xref: /linux/arch/xtensa/kernel/vectors.S (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1/*
2 * arch/xtensa/kernel/vectors.S
3 *
4 * This file contains all exception vectors (user, kernel, and double),
5 * as well as the window vectors (overflow and underflow), and the debug
6 * vector. These are the primary vectors executed by the processor if an
7 * exception occurs.
8 *
9 * This file is subject to the terms and conditions of the GNU General
10 * Public License.  See the file "COPYING" in the main directory of
11 * this archive for more details.
12 *
13 * Copyright (C) 2005 - 2008 Tensilica, Inc.
14 *
15 * Chris Zankel <chris@zankel.net>
16 *
17 */
18
19/*
20 * We use a two-level table approach. The user and kernel exception vectors
21 * use a first-level dispatch table to dispatch the exception to a registered
22 * fast handler or the default handler, if no fast handler was registered.
23 * The default handler sets up a C-stack and dispatches the exception to a
24 * registerd C handler in the second-level dispatch table.
25 *
26 * Fast handler entry condition:
27 *
28 *   a0:	trashed, original value saved on stack (PT_AREG0)
29 *   a1:	a1
30 *   a2:	new stack pointer, original value in depc
31 *   a3:	dispatch table
32 *   depc:	a2, original value saved on stack (PT_DEPC)
33 *   excsave_1:	a3
34 *
35 * The value for PT_DEPC saved to stack also functions as a boolean to
36 * indicate that the exception is either a double or a regular exception:
37 *
38 *   PT_DEPC	>= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39 *		<  VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40 *
41 * Note:  Neither the kernel nor the user exception handler generate literals.
42 *
43 */
44
45#include <linux/linkage.h>
46#include <asm/ptrace.h>
47#include <asm/current.h>
48#include <asm/asm-offsets.h>
49#include <asm/pgtable.h>
50#include <asm/processor.h>
51#include <asm/page.h>
52#include <asm/thread_info.h>
53#include <asm/vectors.h>
54
55#define WINDOW_VECTORS_SIZE   0x180
56
57
58/*
59 * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
60 *
61 * We get here when an exception occurred while we were in userland.
62 * We switch to the kernel stack and jump to the first level handler
63 * associated to the exception cause.
64 *
65 * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
66 *       decremented by PT_USER_SIZE.
67 */
68
69	.section .UserExceptionVector.text, "ax"
70
71ENTRY(_UserExceptionVector)
72
73	xsr	a3, excsave1		# save a3 and get dispatch table
74	wsr	a2, depc		# save a2
75	l32i	a2, a3, EXC_TABLE_KSTK	# load kernel stack to a2
76	s32i	a0, a2, PT_AREG0	# save a0 to ESF
77	rsr	a0, exccause		# retrieve exception cause
78	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
79	addx4	a0, a0, a3		# find entry in table
80	l32i	a0, a0, EXC_TABLE_FAST_USER	# load handler
81	xsr	a3, excsave1		# restore a3 and dispatch table
82	jx	a0
83
84ENDPROC(_UserExceptionVector)
85
86/*
87 * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
88 *
89 * We get this exception when we were already in kernel space.
90 * We decrement the current stack pointer (kernel) by PT_SIZE and
91 * jump to the first-level handler associated with the exception cause.
92 *
93 * Note: we need to preserve space for the spill region.
94 */
95
96	.section .KernelExceptionVector.text, "ax"
97
98ENTRY(_KernelExceptionVector)
99
100	xsr	a3, excsave1		# save a3, and get dispatch table
101	wsr	a2, depc		# save a2
102	addi	a2, a1, -16-PT_SIZE	# adjust stack pointer
103	s32i	a0, a2, PT_AREG0	# save a0 to ESF
104	rsr	a0, exccause		# retrieve exception cause
105	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
106	addx4	a0, a0, a3		# find entry in table
107	l32i	a0, a0, EXC_TABLE_FAST_KERNEL	# load handler address
108	xsr	a3, excsave1		# restore a3 and dispatch table
109	jx	a0
110
111ENDPROC(_KernelExceptionVector)
112
113/*
114 * Double exception vector (Exceptions with PS.EXCM == 1)
115 * We get this exception when another exception occurs while were are
116 * already in an exception, such as window overflow/underflow exception,
117 * or 'expected' exceptions, for example memory exception when we were trying
118 * to read data from an invalid address in user space.
