xref: /linux/arch/xtensa/kernel/vectors.S (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1/*
2 * arch/xtensa/kernel/vectors.S
3 *
4 * This file contains all exception vectors (user, kernel, and double),
5 * as well as the window vectors (overflow and underflow), and the debug
6 * vector. These are the primary vectors executed by the processor if an
7 * exception occurs.
8 *
9 * This file is subject to the terms and conditions of the GNU General
10 * Public License.  See the file "COPYING" in the main directory of
11 * this archive for more details.
12 *
13 * Copyright (C) 2005 - 2008 Tensilica, Inc.
14 *
15 * Chris Zankel <chris@zankel.net>
16 *
17 */
18
19/*
20 * We use a two-level table approach. The user and kernel exception vectors
21 * use a first-level dispatch table to dispatch the exception to a registered
22 * fast handler or the default handler, if no fast handler was registered.
23 * The default handler sets up a C-stack and dispatches the exception to a
24 * registerd C handler in the second-level dispatch table.
25 *
26 * Fast handler entry condition:
27 *
28 *   a0:	trashed, original value saved on stack (PT_AREG0)
29 *   a1:	a1
30 *   a2:	new stack pointer, original value in depc
31 *   a3:	dispatch table
32 *   depc:	a2, original value saved on stack (PT_DEPC)
33 *   excsave_1:	a3
34 *
35 * The value for PT_DEPC saved to stack also functions as a boolean to
36 * indicate that the exception is either a double or a regular exception:
37 *
38 *   PT_DEPC	>= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39 *		<  VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40 *
41 * Note:  Neither the kernel nor the user exception handler generate literals.
42 *
43 */
44
45#include <linux/linkage.h>
46#include <asm/ptrace.h>
47#include <asm/current.h>
48#include <asm/asm-offsets.h>
49#include <asm/pgtable.h>
50#include <asm/processor.h>
51#include <asm/page.h>
52#include <asm/thread_info.h>
53
54#define WINDOW_VECTORS_SIZE   0x180
55
56
57/*
58 * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
59 *
60 * We get here when an exception occurred while we were in userland.
61 * We switch to the kernel stack and jump to the first level handler
62 * associated to the exception cause.
63 *
64 * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
65 *       decremented by PT_USER_SIZE.
66 */
67
68	.section .UserExceptionVector.text, "ax"
69
70ENTRY(_UserExceptionVector)
71
72	xsr	a3, excsave1		# save a3 and get dispatch table
73	wsr	a2, depc		# save a2
74	l32i	a2, a3, EXC_TABLE_KSTK	# load kernel stack to a2
75	s32i	a0, a2, PT_AREG0	# save a0 to ESF
76	rsr	a0, exccause		# retrieve exception cause
77	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
78	addx4	a0, a0, a3		# find entry in table
79	l32i	a0, a0, EXC_TABLE_FAST_USER	# load handler
80	jx	a0
81
82ENDPROC(_UserExceptionVector)
83
84/*
85 * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
86 *
87 * We get this exception when we were already in kernel space.
88 * We decrement the current stack pointer (kernel) by PT_SIZE and
89 * jump to the first-level handler associated with the exception cause.
90 *
91 * Note: we need to preserve space for the spill region.
92 */
93
94	.section .KernelExceptionVector.text, "ax"
95
96ENTRY(_KernelExceptionVector)
97
98	xsr	a3, excsave1		# save a3, and get dispatch table
99	wsr	a2, depc		# save a2
100	addi	a2, a1, -16-PT_SIZE	# adjust stack pointer
101	s32i	a0, a2, PT_AREG0	# save a0 to ESF
102	rsr	a0, exccause		# retrieve exception cause
103	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
104	addx4	a0, a0, a3		# find entry in table
105	l32i	a0, a0, EXC_TABLE_FAST_KERNEL	# load handler address
106	jx	a0
107
108ENDPROC(_KernelExceptionVector)
109
110/*
111 * Double exception vector (Exceptions with PS.EXCM == 1)
112 * We get this exception when another exception occurs while were are
113 * already in an exception, such as window overflow/underflow exception,
114 * or 'expected' exceptions, for example memory exception when we were trying
115 * to read data from an invalid address in user space.
