xref: /linux/arch/xtensa/kernel/vectors.S (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1/*
2 * arch/xtensa/kernel/vectors.S
3 *
4 * This file contains all exception vectors (user, kernel, and double),
5 * as well as the window vectors (overflow and underflow), and the debug
6 * vector. These are the primary vectors executed by the processor if an
7 * exception occurs.
8 *
9 * This file is subject to the terms and conditions of the GNU General
10 * Public License.  See the file "COPYING" in the main directory of
11 * this archive for more details.
12 *
13 * Copyright (C) 2005 - 2008 Tensilica, Inc.
14 *
15 * Chris Zankel <chris@zankel.net>
16 *
17 */
18
19/*
20 * We use a two-level table approach. The user and kernel exception vectors
21 * use a first-level dispatch table to dispatch the exception to a registered
22 * fast handler or the default handler, if no fast handler was registered.
23 * The default handler sets up a C-stack and dispatches the exception to a
24 * registerd C handler in the second-level dispatch table.
25 *
26 * Fast handler entry condition:
27 *
28 *   a0:	trashed, original value saved on stack (PT_AREG0)
29 *   a1:	a1
30 *   a2:	new stack pointer, original value in depc
31 *   a3:	dispatch table
32 *   depc:	a2, original value saved on stack (PT_DEPC)
33 *   excsave_1:	a3
34 *
35 * The value for PT_DEPC saved to stack also functions as a boolean to
36 * indicate that the exception is either a double or a regular exception:
37 *
38 *   PT_DEPC	>= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39 *		<  VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40 *
41 * Note:  Neither the kernel nor the user exception handler generate literals.
42 *
43 */
44
45#include <linux/linkage.h>
46#include <asm/ptrace.h>
47#include <asm/current.h>
48#include <asm/asm-offsets.h>
49#include <asm/pgtable.h>
50#include <asm/processor.h>
51#include <asm/page.h>
52#include <asm/thread_info.h>
53#include <asm/vectors.h>
54
55#define WINDOW_VECTORS_SIZE   0x180
56
57
58/*
59 * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
60 *
61 * We get here when an exception occurred while we were in userland.
62 * We switch to the kernel stack and jump to the first level handler
63 * associated to the exception cause.
64 *
65 * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
66 *       decremented by PT_USER_SIZE.
67 */
68
69	.section .UserExceptionVector.text, "ax"
70
71ENTRY(_UserExceptionVector)
72
73	xsr	a3, excsave1		# save a3 and get dispatch table
74	wsr	a2, depc		# save a2
75	l32i	a2, a3, EXC_TABLE_KSTK	# load kernel stack to a2
76	s32i	a0, a2, PT_AREG0	# save a0 to ESF
77	rsr	a0, exccause		# retrieve exception cause
78	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
79	addx4	a0, a0, a3		# find entry in table
80	l32i	a0, a0, EXC_TABLE_FAST_USER	# load handler
81	jx	a0
82
83ENDPROC(_UserExceptionVector)
84
85/*
86 * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
87 *
88 * We get this exception when we were already in kernel space.
89 * We decrement the current stack pointer (kernel) by PT_SIZE and
90 * jump to the first-level handler associated with the exception cause.
91 *
92 * Note: we need to preserve space for the spill region.
93 */
94
95	.section .KernelExceptionVector.text, "ax"
96
97ENTRY(_KernelExceptionVector)
98
99	xsr	a3, excsave1		# save a3, and get dispatch table
100	wsr	a2, depc		# save a2
101	addi	a2, a1, -16-PT_SIZE	# adjust stack pointer
102	s32i	a0, a2, PT_AREG0	# save a0 to ESF
103	rsr	a0, exccause		# retrieve exception cause
104	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
105	addx4	a0, a0, a3		# find entry in table
106	l32i	a0, a0, EXC_TABLE_FAST_KERNEL	# load handler address
107	jx	a0
108
109ENDPROC(_KernelExceptionVector)
110
111/*
112 * Double exception vector (Exceptions with PS.EXCM == 1)
113 * We get this exception when another exception occurs while were are
114 * already in an exception, such as window overflow/underflow exception,
115 * or 'expected' exceptions, for example memory exception when we were trying
116 * to read data from an invalid address in user space.