119 *
120 * Note that this vector is never invoked for level-1 interrupts, because such
121 * interrupts are disabled (masked) when PS.EXCM is set.
122 *
123 * We decode the exception and take the appropriate action.  However, the
124 * double exception vector is much more careful, because a lot more error
125 * cases go through the double exception vector than through the user and
126 * kernel exception vectors.
127 *
128 * Occasionally, the kernel expects a double exception to occur.  This usually
129 * happens when accessing user-space memory with the user's permissions
130 * (l32e/s32e instructions).  The kernel state, though, is not always suitable
131 * for immediate transfer of control to handle_double, where "normal" exception
132 * processing occurs. Also in kernel mode, TLB misses can occur if accessing
133 * vmalloc memory, possibly requiring repair in a double exception handler.
134 *
135 * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
136 * a boolean variable and a pointer to a fixup routine. If the variable
137 * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
138 * zero indicates to use the default kernel/user exception handler.
139 * There is only one exception, when the value is identical to the exc_table
140 * label, the kernel is in trouble. This mechanism is used to protect critical
141 * sections, mainly when the handler writes to the stack to assert the stack
142 * pointer is valid. Once the fixup/default handler leaves that area, the
143 * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
144 *
145 * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
146 * nonzero address of a fixup routine before it could cause a double exception
147 * and reset it before it returns.
148 *
149 * Some other things to take care of when a fast exception handler doesn't
150 * specify a particular fixup handler but wants to use the default handlers:
151 *
152 *  - The original stack pointer (in a1) must not be modified. The fast
153 *    exception handler should only use a2 as the stack pointer.
154 *
155 *  - If the fast handler manipulates the stack pointer (in a2), it has to
156 *    register a valid fixup handler and cannot use the default handlers.
157 *
158 *  - The handler can use any other generic register from a3 to a15, but it
159 *    must save the content of these registers to stack (PT_AREG3...PT_AREGx)
160 *
161 *  - These registers must be saved before a double exception can occur.
162 *
163 *  - If we ever implement handling signals while in double exceptions, the
164 *    number of registers a fast handler has saved (excluding a0 and a1) must
165 *    be written to  PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
166 *
167 * The fixup handlers are special handlers:
168 *
169 *  - Fixup entry conditions differ from regular exceptions:
170 *
171 *	a0:	   DEPC
172 *	a1: 	   a1
173 *	a2:	   trashed, original value in EXC_TABLE_DOUBLE_SAVE
174 *	a3:	   exctable
175 *	depc:	   a0
176 *	excsave_1: a3
177 *
178 *  - When the kernel enters the fixup handler, it still assumes it is in a
179 *    critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
180 *    The fixup handler, therefore, has to re-register itself as the fixup
181 *    handler before it returns from the double exception.
182 *
183 *  - Fixup handler can share the same exception frame with the fast handler.
184 *    The kernel stack pointer is not changed when entering the fixup handler.
185 *
186 *  - Fixup handlers can jump to the default kernel and user exception
187 *    handlers. Before it jumps, though, it has to setup a exception frame
188 *    on stack. Because the default handler resets the register fixup handler
189 *    the fixup handler must make sure that the default handler returns to
190 *    it instead of the exception address, so it can re-register itself as
191 *    the fixup handler.
192 *
193 * In case of a critical condition where the kernel cannot recover, we jump
194 * to unrecoverable_exception with the following entry conditions.
195 * All registers a0...a15 are unchanged from the last exception, except:
196 *
197 *	a0:	   last address before we jumped to the unrecoverable_exception.
198 *	excsave_1: a0
199 *
200 *
201 * See the handle_alloca_user and spill_registers routines for example clients.
