1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Copyright (C) 2016 - 2020 Christoph Hellwig 6 */ 7 8 #include <linux/init.h> 9 #include <linux/mm.h> 10 #include <linux/slab.h> 11 #include <linux/kmod.h> 12 #include <linux/major.h> 13 #include <linux/device_cgroup.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/module.h> 17 #include <linux/blkpg.h> 18 #include <linux/magic.h> 19 #include <linux/buffer_head.h> 20 #include <linux/swap.h> 21 #include <linux/writeback.h> 22 #include <linux/mount.h> 23 #include <linux/pseudo_fs.h> 24 #include <linux/uio.h> 25 #include <linux/namei.h> 26 #include <linux/cleancache.h> 27 #include <linux/part_stat.h> 28 #include <linux/uaccess.h> 29 #include "../fs/internal.h" 30 #include "blk.h" 31 32 struct bdev_inode { 33 struct block_device bdev; 34 struct inode vfs_inode; 35 }; 36 37 static inline struct bdev_inode *BDEV_I(struct inode *inode) 38 { 39 return container_of(inode, struct bdev_inode, vfs_inode); 40 } 41 42 struct block_device *I_BDEV(struct inode *inode) 43 { 44 return &BDEV_I(inode)->bdev; 45 } 46 EXPORT_SYMBOL(I_BDEV); 47 48 static void bdev_write_inode(struct block_device *bdev) 49 { 50 struct inode *inode = bdev->bd_inode; 51 int ret; 52 53 spin_lock(&inode->i_lock); 54 while (inode->i_state & I_DIRTY) { 55 spin_unlock(&inode->i_lock); 56 ret = write_inode_now(inode, true); 57 if (ret) { 58 char name[BDEVNAME_SIZE]; 59 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 60 "for block device %s (err=%d).\n", 61 bdevname(bdev, name), ret); 62 } 63 spin_lock(&inode->i_lock); 64 } 65 spin_unlock(&inode->i_lock); 66 } 67 68 /* Kill _all_ buffers and pagecache , dirty or not.. */ 69 static void kill_bdev(struct block_device *bdev) 70 { 71 struct address_space *mapping = bdev->bd_inode->i_mapping; 72 73 if (mapping_empty(mapping)) 74 return; 75 76 invalidate_bh_lrus(); 77 truncate_inode_pages(mapping, 0); 78 } 79 80 /* Invalidate clean unused buffers and pagecache. */ 81 void invalidate_bdev(struct block_device *bdev) 82 { 83 struct address_space *mapping = bdev->bd_inode->i_mapping; 84 85 if (mapping->nrpages) { 86 invalidate_bh_lrus(); 87 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 88 invalidate_mapping_pages(mapping, 0, -1); 89 } 90 /* 99% of the time, we don't need to flush the cleancache on the bdev. 91 * But, for the strange corners, lets be cautious 92 */ 93 cleancache_invalidate_inode(mapping); 94 } 95 EXPORT_SYMBOL(invalidate_bdev); 96 97 /* 98 * Drop all buffers & page cache for given bdev range. This function bails 99 * with error if bdev has other exclusive owner (such as filesystem). 100 */ 101 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, 102 loff_t lstart, loff_t lend) 103 { 104 /* 105 * If we don't hold exclusive handle for the device, upgrade to it 106 * while we discard the buffer cache to avoid discarding buffers 107 * under live filesystem. 108 */ 109 if (!(mode & FMODE_EXCL)) { 110 int err = bd_prepare_to_claim(bdev, truncate_bdev_range); 111 if (err) 112 goto invalidate; 113 } 114 115 truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend); 116 if (!(mode & FMODE_EXCL)) 117 bd_abort_claiming(bdev, truncate_bdev_range); 118 return 0; 119 120 invalidate: 121 /* 122 * Someone else has handle exclusively open. Try invalidating instead. 