
4916 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4917 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4918 					       bfq_wr_duration(bfqd))) {
4919 				/*
4920 				 * Either in interactive weight
4921 				 * raising, or in soft_rt weight
4922 				 * raising with the
4923 				 * interactive-weight-raising period
4924 				 * elapsed (so no switch back to
4925 				 * interactive weight raising).
4926 				 */
4927 				bfq_bfqq_end_wr(bfqq);
4928 			} else { /*
4929 				  * soft_rt finishing while still in
4930 				  * interactive period, switch back to
4931 				  * interactive weight raising
4932 				  */
4933 				switch_back_to_interactive_wr(bfqq, bfqd);
4934 				bfqq->entity.prio_changed = 1;
4935 			}
4936 		}
4937 		if (bfqq->wr_coeff > 1 &&
4938 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4939 		    bfqq->service_from_wr > max_service_from_wr) {
4940 			/* see comments on max_service_from_wr */
4941 			bfq_bfqq_end_wr(bfqq);
4942 		}
4943 	}
4944 	/*
4945 	 * To improve latency (for this or other queues), immediately
4946 	 * update weight both if it must be raised and if it must be
4947 	 * lowered. Since, entity may be on some active tree here, and
4948 	 * might have a pending change of its ioprio class, invoke
4949 	 * next function with the last parameter unset (see the
4950 	 * comments on the function).
4951 	 */
4952 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4953 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4954 						entity, false);
4955 }
4956 
4957 /*
4958  * Dispatch next request from bfqq.
4959  */
4960 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4961 						 struct bfq_queue *bfqq)
4962 {
4963 	struct request *rq = bfqq->next_rq;
4964 	unsigned long service_to_charge;
4965 
4966 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4967 
4968 	bfq_bfqq_served(bfqq, service_to_charge);
4969 
4970 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4971 		bfqd->wait_dispatch = false;
4972 		bfqd->waited_rq = rq;
4973 	}
4974 
4975 	bfq_dispatch_remove(bfqd->queue, rq);
4976 
4977 	if (bfqq != bfqd->in_service_queue)
4978 		goto return_rq;
4979 
4980 	/*
4981 	 * If weight raising has to terminate for bfqq, then next
4982 	 * function causes an immediate update of bfqq's weight,
4983 	 * without waiting for next activation. As a consequence, on
4984 	 * expiration, bfqq will be timestamped as if has never been
4985 	 * weight-raised during this service slot, even if it has
4986 	 * received part or even most of the service as a
4987 	 * weight-raised queue. This inflates bfqq's timestamps, which
4988 	 * is beneficial, as bfqq is then more willing to leave the
4989 	 * device immediately to possible other weight-raised queues.
4990 	 */
4991 	bfq_update_wr_data(bfqd, bfqq);
4992 
4993 	/*
4994 	 * Expire bfqq, pretending that its budget expired, if bfqq
4995 	 * belongs to CLASS_IDLE and other queues are waiting for
4996 	 * service.
4997 	 */
4998 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4999 		goto return_rq;
5000 
5001 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
5002 
5003 return_rq:
5004 	return rq;
5005 }
5006 
5007 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5008 {
5009 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5010 
5011 	/*
5012 	 * Avoiding lock: a race on bfqd->queued should cause at
5013 	 * most a call to dispatch for nothing
5014 	 */
5015 	return !list_empty_careful(&bfqd->dispatch) ||
5016 		READ_ONCE(bfqd->queued);
5017 }
5018 
5019 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5020 {
5021 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5022 	struct request *rq = NULL;
5023 	struct bfq_queue *bfqq = NULL;
5024 
5025 	if (!list_empty(&bfqd->dispatch)) {
5026 		rq = list_first_entry(&bfqd->dispatch, struct request,
5027 				      queuelist);
5028 		list_del_init(&rq->queuelist);
5029 
5030 		bfqq = RQ_BFQQ(rq);
5031 
5032 		if (bfqq) {
5033 			/*
5034 			 * Increment counters here, because this
5035 			 * dispatch does not follow the standard
5036 			 * dispatch flow (where counters are
5037 			 * incremented)
5038 			 */
5039 			bfqq->dispatched++;
5040 
5041 			goto inc_in_driver_start_rq;
5042 		}
5043 
5044 		/*
5045 		 * We exploit the bfq_finish_requeue_request hook to
5046 		 * decrement rq_in_driver, but
5047 		 * bfq_finish_requeue_request will not be invoked on
5048 		 * this request. So, to avoid unbalance, just start
5049 		 * this request, without incrementing rq_in_driver. As
5050 		 * a negative consequence, rq_in_driver is deceptively
5051 		 * lower than it should be while this request is in
5052 		 * service. This may cause bfq_schedule_dispatch to be
5053 		 * invoked uselessly.
5054 		 *
5055 		 * As for implementing an exact solution, the
5056 		 * bfq_finish_requeue_request hook, if defined, is
5057 		 * probably invoked also on this request. So, by
5058 		 * exploiting this hook, we could 1) increment
5059 		 * rq_in_driver here, and 2) decrement it in
5060 		 * bfq_finish_requeue_request. Such a solution would
5061 		 * let the value of the counter be always accurate,
5062 		 * but it would entail using an extra interface
5063 		 * function. This cost seems higher than the benefit,
5064 		 * being the frequency of non-elevator-private
5065 		 * requests very low.
5066 		 */
5067 		goto start_rq;
5068 	}
5069 
5070 	bfq_log(bfqd, "dispatch requests: %d busy queues",
5071 		bfq_tot_busy_queues(bfqd));
5072 
5073 	if (bfq_tot_busy_queues(bfqd) == 0)
5074 		goto exit;
5075 
5076 	/*
5077 	 * Force device to serve one request at a time if
5078 	 * strict_guarantees is true. Forcing this service scheme is
5079 	 * currently the ONLY way to guarantee that the request
5080 	 * service order enforced by the scheduler is respected by a
5081 	 * queueing device. Otherwise the device is free even to make
5082 	 * some unlucky request wait for as long as the device
5083 	 * wishes.
5084 	 *
5085 	 * Of course, serving one request at a time may cause loss of
5086 	 * throughput.
5087 	 */
5088 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
5089 		goto exit;
5090 
5091 	bfqq = bfq_select_queue(bfqd);
5092 	if (!bfqq)
5093 		goto exit;
5094 
5095 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5096 
5097 	if (rq) {
5098 inc_in_driver_start_rq:
5099 		bfqd->rq_in_driver++;
5100 start_rq:
5101 		rq->rq_flags |= RQF_STARTED;
5102 	}
5103 exit:
5104 	return rq;
5105 }
5106 
5107 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5108 static void bfq_update_dispatch_stats(struct request_queue *q,
5109 				      struct request *rq,
5110 				      struct bfq_queue *in_serv_queue,
5111 				      bool idle_timer_disabled)
5112 {
5113 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5114 
5115 	if (!idle_timer_disabled && !bfqq)
5116 		return;
5117 
5118 	/*
5119 	 * rq and bfqq are guaranteed to exist until this function
5120 	 * ends, for the following reasons. First, rq can be
5121 	 * dispatched to the device, and then can be completed and
5122 	 * freed, only after this function ends. Second, rq cannot be
5123 	 * merged (and thus freed because of a merge) any longer,
5124 	 * because it has already started. Thus rq cannot be freed
5125 	 * before this function ends, and, since rq has a reference to
5126 	 * bfqq, the same guarantee holds for bfqq too.
5127 	 *
5128 	 * In addition, the following queue lock guarantees that
5129 	 * bfqq_group(bfqq) exists as well.
5130 	 */
5131 	spin_lock_irq(&q->queue_lock);
5132 	if (idle_timer_disabled)
5133 		/*
5134 		 * Since the idle timer has been disabled,
5135 		 * in_serv_queue contained some request when
5136 		 * __bfq_dispatch_request was invoked above, which
5137 		 * implies that rq was picked exactly from
5138 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5139 		 * therefore guaranteed to exist because of the above
5140 		 * arguments.
5141 		 */
5142 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5143 	if (bfqq) {
5144 		struct bfq_group *bfqg = bfqq_group(bfqq);
5145 
5146 		bfqg_stats_update_avg_queue_size(bfqg);
5147 		bfqg_stats_set_start_empty_time(bfqg);
5148 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5149 	}
5150 	spin_unlock_irq(&q->queue_lock);
5151 }
5152 #else
5153 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5154 					     struct request *rq,
5155 					     struct bfq_queue *in_serv_queue,
5156 					     bool idle_timer_disabled) {}
5157 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5158 
5159 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5160 {
5161 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5162 	struct request *rq;
5163 	struct bfq_queue *in_serv_queue;
5164 	bool waiting_rq, idle_timer_disabled = false;
5165 
5166 	spin_lock_irq(&bfqd->lock);
5167 
5168 	in_serv_queue = bfqd->in_service_queue;
5169 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5170 
5171 	rq = __bfq_dispatch_request(hctx);
5172 	if (in_serv_queue == bfqd->in_service_queue) {
5173 		idle_timer_disabled =
5174 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5175 	}
5176 
5177 	spin_unlock_irq(&bfqd->lock);
5178 	bfq_update_dispatch_stats(hctx->queue, rq,
5179 			idle_timer_disabled ? in_serv_queue : NULL,
5180 				idle_timer_disabled);
5181 
5182 	return rq;
5183 }
5184 
5185 /*
5186  * Task holds one reference to the queue, dropped when task exits.  Each rq
5187  * in-flight on this queue also holds a reference, dropped when rq is freed.
5188  *
5189  * Scheduler lock must be held here. Recall not to use bfqq after calling
5190  * this function on it.
5191  */
5192 void bfq_put_queue(struct bfq_queue *bfqq)
5193 {
5194 	struct bfq_queue *item;
5195 	struct hlist_node *n;
5196 	struct bfq_group *bfqg = bfqq_group(bfqq);
5197 
5198 	bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
5199 
5200 	bfqq->ref--;
5201 	if (bfqq->ref)
5202 		return;
5203 
5204 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5205 		hlist_del_init(&bfqq->burst_list_node);
5206 		/*
5207 		 * Decrement also burst size after the removal, if the
5208 		 * process associated with bfqq is exiting, and thus
5209 		 * does not contribute to the burst any longer. This
5210 		 * decrement helps filter out false positives of large
5211 		 * bursts, when some short-lived process (often due to
5212 		 * the execution of commands by some service) happens
5213 		 * to start and exit while a complex application is
5214 		 * starting, and thus spawning several processes that
5215 		 * do I/O (and that *must not* be treated as a large
5216 		 * burst, see comments on bfq_handle_burst).
5217 		 *
5218 		 * In particular, the decrement is performed only if:
5219 		 * 1) bfqq is not a merged queue, because, if it is,
5220 		 * then this free of bfqq is not triggered by the exit
5221 		 * of the process bfqq is associated with, but exactly
5222 		 * by the fact that bfqq has just been merged.
5223 		 * 2) burst_size is greater than 0, to handle
5224 		 * unbalanced decrements. Unbalanced decrements may
5225 		 * happen in te following case: bfqq is inserted into
5226 		 * the current burst list--without incrementing
5227 		 * bust_size--because of a split, but the current
5228 		 * burst list is not the burst list bfqq belonged to
5229 		 * (see comments on the case of a split in
5230 		 * bfq_set_request).