116 *
117 * Note that this vector is never invoked for level-1 interrupts, because such
118 * interrupts are disabled (masked) when PS.EXCM is set.
119 *
120 * We decode the exception and take the appropriate action.  However, the
121 * double exception vector is much more careful, because a lot more error
122 * cases go through the double exception vector than through the user and
123 * kernel exception vectors.
124 *
125 * Occasionally, the kernel expects a double exception to occur.  This usually
126 * happens when accessing user-space memory with the user's permissions
127 * (l32e/s32e instructions).  The kernel state, though, is not always suitable
128 * for immediate transfer of control to handle_double, where "normal" exception
129 * processing occurs. Also in kernel mode, TLB misses can occur if accessing
130 * vmalloc memory, possibly requiring repair in a double exception handler.
131 *
132 * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
133 * a boolean variable and a pointer to a fixup routine. If the variable
134 * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
135 * zero indicates to use the default kernel/user exception handler.
136 * There is only one exception, when the value is identical to the exc_table
137 * label, the kernel is in trouble. This mechanism is used to protect critical
138 * sections, mainly when the handler writes to the stack to assert the stack
139 * pointer is valid. Once the fixup/default handler leaves that area, the
140 * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
141 *
142 * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
143 * nonzero address of a fixup routine before it could cause a double exception
144 * and reset it before it returns.
145 *
146 * Some other things to take care of when a fast exception handler doesn't
147 * specify a particular fixup handler but wants to use the default handlers:
148 *
149 *  - The original stack pointer (in a1) must not be modified. The fast
150 *    exception handler should only use a2 as the stack pointer.
151 *
152 *  - If the fast handler manipulates the stack pointer (in a2), it has to
153 *    register a valid fixup handler and cannot use the default handlers.
154 *
155 *  - The handler can use any other generic register from a3 to a15, but it
156 *    must save the content of these registers to stack (PT_AREG3...PT_AREGx)
157 *
158 *  - These registers must be saved before a double exception can occur.
159 *
160 *  - If we ever implement handling signals while in double exceptions, the
161 *    number of registers a fast handler has saved (excluding a0 and a1) must
162 *    be written to  PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
163 *
164 * The fixup handlers are special handlers:
165 *
166 *  - Fixup entry conditions differ from regular exceptions:
167 *
168 *	a0:	   DEPC
169 *	a1: 	   a1
170 *	a2:	   trashed, original value in EXC_TABLE_DOUBLE_A2
171 *	a3:	   exctable
172 *	depc:	   a0
173 *	excsave_1: a3
174 *
175 *  - When the kernel enters the fixup handler, it still assumes it is in a
176 *    critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
177 *    The fixup handler, therefore, has to re-register itself as the fixup
178 *    handler before it returns from the double exception.
179 *
180 *  - Fixup handler can share the same exception frame with the fast handler.
181 *    The kernel stack pointer is not changed when entering the fixup handler.
182 *
183 *  - Fixup handlers can jump to the default kernel and user exception
184 *    handlers. Before it jumps, though, it has to setup a exception frame
185 *    on stack. Because the default handler resets the register fixup handler
186 *    the fixup handler must make sure that the default handler returns to
187 *    it instead of the exception address, so it can re-register itself as
188 *    the fixup handler.
189 *
190 * In case of a critical condition where the kernel cannot recover, we jump
191 * to unrecoverable_exception with the following entry conditions.
192 * All registers a0...a15 are unchanged from the last exception, except:
193 *
194 *	a0:	   last address before we jumped to the unrecoverable_exception.
195 *	excsave_1: a0
196 *
197 *
198 * See the handle_alloca_user and spill_registers routines for example clients.