202 *
203 * FIXME: Note: we currently don't allow signal handling coming from a double
204 *        exception, so the item markt with (*) is not required.
205 */
206
207	.section .DoubleExceptionVector.text, "ax"
208
209ENTRY(_DoubleExceptionVector)
210
211	xsr	a3, excsave1
212	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
213
214	/* Check for kernel double exception (usually fatal). */
215
216	rsr	a2, ps
217	_bbsi.l	a2, PS_UM_BIT, 1f
218	j	.Lksp
219
220	.align	4
221	.literal_position
2221:
223	/* Check if we are currently handling a window exception. */
224	/* Note: We don't need to indicate that we enter a critical section. */
225
226	xsr	a0, depc		# get DEPC, save a0
227
228	movi	a2, WINDOW_VECTORS_VADDR
229	_bltu	a0, a2, .Lfixup
230	addi	a2, a2, WINDOW_VECTORS_SIZE
231	_bgeu	a0, a2, .Lfixup
232
233	/* Window overflow/underflow exception. Get stack pointer. */
234
235	l32i	a2, a3, EXC_TABLE_KSTK
236
237	/* Check for overflow/underflow exception, jump if overflow. */
238
239	bbci.l	a0, 6, _DoubleExceptionVector_WindowOverflow
240
241	/*
242	 * Restart window underflow exception.
243	 * Currently:
244	 *	depc = orig a0,
245	 *	a0 = orig DEPC,
246	 *	a2 = new sp based on KSTK from exc_table
247	 *	a3 = excsave_1
248	 *	excsave_1 = orig a3
249	 *
250	 * We return to the instruction in user space that caused the window
251	 * underflow exception. Therefore, we change window base to the value
252	 * before we entered the window underflow exception and prepare the
253	 * registers to return as if we were coming from a regular exception
254	 * by changing depc (in a0).
255	 * Note: We can trash the current window frame (a0...a3) and depc!
256	 */
257_DoubleExceptionVector_WindowUnderflow:
258	xsr	a3, excsave1
259	wsr	a2, depc		# save stack pointer temporarily
260	rsr	a0, ps
261	extui	a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
262	wsr	a0, windowbase
263	rsync
264
265	/* We are now in the previous window frame. Save registers again. */
266
267	xsr	a2, depc		# save a2 and get stack pointer
268	s32i	a0, a2, PT_AREG0
269	xsr	a3, excsave1
270	rsr	a0, exccause
271	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
272	addx4	a0, a0, a3
273	xsr	a3, excsave1
274	l32i	a0, a0, EXC_TABLE_FAST_USER
275	jx	a0
276
277	/*
278	 * We only allow the ITLB miss exception if we are in kernel space.
279	 * All other exceptions are unexpected and thus unrecoverable!
280	 */
281
282#ifdef CONFIG_MMU
283	.extern fast_second_level_miss_double_kernel
284
285.Lksp:	/* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
286
287	rsr	a3, exccause
288	beqi	a3, EXCCAUSE_ITLB_MISS, 1f
289	addi	a3, a3, -EXCCAUSE_DTLB_MISS
290	bnez	a3, .Lunrecoverable
2911:	movi	a3, fast_second_level_miss_double_kernel
292	jx	a3
293#else
294.equ	.Lksp,	.Lunrecoverable
295#endif
296
297	/* Critical! We can't handle this situation. PANIC! */
298
299	.extern unrecoverable_exception
300
301.Lunrecoverable_fixup:
302	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
303	xsr	a0, depc
304
305.Lunrecoverable:
306	rsr	a3, excsave1
307	wsr	a0, excsave1
308	call0	unrecoverable_exception
309
310.Lfixup:/* Check for a fixup handler or if we were in a critical section. */
311
312	/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave1: a3 */
313
314	/* Enter critical section. */
315
316	l32i	a2, a3, EXC_TABLE_FIXUP
317	s32i	a3, a3, EXC_TABLE_FIXUP
318	beq	a2, a3, .Lunrecoverable_fixup	# critical section
319	beqz	a2, .Ldflt			# no handler was registered
320
321	/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
322
323	jx	a2
324
325.Ldflt:	/* Get stack pointer. */
326
327	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
328	addi	a2, a2, -PT_USER_SIZE
329
330	/* a0: depc, a1: a1, a2: kstk, a3: exctable, depc: a0, excsave: a3 */
331
332	s32i	a0, a2, PT_DEPC
333	l32i	a0, a3, EXC_TABLE_DOUBLE_SAVE
334	xsr	a0, depc
335	s32i	a0, a2, PT_AREG0
336
337	/* a0: avail, a1: a1, a2: kstk, a3: exctable, depc: a2, excsave: a3 */
338
339	rsr	a0, exccause
340	addx4	a0, a0, a3
341	xsr	a3, excsave1
342	l32i	a0, a0, EXC_TABLE_FAST_USER
343	jx	a0
344
345	/*
346	 * Restart window OVERFLOW exception.
