15a0015d6SChris Zankel /* 25a0015d6SChris Zankel * arch/xtensa/kernel/traps.c 35a0015d6SChris Zankel * 45a0015d6SChris Zankel * Exception handling. 55a0015d6SChris Zankel * 65a0015d6SChris Zankel * Derived from code with the following copyrights: 75a0015d6SChris Zankel * Copyright (C) 1994 - 1999 by Ralf Baechle 85a0015d6SChris Zankel * Modified for R3000 by Paul M. Antoine, 1995, 1996 95a0015d6SChris Zankel * Complete output from die() by Ulf Carlsson, 1998 105a0015d6SChris Zankel * Copyright (C) 1999 Silicon Graphics, Inc. 115a0015d6SChris Zankel * 125a0015d6SChris Zankel * Essentially rewritten for the Xtensa architecture port. 135a0015d6SChris Zankel * 143e4196a5SMax Filippov * Copyright (C) 2001 - 2013 Tensilica Inc. 155a0015d6SChris Zankel * 165a0015d6SChris Zankel * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com> 175a0015d6SChris Zankel * Chris Zankel <chris@zankel.net> 185a0015d6SChris Zankel * Marc Gauthier<marc@tensilica.com, marc@alumni.uwaterloo.ca> 195a0015d6SChris Zankel * Kevin Chea 205a0015d6SChris Zankel * 215a0015d6SChris Zankel * This file is subject to the terms and conditions of the GNU General Public 225a0015d6SChris Zankel * License. See the file "COPYING" in the main directory of this archive 235a0015d6SChris Zankel * for more details. 245a0015d6SChris Zankel */ 255a0015d6SChris Zankel 265a0015d6SChris Zankel #include <linux/kernel.h> 273f07c014SIngo Molnar #include <linux/sched/signal.h> 28b17b0153SIngo Molnar #include <linux/sched/debug.h> 293f8c2452SIngo Molnar #include <linux/sched/task_stack.h> 305a0015d6SChris Zankel #include <linux/init.h> 315a0015d6SChris Zankel #include <linux/module.h> 325a0015d6SChris Zankel #include <linux/stringify.h> 335a0015d6SChris Zankel #include <linux/kallsyms.h> 345c888d53SNishanth Aravamudan #include <linux/delay.h> 355a891ed5SAlexey Dobriyan #include <linux/hardirq.h> 36c130d3beSMax Filippov #include <linux/ratelimit.h> 3765fddcfcSMike Rapoport #include <linux/pgtable.h> 385a0015d6SChris Zankel 393e4196a5SMax Filippov #include <asm/stacktrace.h> 405a0015d6SChris Zankel #include <asm/ptrace.h> 415a0015d6SChris Zankel #include <asm/timex.h> 427c0f6ba6SLinus Torvalds #include <linux/uaccess.h> 435a0015d6SChris Zankel #include <asm/processor.h> 442d6f82feSMax Filippov #include <asm/traps.h> 45c91e02bdSMax Filippov #include <asm/hw_breakpoint.h> 465a0015d6SChris Zankel 475a0015d6SChris Zankel /* 485a0015d6SChris Zankel * Machine specific interrupt handlers 495a0015d6SChris Zankel */ 505a0015d6SChris Zankel 51db0d07faSMax Filippov static void do_illegal_instruction(struct pt_regs *regs); 52408b1d3cSMax Filippov static void do_div0(struct pt_regs *regs); 53db0d07faSMax Filippov static void do_interrupt(struct pt_regs *regs); 54db0d07faSMax Filippov #if XTENSA_FAKE_NMI 55db0d07faSMax Filippov static void do_nmi(struct pt_regs *regs); 56db0d07faSMax Filippov #endif 57f29cf776SMax Filippov #ifdef CONFIG_XTENSA_LOAD_STORE 