199 *
200 * FIXME: Note: we currently don't allow signal handling coming from a double
201 *        exception, so the item markt with (*) is not required.
202 */
203
204	.section .DoubleExceptionVector.text, "ax"
205	.begin literal_prefix .DoubleExceptionVector
206
207ENTRY(_DoubleExceptionVector)
208
209	/* Deliberately destroy excsave (don't assume it's value was valid). */
210
211	wsr	a3, excsave1		# save a3
212
213	/* Check for kernel double exception (usually fatal). */
214
215	rsr	a3, ps
216	_bbci.l	a3, PS_UM_BIT, .Lksp
217
218	/* Check if we are currently handling a window exception. */
219	/* Note: We don't need to indicate that we enter a critical section. */
220
221	xsr	a0, depc		# get DEPC, save a0
222
223	movi	a3, XCHAL_WINDOW_VECTORS_VADDR
224	_bltu	a0, a3, .Lfixup
225	addi	a3, a3, WINDOW_VECTORS_SIZE
226	_bgeu	a0, a3, .Lfixup
227
228	/* Window overflow/underflow exception. Get stack pointer. */
229
230	mov	a3, a2
231	/* This explicit literal and the following references to it are made
232	 * in order to fit DoubleExceptionVector.literals into the available
233	 * 16-byte gap before DoubleExceptionVector.text in the absence of
234	 * link time relaxation. See kernel/vmlinux.lds.S
235	 */
236	.literal .Lexc_table, exc_table
237	l32r	a2, .Lexc_table
238	l32i	a2, a2, EXC_TABLE_KSTK
239
240	/* Check for overflow/underflow exception, jump if overflow. */
241
242	_bbci.l	a0, 6, .Lovfl
243
244	/* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3  */
245
246	/* Restart window underflow exception.
247	 * We return to the instruction in user space that caused the window
248	 * underflow exception. Therefore, we change window base to the value
249	 * before we entered the window underflow exception and prepare the
250	 * registers to return as if we were coming from a regular exception
251	 * by changing depc (in a0).
252	 * Note: We can trash the current window frame (a0...a3) and depc!
253	 */
254
255	wsr	a2, depc		# save stack pointer temporarily
256	rsr	a0, ps
257	extui	a0, a0, PS_OWB_SHIFT, 4
258	wsr	a0, windowbase
259	rsync
260
261	/* We are now in the previous window frame. Save registers again. */
262
263	xsr	a2, depc		# save a2 and get stack pointer
264	s32i	a0, a2, PT_AREG0
265
266	wsr	a3, excsave1		# save a3
267	l32r	a3, .Lexc_table
268
269	rsr	a0, exccause
270	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
271	addx4	a0, a0, a3
272	l32i	a0, a0, EXC_TABLE_FAST_USER
273	jx	a0
274
275.Lfixup:/* Check for a fixup handler or if we were in a critical section. */
276
277	/* a0: depc, a1: a1, a2: a2, a3: trashed, depc: a0, excsave1: a3 */
278
279	l32r	a3, .Lexc_table
280	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE	# temporary variable
281
282	/* Enter critical section. */
283
284	l32i	a2, a3, EXC_TABLE_FIXUP
285	s32i	a3, a3, EXC_TABLE_FIXUP
286	beq	a2, a3, .Lunrecoverable_fixup	# critical!
287	beqz	a2, .Ldflt			# no handler was registered
288
289	/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
290
291	jx	a2
292
293.Ldflt:	/* Get stack pointer. */
294
295	l32i	a3, a3, EXC_TABLE_DOUBLE_SAVE
296	addi	a2, a3, -PT_USER_SIZE
297
298.Lovfl:	/* Jump to default handlers. */
299
300	/* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3 */
301
302	xsr	a3, depc
303	s32i	a0, a2, PT_DEPC
304	s32i	a3, a2, PT_AREG0
305
306	/* a0: avail, a1: a1, a2: kstk, a3: avail, depc: a2, excsave: a3 */
307
308	l32r	a3, .Lexc_table
309	rsr	a0, exccause
310	addx4	a0, a0, a3
311	l32i	a0, a0, EXC_TABLE_FAST_USER
312	jx	a0
313
314	/*
315	 * We only allow the ITLB miss exception if we are in kernel space.