347	 * Currently:
348	 *	depc = orig a0,
349	 *	a0 = orig DEPC,
350	 *	a2 = new sp based on KSTK from exc_table
351	 *	a3 = EXCSAVE_1
352	 *	excsave_1 = orig a3
353	 *
354	 * We return to the instruction in user space that caused the window
355	 * overflow exception. Therefore, we change window base to the value
356	 * before we entered the window overflow exception and prepare the
357	 * registers to return as if we were coming from a regular exception
358	 * by changing DEPC (in a0).
359	 *
360	 * NOTE: We CANNOT trash the current window frame (a0...a3), but we
361	 * can clobber depc.
362	 *
363	 * The tricky part here is that overflow8 and overflow12 handlers
364	 * save a0, then clobber a0.  To restart the handler, we have to restore
365	 * a0 if the double exception was past the point where a0 was clobbered.
366	 *
367	 * To keep things simple, we take advantage of the fact all overflow
368	 * handlers save a0 in their very first instruction.  If DEPC was past
369	 * that instruction, we can safely restore a0 from where it was saved
370	 * on the stack.
371	 *
372	 * a0: depc, a1: a1, a2: kstk, a3: exc_table, depc: a0, excsave1: a3
373	 */
374_DoubleExceptionVector_WindowOverflow:
375	extui	a2, a0, 0, 6	# get offset into 64-byte vector handler
376	beqz	a2, 1f		# if at start of vector, don't restore
377
378	addi	a0, a0, -128
379	bbsi.l	a0, 8, 1f	# don't restore except for overflow 8 and 12
380
381	/*
382	 * This fixup handler is for the extremely unlikely case where the
383	 * overflow handler's reference thru a0 gets a hardware TLB refill
384	 * that bumps out the (distinct, aliasing) TLB entry that mapped its
385	 * prior references thru a9/a13, and where our reference now thru
386	 * a9/a13 gets a 2nd-level miss exception (not hardware TLB refill).
387	 */
388	movi	a2, window_overflow_restore_a0_fixup
389	s32i	a2, a3, EXC_TABLE_FIXUP
390	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
391	xsr	a3, excsave1
392
393	bbsi.l	a0, 7, 2f
394
395	/*
396	 * Restore a0 as saved by _WindowOverflow8().
397	 */
398
399	l32e	a0, a9, -16
400	wsr	a0, depc	# replace the saved a0
401	j	3f
402
4032:
404	/*
405	 * Restore a0 as saved by _WindowOverflow12().
406	 */
407
408	l32e	a0, a13, -16
409	wsr	a0, depc	# replace the saved a0
4103:
411	xsr	a3, excsave1
412	movi	a0, 0
413	s32i	a0, a3, EXC_TABLE_FIXUP
414	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
4151:
416	/*
417	 * Restore WindowBase while leaving all address registers restored.
418	 * We have to use ROTW for this, because WSR.WINDOWBASE requires
419	 * an address register (which would prevent restore).