123 * The 'end' argument is inclusive so the rounding is safe. 124 */ 125 return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping, 126 lstart >> PAGE_SHIFT, 127 lend >> PAGE_SHIFT); 128 } 129 130 static void set_init_blocksize(struct block_device *bdev) 131 { 132 unsigned int bsize = bdev_logical_block_size(bdev); 133 loff_t size = i_size_read(bdev->bd_inode); 134 135 while (bsize < PAGE_SIZE) { 136 if (size & bsize) 137 break; 138 bsize <<= 1; 139 } 140 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 141 } 142 143 int set_blocksize(struct block_device *bdev, int size) 144 { 145 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 146 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 147 return -EINVAL; 148 149 /* Size cannot be smaller than the size supported by the device */ 150 if (size < bdev_logical_block_size(bdev)) 151 return -EINVAL; 152 153 /* Don't change the size if it is same as current */ 154 if (bdev->bd_inode->i_blkbits != blksize_bits(size)) { 155 sync_blockdev(bdev); 156 bdev->bd_inode->i_blkbits = blksize_bits(size); 157 kill_bdev(bdev); 158 } 159 return 0; 160 } 161 162 EXPORT_SYMBOL(set_blocksize); 163 164 int sb_set_blocksize(struct super_block *sb, int size) 165 { 166 if (set_blocksize(sb->s_bdev, size)) 167 return 0; 168 /* If we get here, we know size is power of two 169 * and it's value is between 512 and PAGE_SIZE */ 170 sb->s_blocksize = size; 171 sb->s_blocksize_bits = blksize_bits(size); 172 return sb->s_blocksize; 173 } 174 175 EXPORT_SYMBOL(sb_set_blocksize); 176 177 int sb_min_blocksize(struct super_block *sb, int size) 178 { 179 int minsize = bdev_logical_block_size(sb->s_bdev); 180 if (size < minsize) 181 size = minsize; 182 return sb_set_blocksize(sb, size); 183 } 184 185 EXPORT_SYMBOL(sb_min_blocksize); 186 187 int __sync_blockdev(struct block_device *bdev, int wait) 188 { 189 if (!bdev) 190 return 0; 191 if (!wait) 192 return filemap_flush(bdev->bd_inode->i_mapping); 193 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 194 } 195 196 /* 197 * Write out and wait upon all the dirty data associated with a block 198 * device via its mapping. Does not take the superblock lock. 199 */ 200 int sync_blockdev(struct block_device *bdev) 201 { 202 return __sync_blockdev(bdev, 1); 203 } 204 EXPORT_SYMBOL(sync_blockdev); 205 206 /* 207 * Write out and wait upon all dirty data associated with this 208 * device. Filesystem data as well as the underlying block 209 * device. Takes the superblock lock. 210 */ 211 int fsync_bdev(struct block_device *bdev) 212 { 213 struct super_block *sb = get_super(bdev); 214 if (sb) { 215 int res = sync_filesystem(sb); 216 drop_super(sb); 217 return res; 218 } 219 return sync_blockdev(bdev); 220 } 221 EXPORT_SYMBOL(fsync_bdev); 222 223 /** 224 * freeze_bdev -- lock a filesystem and force it into a consistent state 225 * @bdev: blockdevice to lock 226 * 227 * If a superblock is found on this device, we take the s_umount semaphore 228 * on it to make sure nobody unmounts until the snapshot creation is done. 229 * The reference counter (bd_fsfreeze_count) guarantees that only the last 230 * unfreeze process can unfreeze the frozen filesystem actually when multiple 231 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 232 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 233 * actually. 234 */ 235 int freeze_bdev(struct block_device *bdev) 236 { 237 struct super_block *sb; 238 int error = 0; 239 240 mutex_lock(&bdev->bd_fsfreeze_mutex); 241 if (++bdev->bd_fsfreeze_count > 1) 242 goto done; 243 244 sb = get_active_super(bdev); 245 if (!sb) 246 goto sync; 247 if (sb->s_op->freeze_super) 248 error = sb->s_op->freeze_super(sb); 249 else 250 error = freeze_super(sb); 251 deactivate_super(sb); 252 253 if (error) { 254 bdev->bd_fsfreeze_count--; 255 goto done; 256 } 257 bdev->bd_fsfreeze_sb = sb; 258 259 sync: 260 sync_blockdev(bdev); 261 done: 262 mutex_unlock(&bdev->bd_fsfreeze_mutex); 263 return error; 264 } 265 EXPORT_SYMBOL(freeze_bdev); 266 267 /** 268 * thaw_bdev -- unlock filesystem 269 * @bdev: blockdevice to unlock 270 * 271 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 272 */ 273 int thaw_bdev(struct block_device *bdev) 274 { 275 struct super_block *sb; 276 