316	 * All other exceptions are unexpected and thus unrecoverable!
317	 */
318
319#ifdef CONFIG_MMU
320	.extern fast_second_level_miss_double_kernel
321
322.Lksp:	/* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
323
324	rsr	a3, exccause
325	beqi	a3, EXCCAUSE_ITLB_MISS, 1f
326	addi	a3, a3, -EXCCAUSE_DTLB_MISS
327	bnez	a3, .Lunrecoverable
3281:	movi	a3, fast_second_level_miss_double_kernel
329	jx	a3
330#else
331.equ	.Lksp,	.Lunrecoverable
332#endif
333
334	/* Critical! We can't handle this situation. PANIC! */
335
336	.extern unrecoverable_exception
337
338.Lunrecoverable_fixup:
339	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
340	xsr	a0, depc
341
342.Lunrecoverable:
343	rsr	a3, excsave1
344	wsr	a0, excsave1
345	movi	a0, unrecoverable_exception
346	callx0	a0
347
348	.end literal_prefix
349
350ENDPROC(_DoubleExceptionVector)
351
352/*
353 * Debug interrupt vector
354 *
355 * There is not much space here, so simply jump to another handler.
356 * EXCSAVE[DEBUGLEVEL] has been set to that handler.
357 */
358
359	.section .DebugInterruptVector.text, "ax"
360
361ENTRY(_DebugInterruptVector)
362
363	xsr	a0, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
364	jx	a0
365
366ENDPROC(_DebugInterruptVector)
367
368
369
370/*
371 * Medium priority level interrupt vectors
372 *
373 * Each takes less than 16 (0x10) bytes, no literals, by placing
374 * the extra 8 bytes that would otherwise be required in the window
375 * vectors area where there is space.  With relocatable vectors,
376 * all vectors are within ~ 4 kB range of each other, so we can
377 * simply jump (J) to another vector without having to use JX.
378 *
379 * common_exception code gets current IRQ level in PS.INTLEVEL
380 * and preserves it for the IRQ handling time.
381 */
382
383	.macro	irq_entry_level level
384
385	.if	XCHAL_EXCM_LEVEL >= \level
386	.section .Level\level\()InterruptVector.text, "ax"
387ENTRY(_Level\level\()InterruptVector)
388	wsr	a0, epc1
389	rsr	a0, epc\level
390	xsr	a0, epc1
391					# branch to user or kernel vector
392	j	_SimulateUserKernelVectorException
393	.endif
394
395	.endm
396
397	irq_entry_level 2
398	irq_entry_level 3
399	irq_entry_level 4
400	irq_entry_level 5
401	irq_entry_level 6
402
403
404/* Window overflow and underflow handlers.
405 * The handlers must be 64 bytes apart, first starting with the underflow
406 * handlers underflow-4 to underflow-12, then the overflow handlers
407 * overflow-4 to overflow-12.
408 *
409 * Note: We rerun the underflow handlers if we hit an exception, so
410 *	 we try to access any page that would cause a page fault early.
411 */
412
413#define ENTRY_ALIGN64(name)	\
414	.globl name;		\
415	.align 64;		\
416	name:
417
418	.section		.WindowVectors.text, "ax"
419
420
421/* 4-Register Window Overflow Vector (Handler) */
422
423ENTRY_ALIGN64(_WindowOverflow4)
424
425	s32e	a0, a5, -16
426	s32e	a1, a5, -12
427	s32e	a2, a5,  -8
428	s32e	a3, a5,  -4
429	rfwo
430
431ENDPROC(_WindowOverflow4)
432
433
434#if XCHAL_EXCM_LEVEL >= 2
435	/*  Not a window vector - but a convenient location
436	 *  (where we know there's space) for continuation of
437	 *  medium priority interrupt dispatch code.