5231 		 */
5232 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5233 			bfqq->bfqd->burst_size--;
5234 	}
5235 
5236 	/*
5237 	 * bfqq does not exist any longer, so it cannot be woken by
5238 	 * any other queue, and cannot wake any other queue. Then bfqq
5239 	 * must be removed from the woken list of its possible waker
5240 	 * queue, and all queues in the woken list of bfqq must stop
5241 	 * having a waker queue. Strictly speaking, these updates
5242 	 * should be performed when bfqq remains with no I/O source
5243 	 * attached to it, which happens before bfqq gets freed. In
5244 	 * particular, this happens when the last process associated
5245 	 * with bfqq exits or gets associated with a different
5246 	 * queue. However, both events lead to bfqq being freed soon,
5247 	 * and dangling references would come out only after bfqq gets
5248 	 * freed. So these updates are done here, as a simple and safe
5249 	 * way to handle all cases.
5250 	 */
5251 	/* remove bfqq from woken list */
5252 	if (!hlist_unhashed(&bfqq->woken_list_node))
5253 		hlist_del_init(&bfqq->woken_list_node);
5254 
5255 	/* reset waker for all queues in woken list */
5256 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5257 				  woken_list_node) {
5258 		item->waker_bfqq = NULL;
5259 		hlist_del_init(&item->woken_list_node);
5260 	}
5261 
5262 	if (bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5263 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5264 
5265 	kmem_cache_free(bfq_pool, bfqq);
5266 	bfqg_and_blkg_put(bfqg);
5267 }
5268 
5269 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5270 {
5271 	bfqq->stable_ref--;
5272 	bfq_put_queue(bfqq);
5273 }
5274 
5275 void bfq_put_cooperator(struct bfq_queue *bfqq)
5276 {
5277 	struct bfq_queue *__bfqq, *next;
5278 
5279 	/*
5280 	 * If this queue was scheduled to merge with another queue, be
5281 	 * sure to drop the reference taken on that queue (and others in
5282 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5283 	 */
5284 	__bfqq = bfqq->new_bfqq;
5285 	while (__bfqq) {
5286 		if (__bfqq == bfqq)
5287 			break;
5288 		next = __bfqq->new_bfqq;
5289 		bfq_put_queue(__bfqq);
5290 		__bfqq = next;
5291 	}
5292 }
5293 
5294 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5295 {
5296 	if (bfqq == bfqd->in_service_queue) {
5297 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5298 		bfq_schedule_dispatch(bfqd);
5299 	}
5300 
5301 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5302 
5303 	bfq_put_cooperator(bfqq);
5304 
5305 	bfq_release_process_ref(bfqd, bfqq);
5306 }
5307 
5308 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5309 {
5310 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5311 	struct bfq_data *bfqd;
5312 
5313 	if (bfqq)
5314 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5315 
5316 	if (bfqq && bfqd) {
5317 		unsigned long flags;
5318 
5319 		spin_lock_irqsave(&bfqd->lock, flags);
5320 		bic_set_bfqq(bic, NULL, is_sync);
5321 		bfq_exit_bfqq(bfqd, bfqq);
5322 		spin_unlock_irqrestore(&bfqd->lock, flags);
5323 	}
5324 }
5325 
5326 static void bfq_exit_icq(struct io_cq *icq)
5327 {
5328 	struct bfq_io_cq *bic = icq_to_bic(icq);
5329 
5330 	if (bic->stable_merge_bfqq) {
5331 		struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5332 
5333 		/*
5334 		 * bfqd is NULL if scheduler already exited, and in
5335 		 * that case this is the last time bfqq is accessed.
5336 		 */
5337 		if (bfqd) {
5338 			unsigned long flags;
5339 
5340 			spin_lock_irqsave(&bfqd->lock, flags);
5341 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5342 			spin_unlock_irqrestore(&bfqd->lock, flags);
5343 		} else {
5344 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5345 		}
5346 	}
5347 
5348 	bfq_exit_icq_bfqq(bic, true);
5349 	bfq_exit_icq_bfqq(bic, false);
5350 }
5351 
5352 /*
5353  * Update the entity prio values; note that the new values will not
5354  * be used until the next (re)activation.
5355  */
5356 static void
5357 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5358 {
5359 	struct task_struct *tsk = current;
5360 	int ioprio_class;
5361 	struct bfq_data *bfqd = bfqq->bfqd;
5362 
5363 	if (!bfqd)
5364 		return;
5365 
5366 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5367 	switch (ioprio_class) {
5368 	default:
5369 		pr_err("bdi %s: bfq: bad prio class %d\n",
5370 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5371 			ioprio_class);
5372 		fallthrough;
5373 	case IOPRIO_CLASS_NONE:
5374 		/*
5375 		 * No prio set, inherit CPU scheduling settings.
5376 		 */
5377 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5378 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5379 		break;
5380 	case IOPRIO_CLASS_RT:
5381 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5382 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5383 		break;
5384 	case IOPRIO_CLASS_BE:
5385 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5386 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5387 		break;
5388 	case IOPRIO_CLASS_IDLE:
5389 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5390 		bfqq->new_ioprio = 7;
5391 		break;
5392 	}
5393 
5394 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5395 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5396 			bfqq->new_ioprio);
5397 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5398 	}
5399 
5400 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5401 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5402 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5403 	bfqq->entity.prio_changed = 1;
5404 }
5405 
5406 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5407 				       struct bio *bio, bool is_sync,
5408 				       struct bfq_io_cq *bic,
5409 				       bool respawn);
5410 
5411 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5412 {
5413 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5414 	struct bfq_queue *bfqq;
5415 	int ioprio = bic->icq.ioc->ioprio;
5416 
5417 	/*
5418 	 * This condition may trigger on a newly created bic, be sure to
5419 	 * drop the lock before returning.
5420 	 */
5421 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5422 		return;
5423 
5424 	bic->ioprio = ioprio;
5425 
5426 	bfqq = bic_to_bfqq(bic, false);
5427 	if (bfqq) {
5428 		bfq_release_process_ref(bfqd, bfqq);
5429 		bfqq = bfq_get_queue(bfqd, bio, false, bic, true);
5430 		bic_set_bfqq(bic, bfqq, false);
5431 	}
5432 
5433 	bfqq = bic_to_bfqq(bic, true);
5434 	if (bfqq)
5435 		bfq_set_next_ioprio_data(bfqq, bic);
5436 }
5437 
5438 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5439 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5440 {
5441 	u64 now_ns = ktime_get_ns();
5442 
5443 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5444 	INIT_LIST_HEAD(&bfqq->fifo);
5445 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5446 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5447 	INIT_HLIST_HEAD(&bfqq->woken_list);
5448 
5449 	bfqq->ref = 0;
5450 	bfqq->bfqd = bfqd;
5451 
5452 	if (bic)
5453 		bfq_set_next_ioprio_data(bfqq, bic);
5454 
5455 	if (is_sync) {
5456 		/*
5457 		 * No need to mark as has_short_ttime if in
5458 		 * idle_class, because no device idling is performed
5459 		 * for queues in idle class
5460 		 */
5461 		if (!bfq_class_idle(bfqq))
5462 			/* tentatively mark as has_short_ttime */
5463 			bfq_mark_bfqq_has_short_ttime(bfqq);
5464 		bfq_mark_bfqq_sync(bfqq);
5465 		bfq_mark_bfqq_just_created(bfqq);
5466 	} else
5467 		bfq_clear_bfqq_sync(bfqq);
5468 
5469 	/* set end request to minus infinity from now */
5470 	bfqq->ttime.last_end_request = now_ns + 1;
5471 
5472 	bfqq->creation_time = jiffies;
5473 
5474 	bfqq->io_start_time = now_ns;
5475 
5476 	bfq_mark_bfqq_IO_bound(bfqq);
5477 
5478 	bfqq->pid = pid;
5479 
5480 	/* Tentative initial value to trade off between thr and lat */
5481 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5482 	bfqq->budget_timeout = bfq_smallest_from_now();
5483 
5484 	bfqq->wr_coeff = 1;
5485 	bfqq->last_wr_start_finish = jiffies;
5486 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5487 	bfqq->split_time = bfq_smallest_from_now();
5488 
5489 	/*
5490 	 * To not forget the possibly high bandwidth consumed by a
5491 	 * process/queue in the recent past,
5492 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5493 	 * to the current value of bfqq->soft_rt_next_start (see
5494 	 * comments on bfq_bfqq_softrt_next_start).  Set
5495 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5496 	 * no bandwidth so far.
5497 	 */
5498 	bfqq->soft_rt_next_start = jiffies;
5499 
5500 	/* first request is almost certainly seeky */
5501 	bfqq->seek_history = 1;
5502 }
5503 
5504 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5505 					       struct bfq_group *bfqg,
5506 					       int ioprio_class, int ioprio)
5507 {
5508 	switch (ioprio_class) {
5509 	case IOPRIO_CLASS_RT:
5510 		return &bfqg->async_bfqq[0][ioprio];
5511 	case IOPRIO_CLASS_NONE:
5512 		ioprio = IOPRIO_BE_NORM;
5513 		fallthrough;
5514 	case IOPRIO_CLASS_BE:
5515 		return &bfqg->async_bfqq[1][ioprio];
5516 	case IOPRIO_CLASS_IDLE:
5517 		return &bfqg->async_idle_bfqq;
5518 	default:
5519 		return NULL;
5520 	}
5521 }
5522 
5523 static struct bfq_queue *
5524 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5525 			  struct bfq_io_cq *bic,
5526 			  struct bfq_queue *last_bfqq_created)
5527 {
5528 	struct bfq_queue *new_bfqq =
5529 		bfq_setup_merge(bfqq, last_bfqq_created);
5530 
5531 	if (!new_bfqq)
5532 		return bfqq;
5533 
5534 	if (new_bfqq->bic)
5535 		new_bfqq->bic->stably_merged = true;
5536 	bic->stably_merged = true;
5537 
5538 	/*
5539 	 * Reusing merge functions. This implies that
5540 	 * bfqq->bic must be set too, for
5541 	 * bfq_merge_bfqqs to correctly save bfqq's
5542 	 * state before killing it.
5543 	 */
5544 	bfqq->bic = bic;
5545 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5546 
5547 	return new_bfqq;
5548 }
5549 
5550 /*
5551  * Many throughput-sensitive workloads are made of several parallel
5552  * I/O flows, with all flows generated by the same application, or
5553  * more generically by the same task (e.g., system boot). The most
5554  * counterproductive action with these workloads is plugging I/O
5555  * dispatch when one of the bfq_queues associated with these flows
5556  * remains temporarily empty.
5557  *
5558  * To avoid this plugging, BFQ has been using a burst-handling
5559  * mechanism for years now. This mechanism has proven effective for
5560  * throughput, and not detrimental for service guarantees. The
5561  * following function pushes this mechanism a little bit further,
5562  * basing on the following two facts.
5563  *
5564  * First, all the I/O flows of a the same application or task
5565  * contribute to the execution/completion of that common application
5566  * or task. So the performance figures that matter are total
5567  * throughput of the flows and task-wide I/O latency.  In particular,
5568  * these flows do not need to be protected from each other, in terms
5569  * of individual bandwidth or latency.
5570  *
5571  * Second, the above fact holds regardless of the number of flows.