int error = -EINVAL; 277 278 mutex_lock(&bdev->bd_fsfreeze_mutex); 279 if (!bdev->bd_fsfreeze_count) 280 goto out; 281 282 error = 0; 283 if (--bdev->bd_fsfreeze_count > 0) 284 goto out; 285 286 sb = bdev->bd_fsfreeze_sb; 287 if (!sb) 288 goto out; 289 290 if (sb->s_op->thaw_super) 291 error = sb->s_op->thaw_super(sb); 292 else 293 error = thaw_super(sb); 294 if (error) 295 bdev->bd_fsfreeze_count++; 296 else 297 bdev->bd_fsfreeze_sb = NULL; 298 out: 299 mutex_unlock(&bdev->bd_fsfreeze_mutex); 300 return error; 301 } 302 EXPORT_SYMBOL(thaw_bdev); 303 304 /** 305 * bdev_read_page() - Start reading a page from a block device 306 * @bdev: The device to read the page from 307 * @sector: The offset on the device to read the page to (need not be aligned) 308 * @page: The page to read 309 * 310 * On entry, the page should be locked. It will be unlocked when the page 311 * has been read. If the block driver implements rw_page synchronously, 312 * that will be true on exit from this function, but it need not be. 313 * 314 * Errors returned by this function are usually "soft", eg out of memory, or 315 * queue full; callers should try a different route to read this page rather 316 * than propagate an error back up the stack. 317 * 318 * Return: negative errno if an error occurs, 0 if submission was successful. 319 */ 320 int bdev_read_page(struct block_device *bdev, sector_t sector, 321 struct page *page) 322 { 323 const struct block_device_operations *ops = bdev->bd_disk->fops; 324 int result = -EOPNOTSUPP; 325 326 if (!ops->rw_page || bdev_get_integrity(bdev)) 327 return result; 328 329 result = blk_queue_enter(bdev->bd_disk->queue, 0); 330 if (result) 331 return result; 332 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 333 REQ_OP_READ); 334 blk_queue_exit(bdev->bd_disk->queue); 335 return result; 336 } 337 338 /** 339 * bdev_write_page() - Start writing a page to a block device 340 * @bdev: The device to write the page to 341 * @sector: The offset on the device to write the page to (need not be aligned) 342 * @page: The page to write 343 * @wbc: The writeback_control for the write 344 * 345 * On entry, the page should be locked and not currently under writeback. 346 * On exit, if the write started successfully, the page will be unlocked and 347 * under writeback. If the write failed already (eg the driver failed to 348 * queue the page to the device), the page will still be locked. If the 349 * caller is a ->writepage implementation, it will need to unlock the page. 350 * 351 * Errors returned by this function are usually "soft", eg out of memory, or 352 * queue full; callers should try a different route to write this page rather 353 * than propagate an error back up the stack. 354 * 355 * Return: negative errno if an error occurs, 0 if submission was successful. 356 */ 357 int bdev_write_page(struct block_device *bdev, sector_t sector, 358 struct page *page, struct writeback_control *wbc) 359 { 360 int result; 361 const struct block_device_operations *ops = bdev->bd_disk->fops; 362 363 if (!ops->rw_page || bdev_get_integrity(bdev)) 364 return -EOPNOTSUPP; 365 result = blk_queue_enter(bdev->bd_disk->queue, 0); 366 if (result) 367 return result; 368 369 set_page_writeback(page); 370 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 371 REQ_OP_WRITE); 372 if (result) { 373 end_page_writeback(page); 374 } else { 375 clean_page_buffers(page); 376 unlock_page(page); 377 } 378 blk_queue_exit(bdev->bd_disk->queue); 379 return result; 380 } 381 382 /* 383 * pseudo-fs 384 */ 385 386 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 387 static struct kmem_cache * bdev_cachep __read_mostly; 388 389 static struct inode *bdev_alloc_inode(struct super_block *sb) 390 { 391 