58f29cf776SMax Filippov static void do_load_store(struct pt_regs *regs); 59f29cf776SMax Filippov #endif 60db0d07faSMax Filippov static void do_unaligned_user(struct pt_regs *regs); 61db0d07faSMax Filippov static void do_multihit(struct pt_regs *regs); 6211e969bcSMax Filippov #if XTENSA_HAVE_COPROCESSORS 6311e969bcSMax Filippov static void do_coprocessor(struct pt_regs *regs); 6411e969bcSMax Filippov #endif 65db0d07faSMax Filippov static void do_debug(struct pt_regs *regs); 665a0015d6SChris Zankel 675a0015d6SChris Zankel /* 685a0015d6SChris Zankel * The vector table must be preceded by a save area (which 695a0015d6SChris Zankel * implies it must be in RAM, unless one places RAM immediately 705a0015d6SChris Zankel * before a ROM and puts the vector at the start of the ROM (!)) 715a0015d6SChris Zankel */ 725a0015d6SChris Zankel 735a0015d6SChris Zankel #define KRNL 0x01 745a0015d6SChris Zankel #define USER 0x02 755a0015d6SChris Zankel 765a0015d6SChris Zankel #define COPROCESSOR(x) \ 7711e969bcSMax Filippov { EXCCAUSE_COPROCESSOR ## x ## _DISABLED, USER|KRNL, fast_coprocessor },\ 7811e969bcSMax Filippov { EXCCAUSE_COPROCESSOR ## x ## _DISABLED, 0, do_coprocessor } 795a0015d6SChris Zankel 805a0015d6SChris Zankel typedef struct { 815a0015d6SChris Zankel int cause; 825a0015d6SChris Zankel int fast; 835a0015d6SChris Zankel void* handler; 845a0015d6SChris Zankel } dispatch_init_table_t; 855a0015d6SChris Zankel 86b91dc336SChris Zankel static dispatch_init_table_t __initdata dispatch_init_table[] = { 875a0015d6SChris Zankel 8809f8a6dbSMax Filippov #ifdef CONFIG_USER_ABI_CALL0_PROBE 8909f8a6dbSMax Filippov { EXCCAUSE_ILLEGAL_INSTRUCTION, USER, fast_illegal_instruction_user }, 9009f8a6dbSMax Filippov #endif 91173d6681SChris Zankel { EXCCAUSE_ILLEGAL_INSTRUCTION, 0, do_illegal_instruction}, 92173d6681SChris Zankel { EXCCAUSE_SYSTEM_CALL, USER, fast_syscall_user }, 93173d6681SChris Zankel { EXCCAUSE_SYSTEM_CALL, 0, system_call }, 94173d6681SChris Zankel /* EXCCAUSE_INSTRUCTION_FETCH unhandled */ 95f29cf776SMax Filippov #ifdef CONFIG_XTENSA_LOAD_STORE 96f29cf776SMax Filippov { EXCCAUSE_LOAD_STORE_ERROR, USER|KRNL, fast_load_store }, 97f29cf776SMax Filippov { EXCCAUSE_LOAD_STORE_ERROR, 0, do_load_store }, 98f29cf776SMax Filippov #endif 99173d6681SChris Zankel { EXCCAUSE_LEVEL1_INTERRUPT, 0, do_interrupt }, 100da0a4e5cSMax Filippov #ifdef SUPPORT_WINDOWED 101173d6681SChris Zankel { EXCCAUSE_ALLOCA, USER|KRNL, fast_alloca }, 102da0a4e5cSMax Filippov #endif 103408b1d3cSMax Filippov { EXCCAUSE_INTEGER_DIVIDE_BY_ZERO, 0, do_div0 }, 104173d6681SChris Zankel /* EXCCAUSE_PRIVILEGED unhandled */ 105*a160e941SMax Filippov #if XCHAL_UNALIGNED_LOAD_EXCEPTION || XCHAL_UNALIGNED_STORE_EXCEPTION || \ 106*a160e941SMax Filippov IS_ENABLED(CONFIG_XTENSA_LOAD_STORE) 1074ded6282SMax Filippov #ifdef CONFIG_XTENSA_UNALIGNED_USER 108173d6681SChris Zankel { EXCCAUSE_UNALIGNED, USER, fast_unaligned }, 1095a0015d6SChris