117 *
118 * Note that this vector is never invoked for level-1 interrupts, because such
119 * interrupts are disabled (masked) when PS.EXCM is set.
120 *
121 * We decode the exception and take the appropriate action.  However, the
122 * double exception vector is much more careful, because a lot more error
123 * cases go through the double exception vector than through the user and
124 * kernel exception vectors.
125 *
126 * Occasionally, the kernel expects a double exception to occur.  This usually
127 * happens when accessing user-space memory with the user's permissions
128 * (l32e/s32e instructions).  The kernel state, though, is not always suitable
129 * for immediate transfer of control to handle_double, where "normal" exception
130 * processing occurs. Also in kernel mode, TLB misses can occur if accessing
131 * vmalloc memory, possibly requiring repair in a double exception handler.
132 *
133 * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
134 * a boolean variable and a pointer to a fixup routine. If the variable
135 * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
136 * zero indicates to use the default kernel/user exception handler.
137 * There is only one exception, when the value is identical to the exc_table
138 * label, the kernel is in trouble. This mechanism is used to protect critical
139 * sections, mainly when the handler writes to the stack to assert the stack
140 * pointer is valid. Once the fixup/default handler leaves that area, the
141 * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
142 *
143 * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
144 * nonzero address of a fixup routine before it could cause a double exception
145 * and reset it before it returns.
146 *
147 * Some other things to take care of when a fast exception handler doesn't
148 * specify a particular fixup handler but wants to use the default handlers:
149 *
150 *  - The original stack pointer (in a1) must not be modified. The fast
151 *    exception handler should only use a2 as the stack pointer.
152 *
153 *  - If the fast handler manipulates the stack pointer (in a2), it has to
154 *    register a valid fixup handler and cannot use the default handlers.
155 *
156 *  - The handler can use any other generic register from a3 to a15, but it
157 *    must save the content of these registers to stack (PT_AREG3...PT_AREGx)
158 *
159 *  - These registers must be saved before a double exception can occur.
160 *
161 *  - If we ever implement handling signals while in double exceptions, the
162 *    number of registers a fast handler has saved (excluding a0 and a1) must
163 *    be written to  PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
164 *
165 * The fixup handlers are special handlers:
166 *
167 *  - Fixup entry conditions differ from regular exceptions:
168 *
169 *	a0:	   DEPC
170 *	a1: 	   a1
171 *	a2:	   trashed, original value in EXC_TABLE_DOUBLE_A2
172 *	a3:	   exctable
173 *	depc:	   a0
174 *	excsave_1: a3
175 *
176 *  - When the kernel enters the fixup handler, it still assumes it is in a
177 *    critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
178 *    The fixup handler, therefore, has to re-register itself as the fixup
179 *    handler before it returns from the double exception.
180 *
181 *  - Fixup handler can share the same exception frame with the fast handler.
182 *    The kernel stack pointer is not changed when entering the fixup handler.
183 *
184 *  - Fixup handlers can jump to the default kernel and user exception
185 *    handlers. Before it jumps, though, it has to setup a exception frame
186 *    on stack. Because the default handler resets the register fixup handler
187 *    the fixup handler must make sure that the default handler returns to
188 *    it instead of the exception address, so it can re-register itself as
189 *    the fixup handler.
190 *
191 * In case of a critical condition where the kernel cannot recover, we jump
192 * to unrecoverable_exception with the following entry conditions.
193 * All registers a0...a15 are unchanged from the last exception, except:
194 *
195 *	a0:	   last address before we jumped to the unrecoverable_exception.
196 *	excsave_1: a0
197 *
198 *
199 * See the handle_alloca_user and spill_registers routines for example clients.