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 392 393 if (!ei) 394 return NULL; 395 memset(&ei->bdev, 0, sizeof(ei->bdev)); 396 return &ei->vfs_inode; 397 } 398 399 static void bdev_free_inode(struct inode *inode) 400 { 401 struct block_device *bdev = I_BDEV(inode); 402 403 free_percpu(bdev->bd_stats); 404 kfree(bdev->bd_meta_info); 405 406 if (!bdev_is_partition(bdev)) { 407 if (bdev->bd_disk && bdev->bd_disk->bdi) 408 bdi_put(bdev->bd_disk->bdi); 409 kfree(bdev->bd_disk); 410 } 411 412 if (MAJOR(bdev->bd_dev) == BLOCK_EXT_MAJOR) 413 blk_free_ext_minor(MINOR(bdev->bd_dev)); 414 415 kmem_cache_free(bdev_cachep, BDEV_I(inode)); 416 } 417 418 static void init_once(void *data) 419 { 420 struct bdev_inode *ei = data; 421 422 inode_init_once(&ei->vfs_inode); 423 } 424 425 static void bdev_evict_inode(struct inode *inode) 426 { 427 truncate_inode_pages_final(&inode->i_data); 428 invalidate_inode_buffers(inode); /* is it needed here? */ 429 clear_inode(inode); 430 } 431 432 static const struct super_operations bdev_sops = { 433 .statfs = simple_statfs, 434 .alloc_inode = bdev_alloc_inode, 435 .free_inode = bdev_free_inode, 436 .drop_inode = generic_delete_inode, 437 .evict_inode = bdev_evict_inode, 438 }; 439 440 static int bd_init_fs_context(struct fs_context *fc) 441 { 442 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC); 443 if (!ctx) 444 return -ENOMEM; 445 fc->s_iflags |= SB_I_CGROUPWB; 446 ctx->ops = &bdev_sops; 447 return 0; 448 } 449 450 static struct file_system_type bd_type = { 451 .name = "bdev", 452 .init_fs_context = bd_init_fs_context, 453 .kill_sb = kill_anon_super, 454 }; 455 456 struct super_block *blockdev_superblock __read_mostly; 457 EXPORT_SYMBOL_GPL(blockdev_superblock); 458 459 void __init bdev_cache_init(void) 460 { 461 int err; 462 static struct vfsmount *bd_mnt; 463 464 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 465 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 466 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 467 init_once); 468 err = register_filesystem(&bd_type); 469 if (err) 470 panic("Cannot register bdev pseudo-fs"); 471 bd_mnt = kern_mount(&bd_type); 472 if (IS_ERR(bd_mnt)) 473 panic("Cannot create bdev pseudo-fs"); 474 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 475 } 476 477 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno) 478 { 479 struct block_device *bdev; 480 struct inode *inode; 481 482 inode = new_inode(blockdev_superblock); 483 if (!inode) 484 return NULL; 485 inode->i_mode = S_IFBLK; 486 inode->i_rdev = 0; 487 inode->i_data.a_ops = &def_blk_aops; 488 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 489 490 bdev = I_BDEV(inode); 491 mutex_init(&bdev->bd_fsfreeze_mutex); 492 spin_lock_init(&bdev->bd_size_lock); 493 bdev->bd_disk = disk; 494 bdev->bd_partno = partno; 495 bdev->bd_inode = inode; 496 bdev->bd_stats = alloc_percpu(struct disk_stats); 497 if (!bdev->bd_stats) { 498 iput(inode); 499 return NULL; 500 } 501 return bdev; 502 } 503 504 void bdev_add(struct block_device *bdev, dev_t dev) 505 { 506 bdev->bd_dev = dev; 507 bdev->bd_inode->i_rdev = dev; 508 bdev->bd_inode->i_ino = dev; 509 insert_inode_hash(bdev->bd_inode); 510 } 511 512 long nr_blockdev_pages(void) 513 { 514 struct inode *inode; 515 long ret = 0; 516 517 spin_lock(&blockdev_superblock->s_inode_list_lock); 518 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) 519 ret += inode->i_mapping->nrpages; 520 spin_unlock(&blockdev_superblock->s_inode_list_lock); 521 522 return ret; 523 } 524 525 /** 526 * bd_may_claim - test whether a block device can be claimed 527 * @bdev: block device of interest 528 * @whole: whole block device containing @bdev, may equal @bdev 529 * @holder: holder trying to claim @bdev 530 * 531 * Test whether @bdev can be claimed by @holder. 