Zankel #endif 110173d6681SChris Zankel { EXCCAUSE_UNALIGNED, KRNL, fast_unaligned }, 1115a0015d6SChris Zankel #endif 1123522bcfeSMax Filippov { EXCCAUSE_UNALIGNED, 0, do_unaligned_user }, 113e5083a63SJohannes Weiner #ifdef CONFIG_MMU 114173d6681SChris Zankel { EXCCAUSE_ITLB_MISS, 0, do_page_fault }, 115173d6681SChris Zankel { EXCCAUSE_ITLB_MISS, USER|KRNL, fast_second_level_miss}, 116173d6681SChris Zankel { EXCCAUSE_DTLB_MISS, USER|KRNL, fast_second_level_miss}, 117173d6681SChris Zankel { EXCCAUSE_DTLB_MISS, 0, do_page_fault }, 118a8f0c31fSMax Filippov { EXCCAUSE_STORE_CACHE_ATTRIBUTE, USER|KRNL, fast_store_prohibited }, 119a8f0c31fSMax Filippov #endif /* CONFIG_MMU */ 120a8f0c31fSMax Filippov #ifdef CONFIG_PFAULT 121a8f0c31fSMax Filippov { EXCCAUSE_ITLB_MULTIHIT, 0, do_multihit }, 122a8f0c31fSMax Filippov { EXCCAUSE_ITLB_PRIVILEGE, 0, do_page_fault }, 123a8f0c31fSMax Filippov { EXCCAUSE_FETCH_CACHE_ATTRIBUTE, 0, do_page_fault }, 124173d6681SChris Zankel { EXCCAUSE_DTLB_MULTIHIT, 0, do_multihit }, 125173d6681SChris Zankel { EXCCAUSE_DTLB_PRIVILEGE, 0, do_page_fault }, 126173d6681SChris Zankel { EXCCAUSE_STORE_CACHE_ATTRIBUTE, 0, do_page_fault }, 127173d6681SChris Zankel { EXCCAUSE_LOAD_CACHE_ATTRIBUTE, 0, do_page_fault }, 128a8f0c31fSMax Filippov #endif 1295a0015d6SChris Zankel /* XCCHAL_EXCCAUSE_FLOATING_POINT unhandled */ 130c658eac6SChris Zankel #if XTENSA_HAVE_COPROCESSOR(0) 1315a0015d6SChris Zankel COPROCESSOR(0), 1325a0015d6SChris Zankel #endif 133c658eac6SChris Zankel #if XTENSA_HAVE_COPROCESSOR(1) 1345a0015d6SChris Zankel COPROCESSOR(1), 1355a0015d6SChris Zankel #endif 136c658eac6SChris Zankel #if XTENSA_HAVE_COPROCESSOR(2) 1375a0015d6SChris Zankel COPROCESSOR(2), 1385a0015d6SChris Zankel #endif 139c658eac6SChris Zankel #if XTENSA_HAVE_COPROCESSOR(3) 1405a0015d6SChris Zankel COPROCESSOR(3), 1415a0015d6SChris Zankel #endif 142c658eac6SChris Zankel #if XTENSA_HAVE_COPROCESSOR(4) 1435a0015d6SChris Zankel COPROCESSOR(4), 1445a0015d6SChris Zankel #endif 145c658eac6SChris Zankel #if XTENSA_HAVE_COPROCESSOR(5) 1465a0015d6SChris Zankel COPROCESSOR(5), 1475a0015d6SChris Zankel #endif 148c658eac6SChris Zankel #if XTENSA_HAVE_COPROCESSOR(6) 1495a0015d6SChris Zankel COPROCESSOR(6), 1505a0015d6SChris Zankel #endif 151c658eac6SChris Zankel #if XTENSA_HAVE_COPROCESSOR(7) 1525a0015d6SChris Zankel COPROCESSOR(7), 1535a0015d6SChris Zankel #endif 15438fef73cSMax Filippov #if XTENSA_FAKE_NMI 15538fef73cSMax Filippov { EXCCAUSE_MAPPED_NMI, 0, do_nmi }, 15638fef73cSMax Filippov #endif 1575a0015d6SChris Zankel { EXCCAUSE_MAPPED_DEBUG, 0, do_debug }, 1585a0015d6SChris Zankel { -1, -1, 0 } 1595a0015d6SChris Zankel 1605a0015d6SChris Zankel }; 1615a0015d6SChris Zankel 1625a0015d6SChris Zankel /* The exception table <exc_table> serves two functions: 1635a0015d6SChris Zankel * 1. it contains three dispatch tables (fast_user, fast_kernel, default-c) 1645a0015d6SChris Zankel * 2. it is a temporary memory buffer for the exception handlers. 