420	 *
421	 * Window Base goes from 0 ... 7 (Module 8)
422	 * Window Start is 8 bits; Ex: (0b1010 1010):0x55 from series of call4s
423	 */
424
425	rsr	a0, ps
426	extui	a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
427	rsr	a2, windowbase
428	sub	a0, a2, a0
429	extui	a0, a0, 0, 3
430
431	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
432	xsr	a3, excsave1
433	beqi	a0, 1, .L1pane
434	beqi	a0, 3, .L3pane
435
436	rsr	a0, depc
437	rotw	-2
438
439	/*
440	 * We are now in the user code's original window frame.
441	 * Process the exception as a user exception as if it was
442	 * taken by the user code.
443	 *
444	 * This is similar to the user exception vector,
445	 * except that PT_DEPC isn't set to EXCCAUSE.
446	 */
4471:
448	xsr	a3, excsave1
449	wsr	a2, depc
450	l32i	a2, a3, EXC_TABLE_KSTK
451	s32i	a0, a2, PT_AREG0
452	rsr	a0, exccause
453
454	s32i	a0, a2, PT_DEPC
455
456_DoubleExceptionVector_handle_exception:
457	addi	a0, a0, -EXCCAUSE_UNALIGNED
458	beqz	a0, 2f
459	addx4	a0, a0, a3
460	l32i	a0, a0, EXC_TABLE_FAST_USER + 4 * EXCCAUSE_UNALIGNED
461	xsr	a3, excsave1
462	jx	a0
4632:
464	movi	a0, user_exception
465	xsr	a3, excsave1
466	jx	a0
467
468.L1pane:
469	rsr	a0, depc
470	rotw	-1
471	j	1b
472
473.L3pane:
474	rsr	a0, depc
475	rotw	-3
476	j	1b
477
478ENDPROC(_DoubleExceptionVector)
479
480	.text
481/*
482 * Fixup handler for TLB miss in double exception handler for window owerflow.
483 * We get here with windowbase set to the window that was being spilled and
484 * a0 trashed. a0 bit 7 determines if this is a call8 (bit clear) or call12
485 * (bit set) window.
486 *
487 * We do the following here:
488 * - go to the original window retaining a0 value;
489 * - set up exception stack to return back to appropriate a0 restore code
490 *   (we'll need to rotate window back and there's no place to save this
491 *    information, use different return address for that);
492 * - handle the exception;
493 * - go to the window that was being spilled;
494 * - set up window_overflow_restore_a0_fixup as a fixup routine;
495 * - reload a0;
496 * - restore the original window;
497 * - reset the default fixup routine;
498 * - return to user. By the time we get to this fixup handler all information
499 *   about the conditions of the original double exception that happened in
500 *   the window overflow handler is lost, so we just return to userspace to
501 *   retry overflow from start.
502 *
503 * a0: value of depc, original value in depc
504 * a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
505 * a3: exctable, original value in excsave1
506 */
507
508	.literal_position
509
510ENTRY(window_overflow_restore_a0_fixup)
511
512	rsr	a0, ps
513	extui	a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
514	rsr	a2, windowbase
515	sub	a0, a2, a0
516	extui	a0, a0, 0, 3
517	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
518	xsr	a3, excsave1
519
520	_beqi	a0, 1, .Lhandle_1
521	_beqi	a0, 3, .Lhandle_3
522
523	.macro	overflow_fixup_handle_exception_pane n
524
525	rsr	a0, depc
526	rotw	-\n
527
528	xsr	a3, excsave1
529	wsr	a2, depc
530	l32i	a2, a3, EXC_TABLE_KSTK
531	s32i	a0, a2, PT_AREG0
532
533	movi	a0, .Lrestore_\n
534	s32i	a0, a2, PT_DEPC
535	rsr	a0, exccause
536	j	_DoubleExceptionVector_handle_exception
537
538	.endm
539
540	overflow_fixup_handle_exception_pane 2
541.Lhandle_1:
542	overflow_fixup_handle_exception_pane 1
543.Lhandle_3:
544	overflow_fixup_handle_exception_pane 3
545
546	.macro	overflow_fixup_restore_a0_pane n
547
548	rotw	\n
549	/* Need to preserve a0 value here to be able to handle exception
550	 * that may occur on a0 reload from stack. It may occur because
551	 * TLB miss handler may not be atomic and pointer to page table
552	 * may be lost before we get here. There are no free registers,
553	 * so we need to use EXC_TABLE_DOUBLE_SAVE area.