532 * 533 * CONTEXT: 534 * spin_lock(&bdev_lock). 535 * 536 * RETURNS: 537 * %true if @bdev can be claimed, %false otherwise. 538 */ 539 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 540 void *holder) 541 { 542 if (bdev->bd_holder == holder) 543 return true; /* already a holder */ 544 else if (bdev->bd_holder != NULL) 545 return false; /* held by someone else */ 546 else if (whole == bdev) 547 return true; /* is a whole device which isn't held */ 548 549 else if (whole->bd_holder == bd_may_claim) 550 return true; /* is a partition of a device that is being partitioned */ 551 else if (whole->bd_holder != NULL) 552 return false; /* is a partition of a held device */ 553 else 554 return true; /* is a partition of an un-held device */ 555 } 556 557 /** 558 * bd_prepare_to_claim - claim a block device 559 * @bdev: block device of interest 560 * @holder: holder trying to claim @bdev 561 * 562 * Claim @bdev. This function fails if @bdev is already claimed by another 563 * holder and waits if another claiming is in progress. return, the caller 564 * has ownership of bd_claiming and bd_holder[s]. 565 * 566 * RETURNS: 567 * 0 if @bdev can be claimed, -EBUSY otherwise. 568 */ 569 int bd_prepare_to_claim(struct block_device *bdev, void *holder) 570 { 571 struct block_device *whole = bdev_whole(bdev); 572 573 if (WARN_ON_ONCE(!holder)) 574 return -EINVAL; 575 retry: 576 spin_lock(&bdev_lock); 577 /* if someone else claimed, fail */ 578 if (!bd_may_claim(bdev, whole, holder)) { 579 spin_unlock(&bdev_lock); 580 return -EBUSY; 581 } 582 583 /* if claiming is already in progress, wait for it to finish */ 584 if (whole->bd_claiming) { 585 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 586 DEFINE_WAIT(wait); 587 588 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 589 spin_unlock(&bdev_lock); 590 schedule(); 591 finish_wait(wq, &wait); 592 goto retry; 593 } 594 595 /* yay, all mine */ 596 whole->bd_claiming = holder; 597 spin_unlock(&bdev_lock); 598 return 0; 599 } 600 EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */ 601 602 static void bd_clear_claiming(struct block_device *whole, void *holder) 603 { 604 lockdep_assert_held(&bdev_lock); 605 /* tell others that we're done */ 606 BUG_ON(whole->bd_claiming != holder); 607 whole->bd_claiming = NULL; 608 wake_up_bit(&whole->bd_claiming, 0); 609 } 610 611 /** 612 * bd_finish_claiming - finish claiming of a block device 613 * @bdev: block device of interest 614 * @holder: holder that has claimed @bdev 615 * 616 * Finish exclusive open of a block device. Mark the device as exlusively 617 * open by the holder and wake up all waiters for exclusive open to finish. 618 */ 619 static void bd_finish_claiming(struct block_device *bdev, void *holder) 620 { 621 struct block_device *whole = bdev_whole(bdev); 622 623 spin_lock(&bdev_lock); 624 BUG_ON(!bd_may_claim(bdev, whole, holder)); 625 /* 626 * Note that for a whole device bd_holders will be incremented twice, 627 * and bd_holder will be set to bd_may_claim before being set to holder 628 */ 629 whole->bd_holders++; 630 whole->bd_holder = bd_may_claim; 631 bdev->bd_holders++; 632 bdev->bd_holder = holder; 633 bd_clear_claiming(whole, holder); 634 spin_unlock(&bdev_lock); 635 } 636 637 /** 638 * bd_abort_claiming - abort claiming of a block device 639 * @bdev: block device of interest 640 * @holder: holder that has claimed @bdev 641 * 642 * Abort claiming of a block device when the exclusive open failed. This can be 643 * also used when exclusive open is not actually desired and we just needed 644 * to block other exclusive openers for a while. 