1655a0015d6SChris Zankel */ 1665a0015d6SChris Zankel 167f21a79caSMax Filippov DEFINE_PER_CPU(struct exc_table, exc_table); 1686ec7026aSMax Filippov DEFINE_PER_CPU(struct debug_table, debug_table); 1696ec7026aSMax Filippov 1705a0015d6SChris Zankel void die(const char*, struct pt_regs*, long); 1715a0015d6SChris Zankel 1725a0015d6SChris Zankel static inline void 1735a0015d6SChris Zankel __die_if_kernel(const char *str, struct pt_regs *regs, long err) 1745a0015d6SChris Zankel { 1755a0015d6SChris Zankel if (!user_mode(regs)) 1765a0015d6SChris Zankel die(str, regs, err); 1775a0015d6SChris Zankel } 1785a0015d6SChris Zankel 179f7667ca1SMax Filippov #ifdef CONFIG_PRINT_USER_CODE_ON_UNHANDLED_EXCEPTION 180f7667ca1SMax Filippov static inline void dump_user_code(struct pt_regs *regs) 181f7667ca1SMax Filippov { 182f7667ca1SMax Filippov char buf[32]; 183f7667ca1SMax Filippov 184f7667ca1SMax Filippov if (copy_from_user(buf, (void __user *)(regs->pc & -16), sizeof(buf)) == 0) { 185f7667ca1SMax Filippov print_hex_dump(KERN_INFO, " ", DUMP_PREFIX_NONE, 186f7667ca1SMax Filippov 32, 1, buf, sizeof(buf), false); 187f7667ca1SMax Filippov 188f7667ca1SMax Filippov } 189f7667ca1SMax Filippov } 190f7667ca1SMax Filippov #else 191f7667ca1SMax Filippov static inline void dump_user_code(struct pt_regs *regs) 192f7667ca1SMax Filippov { 193f7667ca1SMax Filippov } 194f7667ca1SMax Filippov #endif 195f7667ca1SMax Filippov 1965a0015d6SChris Zankel /* 1975a0015d6SChris Zankel * Unhandled Exceptions. Kill user task or panic if in kernel space. 1985a0015d6SChris Zankel */ 1995a0015d6SChris Zankel 200fc55402bSMax Filippov void do_unhandled(struct pt_regs *regs) 2015a0015d6SChris Zankel { 2025a0015d6SChris Zankel __die_if_kernel("Caught unhandled exception - should not happen", 2035a0015d6SChris Zankel regs, SIGKILL); 2045a0015d6SChris Zankel 2055a0015d6SChris Zankel /* If in user mode, send SIGILL signal to current process */ 206c130d3beSMax Filippov pr_info_ratelimited("Caught unhandled exception in '%s' " 2075a0015d6SChris Zankel "(pid = %d, pc = %#010lx) - should not happen\n" 2085a0015d6SChris Zankel "\tEXCCAUSE is %ld\n", 209c130d3beSMax Filippov current->comm, task_pid_nr(current), regs->pc, 210fc55402bSMax Filippov regs->exccause); 211f7667ca1SMax Filippov dump_user_code(regs); 2123cf5d076SEric W. Biederman force_sig(SIGILL); 2135a0015d6SChris Zankel } 2145a0015d6SChris Zankel 2155a0015d6SChris Zankel /* 2165a0015d6SChris Zankel * Multi-hit exception. This if fatal! 2175a0015d6SChris Zankel */ 2185a0015d6SChris Zankel 219db0d07faSMax Filippov static void do_multihit(struct pt_regs *regs) 2205a0015d6SChris Zankel { 2215a0015d6SChris Zankel die("Caught multihit exception", regs, SIGKILL); 2225a0015d6SChris Zankel } 2235a0015d6SChris Zankel 2245a0015d6SChris Zankel /* 2252d1c645cSMarc Gauthier * IRQ handler. 