554	 */
555	xsr	a3, excsave1
556	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
557	movi	a2, window_overflow_restore_a0_fixup
558	s32i	a2, a3, EXC_TABLE_FIXUP
559	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
560	xsr	a3, excsave1
561	bbsi.l	a0, 7, 1f
562	l32e	a0, a9, -16
563	j	2f
5641:
565	l32e	a0, a13, -16
5662:
567	rotw	-\n
568
569	.endm
570
571.Lrestore_2:
572	overflow_fixup_restore_a0_pane 2
573
574.Lset_default_fixup:
575	xsr	a3, excsave1
576	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
577	movi	a2, 0
578	s32i	a2, a3, EXC_TABLE_FIXUP
579	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
580	xsr	a3, excsave1
581	rfe
582
583.Lrestore_1:
584	overflow_fixup_restore_a0_pane 1
585	j	.Lset_default_fixup
586.Lrestore_3:
587	overflow_fixup_restore_a0_pane 3
588	j	.Lset_default_fixup
589
590ENDPROC(window_overflow_restore_a0_fixup)
591
592/*
593 * Debug interrupt vector
594 *
595 * There is not much space here, so simply jump to another handler.
596 * EXCSAVE[DEBUGLEVEL] has been set to that handler.
597 */
598
599	.section .DebugInterruptVector.text, "ax"
600
601ENTRY(_DebugInterruptVector)
602
603	xsr	a3, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
604	s32i	a0, a3, DT_DEBUG_SAVE
605	l32i	a0, a3, DT_DEBUG_EXCEPTION
606	jx	a0
607
608ENDPROC(_DebugInterruptVector)
609
610
611
612/*
613 * Medium priority level interrupt vectors
614 *
615 * Each takes less than 16 (0x10) bytes, no literals, by placing
616 * the extra 8 bytes that would otherwise be required in the window
617 * vectors area where there is space.  With relocatable vectors,
618 * all vectors are within ~ 4 kB range of each other, so we can
619 * simply jump (J) to another vector without having to use JX.
620 *
621 * common_exception code gets current IRQ level in PS.INTLEVEL
622 * and preserves it for the IRQ handling time.
623 */
624
625	.macro	irq_entry_level level
626
627	.if	XCHAL_EXCM_LEVEL >= \level
628	.section .Level\level\()InterruptVector.text, "ax"
629ENTRY(_Level\level\()InterruptVector)
630	wsr	a0, excsave2
631	rsr	a0, epc\level
632	wsr	a0, epc1
633	.if	\level <= LOCKLEVEL
634	movi	a0, EXCCAUSE_LEVEL1_INTERRUPT
635	.else
636	movi	a0, EXCCAUSE_MAPPED_NMI
637	.endif
638	wsr	a0, exccause
639	rsr	a0, eps\level
640					# branch to user or kernel vector
641	j	_SimulateUserKernelVectorException
642	.endif
643
644	.endm
645
646	irq_entry_level 2
647	irq_entry_level 3
648	irq_entry_level 4
649	irq_entry_level 5
650	irq_entry_level 6
651
652
653/* Window overflow and underflow handlers.
654 * The handlers must be 64 bytes apart, first starting with the underflow
655 * handlers underflow-4 to underflow-12, then the overflow handlers
656 * overflow-4 to overflow-12.
657 *
658 * Note: We rerun the underflow handlers if we hit an exception, so
659 *	 we try to access any page that would cause a page fault early.