200 *
201 * FIXME: Note: we currently don't allow signal handling coming from a double
202 *        exception, so the item markt with (*) is not required.
203 */
204
205	.section .DoubleExceptionVector.text, "ax"
206	.begin literal_prefix .DoubleExceptionVector
207
208ENTRY(_DoubleExceptionVector)
209
210	/* Deliberately destroy excsave (don't assume it's value was valid). */
211
212	wsr	a3, excsave1		# save a3
213
214	/* Check for kernel double exception (usually fatal). */
215
216	rsr	a3, ps
217	_bbci.l	a3, PS_UM_BIT, .Lksp
218
219	/* Check if we are currently handling a window exception. */
220	/* Note: We don't need to indicate that we enter a critical section. */
221
222	xsr	a0, depc		# get DEPC, save a0
223
224	movi	a3, WINDOW_VECTORS_VADDR
225	_bltu	a0, a3, .Lfixup
226	addi	a3, a3, WINDOW_VECTORS_SIZE
227	_bgeu	a0, a3, .Lfixup
228
229	/* Window overflow/underflow exception. Get stack pointer. */
230
231	mov	a3, a2
232	/* This explicit literal and the following references to it are made
233	 * in order to fit DoubleExceptionVector.literals into the available
234	 * 16-byte gap before DoubleExceptionVector.text in the absence of
235	 * link time relaxation. See kernel/vmlinux.lds.S
236	 */
237	.literal .Lexc_table, exc_table
238	l32r	a2, .Lexc_table
239	l32i	a2, a2, EXC_TABLE_KSTK
240
241	/* Check for overflow/underflow exception, jump if overflow. */
242
243	_bbci.l	a0, 6, .Lovfl
244
245	/* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3  */
246
247	/* Restart window underflow exception.
248	 * We return to the instruction in user space that caused the window
249	 * underflow exception. Therefore, we change window base to the value
250	 * before we entered the window underflow exception and prepare the
251	 * registers to return as if we were coming from a regular exception
252	 * by changing depc (in a0).
253	 * Note: We can trash the current window frame (a0...a3) and depc!
254	 */
255
256	wsr	a2, depc		# save stack pointer temporarily
257	rsr	a0, ps
258	extui	a0, a0, PS_OWB_SHIFT, 4
259	wsr	a0, windowbase
260	rsync
261
262	/* We are now in the previous window frame. Save registers again. */
263
264	xsr	a2, depc		# save a2 and get stack pointer
265	s32i	a0, a2, PT_AREG0
266
267	wsr	a3, excsave1		# save a3
268	l32r	a3, .Lexc_table
269
270	rsr	a0, exccause
271	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
272	addx4	a0, a0, a3
273	l32i	a0, a0, EXC_TABLE_FAST_USER
274	jx	a0
275
276.Lfixup:/* Check for a fixup handler or if we were in a critical section. */
277
278	/* a0: depc, a1: a1, a2: a2, a3: trashed, depc: a0, excsave1: a3 */
279
280	l32r	a3, .Lexc_table
281	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE	# temporary variable
282
283	/* Enter critical section. */
284
285	l32i	a2, a3, EXC_TABLE_FIXUP
286	s32i	a3, a3, EXC_TABLE_FIXUP
287	beq	a2, a3, .Lunrecoverable_fixup	# critical!
288	beqz	a2, .Ldflt			# no handler was registered
289
290	/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
291
292	jx	a2
293
294.Ldflt:	/* Get stack pointer. */
295
296	l32i	a3, a3, EXC_TABLE_DOUBLE_SAVE
297	addi	a2, a3, -PT_USER_SIZE
298
299.Lovfl:	/* Jump to default handlers. */
300
301	/* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3 */
302
303	xsr	a3, depc
304	s32i	a0, a2, PT_DEPC
305	s32i	a3, a2, PT_AREG0
306
307	/* a0: avail, a1: a1, a2: kstk, a3: avail, depc: a2, excsave: a3 */
308
309	l32r	a3, .Lexc_table
310	rsr	a0, exccause
311	addx4	a0, a0, a3
312	l32i	a0, a0, EXC_TABLE_FAST_USER
313	jx	a0
314
315	/*
316	 * We only allow the ITLB miss exception if we are in kernel space.