2265a0015d6SChris Zankel */ 2275a0015d6SChris Zankel 22838fef73cSMax Filippov #if XTENSA_FAKE_NMI 22938fef73cSMax Filippov 230e4629194SMax Filippov #define IS_POW2(v) (((v) & ((v) - 1)) == 0) 231e4629194SMax Filippov 232e4629194SMax Filippov #if !(PROFILING_INTLEVEL == XCHAL_EXCM_LEVEL && \ 233e4629194SMax Filippov IS_POW2(XTENSA_INTLEVEL_MASK(PROFILING_INTLEVEL))) 234e4629194SMax Filippov #warning "Fake NMI is requested for PMM, but there are other IRQs at or above its level." 235e4629194SMax Filippov #warning "Fake NMI will be used, but there will be a bugcheck if one of those IRQs fire." 236e4629194SMax Filippov 237e4629194SMax Filippov static inline void check_valid_nmi(void) 238e4629194SMax Filippov { 239cad6fadeSMax Filippov unsigned intread = xtensa_get_sr(interrupt); 240cad6fadeSMax Filippov unsigned intenable = xtensa_get_sr(intenable); 241e4629194SMax Filippov 242e4629194SMax Filippov BUG_ON(intread & intenable & 243e4629194SMax Filippov ~(XTENSA_INTLEVEL_ANDBELOW_MASK(PROFILING_INTLEVEL) ^ 244e4629194SMax Filippov XTENSA_INTLEVEL_MASK(PROFILING_INTLEVEL) ^ 245e4629194SMax Filippov BIT(XCHAL_PROFILING_INTERRUPT))); 246e4629194SMax Filippov } 247e4629194SMax Filippov 248e4629194SMax Filippov #else 249e4629194SMax Filippov 250e4629194SMax Filippov static inline void check_valid_nmi(void) 251e4629194SMax Filippov { 252e4629194SMax Filippov } 253e4629194SMax Filippov 254e4629194SMax Filippov #endif 255e4629194SMax Filippov 25638fef73cSMax Filippov irqreturn_t xtensa_pmu_irq_handler(int irq, void *dev_id); 25738fef73cSMax Filippov 25838fef73cSMax Filippov DEFINE_PER_CPU(unsigned long, nmi_count); 25938fef73cSMax Filippov 260db0d07faSMax Filippov static void do_nmi(struct pt_regs *regs) 26138fef73cSMax Filippov { 262de4415d0SMax Filippov struct pt_regs *old_regs = set_irq_regs(regs); 26338fef73cSMax Filippov 26438fef73cSMax Filippov nmi_enter(); 26538fef73cSMax Filippov ++*this_cpu_ptr(&nmi_count); 266e4629194SMax Filippov check_valid_nmi(); 26738fef73cSMax Filippov xtensa_pmu_irq_handler(0, NULL); 26838fef73cSMax Filippov nmi_exit(); 26938fef73cSMax Filippov set_irq_regs(old_regs); 27038fef73cSMax Filippov } 27138fef73cSMax Filippov #endif 27238fef73cSMax Filippov 273db0d07faSMax Filippov static void do_interrupt(struct pt_regs *regs) 2745a0015d6SChris Zankel { 2752d1c645cSMarc Gauthier static const unsigned int_level_mask[] = { 2762d1c645cSMarc Gauthier 0, 2772d1c645cSMarc Gauthier XCHAL_INTLEVEL1_MASK, 2782d1c645cSMarc Gauthier XCHAL_INTLEVEL2_MASK, 2792d1c645cSMarc Gauthier XCHAL_INTLEVEL3_MASK, 2802d1c645cSMarc Gauthier XCHAL_INTLEVEL4_MASK, 2812d1c645cSMarc Gauthier XCHAL_INTLEVEL5_MASK, 2822d1c645cSMarc Gauthier XCHAL_INTLEVEL6_MASK, 2832d1c645cSMarc Gauthier XCHAL_INTLEVEL7_MASK, 2842d1c645cSMarc Gauthier }; 285de4415d0SMax Filippov struct pt_regs *old_regs = set_irq_regs(regs); 28643ba2237SMax Filippov unsigned unhandled = ~0u; 28799623239SMax Filippov 28899623239SMax Filippov irq_enter(); 2892d1c645cSMarc Gauthier 2902d1c645cSMarc