645 */ 646 void bd_abort_claiming(struct block_device *bdev, void *holder) 647 { 648 spin_lock(&bdev_lock); 649 bd_clear_claiming(bdev_whole(bdev), holder); 650 spin_unlock(&bdev_lock); 651 } 652 EXPORT_SYMBOL(bd_abort_claiming); 653 654 static void blkdev_flush_mapping(struct block_device *bdev) 655 { 656 WARN_ON_ONCE(bdev->bd_holders); 657 sync_blockdev(bdev); 658 kill_bdev(bdev); 659 bdev_write_inode(bdev); 660 } 661 662 static int blkdev_get_whole(struct block_device *bdev, fmode_t mode) 663 { 664 struct gendisk *disk = bdev->bd_disk; 665 int ret = 0; 666 667 if (disk->fops->open) { 668 ret = disk->fops->open(bdev, mode); 669 if (ret) { 670 /* avoid ghost partitions on a removed medium */ 671 if (ret == -ENOMEDIUM && 672 test_bit(GD_NEED_PART_SCAN, &disk->state)) 673 bdev_disk_changed(disk, true); 674 return ret; 675 } 676 } 677 678 if (!bdev->bd_openers) 679 set_init_blocksize(bdev); 680 if (test_bit(GD_NEED_PART_SCAN, &disk->state)) 681 bdev_disk_changed(disk, false); 682 bdev->bd_openers++; 683 return 0;; 684 } 685 686 static void blkdev_put_whole(struct block_device *bdev, fmode_t mode) 687 { 688 if (!--bdev->bd_openers) 689 blkdev_flush_mapping(bdev); 690 if (bdev->bd_disk->fops->release) 691 bdev->bd_disk->fops->release(bdev->bd_disk, mode); 692 } 693 694 static int blkdev_get_part(struct block_device *part, fmode_t mode) 695 { 696 struct gendisk *disk = part->bd_disk; 697 int ret; 698 699 if (part->bd_openers) 700 goto done; 701 702 ret = blkdev_get_whole(bdev_whole(part), mode); 703 if (ret) 704 return ret; 705 706 ret = -ENXIO; 707 if (!bdev_nr_sectors(part)) 708 goto out_blkdev_put; 709 710 disk->open_partitions++; 711 set_init_blocksize(part); 712 done: 713 part->bd_openers++; 714 return 0; 715 716 out_blkdev_put: 717 blkdev_put_whole(bdev_whole(part), mode); 718 return ret; 719 } 720 721 static void blkdev_put_part(struct block_device *part, fmode_t mode) 722 { 723 struct block_device *whole = bdev_whole(part); 724 725 if (--part->bd_openers) 726 return; 727 blkdev_flush_mapping(part); 728 whole->bd_disk->open_partitions--; 729 blkdev_put_whole(whole, mode); 730 } 731 732 struct block_device *blkdev_get_no_open(dev_t dev) 733 { 734 struct block_device *bdev; 735 struct inode *inode; 736 737 inode = ilookup(blockdev_superblock, dev); 738 if (!inode) { 739 blk_request_module(dev); 740 inode = ilookup(blockdev_superblock, dev); 741 if (!inode) 742 return NULL; 743 } 744 745 /* switch from the inode reference to a device mode one: */ 746 bdev = &BDEV_I(inode)->bdev; 747 if (!kobject_get_unless_zero(&bdev->bd_device.kobj)) 748 bdev = NULL; 749 iput(inode); 750 751 if (!bdev) 752 return NULL; 753 if ((bdev->bd_disk->flags & GENHD_FL_HIDDEN) || 754 !try_module_get(bdev->bd_disk->fops->owner)) { 755 put_device(&bdev->bd_device); 756 return NULL; 757 } 758 759 return bdev; 760 } 761 762 void blkdev_put_no_open(struct block_device *bdev) 763 { 764 module_put(bdev->bd_disk->fops->owner); 765 put_device(&bdev->bd_device); 766 } 767 768 /** 769 * blkdev_get_by_dev - open a block device by device number 770 * @dev: device number of block device to open 771 * @mode: FMODE_* mask 772 * @holder: exclusive holder identifier 773 * 774 * Open the block device described by device number @dev. If @mode includes 775 * %FMODE_EXCL, the block device is opened with exclusive access. Specifying 776 * %FMODE_EXCL with a %NULL @holder is invalid. Exclusive opens may nest for 777 * the same @holder. 778 * 779 * Use this interface ONLY if you really do not have anything better - i.e. when 780 * you are behind a truly sucky interface and all you are given is a device 781 * number. Everything else should use blkdev_get_by_path(). 782 * 783 * CONTEXT: 784 * Might sleep. 785 * 786 * RETURNS: 787 * Reference to the block_device on success, ERR_PTR(-errno) on failure. 