5572  *
5573  * Putting these two facts together, this commits merges stably the
5574  * bfq_queues associated with these I/O flows, i.e., with the
5575  * processes that generate these IO/ flows, regardless of how many the
5576  * involved processes are.
5577  *
5578  * To decide whether a set of bfq_queues is actually associated with
5579  * the I/O flows of a common application or task, and to merge these
5580  * queues stably, this function operates as follows: given a bfq_queue,
5581  * say Q2, currently being created, and the last bfq_queue, say Q1,
5582  * created before Q2, Q2 is merged stably with Q1 if
5583  * - very little time has elapsed since when Q1 was created
5584  * - Q2 has the same ioprio as Q1
5585  * - Q2 belongs to the same group as Q1
5586  *
5587  * Merging bfq_queues also reduces scheduling overhead. A fio test
5588  * with ten random readers on /dev/nullb shows a throughput boost of
5589  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5590  * the total per-request processing time, the above throughput boost
5591  * implies that BFQ's overhead is reduced by more than 50%.
5592  *
5593  * This new mechanism most certainly obsoletes the current
5594  * burst-handling heuristics. We keep those heuristics for the moment.
5595  */
5596 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5597 						      struct bfq_queue *bfqq,
5598 						      struct bfq_io_cq *bic)
5599 {
5600 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5601 		&bfqq->entity.parent->last_bfqq_created :
5602 		&bfqd->last_bfqq_created;
5603 
5604 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5605 
5606 	/*
5607 	 * If last_bfqq_created has not been set yet, then init it. If
5608 	 * it has been set already, but too long ago, then move it
5609 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5610 	 * different group than last_bfqq_created, or if bfqq has a
5611 	 * different ioprio or ioprio_class. If none of these
5612 	 * conditions holds true, then try an early stable merge or
5613 	 * schedule a delayed stable merge.
5614 	 *
5615 	 * A delayed merge is scheduled (instead of performing an
5616 	 * early merge), in case bfqq might soon prove to be more
5617 	 * throughput-beneficial if not merged. Currently this is
5618 	 * possible only if bfqd is rotational with no queueing. For
5619 	 * such a drive, not merging bfqq is better for throughput if
5620 	 * bfqq happens to contain sequential I/O. So, we wait a
5621 	 * little bit for enough I/O to flow through bfqq. After that,
5622 	 * if such an I/O is sequential, then the merge is
5623 	 * canceled. Otherwise the merge is finally performed.
5624 	 */
5625 	if (!last_bfqq_created ||
5626 	    time_before(last_bfqq_created->creation_time +
5627 			msecs_to_jiffies(bfq_activation_stable_merging),
5628 			bfqq->creation_time) ||
5629 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5630 		bfqq->ioprio != last_bfqq_created->ioprio ||
5631 		bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5632 		*source_bfqq = bfqq;
5633 	else if (time_after_eq(last_bfqq_created->creation_time +
5634 				 bfqd->bfq_burst_interval,
5635 				 bfqq->creation_time)) {
5636 		if (likely(bfqd->nonrot_with_queueing))
5637 			/*
5638 			 * With this type of drive, leaving
5639 			 * bfqq alone may provide no
5640 			 * throughput benefits compared with
5641 			 * merging bfqq. So merge bfqq now.
5642 			 */
5643 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5644 							 bic,
5645 							 last_bfqq_created);
5646 		else { /* schedule tentative stable merge */
5647 			/*
5648 			 * get reference on last_bfqq_created,
5649 			 * to prevent it from being freed,
5650 			 * until we decide whether to merge
5651 			 */
5652 			last_bfqq_created->ref++;
5653 			/*
5654 			 * need to keep track of stable refs, to
5655 			 * compute process refs correctly
5656 			 */
5657 			last_bfqq_created->stable_ref++;
5658 			/*
5659 			 * Record the bfqq to merge to.
5660 			 */
5661 			bic->stable_merge_bfqq = last_bfqq_created;
5662 		}
5663 	}
5664 
5665 	return bfqq;
5666 }
5667 
5668 
5669 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5670 				       struct bio *bio, bool is_sync,
5671 				       struct bfq_io_cq *bic,
5672 				       bool respawn)
5673 {
5674 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5675 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5676 	struct bfq_queue **async_bfqq = NULL;
5677 	struct bfq_queue *bfqq;
5678 	struct bfq_group *bfqg;
5679 
5680 	bfqg = bfq_bio_bfqg(bfqd, bio);
5681 	if (!is_sync) {
5682 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5683 						  ioprio);
5684 		bfqq = *async_bfqq;
5685 		if (bfqq)
5686 			goto out;
5687 	}
5688 
5689 	bfqq = kmem_cache_alloc_node(bfq_pool,
5690 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5691 				     bfqd->queue->node);
5692 
5693 	if (bfqq) {
5694 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5695 			      is_sync);
5696 		bfq_init_entity(&bfqq->entity, bfqg);
5697 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5698 	} else {
5699 		bfqq = &bfqd->oom_bfqq;
5700 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5701 		goto out;
5702 	}
5703 
5704 	/*
5705 	 * Pin the queue now that it's allocated, scheduler exit will
5706 	 * prune it.
5707 	 */
5708 	if (async_bfqq) {
5709 		bfqq->ref++; /*
5710 			      * Extra group reference, w.r.t. sync
5711 			      * queue. This extra reference is removed
5712 			      * only if bfqq->bfqg disappears, to
5713 			      * guarantee that this queue is not freed
5714 			      * until its group goes away.
5715 			      */
5716 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5717 			     bfqq, bfqq->ref);
5718 		*async_bfqq = bfqq;
5719 	}
5720 
5721 out:
5722 	bfqq->ref++; /* get a process reference to this queue */
5723 
5724 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5725 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5726 	return bfqq;
5727 }
5728 
5729 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5730 				    struct bfq_queue *bfqq)
5731 {
5732 	struct bfq_ttime *ttime = &bfqq->ttime;
5733 	u64 elapsed;
5734 
5735 	/*
5736 	 * We are really interested in how long it takes for the queue to
5737 	 * become busy when there is no outstanding IO for this queue. So
5738 	 * ignore cases when the bfq queue has already IO queued.
5739 	 */
5740 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5741 		return;
5742 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5743 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5744 
5745 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5746 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5747 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5748 				     ttime->ttime_samples);
5749 }
5750 
5751 static void
5752 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5753 		       struct request *rq)
5754 {
5755 	bfqq->seek_history <<= 1;
5756 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5757 
5758 	if (bfqq->wr_coeff > 1 &&
5759 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5760 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5761 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5762 					   bfq_wr_duration(bfqd))) {
5763 			/*
5764 			 * In soft_rt weight raising with the
5765 			 * interactive-weight-raising period
5766 			 * elapsed (so no switch back to
5767 			 * interactive weight raising).
5768 			 */
5769 			bfq_bfqq_end_wr(bfqq);
5770 		} else { /*
5771 			  * stopping soft_rt weight raising
5772 			  * while still in interactive period,
5773 			  * switch back to interactive weight
5774 			  * raising
5775 			  */
5776 			switch_back_to_interactive_wr(bfqq, bfqd);
5777 			bfqq->entity.prio_changed = 1;
5778 		}
5779 	}
5780 }
5781 
5782 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5783 				       struct bfq_queue *bfqq,
5784 				       struct bfq_io_cq *bic)
5785 {
5786 	bool has_short_ttime = true, state_changed;
5787 
5788 	/*
5789 	 * No need to update has_short_ttime if bfqq is async or in
5790 	 * idle io prio class, or if bfq_slice_idle is zero, because
5791 	 * no device idling is performed for bfqq in this case.
5792 	 */
5793 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5794 	    bfqd->bfq_slice_idle == 0)
5795 		return;
5796 
5797 	/* Idle window just restored, statistics are meaningless. */
5798 	if (time_is_after_eq_jiffies(bfqq->split_time +
5799 				     bfqd->bfq_wr_min_idle_time))
5800 		return;
5801 
5802 	/* Think time is infinite if no process is linked to
5803 	 * bfqq. Otherwise check average think time to decide whether
5804 	 * to mark as has_short_ttime. To this goal, compare average
5805 	 * think time with half the I/O-plugging timeout.
5806 	 */
5807 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5808 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5809 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5810 		has_short_ttime = false;
5811 
5812 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5813 
5814 	if (has_short_ttime)
5815 		bfq_mark_bfqq_has_short_ttime(bfqq);
5816 	else
5817 		bfq_clear_bfqq_has_short_ttime(bfqq);
5818 
5819 	/*
5820 	 * Until the base value for the total service time gets
5821 	 * finally computed for bfqq, the inject limit does depend on
5822 	 * the think-time state (short|long). In particular, the limit
5823 	 * is 0 or 1 if the think time is deemed, respectively, as
5824 	 * short or long (details in the comments in
5825 	 * bfq_update_inject_limit()). Accordingly, the next
5826 	 * instructions reset the inject limit if the think-time state
5827 	 * has changed and the above base value is still to be
5828 	 * computed.
5829 	 *
5830 	 * However, the reset is performed only if more than 100 ms
5831 	 * have elapsed since the last update of the inject limit, or
5832 	 * (inclusive) if the change is from short to long think
5833 	 * time. The reason for this waiting is as follows.
5834 	 *
5835 	 * bfqq may have a long think time because of a
5836 	 * synchronization with some other queue, i.e., because the
5837 	 * I/O of some other queue may need to be completed for bfqq
5838 	 * to receive new I/O. Details in the comments on the choice
5839 	 * of the queue for injection in bfq_select_queue().
5840 	 *
5841 	 * As stressed in those comments, if such a synchronization is
5842 	 * actually in place, then, without injection on bfqq, the
5843 	 * blocking I/O cannot happen to served while bfqq is in
5844 	 * service. As a consequence, if bfqq is granted
5845 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5846 	 * is dispatched, until the idle timeout fires. This is likely
5847 	 * to result in lower bandwidth and higher latencies for bfqq,
5848 	 * and in a severe loss of total throughput.
5849 	 *
5850 	 * On the opposite end, a non-zero inject limit may allow the
5851 	 * I/O that blocks bfqq to be executed soon, and therefore
5852 	 * bfqq to receive new I/O soon.
5853 	 *
5854 	 * But, if the blocking gets actually eliminated, then the
5855 	 * next think-time sample for bfqq may be very low. This in
5856 	 * turn may cause bfqq's think time to be deemed
5857 	 * short. Without the 100 ms barrier, this new state change
5858 	 * would cause the body of the next if to be executed
5859 	 * immediately. But this would set to 0 the inject
5860 	 * limit. Without injection, the blocking I/O would cause the
5861 	 * think time of bfqq to become long again, and therefore the
5862 	 * inject limit to be raised again, and so on. The only effect
5863 	 * of such a steady oscillation between the two think-time
5864 	 * states would be to prevent effective injection on bfqq.
5865 	 *
5866 	 * In contrast, if the inject limit is not reset during such a
5867 	 * long time interval as 100 ms, then the number of short
5868 	 * think time samples can grow significantly before the reset
5869 	 * is performed. As a consequence, the think time state can
5870 	 * become stable before the reset. Therefore there will be no
5871 	 * state change when the 100 ms elapse, and no reset of the
5872 	 * inject limit. The inject limit remains steadily equal to 1
5873 	 * both during and after the 100 ms. So injection can be
5874 	 * performed at all times, and throughput gets boosted.