660 */
661
662#define ENTRY_ALIGN64(name)	\
663	.globl name;		\
664	.align 64;		\
665	name:
666
667	.section		.WindowVectors.text, "ax"
668
669
670/* 4-Register Window Overflow Vector (Handler) */
671
672ENTRY_ALIGN64(_WindowOverflow4)
673
674	s32e	a0, a5, -16
675	s32e	a1, a5, -12
676	s32e	a2, a5,  -8
677	s32e	a3, a5,  -4
678	rfwo
679
680ENDPROC(_WindowOverflow4)
681
682
683#if XCHAL_EXCM_LEVEL >= 2
684	/*  Not a window vector - but a convenient location
685	 *  (where we know there's space) for continuation of
686	 *  medium priority interrupt dispatch code.
687	 *  On entry here, a0 contains PS, and EPC2 contains saved a0:
688	 */
689	.align 4
690_SimulateUserKernelVectorException:
691	addi	a0, a0, (1 << PS_EXCM_BIT)
692#if !XTENSA_FAKE_NMI
693	wsr	a0, ps
694#endif
695	bbsi.l	a0, PS_UM_BIT, 1f	# branch if user mode
696	xsr	a0, excsave2		# restore a0
697	j	_KernelExceptionVector	# simulate kernel vector exception
6981:	xsr	a0, excsave2		# restore a0
699	j	_UserExceptionVector	# simulate user vector exception
700#endif
701
702
703/* 4-Register Window Underflow Vector (Handler) */
704
705ENTRY_ALIGN64(_WindowUnderflow4)
706
707	l32e	a0, a5, -16
708	l32e	a1, a5, -12
709	l32e	a2, a5,  -8
710	l32e	a3, a5,  -4
711	rfwu
712
713ENDPROC(_WindowUnderflow4)
714
715/* 8-Register Window Overflow Vector (Handler) */
716
717ENTRY_ALIGN64(_WindowOverflow8)
718
719	s32e	a0, a9, -16
720	l32e	a0, a1, -12
721	s32e	a2, a9,  -8
722	s32e	a1, a9, -12
723	s32e	a3, a9,  -4
724	s32e	a4, a0, -32
725	s32e	a5, a0, -28
726	s32e	a6, a0, -24
727	s32e	a7, a0, -20
728	rfwo
729
730ENDPROC(_WindowOverflow8)
731
732/* 8-Register Window Underflow Vector (Handler) */
733
734ENTRY_ALIGN64(_WindowUnderflow8)
735
736	l32e	a1, a9, -12
737	l32e	a0, a9, -16
738	l32e	a7, a1, -12
739	l32e	a2, a9,  -8
740	l32e	a4, a7, -32
741	l32e	a3, a9,  -4
742	l32e	a5, a7, -28
743	l32e	a6, a7, -24
744	l32e	a7, a7, -20
745	rfwu
746
747ENDPROC(_WindowUnderflow8)
748
749/* 12-Register Window Overflow Vector (Handler) */
750
751ENTRY_ALIGN64(_WindowOverflow12)
752
753	s32e	a0,  a13, -16
754	l32e	a0,  a1,  -12
755	s32e	a1,  a13, -12
756	s32e	a2,  a13,  -8
757	s32e	a3,  a13,  -4
758	s32e	a4,  a0,  -48
759	s32e	a5,  a0,  -44
760	s32e	a6,  a0,  -40
761	s32e	a7,  a0,  -36
762	s32e	a8,  a0,  -32
763	s32e	a9,  a0,  -28
764	s32e	a10, a0,  -24
765	s32e	a11, a0,  -20
766	rfwo
767
768ENDPROC(_WindowOverflow12)
769
770/* 12-Register Window Underflow Vector (Handler) */
771
772ENTRY_ALIGN64(_WindowUnderflow12)
773
774	l32e	a1,  a13, -12
775	l32e	a0,  a13, -16
776	l32e	a11, a1,  -12
777	l32e	a2,  a13,  -8
778	l32e	a4,  a11, -48
779	l32e	a8,  a11, -32
780	l32e	a3,  a13,  -4
781	l32e	a5,  a11, -44
782	l32e	a6,  a11, -40
783	l32e	a7,  a11, -36
784	l32e	a9,  a11, -28
785	l32e	a10, a11, -24
786	l32e	a11, a11, -20
787	rfwu
788
789ENDPROC(_WindowUnderflow12)
790
791	.text
792