Gauthier for (;;) { 291cad6fadeSMax Filippov unsigned intread = xtensa_get_sr(interrupt); 292cad6fadeSMax Filippov unsigned intenable = xtensa_get_sr(intenable); 293895666a9SMax Filippov unsigned int_at_level = intread & intenable; 294895666a9SMax Filippov unsigned level; 2952d1c645cSMarc Gauthier 296895666a9SMax Filippov for (level = LOCKLEVEL; level > 0; --level) { 297895666a9SMax Filippov if (int_at_level & int_level_mask[level]) { 298895666a9SMax Filippov int_at_level &= int_level_mask[level]; 29943ba2237SMax Filippov if (int_at_level & unhandled) 30043ba2237SMax Filippov int_at_level &= unhandled; 30143ba2237SMax Filippov else 30243ba2237SMax Filippov unhandled |= int_level_mask[level]; 303895666a9SMax Filippov break; 304895666a9SMax Filippov } 305895666a9SMax Filippov } 306895666a9SMax Filippov 307895666a9SMax Filippov if (level == 0) 30899623239SMax Filippov break; 3092d1c645cSMarc Gauthier 31043ba2237SMax Filippov /* clear lowest pending irq in the unhandled mask */ 31143ba2237SMax Filippov unhandled ^= (int_at_level & -int_at_level); 31299623239SMax Filippov do_IRQ(__ffs(int_at_level), regs); 31399623239SMax Filippov } 3145a0015d6SChris Zankel 31599623239SMax Filippov irq_exit(); 31699623239SMax Filippov set_irq_regs(old_regs); 3175a0015d6SChris Zankel } 3185a0015d6SChris Zankel 319d7486200SMax Filippov static bool check_div0(struct pt_regs *regs) 320d7486200SMax Filippov { 321d7486200SMax Filippov static const u8 pattern[] = {'D', 'I', 'V', '0'}; 322d7486200SMax Filippov const u8 *p; 323d7486200SMax Filippov u8 buf[5]; 324d7486200SMax Filippov 325d7486200SMax Filippov if (user_mode(regs)) { 326d7486200SMax Filippov if (copy_from_user(buf, (void __user *)regs->pc + 2, 5)) 327dc60001eSYang Li return false; 328d7486200SMax Filippov p = buf; 329d7486200SMax Filippov } else { 330d7486200SMax Filippov p = (const u8 *)regs->pc + 2; 331d7486200SMax Filippov } 332d7486200SMax Filippov 333d7486200SMax Filippov return memcmp(p, pattern, sizeof(pattern)) == 0 || 334d7486200SMax Filippov memcmp(p + 1, pattern, sizeof(pattern)) == 0; 335d7486200SMax Filippov } 336d7486200SMax Filippov 3375a0015d6SChris Zankel /* 3385a0015d6SChris Zankel * Illegal instruction. Fatal if in kernel space. 3395a0015d6SChris Zankel */ 3405a0015d6SChris Zankel 341db0d07faSMax Filippov static void do_illegal_instruction(struct pt_regs *regs) 3425a0015d6SChris Zankel { 3435cc5f19fSMax Filippov #ifdef CONFIG_USER_ABI_CALL0_PROBE 3445cc5f19fSMax Filippov /* 3455cc5f19fSMax Filippov * When call0 application encounters an illegal instruction fast 3465cc5f19fSMax Filippov * exception handler will attempt to set PS.WOE and retry failing 3475cc5f19fSMax Filippov * instruction. 3485cc5f19fSMax Filippov * If we get here we know that that instruction is also illegal 3495cc5f19fSMax Filippov * with PS.WOE set, so it's not related to the windowed option 3505cc5f19fSMax Filippov * hence PS.WOE may be cleared. 