788 */ 789 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 790 { 791 bool unblock_events = true; 792 struct block_device *bdev; 793 struct gendisk *disk; 794 int ret; 795 796 ret = devcgroup_check_permission(DEVCG_DEV_BLOCK, 797 MAJOR(dev), MINOR(dev), 798 ((mode & FMODE_READ) ? DEVCG_ACC_READ : 0) | 799 ((mode & FMODE_WRITE) ? DEVCG_ACC_WRITE : 0)); 800 if (ret) 801 return ERR_PTR(ret); 802 803 bdev = blkdev_get_no_open(dev); 804 if (!bdev) 805 return ERR_PTR(-ENXIO); 806 disk = bdev->bd_disk; 807 808 if (mode & FMODE_EXCL) { 809 ret = bd_prepare_to_claim(bdev, holder); 810 if (ret) 811 goto put_blkdev; 812 } 813 814 disk_block_events(disk); 815 816 mutex_lock(&disk->open_mutex); 817 ret = -ENXIO; 818 if (!disk_live(disk)) 819 goto abort_claiming; 820 if (bdev_is_partition(bdev)) 821 ret = blkdev_get_part(bdev, mode); 822 else 823 ret = blkdev_get_whole(bdev, mode); 824 if (ret) 825 goto abort_claiming; 826 if (mode & FMODE_EXCL) { 827 bd_finish_claiming(bdev, holder); 828 829 /* 830 * Block event polling for write claims if requested. Any write 831 * holder makes the write_holder state stick until all are 832 * released. This is good enough and tracking individual 833 * writeable reference is too fragile given the way @mode is 834 * used in blkdev_get/put(). 835 */ 836 if ((mode & FMODE_WRITE) && !bdev->bd_write_holder && 837 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 838 bdev->bd_write_holder = true; 839 unblock_events = false; 840 } 841 } 842 mutex_unlock(&disk->open_mutex); 843 844 if (unblock_events) 845 disk_unblock_events(disk); 846 return bdev; 847 848 abort_claiming: 849 if (mode & FMODE_EXCL) 850 bd_abort_claiming(bdev, holder); 851 mutex_unlock(&disk->open_mutex); 852 disk_unblock_events(disk); 853 put_blkdev: 854 blkdev_put_no_open(bdev); 855 return ERR_PTR(ret); 856 } 857 EXPORT_SYMBOL(blkdev_get_by_dev); 858 859 /** 860 * blkdev_get_by_path - open a block device by name 861 * @path: path to the block device to open 862 * @mode: FMODE_* mask 863 * @holder: exclusive holder identifier 864 * 865 * Open the block device described by the device file at @path. If @mode 866 * includes %FMODE_EXCL, the block device is opened with exclusive access. 867 * Specifying %FMODE_EXCL with a %NULL @holder is invalid. Exclusive opens may 868 * nest for the same @holder. 869 * 870 * CONTEXT: 871 * Might sleep. 872 * 873 * RETURNS: 874 * Reference to the block_device on success, ERR_PTR(-errno) on failure. 875 */ 876 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 877 void *holder) 878 { 879 struct block_device *bdev; 880 dev_t dev; 881 int error; 882 883 error = lookup_bdev(path, &dev); 884 if (error) 885 return ERR_PTR(error); 886 887 bdev = blkdev_get_by_dev(dev, mode, holder); 888 if (!IS_ERR(bdev) && (mode & FMODE_WRITE) && bdev_read_only(bdev)) { 889 blkdev_put(bdev, mode); 890 return ERR_PTR(-EACCES); 891 } 892 893 return bdev; 894 } 895 EXPORT_SYMBOL(blkdev_get_by_path); 896 897 void blkdev_put(struct block_device *bdev, fmode_t mode) 898 { 899 struct gendisk *disk = bdev->bd_disk; 900 901 /* 902 * Sync early if it looks like we're the last one. If someone else 903 * opens the block device between now and the decrement of bd_openers 904 * then we did a sync that we didn't need to, but that's not the end 905 * of the world and we want to avoid long (could be several minute) 906 * syncs while holding the mutex. 907 */ 908 if (bdev->bd_openers == 1) 909 sync_blockdev(bdev); 910 911 mutex_lock(&disk->open_mutex); 912 if (mode & FMODE_EXCL) { 913 struct block_device *whole = bdev_whole(bdev); 914 bool bdev_free; 915 916 /* 917 * Release a claim on the device. The holder fields 918 * are protected with bdev_lock. open_mutex is to 919 * synchronize disk_holder unlinking. 