5875 	 *
5876 	 * An inject limit equal to 1 is however in conflict, in
5877 	 * general, with the fact that the think time of bfqq is
5878 	 * short, because injection may be likely to delay bfqq's I/O
5879 	 * (as explained in the comments in
5880 	 * bfq_update_inject_limit()). But this does not happen in
5881 	 * this special case, because bfqq's low think time is due to
5882 	 * an effective handling of a synchronization, through
5883 	 * injection. In this special case, bfqq's I/O does not get
5884 	 * delayed by injection; on the contrary, bfqq's I/O is
5885 	 * brought forward, because it is not blocked for
5886 	 * milliseconds.
5887 	 *
5888 	 * In addition, serving the blocking I/O much sooner, and much
5889 	 * more frequently than once per I/O-plugging timeout, makes
5890 	 * it much quicker to detect a waker queue (the concept of
5891 	 * waker queue is defined in the comments in
5892 	 * bfq_add_request()). This makes it possible to start sooner
5893 	 * to boost throughput more effectively, by injecting the I/O
5894 	 * of the waker queue unconditionally on every
5895 	 * bfq_dispatch_request().
5896 	 *
5897 	 * One last, important benefit of not resetting the inject
5898 	 * limit before 100 ms is that, during this time interval, the
5899 	 * base value for the total service time is likely to get
5900 	 * finally computed for bfqq, freeing the inject limit from
5901 	 * its relation with the think time.
5902 	 */
5903 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5904 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5905 				      msecs_to_jiffies(100)) ||
5906 	     !has_short_ttime))
5907 		bfq_reset_inject_limit(bfqd, bfqq);
5908 }
5909 
5910 /*
5911  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5912  * something we should do about it.
5913  */
5914 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5915 			    struct request *rq)
5916 {
5917 	if (rq->cmd_flags & REQ_META)
5918 		bfqq->meta_pending++;
5919 
5920 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5921 
5922 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5923 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5924 				 blk_rq_sectors(rq) < 32;
5925 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5926 
5927 		/*
5928 		 * There is just this request queued: if
5929 		 * - the request is small, and
5930 		 * - we are idling to boost throughput, and
5931 		 * - the queue is not to be expired,
5932 		 * then just exit.
5933 		 *
5934 		 * In this way, if the device is being idled to wait
5935 		 * for a new request from the in-service queue, we
5936 		 * avoid unplugging the device and committing the
5937 		 * device to serve just a small request. In contrast
5938 		 * we wait for the block layer to decide when to
5939 		 * unplug the device: hopefully, new requests will be
5940 		 * merged to this one quickly, then the device will be
5941 		 * unplugged and larger requests will be dispatched.
5942 		 */
5943 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5944 		    !budget_timeout)
5945 			return;
5946 
5947 		/*
5948 		 * A large enough request arrived, or idling is being
5949 		 * performed to preserve service guarantees, or
5950 		 * finally the queue is to be expired: in all these
5951 		 * cases disk idling is to be stopped, so clear
5952 		 * wait_request flag and reset timer.
5953 		 */
5954 		bfq_clear_bfqq_wait_request(bfqq);
5955 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5956 
5957 		/*
5958 		 * The queue is not empty, because a new request just
5959 		 * arrived. Hence we can safely expire the queue, in
5960 		 * case of budget timeout, without risking that the
5961 		 * timestamps of the queue are not updated correctly.
5962 		 * See [1] for more details.
5963 		 */
5964 		if (budget_timeout)
5965 			bfq_bfqq_expire(bfqd, bfqq, false,
5966 					BFQQE_BUDGET_TIMEOUT);
5967 	}
5968 }
5969 
5970 static void bfqq_request_allocated(struct bfq_queue *bfqq)
5971 {
5972 	struct bfq_entity *entity = &bfqq->entity;
5973 
5974 	for_each_entity(entity)
5975 		entity->allocated++;
5976 }
5977 
5978 static void bfqq_request_freed(struct bfq_queue *bfqq)
5979 {
5980 	struct bfq_entity *entity = &bfqq->entity;
5981 
5982 	for_each_entity(entity)
5983 		entity->allocated--;
5984 }
5985 
5986 /* returns true if it causes the idle timer to be disabled */
5987 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5988 {
5989 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5990 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
5991 						 RQ_BIC(rq));
5992 	bool waiting, idle_timer_disabled = false;
5993 
5994 	if (new_bfqq) {
5995 		/*
5996 		 * Release the request's reference to the old bfqq
5997 		 * and make sure one is taken to the shared queue.
5998 		 */
5999 		bfqq_request_allocated(new_bfqq);
6000 		bfqq_request_freed(bfqq);
6001 		new_bfqq->ref++;
6002 		/*
6003 		 * If the bic associated with the process
6004 		 * issuing this request still points to bfqq
6005 		 * (and thus has not been already redirected
6006 		 * to new_bfqq or even some other bfq_queue),
6007 		 * then complete the merge and redirect it to
6008 		 * new_bfqq.
6009 		 */
6010 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
6011 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
6012 					bfqq, new_bfqq);
6013 
6014 		bfq_clear_bfqq_just_created(bfqq);
6015 		/*
6016 		 * rq is about to be enqueued into new_bfqq,
6017 		 * release rq reference on bfqq
6018 		 */
6019 		bfq_put_queue(bfqq);
6020 		rq->elv.priv[1] = new_bfqq;
6021 		bfqq = new_bfqq;
6022 	}
6023 
6024 	bfq_update_io_thinktime(bfqd, bfqq);
6025 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
6026 	bfq_update_io_seektime(bfqd, bfqq, rq);
6027 
6028 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
6029 	bfq_add_request(rq);
6030 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
6031 
6032 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
6033 	list_add_tail(&rq->queuelist, &bfqq->fifo);
6034 
6035 	bfq_rq_enqueued(bfqd, bfqq, rq);
6036 
6037 	return idle_timer_disabled;
6038 }
6039 
6040 #ifdef CONFIG_BFQ_CGROUP_DEBUG
6041 static void bfq_update_insert_stats(struct request_queue *q,
6042 				    struct bfq_queue *bfqq,
6043 				    bool idle_timer_disabled,
6044 				    blk_opf_t cmd_flags)
6045 {
6046 	if (!bfqq)
6047 		return;
6048 
6049 	/*
6050 	 * bfqq still exists, because it can disappear only after
6051 	 * either it is merged with another queue, or the process it
6052 	 * is associated with exits. But both actions must be taken by
6053 	 * the same process currently executing this flow of
6054 	 * instructions.
6055 	 *
6056 	 * In addition, the following queue lock guarantees that
6057 	 * bfqq_group(bfqq) exists as well.
6058 	 */
6059 	spin_lock_irq(&q->queue_lock);
6060 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
6061 	if (idle_timer_disabled)
6062 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
6063 	spin_unlock_irq(&q->queue_lock);
6064 }
6065 #else
6066 static inline void bfq_update_insert_stats(struct request_queue *q,
6067 					   struct bfq_queue *bfqq,
6068 					   bool idle_timer_disabled,
6069 					   blk_opf_t cmd_flags) {}
6070 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
6071 
6072 static struct bfq_queue *bfq_init_rq(struct request *rq);
6073 
6074 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6075 			       bool at_head)
6076 {
6077 	struct request_queue *q = hctx->queue;
6078 	struct bfq_data *bfqd = q->elevator->elevator_data;
6079 	struct bfq_queue *bfqq;
6080 	bool idle_timer_disabled = false;
6081 	blk_opf_t cmd_flags;
6082 	LIST_HEAD(free);
6083 
6084 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6085 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6086 		bfqg_stats_update_legacy_io(q, rq);
6087 #endif
6088 	spin_lock_irq(&bfqd->lock);
6089 	bfqq = bfq_init_rq(rq);
6090 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
6091 		spin_unlock_irq(&bfqd->lock);
6092 		blk_mq_free_requests(&free);
6093 		return;
6094 	}
6095 
6096 	trace_block_rq_insert(rq);
6097 
6098 	if (!bfqq || at_head) {
6099 		if (at_head)
6100 			list_add(&rq->queuelist, &bfqd->dispatch);
6101 		else
6102 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
6103 	} else {
6104 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6105 		/*
6106 		 * Update bfqq, because, if a queue merge has occurred
6107 		 * in __bfq_insert_request, then rq has been
6108 		 * redirected into a new queue.
6109 		 */
6110 		bfqq = RQ_BFQQ(rq);
6111 
6112 		if (rq_mergeable(rq)) {
6113 			elv_rqhash_add(q, rq);
6114 			if (!q->last_merge)
6115 				q->last_merge = rq;
6116 		}
6117 	}
6118 
6119 	/*
6120 	 * Cache cmd_flags before releasing scheduler lock, because rq
6121 	 * may disappear afterwards (for example, because of a request
6122 	 * merge).
6123 	 */
6124 	cmd_flags = rq->cmd_flags;
6125 	spin_unlock_irq(&bfqd->lock);
6126 
6127 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6128 				cmd_flags);
6129 }
6130 
6131 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6132 				struct list_head *list, bool at_head)
6133 {
6134 	while (!list_empty(list)) {
6135 		struct request *rq;
6136 
6137 		rq = list_first_entry(list, struct request, queuelist);
6138 		list_del_init(&rq->queuelist);
6139 		bfq_insert_request(hctx, rq, at_head);
6140 	}
6141 }
6142 
6143 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6144 {
6145 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6146 
6147 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6148 				       bfqd->rq_in_driver);
6149 
6150 	if (bfqd->hw_tag == 1)
6151 		return;
6152 
6153 	/*
6154 	 * This sample is valid if the number of outstanding requests
6155 	 * is large enough to allow a queueing behavior.  Note that the
6156 	 * sum is not exact, as it's not taking into account deactivated
6157 	 * requests.
6158 	 */
6159 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6160 		return;
6161 
6162 	/*
6163 	 * If active queue hasn't enough requests and can idle, bfq might not
6164 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6165 	 * case
6166 	 */
6167 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6168 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6169 	    BFQ_HW_QUEUE_THRESHOLD &&
6170 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6171 		return;
6172 
6173 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6174 		return;
6175 
6176 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6177 	bfqd->max_rq_in_driver = 0;
6178 	bfqd->hw_tag_samples = 0;
6179 
6180 	bfqd->nonrot_with_queueing =
6181 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6182 }
6183 
6184 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6185 {
6186 	u64 now_ns;
6187 	u32 delta_us;
6188 
6189 	bfq_update_hw_tag(bfqd);
6190 
6191 	bfqd->rq_in_driver--;
6192 	bfqq->dispatched--;
6193 
6194 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6195 		/*
6196 		 * Set budget_timeout (which we overload to store the
6197 		 * time at which the queue remains with no backlog and
6198 		 * no outstanding request; used by the weight-raising
6199 		 * mechanism).
6200 		 */
6201 		bfqq->budget_timeout = jiffies;
6202 
6203 		bfq_del_bfqq_in_groups_with_pending_reqs(bfqq);
6204 		bfq_weights_tree_remove(bfqq);
6205 	}
6206 
6207 	now_ns = ktime_get_ns();
6208 
6209 	bfqq->ttime.last_end_request = now_ns;
6210 
6211 	/*
6212 	 * Using us instead of ns, to get a reasonable precision in
6213 	 * computing rate in next check.