438	 *  On entry here, a0 contains PS, and EPC2 contains saved a0:
439	 */
440	.align 4
441_SimulateUserKernelVectorException:
442	wsr	a0, excsave2
443	movi	a0, 4			# LEVEL1_INTERRUPT cause
444	wsr	a0, exccause
445	rsr	a0, ps
446	bbsi.l	a0, PS_UM_BIT, 1f	# branch if user mode
447	rsr	a0, excsave2		# restore a0
448	j	_KernelExceptionVector	# simulate kernel vector exception
4491:	rsr	a0, excsave2		# restore a0
450	j	_UserExceptionVector	# simulate user vector exception
451#endif
452
453
454/* 4-Register Window Underflow Vector (Handler) */
455
456ENTRY_ALIGN64(_WindowUnderflow4)
457
458	l32e	a0, a5, -16
459	l32e	a1, a5, -12
460	l32e	a2, a5,  -8
461	l32e	a3, a5,  -4
462	rfwu
463
464ENDPROC(_WindowUnderflow4)
465
466/* 8-Register Window Overflow Vector (Handler) */
467
468ENTRY_ALIGN64(_WindowOverflow8)
469
470	s32e	a0, a9, -16
471	l32e	a0, a1, -12
472	s32e	a2, a9,  -8
473	s32e	a1, a9, -12
474	s32e	a3, a9,  -4
475	s32e	a4, a0, -32
476	s32e	a5, a0, -28
477	s32e	a6, a0, -24
478	s32e	a7, a0, -20
479	rfwo
480
481ENDPROC(_WindowOverflow8)
482
483/* 8-Register Window Underflow Vector (Handler) */
484
485ENTRY_ALIGN64(_WindowUnderflow8)
486
487	l32e	a1, a9, -12
488	l32e	a0, a9, -16
489	l32e	a7, a1, -12
490	l32e	a2, a9,  -8
491	l32e	a4, a7, -32
492	l32e	a3, a9,  -4
493	l32e	a5, a7, -28
494	l32e	a6, a7, -24
495	l32e	a7, a7, -20
496	rfwu
497
498ENDPROC(_WindowUnderflow8)
499
500/* 12-Register Window Overflow Vector (Handler) */
501
502ENTRY_ALIGN64(_WindowOverflow12)
503
504	s32e	a0,  a13, -16
505	l32e	a0,  a1,  -12
506	s32e	a1,  a13, -12
507	s32e	a2,  a13,  -8
508	s32e	a3,  a13,  -4
509	s32e	a4,  a0,  -48
510	s32e	a5,  a0,  -44
511	s32e	a6,  a0,  -40
512	s32e	a7,  a0,  -36
513	s32e	a8,  a0,  -32
514	s32e	a9,  a0,  -28
515	s32e	a10, a0,  -24
516	s32e	a11, a0,  -20
517	rfwo
518
519ENDPROC(_WindowOverflow12)
520
521/* 12-Register Window Underflow Vector (Handler) */
522
523ENTRY_ALIGN64(_WindowUnderflow12)
524
525	l32e	a1,  a13, -12
526	l32e	a0,  a13, -16
527	l32e	a11, a1,  -12
528	l32e	a2,  a13,  -8
529	l32e	a4,  a11, -48
530	l32e	a8,  a11, -32
531	l32e	a3,  a13,  -4
532	l32e	a5,  a11, -44
533	l32e	a6,  a11, -40
534	l32e	a7,  a11, -36
535	l32e	a9,  a11, -28
536	l32e	a10, a11, -24
537	l32e	a11, a11, -20
538	rfwu
539
540ENDPROC(_WindowUnderflow12)
541
542	.text
543