3515cc5f19fSMax Filippov */ 3525cc5f19fSMax Filippov if (regs->pc == current_thread_info()->ps_woe_fix_addr) 3535cc5f19fSMax Filippov regs->ps &= ~PS_WOE_MASK; 3545cc5f19fSMax Filippov #endif 355d7486200SMax Filippov if (check_div0(regs)) { 356d7486200SMax Filippov do_div0(regs); 357d7486200SMax Filippov return; 358d7486200SMax Filippov } 359d7486200SMax Filippov 3605a0015d6SChris Zankel __die_if_kernel("Illegal instruction in kernel", regs, SIGKILL); 3615a0015d6SChris Zankel 3625a0015d6SChris Zankel /* If in user mode, send SIGILL signal to current process. */ 3635a0015d6SChris Zankel 364c130d3beSMax Filippov pr_info_ratelimited("Illegal Instruction in '%s' (pid = %d, pc = %#010lx)\n", 36519c5870cSAlexey Dobriyan current->comm, task_pid_nr(current), regs->pc); 3663cf5d076SEric W. Biederman force_sig(SIGILL); 3675a0015d6SChris Zankel } 3685a0015d6SChris Zankel 369408b1d3cSMax Filippov static void do_div0(struct pt_regs *regs) 370408b1d3cSMax Filippov { 371408b1d3cSMax Filippov __die_if_kernel("Unhandled division by 0 in kernel", regs, SIGKILL); 372408b1d3cSMax Filippov force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->pc); 373408b1d3cSMax Filippov } 3745a0015d6SChris Zankel 375f29cf776SMax Filippov #ifdef CONFIG_XTENSA_LOAD_STORE 376f29cf776SMax Filippov static void do_load_store(struct pt_regs *regs) 377f29cf776SMax Filippov { 378f29cf776SMax Filippov __die_if_kernel("Unhandled load/store exception in kernel", 379f29cf776SMax Filippov regs, SIGKILL); 380f29cf776SMax Filippov 381f29cf776SMax Filippov pr_info_ratelimited("Load/store error to %08lx in '%s' (pid = %d, pc = %#010lx)\n", 382f29cf776SMax Filippov regs->excvaddr, current->comm, 383f29cf776SMax Filippov task_pid_nr(current), regs->pc); 384f29cf776SMax Filippov force_sig_fault(SIGBUS, BUS_ADRERR, (void *)regs->excvaddr); 385f29cf776SMax Filippov } 386f29cf776SMax Filippov #endif 387f29cf776SMax Filippov 3885a0015d6SChris Zankel /* 3895a0015d6SChris Zankel * Handle unaligned memory accesses from user space. Kill task. 3905a0015d6SChris Zankel * 3915a0015d6SChris Zankel * If CONFIG_UNALIGNED_USER is not set, we don't allow unaligned memory 3925a0015d6SChris Zankel * accesses causes from user space. 3935a0015d6SChris Zankel */ 3945a0015d6SChris Zankel 395db0d07faSMax Filippov static void do_unaligned_user(struct pt_regs *regs) 3965a0015d6SChris Zankel { 3975a0015d6SChris Zankel __die_if_kernel("Unhandled unaligned exception in kernel", 3985a0015d6SChris Zankel regs, SIGKILL); 3995a0015d6SChris Zankel 400c130d3beSMax Filippov pr_info_ratelimited("Unaligned memory access to %08lx in '%s' " 4015a0015d6SChris Zankel "(pid = %d, pc = %#010lx)\n", 402c130d3beSMax Filippov regs->excvaddr, current->comm, 403c130d3beSMax Filippov task_pid_nr(current), regs->pc); 4042e1661d2SEric W. Biederman force_sig_fault(SIGBUS, BUS_ADRALN, (void *) regs->excvaddr); 4055a0015d6SChris Zankel } 4065a0015d6SChris Zankel 40711e969bcSMax Filippov #if XTENSA_HAVE_COPROCESSORS 40811e969bcSMax Filippov static void do_coprocessor(struct pt_regs *regs) 40911e969bcSMax Filippov { 41011e969bcSMax Filippov coprocessor_flush_release_all(current_thread_info()); 41111e969bcSMax Filippov } 41211e969bcSMax Filippov #endif 41311e969bcSMax Filippov 414c91e02bdSMax Filippov /* Handle debug events. 