6214 	 */
6215 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6216 
6217 	/*
6218 	 * If the request took rather long to complete, and, according
6219 	 * to the maximum request size recorded, this completion latency
6220 	 * implies that the request was certainly served at a very low
6221 	 * rate (less than 1M sectors/sec), then the whole observation
6222 	 * interval that lasts up to this time instant cannot be a
6223 	 * valid time interval for computing a new peak rate.  Invoke
6224 	 * bfq_update_rate_reset to have the following three steps
6225 	 * taken:
6226 	 * - close the observation interval at the last (previous)
6227 	 *   request dispatch or completion
6228 	 * - compute rate, if possible, for that observation interval
6229 	 * - reset to zero samples, which will trigger a proper
6230 	 *   re-initialization of the observation interval on next
6231 	 *   dispatch
6232 	 */
6233 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6234 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6235 			1UL<<(BFQ_RATE_SHIFT - 10))
6236 		bfq_update_rate_reset(bfqd, NULL);
6237 	bfqd->last_completion = now_ns;
6238 	/*
6239 	 * Shared queues are likely to receive I/O at a high
6240 	 * rate. This may deceptively let them be considered as wakers
6241 	 * of other queues. But a false waker will unjustly steal
6242 	 * bandwidth to its supposedly woken queue. So considering
6243 	 * also shared queues in the waking mechanism may cause more
6244 	 * control troubles than throughput benefits. Then reset
6245 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6246 	 */
6247 	if (!bfq_bfqq_coop(bfqq))
6248 		bfqd->last_completed_rq_bfqq = bfqq;
6249 	else
6250 		bfqd->last_completed_rq_bfqq = NULL;
6251 
6252 	/*
6253 	 * If we are waiting to discover whether the request pattern
6254 	 * of the task associated with the queue is actually
6255 	 * isochronous, and both requisites for this condition to hold
6256 	 * are now satisfied, then compute soft_rt_next_start (see the
6257 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6258 	 * do not compute soft_rt_next_start if bfqq is in interactive
6259 	 * weight raising (see the comments in bfq_bfqq_expire() for
6260 	 * an explanation). We schedule this delayed update when bfqq
6261 	 * expires, if it still has in-flight requests.
6262 	 */
6263 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6264 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6265 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6266 		bfqq->soft_rt_next_start =
6267 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6268 
6269 	/*
6270 	 * If this is the in-service queue, check if it needs to be expired,
6271 	 * or if we want to idle in case it has no pending requests.
6272 	 */
6273 	if (bfqd->in_service_queue == bfqq) {
6274 		if (bfq_bfqq_must_idle(bfqq)) {
6275 			if (bfqq->dispatched == 0)
6276 				bfq_arm_slice_timer(bfqd);
6277 			/*
6278 			 * If we get here, we do not expire bfqq, even
6279 			 * if bfqq was in budget timeout or had no
6280 			 * more requests (as controlled in the next
6281 			 * conditional instructions). The reason for
6282 			 * not expiring bfqq is as follows.
6283 			 *
6284 			 * Here bfqq->dispatched > 0 holds, but
6285 			 * bfq_bfqq_must_idle() returned true. This
6286 			 * implies that, even if no request arrives
6287 			 * for bfqq before bfqq->dispatched reaches 0,
6288 			 * bfqq will, however, not be expired on the
6289 			 * completion event that causes bfqq->dispatch
6290 			 * to reach zero. In contrast, on this event,
6291 			 * bfqq will start enjoying device idling
6292 			 * (I/O-dispatch plugging).
6293 			 *
6294 			 * But, if we expired bfqq here, bfqq would
6295 			 * not have the chance to enjoy device idling
6296 			 * when bfqq->dispatched finally reaches
6297 			 * zero. This would expose bfqq to violation
6298 			 * of its reserved service guarantees.
6299 			 */
6300 			return;
6301 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6302 			bfq_bfqq_expire(bfqd, bfqq, false,
6303 					BFQQE_BUDGET_TIMEOUT);
6304 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6305 			 (bfqq->dispatched == 0 ||
6306 			  !bfq_better_to_idle(bfqq)))
6307 			bfq_bfqq_expire(bfqd, bfqq, false,
6308 					BFQQE_NO_MORE_REQUESTS);
6309 	}
6310 
6311 	if (!bfqd->rq_in_driver)
6312 		bfq_schedule_dispatch(bfqd);
6313 }
6314 
6315 /*
6316  * The processes associated with bfqq may happen to generate their
6317  * cumulative I/O at a lower rate than the rate at which the device
6318  * could serve the same I/O. This is rather probable, e.g., if only
6319  * one process is associated with bfqq and the device is an SSD. It
6320  * results in bfqq becoming often empty while in service. In this
6321  * respect, if BFQ is allowed to switch to another queue when bfqq
6322  * remains empty, then the device goes on being fed with I/O requests,
6323  * and the throughput is not affected. In contrast, if BFQ is not
6324  * allowed to switch to another queue---because bfqq is sync and
6325  * I/O-dispatch needs to be plugged while bfqq is temporarily
6326  * empty---then, during the service of bfqq, there will be frequent
6327  * "service holes", i.e., time intervals during which bfqq gets empty
6328  * and the device can only consume the I/O already queued in its
6329  * hardware queues. During service holes, the device may even get to
6330  * remaining idle. In the end, during the service of bfqq, the device
6331  * is driven at a lower speed than the one it can reach with the kind
6332  * of I/O flowing through bfqq.
6333  *
6334  * To counter this loss of throughput, BFQ implements a "request
6335  * injection mechanism", which tries to fill the above service holes
6336  * with I/O requests taken from other queues. The hard part in this
6337  * mechanism is finding the right amount of I/O to inject, so as to
6338  * both boost throughput and not break bfqq's bandwidth and latency
6339  * guarantees. In this respect, the mechanism maintains a per-queue
6340  * inject limit, computed as below. While bfqq is empty, the injection
6341  * mechanism dispatches extra I/O requests only until the total number
6342  * of I/O requests in flight---i.e., already dispatched but not yet
6343  * completed---remains lower than this limit.
6344  *
6345  * A first definition comes in handy to introduce the algorithm by
6346  * which the inject limit is computed.  We define as first request for
6347  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6348  * service, and causes bfqq to switch from empty to non-empty. The
6349  * algorithm updates the limit as a function of the effect of
6350  * injection on the service times of only the first requests of
6351  * bfqq. The reason for this restriction is that these are the
6352  * requests whose service time is affected most, because they are the
6353  * first to arrive after injection possibly occurred.
6354  *
6355  * To evaluate the effect of injection, the algorithm measures the
6356  * "total service time" of first requests. We define as total service
6357  * time of an I/O request, the time that elapses since when the
6358  * request is enqueued into bfqq, to when it is completed. This
6359  * quantity allows the whole effect of injection to be measured. It is
6360  * easy to see why. Suppose that some requests of other queues are
6361  * actually injected while bfqq is empty, and that a new request R
6362  * then arrives for bfqq. If the device does start to serve all or
6363  * part of the injected requests during the service hole, then,
6364  * because of this extra service, it may delay the next invocation of
6365  * the dispatch hook of BFQ. Then, even after R gets eventually
6366  * dispatched, the device may delay the actual service of R if it is
6367  * still busy serving the extra requests, or if it decides to serve,
6368  * before R, some extra request still present in its queues. As a
6369  * conclusion, the cumulative extra delay caused by injection can be
6370  * easily evaluated by just comparing the total service time of first
6371  * requests with and without injection.
6372  *
6373  * The limit-update algorithm works as follows. On the arrival of a
6374  * first request of bfqq, the algorithm measures the total time of the
6375  * request only if one of the three cases below holds, and, for each
6376  * case, it updates the limit as described below:
6377  *
6378  * (1) If there is no in-flight request. This gives a baseline for the
6379  *     total service time of the requests of bfqq. If the baseline has
6380  *     not been computed yet, then, after computing it, the limit is
6381  *     set to 1, to start boosting throughput, and to prepare the
6382  *     ground for the next case. If the baseline has already been
6383  *     computed, then it is updated, in case it results to be lower
6384  *     than the previous value.
6385  *
6386  * (2) If the limit is higher than 0 and there are in-flight
6387  *     requests. By comparing the total service time in this case with
6388  *     the above baseline, it is possible to know at which extent the
6389  *     current value of the limit is inflating the total service
6390  *     time. If the inflation is below a certain threshold, then bfqq
6391  *     is assumed to be suffering from no perceivable loss of its
6392  *     service guarantees, and the limit is even tentatively
6393  *     increased. If the inflation is above the threshold, then the
6394  *     limit is decreased. Due to the lack of any hysteresis, this
6395  *     logic makes the limit oscillate even in steady workload
6396  *     conditions. Yet we opted for it, because it is fast in reaching
6397  *     the best value for the limit, as a function of the current I/O
6398  *     workload. To reduce oscillations, this step is disabled for a
6399  *     short time interval after the limit happens to be decreased.
6400  *
6401  * (3) Periodically, after resetting the limit, to make sure that the
6402  *     limit eventually drops in case the workload changes. This is
6403  *     needed because, after the limit has gone safely up for a
6404  *     certain workload, it is impossible to guess whether the
6405  *     baseline total service time may have changed, without measuring
6406  *     it again without injection. A more effective version of this
6407  *     step might be to just sample the baseline, by interrupting
6408  *     injection only once, and then to reset/lower the limit only if
6409  *     the total service time with the current limit does happen to be
6410  *     too large.
6411  *
6412  * More details on each step are provided in the comments on the
6413  * pieces of code that implement these steps: the branch handling the
6414  * transition from empty to non empty in bfq_add_request(), the branch
6415  * handling injection in bfq_select_queue(), and the function
6416  * bfq_choose_bfqq_for_injection(). These comments also explain some
6417  * exceptions, made by the injection mechanism in some special cases.
6418  */
6419 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6420 				    struct bfq_queue *bfqq)
6421 {
6422 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6423 	unsigned int old_limit = bfqq->inject_limit;
6424 
6425 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6426 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6427 
6428 		if (tot_time_ns >= threshold && old_limit > 0) {
6429 			bfqq->inject_limit--;
6430 			bfqq->decrease_time_jif = jiffies;
6431 		} else if (tot_time_ns < threshold &&
6432 			   old_limit <= bfqd->max_rq_in_driver)
6433 			bfqq->inject_limit++;
6434 	}
6435 
6436 	/*
6437 	 * Either we still have to compute the base value for the
6438 	 * total service time, and there seem to be the right
6439 	 * conditions to do it, or we can lower the last base value
6440 	 * computed.
6441 	 *
6442 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6443 	 * request in flight, because this function is in the code
6444 	 * path that handles the completion of a request of bfqq, and,
6445 	 * in particular, this function is executed before
6446 	 * bfqd->rq_in_driver is decremented in such a code path.
6447 	 */
6448 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
6449 	    tot_time_ns < bfqq->last_serv_time_ns) {
6450 		if (bfqq->last_serv_time_ns == 0) {
6451 			/*
6452 			 * Now we certainly have a base value: make sure we
6453 			 * start trying injection.