920 */ 921 spin_lock(&bdev_lock); 922 923 WARN_ON_ONCE(--bdev->bd_holders < 0); 924 WARN_ON_ONCE(--whole->bd_holders < 0); 925 926 if ((bdev_free = !bdev->bd_holders)) 927 bdev->bd_holder = NULL; 928 if (!whole->bd_holders) 929 whole->bd_holder = NULL; 930 931 spin_unlock(&bdev_lock); 932 933 /* 934 * If this was the last claim, remove holder link and 935 * unblock evpoll if it was a write holder. 936 */ 937 if (bdev_free && bdev->bd_write_holder) { 938 disk_unblock_events(disk); 939 bdev->bd_write_holder = false; 940 } 941 } 942 943 /* 944 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 945 * event. This is to ensure detection of media removal commanded 946 * from userland - e.g. eject(1). 947 */ 948 disk_flush_events(disk, DISK_EVENT_MEDIA_CHANGE); 949 950 if (bdev_is_partition(bdev)) 951 blkdev_put_part(bdev, mode); 952 else 953 blkdev_put_whole(bdev, mode); 954 mutex_unlock(&disk->open_mutex); 955 956 blkdev_put_no_open(bdev); 957 } 958 EXPORT_SYMBOL(blkdev_put); 959 960 /** 961 * lookup_bdev - lookup a struct block_device by name 962 * @pathname: special file representing the block device 963 * @dev: return value of the block device's dev_t 964 * 965 * Get a reference to the blockdevice at @pathname in the current 966 * namespace if possible and return it. Return ERR_PTR(error) 967 * otherwise. 968 */ 969 int lookup_bdev(const char *pathname, dev_t *dev) 970 { 971 struct inode *inode; 972 struct path path; 973 int error; 974 975 if (!pathname || !*pathname) 976 return -EINVAL; 977 978 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 979 if (error) 980 return error; 981 982 inode = d_backing_inode(path.dentry); 983 error = -ENOTBLK; 984 if (!S_ISBLK(inode->i_mode)) 985 goto out_path_put; 986 error = -EACCES; 987 if (!may_open_dev(&path)) 988 goto out_path_put; 989 990 *dev = inode->i_rdev; 991 error = 0; 992 out_path_put: 993 path_put(&path); 994 return error; 995 } 996 EXPORT_SYMBOL(lookup_bdev); 997 998 int __invalidate_device(struct block_device *bdev, bool kill_dirty) 999 { 1000 struct super_block *sb = get_super(bdev); 1001 int res = 0; 1002 1003 if (sb) { 1004 /* 1005 * no need to lock the super, get_super holds the 1006 * read mutex so the filesystem cannot go away 1007 * under us (->put_super runs with the write lock 1008 * hold). 1009 */ 1010 shrink_dcache_sb(sb); 1011 res = invalidate_inodes(sb, kill_dirty); 1012 drop_super(sb); 1013 } 1014 invalidate_bdev(bdev); 1015 return res; 1016 } 1017 EXPORT_SYMBOL(__invalidate_device); 1018 1019 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1020 { 1021 struct inode *inode, *old_inode = NULL; 1022 1023 spin_lock(&blockdev_superblock->s_inode_list_lock); 1024 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1025 struct address_space *mapping = inode->i_mapping; 1026 struct block_device *bdev; 1027 1028 spin_lock(&inode->i_lock); 1029 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1030 mapping->nrpages == 0) { 1031 spin_unlock(&inode->i_lock); 1032 continue; 1033 } 1034 __iget(inode); 1035 spin_unlock(&inode->i_lock); 1036 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1037 /* 1038 * We hold a reference to 'inode' so it couldn't have been 1039 * removed from s_inodes list while we dropped the 1040 * s_inode_list_lock We cannot iput the inode now as we can 1041 * be holding the last reference and we cannot iput it under 1042 * s_inode_list_lock. So we keep the reference and iput it 1043 * later. 1044 */ 1045 iput(old_inode); 1046 old_inode = inode; 1047 bdev = I_BDEV(inode); 1048 1049 mutex_lock(&bdev->bd_disk->open_mutex); 1050 if (bdev->bd_openers) 1051 func(bdev, arg); 1052 mutex_unlock(&bdev->bd_disk->open_mutex); 1053 1054 spin_lock(&blockdev_superblock->s_inode_list_lock); 1055 } 1056 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1057 iput(old_inode); 1058 } 1059