317	 * All other exceptions are unexpected and thus unrecoverable!
318	 */
319
320#ifdef CONFIG_MMU
321	.extern fast_second_level_miss_double_kernel
322
323.Lksp:	/* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
324
325	rsr	a3, exccause
326	beqi	a3, EXCCAUSE_ITLB_MISS, 1f
327	addi	a3, a3, -EXCCAUSE_DTLB_MISS
328	bnez	a3, .Lunrecoverable
3291:	movi	a3, fast_second_level_miss_double_kernel
330	jx	a3
331#else
332.equ	.Lksp,	.Lunrecoverable
333#endif
334
335	/* Critical! We can't handle this situation. PANIC! */
336
337	.extern unrecoverable_exception
338
339.Lunrecoverable_fixup:
340	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
341	xsr	a0, depc
342
343.Lunrecoverable:
344	rsr	a3, excsave1
345	wsr	a0, excsave1
346	movi	a0, unrecoverable_exception
347	callx0	a0
348
349	.end literal_prefix
350
351ENDPROC(_DoubleExceptionVector)
352
353/*
354 * Debug interrupt vector
355 *
356 * There is not much space here, so simply jump to another handler.
357 * EXCSAVE[DEBUGLEVEL] has been set to that handler.
358 */
359
360	.section .DebugInterruptVector.text, "ax"
361
362ENTRY(_DebugInterruptVector)
363
364	xsr	a0, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
365	jx	a0
366
367ENDPROC(_DebugInterruptVector)
368
369
370
371/*
372 * Medium priority level interrupt vectors
373 *
374 * Each takes less than 16 (0x10) bytes, no literals, by placing
375 * the extra 8 bytes that would otherwise be required in the window
376 * vectors area where there is space.  With relocatable vectors,
377 * all vectors are within ~ 4 kB range of each other, so we can
378 * simply jump (J) to another vector without having to use JX.
379 *
380 * common_exception code gets current IRQ level in PS.INTLEVEL
381 * and preserves it for the IRQ handling time.
382 */
383
384	.macro	irq_entry_level level
385
386	.if	XCHAL_EXCM_LEVEL >= \level
387	.section .Level\level\()InterruptVector.text, "ax"
388ENTRY(_Level\level\()InterruptVector)
389	wsr	a0, excsave2
390	rsr	a0, epc\level
391	wsr	a0, epc1
392	movi	a0, EXCCAUSE_LEVEL1_INTERRUPT
393	wsr	a0, exccause
394	rsr	a0, eps\level
395					# branch to user or kernel vector
396	j	_SimulateUserKernelVectorException
397	.endif
398
399	.endm
400
401	irq_entry_level 2
402	irq_entry_level 3
403	irq_entry_level 4
404	irq_entry_level 5
405	irq_entry_level 6
406
407
408/* Window overflow and underflow handlers.
409 * The handlers must be 64 bytes apart, first starting with the underflow
410 * handlers underflow-4 to underflow-12, then the overflow handlers
411 * overflow-4 to overflow-12.
412 *
413 * Note: We rerun the underflow handlers if we hit an exception, so
414 *	 we try to access any page that would cause a page fault early.
415 */
416
417#define ENTRY_ALIGN64(name)	\
418	.globl name;		\
419	.align 64;		\
420	name:
421
422	.section		.WindowVectors.text, "ax"
423
424
425/* 4-Register Window Overflow Vector (Handler) */
426
427ENTRY_ALIGN64(_WindowOverflow4)
428
429	s32e	a0, a5, -16
430	s32e	a1, a5, -12
431	s32e	a2, a5,  -8
432	s32e	a3, a5,  -4
433	rfwo
434
435ENDPROC(_WindowOverflow4)
436
437
438#if XCHAL_EXCM_LEVEL >= 2
439	/*  Not a window vector - but a convenient location
440	 *  (where we know there's space) for continuation of
441	 *  medium priority interrupt dispatch code.