6454 			 */
6455 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6456 		}
6457 		bfqq->last_serv_time_ns = tot_time_ns;
6458 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6459 		/*
6460 		 * No I/O injected and no request still in service in
6461 		 * the drive: these are the exact conditions for
6462 		 * computing the base value of the total service time
6463 		 * for bfqq. So let's update this value, because it is
6464 		 * rather variable. For example, it varies if the size
6465 		 * or the spatial locality of the I/O requests in bfqq
6466 		 * change.
6467 		 */
6468 		bfqq->last_serv_time_ns = tot_time_ns;
6469 
6470 
6471 	/* update complete, not waiting for any request completion any longer */
6472 	bfqd->waited_rq = NULL;
6473 	bfqd->rqs_injected = false;
6474 }
6475 
6476 /*
6477  * Handle either a requeue or a finish for rq. The things to do are
6478  * the same in both cases: all references to rq are to be dropped. In
6479  * particular, rq is considered completed from the point of view of
6480  * the scheduler.
6481  */
6482 static void bfq_finish_requeue_request(struct request *rq)
6483 {
6484 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6485 	struct bfq_data *bfqd;
6486 	unsigned long flags;
6487 
6488 	/*
6489 	 * rq either is not associated with any icq, or is an already
6490 	 * requeued request that has not (yet) been re-inserted into
6491 	 * a bfq_queue.
6492 	 */
6493 	if (!rq->elv.icq || !bfqq)
6494 		return;
6495 
6496 	bfqd = bfqq->bfqd;
6497 
6498 	if (rq->rq_flags & RQF_STARTED)
6499 		bfqg_stats_update_completion(bfqq_group(bfqq),
6500 					     rq->start_time_ns,
6501 					     rq->io_start_time_ns,
6502 					     rq->cmd_flags);
6503 
6504 	spin_lock_irqsave(&bfqd->lock, flags);
6505 	if (likely(rq->rq_flags & RQF_STARTED)) {
6506 		if (rq == bfqd->waited_rq)
6507 			bfq_update_inject_limit(bfqd, bfqq);
6508 
6509 		bfq_completed_request(bfqq, bfqd);
6510 	}
6511 	bfqq_request_freed(bfqq);
6512 	bfq_put_queue(bfqq);
6513 	RQ_BIC(rq)->requests--;
6514 	spin_unlock_irqrestore(&bfqd->lock, flags);
6515 
6516 	/*
6517 	 * Reset private fields. In case of a requeue, this allows
6518 	 * this function to correctly do nothing if it is spuriously
6519 	 * invoked again on this same request (see the check at the
6520 	 * beginning of the function). Probably, a better general
6521 	 * design would be to prevent blk-mq from invoking the requeue
6522 	 * or finish hooks of an elevator, for a request that is not
6523 	 * referred by that elevator.
6524 	 *
6525 	 * Resetting the following fields would break the
6526 	 * request-insertion logic if rq is re-inserted into a bfq
6527 	 * internal queue, without a re-preparation. Here we assume
6528 	 * that re-insertions of requeued requests, without
6529 	 * re-preparation, can happen only for pass_through or at_head
6530 	 * requests (which are not re-inserted into bfq internal
6531 	 * queues).
6532 	 */
6533 	rq->elv.priv[0] = NULL;
6534 	rq->elv.priv[1] = NULL;
6535 }
6536 
6537 static void bfq_finish_request(struct request *rq)
6538 {
6539 	bfq_finish_requeue_request(rq);
6540 
6541 	if (rq->elv.icq) {
6542 		put_io_context(rq->elv.icq->ioc);
6543 		rq->elv.icq = NULL;
6544 	}
6545 }
6546 
6547 /*
6548  * Removes the association between the current task and bfqq, assuming
6549  * that bic points to the bfq iocontext of the task.
6550  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6551  * was the last process referring to that bfqq.
6552  */
6553 static struct bfq_queue *
6554 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6555 {
6556 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6557 
6558 	if (bfqq_process_refs(bfqq) == 1) {
6559 		bfqq->pid = current->pid;
6560 		bfq_clear_bfqq_coop(bfqq);
6561 		bfq_clear_bfqq_split_coop(bfqq);
6562 		return bfqq;
6563 	}
6564 
6565 	bic_set_bfqq(bic, NULL, true);
6566 
6567 	bfq_put_cooperator(bfqq);
6568 
6569 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6570 	return NULL;
6571 }
6572 
6573 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6574 						   struct bfq_io_cq *bic,
6575 						   struct bio *bio,
6576 						   bool split, bool is_sync,
6577 						   bool *new_queue)
6578 {
6579 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6580 
6581 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6582 		return bfqq;
6583 
6584 	if (new_queue)
6585 		*new_queue = true;
6586 
6587 	if (bfqq)
6588 		bfq_put_queue(bfqq);
6589 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6590 
6591 	bic_set_bfqq(bic, bfqq, is_sync);
6592 	if (split && is_sync) {
6593 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6594 		    bic->saved_in_large_burst)
6595 			bfq_mark_bfqq_in_large_burst(bfqq);
6596 		else {
6597 			bfq_clear_bfqq_in_large_burst(bfqq);
6598 			if (bic->was_in_burst_list)
6599 				/*
6600 				 * If bfqq was in the current
6601 				 * burst list before being
6602 				 * merged, then we have to add
6603 				 * it back. And we do not need
6604 				 * to increase burst_size, as
6605 				 * we did not decrement
6606 				 * burst_size when we removed
6607 				 * bfqq from the burst list as
6608 				 * a consequence of a merge
6609 				 * (see comments in
6610 				 * bfq_put_queue). In this
6611 				 * respect, it would be rather
6612 				 * costly to know whether the
6613 				 * current burst list is still
6614 				 * the same burst list from
6615 				 * which bfqq was removed on
6616 				 * the merge. To avoid this
6617 				 * cost, if bfqq was in a
6618 				 * burst list, then we add
6619 				 * bfqq to the current burst
6620 				 * list without any further
6621 				 * check. This can cause
6622 				 * inappropriate insertions,
6623 				 * but rarely enough to not
6624 				 * harm the detection of large
6625 				 * bursts significantly.
6626 				 */
6627 				hlist_add_head(&bfqq->burst_list_node,
6628 					       &bfqd->burst_list);
6629 		}
6630 		bfqq->split_time = jiffies;
6631 	}
6632 
6633 	return bfqq;
6634 }
6635 
6636 /*
6637  * Only reset private fields. The actual request preparation will be
6638  * performed by bfq_init_rq, when rq is either inserted or merged. See
6639  * comments on bfq_init_rq for the reason behind this delayed
6640  * preparation.
6641  */
6642 static void bfq_prepare_request(struct request *rq)
6643 {
6644 	rq->elv.icq = ioc_find_get_icq(rq->q);
6645 
6646 	/*
6647 	 * Regardless of whether we have an icq attached, we have to
6648 	 * clear the scheduler pointers, as they might point to
6649 	 * previously allocated bic/bfqq structs.
6650 	 */
6651 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6652 }
6653 
6654 /*
6655  * If needed, init rq, allocate bfq data structures associated with
6656  * rq, and increment reference counters in the destination bfq_queue
6657  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6658  * not associated with any bfq_queue.
6659  *
6660  * This function is invoked by the functions that perform rq insertion
6661  * or merging. One may have expected the above preparation operations
6662  * to be performed in bfq_prepare_request, and not delayed to when rq
6663  * is inserted or merged. The rationale behind this delayed
6664  * preparation is that, after the prepare_request hook is invoked for
6665  * rq, rq may still be transformed into a request with no icq, i.e., a
6666  * request not associated with any queue. No bfq hook is invoked to
6667  * signal this transformation. As a consequence, should these
6668  * preparation operations be performed when the prepare_request hook
6669  * is invoked, and should rq be transformed one moment later, bfq
6670  * would end up in an inconsistent state, because it would have
6671  * incremented some queue counters for an rq destined to
6672  * transformation, without any chance to correctly lower these
6673  * counters back. In contrast, no transformation can still happen for
6674  * rq after rq has been inserted or merged. So, it is safe to execute
6675  * these preparation operations when rq is finally inserted or merged.
6676  */
6677 static struct bfq_queue *bfq_init_rq(struct request *rq)
6678 {
6679 	struct request_queue *q = rq->q;
6680 	struct bio *bio = rq->bio;
6681 	struct bfq_data *bfqd = q->elevator->elevator_data;
6682 	struct bfq_io_cq *bic;
6683 	const int is_sync = rq_is_sync(rq);
6684 	struct bfq_queue *bfqq;
6685 	bool new_queue = false;
6686 	bool bfqq_already_existing = false, split = false;
6687 
6688 	if (unlikely(!rq->elv.icq))
6689 		return NULL;
6690 
6691 	/*
6692 	 * Assuming that elv.priv[1] is set only if everything is set
6693 	 * for this rq. This holds true, because this function is
6694 	 * invoked only for insertion or merging, and, after such
6695 	 * events, a request cannot be manipulated any longer before
6696 	 * being removed from bfq.
6697 	 */
6698 	if (rq->elv.priv[1])
6699 		return rq->elv.priv[1];
6700 
6701 	bic = icq_to_bic(rq->elv.icq);
6702 
6703 	bfq_check_ioprio_change(bic, bio);
6704 
6705 	bfq_bic_update_cgroup(bic, bio);
6706 
6707 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6708 					 &new_queue);
6709 
6710 	if (likely(!new_queue)) {
6711 		/* If the queue was seeky for too long, break it apart. */
6712 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6713 			!bic->stably_merged) {
6714 			struct bfq_queue *old_bfqq = bfqq;
6715 
6716 			/* Update bic before losing reference to bfqq */
6717 			if (bfq_bfqq_in_large_burst(bfqq))
6718 				bic->saved_in_large_burst = true;
6719 
6720 			bfqq = bfq_split_bfqq(bic, bfqq);
6721 			split = true;
6722 
6723 			if (!bfqq) {
6724 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6725 								 true, is_sync,
6726 								 NULL);
6727 				if (unlikely(bfqq == &bfqd->oom_bfqq))
6728 					bfqq_already_existing = true;
6729 			} else
6730 				bfqq_already_existing = true;
6731 
6732 			if (!bfqq_already_existing) {
6733 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6734 				bfqq->tentative_waker_bfqq = NULL;
6735 
6736 				/*
6737 				 * If the waker queue disappears, then
6738 				 * new_bfqq->waker_bfqq must be
6739 				 * reset. So insert new_bfqq into the
6740 				 * woken_list of the waker. See
6741 				 * bfq_check_waker for details.
6742 				 */
6743 				if (bfqq->waker_bfqq)
6744 					hlist_add_head(&bfqq->woken_list_node,
6745 						       &bfqq->waker_bfqq->woken_list);
6746 			}
6747 		}
6748 	}
6749 
6750 	bfqq_request_allocated(bfqq);
6751 	bfqq->ref++;
6752 	bic->requests++;
6753 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6754 		     rq, bfqq, bfqq->ref);
6755 
6756 	rq->elv.priv[0] = bic;
6757 	rq->elv.priv[1] = bfqq;
6758 
6759 	/*
6760 	 * If a bfq_queue has only one process reference, it is owned
6761 	 * by only this bic: we can then set bfqq->bic = bic. in
6762 	 * addition, if the queue has also just been split, we have to
6763 	 * resume its state.
6764 	 */
6765 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6766 		bfqq->bic = bic;
6767 		if (split) {
6768 			/*
6769 			 * The queue has just been split from a shared
6770 			 * queue: restore the idle window and the
6771 			 * possible weight raising period.
6772 			 */
6773 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6774 					      bfqq_already_existing);
6775 		}
6776 	}
6777 
6778 	/*
6779 	 * Consider bfqq as possibly belonging to a burst of newly
6780 	 * created queues only if:
6781 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6782 	 * or
6783 	 * 2) There is no other active queue. In fact, if, in
6784 	 *    contrast, there are active queues not belonging to the
6785 	 *    possible burst bfqq may belong to, then there is no gain
6786 	 *    in considering bfqq as belonging to a burst, and
6787 	 *    therefore in not weight-raising bfqq. See comments on
6788 	 *    bfq_handle_burst().
6789 	 *
6790 	 * This filtering also helps eliminating false positives,
6791 	 * occurring when bfqq does not belong to an actual large
6792 	 * burst, but some background task (e.g., a service) happens
6793 	 * to trigger the creation of new queues very close to when
6794 	 * bfqq and its possible companion queues are created. See
6795 	 * comments on bfq_handle_burst() for further details also on
6796 	 * this issue.
6797 	 */
6798 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6799 		     (bfqd->burst_size > 0 ||
6800 		      bfq_tot_busy_queues(bfqd) == 0)))
6801 		bfq_handle_burst(bfqd, bfqq);
6802 
6803 	return bfqq;
6804 }
6805 
6806 static void
6807 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6808 {
6809 	enum bfqq_expiration reason;
6810 	unsigned long flags;
6811 
6812 	spin_lock_irqsave(&bfqd->lock, flags);
6813 
6814 	/*
6815 	 * Considering that bfqq may be in race, we should firstly check
6816 	 * whether bfqq is in service before doing something on it. If
6817 	 * the bfqq in race is not in service, it has already been expired
6818 	 * through __bfq_bfqq_expire func and its wait_request flags has
6819 	 * been cleared in __bfq_bfqd_reset_in_service func.
6820 	 */
6821 	if (bfqq != bfqd->in_service_queue) {
6822 		spin_unlock_irqrestore(&bfqd->lock, flags);
6823 		return;
6824 	}
6825 
6826 	bfq_clear_bfqq_wait_request(bfqq);
6827 
6828 	if (bfq_bfqq_budget_timeout(bfqq))
6829 		/*
6830 		 * Also here the queue can be safely expired
6831 		 * for budget timeout without wasting
6832 		 * guarantees
6833 		 */
6834 		reason = BFQQE_BUDGET_TIMEOUT;
6835 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6836 		/*
6837 		 * The queue may not be empty upon timer expiration,
6838 		 * because we may not disable the timer when the
6839 		 * first request of the in-service queue arrives
6840 		 * during disk idling.
6841 		 */
6842 		reason = BFQQE_TOO_IDLE;
6843 	else
6844 		goto schedule_dispatch;
6845 
6846 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6847 
6848 schedule_dispatch:
6849 	bfq_schedule_dispatch(bfqd);
6850 	spin_unlock_irqrestore(&bfqd->lock, flags);
6851 }
6852 
6853 /*
6854  * Handler of the expiration of the timer running if the in-service queue
6855  * is idling inside its time slice.
6856  */
6857 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6858 {
6859 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6860 					     idle_slice_timer);
6861 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6862 
6863 	/*
6864 	 * Theoretical race here: the in-service queue can be NULL or
6865 	 * different from the queue that was idling if a new request
6866 	 * arrives for the current queue and there is a full dispatch
6867 	 * cycle that changes the in-service queue.  This can hardly
6868 	 * happen, but in the worst case we just expire a queue too
6869 	 * early.
6870 	 */
6871 	if (bfqq)
6872 		bfq_idle_slice_timer_body(bfqd, bfqq);
6873 
6874 	return HRTIMER_NORESTART;
6875 }
6876 
6877 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6878 				 struct bfq_queue **bfqq_ptr)
6879 {
6880 	struct bfq_queue *bfqq = *bfqq_ptr;
6881 
6882 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6883 	if (bfqq) {
6884 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6885 
6886 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6887 			     bfqq, bfqq->ref);
6888 		bfq_put_queue(bfqq);
6889 		*bfqq_ptr = NULL;
6890 	}
6891 }
6892 
6893 /*
6894  * Release all the bfqg references to its async queues.  If we are
6895  * deallocating the group these queues may still contain requests, so
6896  * we reparent them to the root cgroup (i.e., the only one that will
6897  * exist for sure until all the requests on a device are gone).
6898  */
6899 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6900 {
6901 	int i, j;
6902 
6903 	for (i = 0; i < 2; i++)
6904 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
6905 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6906 
6907 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6908 }
6909 
6910 /*
6911  * See the comments on bfq_limit_depth for the purpose of
6912  * the depths set in the function. Return minimum shallow depth we'll use.
6913  */
6914 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
6915 {
6916 	unsigned int depth = 1U << bt->sb.shift;
6917 
6918 	bfqd->full_depth_shift = bt->sb.shift;
6919 	/*
6920 	 * In-word depths if no bfq_queue is being weight-raised:
6921 	 * leaving 25% of tags only for sync reads.
6922 	 *
6923 	 * In next formulas, right-shift the value
6924 	 * (1U<<bt->sb.shift), instead of computing directly
6925 	 * (1U<<(bt->sb.shift - something)), to be robust against
6926 	 * any possible value of bt->sb.shift, without having to
6927 	 * limit 'something'.
6928 	 */
6929 	/* no more than 50% of tags for async I/O */
6930 	bfqd->word_depths[0][0] = max(depth >> 1, 1U);
6931 	/*
6932 	 * no more than 75% of tags for sync writes (25% extra tags
6933 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6934 	 * writes)
6935 	 */
6936 	bfqd->word_depths[0][1] = max((depth * 3) >> 2, 1U);
6937 
6938 	/*
6939 	 * In-word depths in case some bfq_queue is being weight-
6940 	 * raised: leaving ~63% of tags for sync reads. This is the
6941 	 * highest percentage for which, in our tests, application
6942 	 * start-up times didn't suffer from any regression due to tag
6943 	 * shortage.
6944 	 */
6945 	/* no more than ~18% of tags for async I/O */
6946 	bfqd->word_depths[1][0] = max((depth * 3) >> 4, 1U);
6947 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6948 	bfqd->word_depths[1][1] = max((depth * 6) >> 4, 1U);
6949 }
6950 
6951 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6952 {
6953 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6954 	struct blk_mq_tags *tags = hctx->sched_tags;
6955 
6956 	bfq_update_depths(bfqd, &tags->bitmap_tags);
6957 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
6958 }
6959 
6960 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6961 {
6962 	bfq_depth_updated(hctx);
6963 	return 0;
6964 }
6965 
6966 static void bfq_exit_queue(struct elevator_queue *e)
6967 {
6968 	struct bfq_data *bfqd = e->elevator_data;
6969 	struct bfq_queue *bfqq, *n;
6970 
6971 	hrtimer_cancel(&bfqd->idle_slice_timer);
6972 
6973 	spin_lock_irq(&bfqd->lock);
6974 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6975 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6976 	spin_unlock_irq(&bfqd->lock);
6977 
6978 	hrtimer_cancel(&bfqd->idle_slice_timer);
6979 
6980 	/* release oom-queue reference to root group */
6981 	bfqg_and_blkg_put(bfqd->root_group);
6982 
6983 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6984 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6985 #else
6986 	spin_lock_irq(&bfqd->lock);
6987 	bfq_put_async_queues(bfqd, bfqd->root_group);
6988 	kfree(bfqd->root_group);
6989 	spin_unlock_irq(&bfqd->lock);
6990 #endif
6991 
6992 	blk_stat_disable_accounting(bfqd->queue);
6993 	clear_bit(ELEVATOR_FLAG_DISABLE_WBT, &e->flags);
6994 	wbt_enable_default(bfqd->queue);
6995 
6996 	kfree(bfqd);
6997 }
6998 
6999 static void bfq_init_root_group(struct bfq_group *root_group,
7000 				struct bfq_data *bfqd)
7001 {
7002 	int i;
7003 
7004 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7005 	root_group->entity.parent = NULL;
7006 	root_group->my_entity = NULL;
7007 	root_group->bfqd = bfqd;
7008 #endif
7009 	root_group->rq_pos_tree = RB_ROOT;
7010 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7011 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7012 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
7013 }
7014 
7015 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
7016 {
7017 	struct bfq_data *bfqd;
7018 	struct elevator_queue *eq;
7019 
7020 	eq = elevator_alloc(q, e);
7021 	if (!eq)
7022 		return -ENOMEM;
7023 
7024 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7025 	if (!bfqd) {
7026 		kobject_put(&eq->kobj);
7027 		return -ENOMEM;
7028 	}
7029 	eq->elevator_data = bfqd;
7030 
7031 	spin_lock_irq(&q->queue_lock);
7032 	q->elevator = eq;
7033 	spin_unlock_irq(&q->queue_lock);
7034 
7035 	/*
7036 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7037 	 * Grab a permanent reference to it, so that the normal code flow
7038 	 * will not attempt to free it.
7039 	 */
7040 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
7041 	bfqd->oom_bfqq.ref++;
7042 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7043 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7044 	bfqd->oom_bfqq.entity.new_weight =
7045 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
7046 
7047 	/* oom_bfqq does not participate to bursts */
7048 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
7049 
7050 	/*
7051 	 * Trigger weight initialization, according to ioprio, at the
7052 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7053 	 * class won't be changed any more.
7054 	 */
7055 	bfqd->oom_bfqq.entity.prio_changed = 1;
7056 
7057 	bfqd->queue = q;
7058 
7059 	INIT_LIST_HEAD(&bfqd->dispatch);
7060 
7061 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
7062 		     HRTIMER_MODE_REL);
7063 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
7064 
7065 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
7066 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7067 	bfqd->num_groups_with_pending_reqs = 0;
7068 #endif
7069 
7070 	INIT_LIST_HEAD(&bfqd->active_list);
7071 	INIT_LIST_HEAD(&bfqd->idle_list);
7072 	INIT_HLIST_HEAD(&bfqd->burst_list);
7073 
7074 	bfqd->hw_tag = -1;
7075 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
7076 
7077 	bfqd->bfq_max_budget = bfq_default_max_budget;
7078 
7079 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7080 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7081 	bfqd->bfq_back_max = bfq_back_max;
7082 	bfqd->bfq_back_penalty = bfq_back_penalty;
7083 	bfqd->bfq_slice_idle = bfq_slice_idle;
7084 	bfqd->bfq_timeout = bfq_timeout;
7085 
7086 	bfqd->bfq_large_burst_thresh = 8;
7087 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7088 
7089 	bfqd->low_latency = true;
7090 
7091 	/*
7092 	 * Trade-off between responsiveness and fairness.
7093 	 */
7094 	bfqd->bfq_wr_coeff = 30;
7095 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7096 	bfqd->bfq_wr_max_time = 0;
7097 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7098 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7099 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7100 					      * Approximate rate required
7101 					      * to playback or record a
7102 					      * high-definition compressed
7103 					      * video.