442	 *  On entry here, a0 contains PS, and EPC2 contains saved a0:
443	 */
444	.align 4
445_SimulateUserKernelVectorException:
446	addi	a0, a0, (1 << PS_EXCM_BIT)
447	wsr	a0, ps
448	bbsi.l	a0, PS_UM_BIT, 1f	# branch if user mode
449	rsr	a0, excsave2		# restore a0
450	j	_KernelExceptionVector	# simulate kernel vector exception
4511:	rsr	a0, excsave2		# restore a0
452	j	_UserExceptionVector	# simulate user vector exception
453#endif
454
455
456/* 4-Register Window Underflow Vector (Handler) */
457
458ENTRY_ALIGN64(_WindowUnderflow4)
459
460	l32e	a0, a5, -16
461	l32e	a1, a5, -12
462	l32e	a2, a5,  -8
463	l32e	a3, a5,  -4
464	rfwu
465
466ENDPROC(_WindowUnderflow4)
467
468/* 8-Register Window Overflow Vector (Handler) */
469
470ENTRY_ALIGN64(_WindowOverflow8)
471
472	s32e	a0, a9, -16
473	l32e	a0, a1, -12
474	s32e	a2, a9,  -8
475	s32e	a1, a9, -12
476	s32e	a3, a9,  -4
477	s32e	a4, a0, -32
478	s32e	a5, a0, -28
479	s32e	a6, a0, -24
480	s32e	a7, a0, -20
481	rfwo
482
483ENDPROC(_WindowOverflow8)
484
485/* 8-Register Window Underflow Vector (Handler) */
486
487ENTRY_ALIGN64(_WindowUnderflow8)
488
489	l32e	a1, a9, -12
490	l32e	a0, a9, -16
491	l32e	a7, a1, -12
492	l32e	a2, a9,  -8
493	l32e	a4, a7, -32
494	l32e	a3, a9,  -4
495	l32e	a5, a7, -28
496	l32e	a6, a7, -24
497	l32e	a7, a7, -20
498	rfwu
499
500ENDPROC(_WindowUnderflow8)
501
502/* 12-Register Window Overflow Vector (Handler) */
503
504ENTRY_ALIGN64(_WindowOverflow12)
505
506	s32e	a0,  a13, -16
507	l32e	a0,  a1,  -12
508	s32e	a1,  a13, -12
509	s32e	a2,  a13,  -8
510	s32e	a3,  a13,  -4
511	s32e	a4,  a0,  -48
512	s32e	a5,  a0,  -44
513	s32e	a6,  a0,  -40
514	s32e	a7,  a0,  -36
515	s32e	a8,  a0,  -32
516	s32e	a9,  a0,  -28
517	s32e	a10, a0,  -24
518	s32e	a11, a0,  -20
519	rfwo
520
521ENDPROC(_WindowOverflow12)
522
523/* 12-Register Window Underflow Vector (Handler) */
524
525ENTRY_ALIGN64(_WindowUnderflow12)
526
527	l32e	a1,  a13, -12
528	l32e	a0,  a13, -16
529	l32e	a11, a1,  -12
530	l32e	a2,  a13,  -8
531	l32e	a4,  a11, -48
532	l32e	a8,  a11, -32
533	l32e	a3,  a13,  -4
534	l32e	a5,  a11, -44
535	l32e	a6,  a11, -40
536	l32e	a7,  a11, -36
537	l32e	a9,  a11, -28
538	l32e	a10, a11, -24
539	l32e	a11, a11, -20
540	rfwu
541
542ENDPROC(_WindowUnderflow12)
543
544	.text
545