7104 					      */
7105 	bfqd->wr_busy_queues = 0;
7106 
7107 	/*
7108 	 * Begin by assuming, optimistically, that the device peak
7109 	 * rate is equal to 2/3 of the highest reference rate.
7110 	 */
7111 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7112 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7113 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7114 
7115 	spin_lock_init(&bfqd->lock);
7116 
7117 	/*
7118 	 * The invocation of the next bfq_create_group_hierarchy
7119 	 * function is the head of a chain of function calls
7120 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7121 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7122 	 * has_work hook function. For this reason,
7123 	 * bfq_create_group_hierarchy is invoked only after all
7124 	 * scheduler data has been initialized, apart from the fields
7125 	 * that can be initialized only after invoking
7126 	 * bfq_create_group_hierarchy. This, in particular, enables
7127 	 * has_work to correctly return false. Of course, to avoid
7128 	 * other inconsistencies, the blk-mq stack must then refrain
7129 	 * from invoking further scheduler hooks before this init
7130 	 * function is finished.
7131 	 */
7132 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7133 	if (!bfqd->root_group)
7134 		goto out_free;
7135 	bfq_init_root_group(bfqd->root_group, bfqd);
7136 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7137 
7138 	/* We dispatch from request queue wide instead of hw queue */
7139 	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
7140 
7141 	set_bit(ELEVATOR_FLAG_DISABLE_WBT, &eq->flags);
7142 	wbt_disable_default(q);
7143 	blk_stat_enable_accounting(q);
7144 
7145 	return 0;
7146 
7147 out_free:
7148 	kfree(bfqd);
7149 	kobject_put(&eq->kobj);
7150 	return -ENOMEM;
7151 }
7152 
7153 static void bfq_slab_kill(void)
7154 {
7155 	kmem_cache_destroy(bfq_pool);
7156 }
7157 
7158 static int __init bfq_slab_setup(void)
7159 {
7160 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7161 	if (!bfq_pool)
7162 		return -ENOMEM;
7163 	return 0;
7164 }
7165 
7166 static ssize_t bfq_var_show(unsigned int var, char *page)
7167 {
7168 	return sprintf(page, "%u\n", var);
7169 }
7170 
7171 static int bfq_var_store(unsigned long *var, const char *page)
7172 {
7173 	unsigned long new_val;
7174 	int ret = kstrtoul(page, 10, &new_val);
7175 
7176 	if (ret)
7177 		return ret;
7178 	*var = new_val;
7179 	return 0;
7180 }
7181 
7182 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7183 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7184 {									\
7185 	struct bfq_data *bfqd = e->elevator_data;			\
7186 	u64 __data = __VAR;						\
7187 	if (__CONV == 1)						\
7188 		__data = jiffies_to_msecs(__data);			\
7189 	else if (__CONV == 2)						\
7190 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7191 	return bfq_var_show(__data, (page));				\
7192 }
7193 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7194 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7195 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7196 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7197 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7198 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7199 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7200 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7201 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7202 #undef SHOW_FUNCTION
7203 
7204 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7205 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7206 {									\
7207 	struct bfq_data *bfqd = e->elevator_data;			\
7208 	u64 __data = __VAR;						\
7209 	__data = div_u64(__data, NSEC_PER_USEC);			\
7210 	return bfq_var_show(__data, (page));				\
7211 }
7212 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7213 #undef USEC_SHOW_FUNCTION
7214 
7215 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7216 static ssize_t								\
7217 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7218 {									\
7219 	struct bfq_data *bfqd = e->elevator_data;			\
7220 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7221 	int ret;							\
7222 									\
7223 	ret = bfq_var_store(&__data, (page));				\
7224 	if (ret)							\
7225 		return ret;						\
7226 	if (__data < __min)						\
7227 		__data = __min;						\
7228 	else if (__data > __max)					\
7229 		__data = __max;						\
7230 	if (__CONV == 1)						\
7231 		*(__PTR) = msecs_to_jiffies(__data);			\
7232 	else if (__CONV == 2)						\
7233 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7234 	else								\
7235 		*(__PTR) = __data;					\
7236 	return count;							\
7237 }
7238 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7239 		INT_MAX, 2);
7240 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7241 		INT_MAX, 2);
7242 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7243 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7244 		INT_MAX, 0);
7245 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7246 #undef STORE_FUNCTION
7247 
7248 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7249 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7250 {									\
7251 	struct bfq_data *bfqd = e->elevator_data;			\
7252 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7253 	int ret;							\
7254 									\
7255 	ret = bfq_var_store(&__data, (page));				\
7256 	if (ret)							\
7257 		return ret;						\
7258 	if (__data < __min)						\
7259 		__data = __min;						\
7260 	else if (__data > __max)					\
7261 		__data = __max;						\
7262 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7263 	return count;							\
7264 }
7265 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7266 		    UINT_MAX);
7267 #undef USEC_STORE_FUNCTION
7268 
7269 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7270 				    const char *page, size_t count)
7271 {
7272 	struct bfq_data *bfqd = e->elevator_data;
7273 	unsigned long __data;
7274 	int ret;
7275 
7276 	ret = bfq_var_store(&__data, (page));
7277 	if (ret)
7278 		return ret;
7279 
7280 	if (__data == 0)
7281 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7282 	else {
7283 		if (__data > INT_MAX)
7284 			__data = INT_MAX;
7285 		bfqd->bfq_max_budget = __data;
7286 	}
7287 
7288 	bfqd->bfq_user_max_budget = __data;
7289 
7290 	return count;
7291 }
7292 
7293 /*
7294  * Leaving this name to preserve name compatibility with cfq
7295  * parameters, but this timeout is used for both sync and async.
7296  */
7297 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7298 				      const char *page, size_t count)
7299 {
7300 	struct bfq_data *bfqd = e->elevator_data;
7301 	unsigned long __data;
7302 	int ret;
7303 
7304 	ret = bfq_var_store(&__data, (page));
7305 	if (ret)
7306 		return ret;
7307 
7308 	if (__data < 1)
7309 		__data = 1;
7310 	else if (__data > INT_MAX)
7311 		__data = INT_MAX;
7312 
7313 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7314 	if (bfqd->bfq_user_max_budget == 0)
7315 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7316 
7317 	return count;
7318 }
7319 
7320 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7321 				     const char *page, size_t count)
7322 {
7323 	struct bfq_data *bfqd = e->elevator_data;
7324 	unsigned long __data;
7325 	int ret;
7326 
7327 	ret = bfq_var_store(&__data, (page));
7328 	if (ret)
7329 		return ret;
7330 
7331 	if (__data > 1)
7332 		__data = 1;
7333 	if (!bfqd->strict_guarantees && __data == 1
7334 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7335 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7336 
7337 	bfqd->strict_guarantees = __data;
7338 
7339 	return count;
7340 }
7341 
7342 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7343 				     const char *page, size_t count)
7344 {
7345 	struct bfq_data *bfqd = e->elevator_data;
7346 	unsigned long __data;
7347 	int ret;
7348 
7349 	ret = bfq_var_store(&__data, (page));
7350 	if (ret)
7351 		return ret;
7352 
7353 	if (__data > 1)
7354 		__data = 1;
7355 	if (__data == 0 && bfqd->low_latency != 0)
7356 		bfq_end_wr(bfqd);
7357 	bfqd->low_latency = __data;
7358 
7359 	return count;
7360 }
7361 
7362 #define BFQ_ATTR(name) \
7363 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7364 
7365 static struct elv_fs_entry bfq_attrs[] = {
7366 	BFQ_ATTR(fifo_expire_sync),
7367 	BFQ_ATTR(fifo_expire_async),
7368 	BFQ_ATTR(back_seek_max),
7369 	BFQ_ATTR(back_seek_penalty),
7370 	BFQ_ATTR(slice_idle),
7371 	BFQ_ATTR(slice_idle_us),
7372 	BFQ_ATTR(max_budget),
7373 	BFQ_ATTR(timeout_sync),
7374 	BFQ_ATTR(strict_guarantees),
7375 	BFQ_ATTR(low_latency),
7376 	__ATTR_NULL
7377 };
7378 
7379 static struct elevator_type iosched_bfq_mq = {
7380 	.ops = {
7381 		.limit_depth		= bfq_limit_depth,
7382 		.prepare_request	= bfq_prepare_request,
7383 		.requeue_request        = bfq_finish_requeue_request,
7384 		.finish_request		= bfq_finish_request,
7385 		.exit_icq		= bfq_exit_icq,
7386 		.insert_requests	= bfq_insert_requests,
7387 		.dispatch_request	= bfq_dispatch_request,
7388 		.next_request		= elv_rb_latter_request,
7389 		.former_request		= elv_rb_former_request,
7390 		.allow_merge		= bfq_allow_bio_merge,
7391 		.bio_merge		= bfq_bio_merge,
7392 		.request_merge		= bfq_request_merge,
7393 		.requests_merged	= bfq_requests_merged,
7394 		.request_merged		= bfq_request_merged,
7395 		.has_work		= bfq_has_work,
7396 		.depth_updated		= bfq_depth_updated,
7397 		.init_hctx		= bfq_init_hctx,
7398 		.init_sched		= bfq_init_queue,
7399 		.exit_sched		= bfq_exit_queue,
7400 	},
7401 
7402 	.icq_size =		sizeof(struct bfq_io_cq),
7403 	.icq_align =		__alignof__(struct bfq_io_cq),
7404 	.elevator_attrs =	bfq_attrs,
7405 	.elevator_name =	"bfq",
7406 	.elevator_owner =	THIS_MODULE,
7407 };
7408 MODULE_ALIAS("bfq-iosched");
7409 
7410 static int __init bfq_init(void)
7411 {
7412 	int ret;
7413 
7414 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7415 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7416 	if (ret)
7417 		return ret;
7418 #endif
7419 
7420 	ret = -ENOMEM;
7421 	if (bfq_slab_setup())
7422 		goto err_pol_unreg;
7423 
7424 	/*
7425 	 * Times to load large popular applications for the typical
7426 	 * systems installed on the reference devices (see the
7427 	 * comments before the definition of the next
7428 	 * array). Actually, we use slightly lower values, as the
7429 	 * estimated peak rate tends to be smaller than the actual
7430 	 * peak rate.  The reason for this last fact is that estimates
7431 	 * are computed over much shorter time intervals than the long
7432 	 * intervals typically used for benchmarking. Why? First, to
7433 	 * adapt more quickly to variations. Second, because an I/O
7434 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7435 	 * be run for a long time.
7436 	 */
7437 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7438 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7439 
7440 	ret = elv_register(&iosched_bfq_mq);
7441 	if (ret)
7442 		goto slab_kill;
7443 
7444 	return 0;
7445 
7446 slab_kill:
7447 	bfq_slab_kill();
7448 err_pol_unreg:
7449 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7450 	blkcg_policy_unregister(&blkcg_policy_bfq);
7451 #endif
7452 	return ret;
7453 }
7454 
7455 static void __exit bfq_exit(void)
7456 {
7457 	elv_unregister(&iosched_bfq_mq);
7458 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7459 	blkcg_policy_unregister(&blkcg_policy_bfq);
7460 #endif
7461 	bfq_slab_kill();
7462 }
7463 
7464 module_init(bfq_init);
7465 module_exit(bfq_exit);
7466 
7467 MODULE_AUTHOR("Paolo Valente");
7468 MODULE_LICENSE("GPL");
7469 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7470