415c91e02bdSMax Filippov * When CONFIG_HAVE_HW_BREAKPOINT is on this handler is called with 416c91e02bdSMax Filippov * preemption disabled to avoid rescheduling and keep mapping of hardware 417c91e02bdSMax Filippov * breakpoint structures to debug registers intact, so that 418c91e02bdSMax Filippov * DEBUGCAUSE.DBNUM could be used in case of data breakpoint hit. 419c91e02bdSMax Filippov */ 420db0d07faSMax Filippov static void do_debug(struct pt_regs *regs) 4215a0015d6SChris Zankel { 422c91e02bdSMax Filippov #ifdef CONFIG_HAVE_HW_BREAKPOINT 423c91e02bdSMax Filippov int ret = check_hw_breakpoint(regs); 424c91e02bdSMax Filippov 425c91e02bdSMax Filippov preempt_enable(); 426c91e02bdSMax Filippov if (ret == 0) 427c91e02bdSMax Filippov return; 428c91e02bdSMax Filippov #endif 4295a0015d6SChris Zankel __die_if_kernel("Breakpoint in kernel", regs, SIGKILL); 4305a0015d6SChris Zankel 4315a0015d6SChris Zankel /* If in user mode, send SIGTRAP signal to current process */ 4325a0015d6SChris Zankel 4333cf5d076SEric W. Biederman force_sig(SIGTRAP); 4345a0015d6SChris Zankel } 4355a0015d6SChris Zankel 4365a0015d6SChris Zankel 437f21a79caSMax Filippov #define set_handler(type, cause, handler) \ 438f21a79caSMax Filippov do { \ 439f21a79caSMax Filippov unsigned int cpu; \ 440f21a79caSMax Filippov \ 441f21a79caSMax Filippov for_each_possible_cpu(cpu) \ 442f21a79caSMax Filippov per_cpu(exc_table, cpu).type[cause] = (handler);\ 443f21a79caSMax Filippov } while (0) 444f615136cSMax Filippov 44528570e8dSMax Filippov /* Set exception C handler - for temporary use when probing exceptions */ 44628570e8dSMax Filippov 447fc55402bSMax Filippov xtensa_exception_handler * 448fc55402bSMax Filippov __init trap_set_handler(int cause, xtensa_exception_handler *handler) 44928570e8dSMax Filippov { 450f21a79caSMax Filippov void *previous = per_cpu(exc_table, 0).default_handler[cause]; 451f21a79caSMax Filippov 452f21a79caSMax Filippov set_handler(default_handler, cause, handler); 45328570e8dSMax Filippov return previous; 45428570e8dSMax Filippov } 45528570e8dSMax Filippov 45628570e8dSMax Filippov 45749b424feSMax Filippov static void trap_init_excsave(void) 458f615136cSMax Filippov { 4599fa8c59fSMax Filippov xtensa_set_sr(this_cpu_ptr(&exc_table), excsave1); 460f615136cSMax Filippov } 461f615136cSMax Filippov 4626ec7026aSMax Filippov static void trap_init_debug(void) 4636ec7026aSMax Filippov { 4646ec7026aSMax Filippov unsigned long debugsave = (unsigned long)this_cpu_ptr(&debug_table); 4656ec7026aSMax Filippov 4666ec7026aSMax Filippov this_cpu_ptr(&debug_table)->debug_exception = debug_exception; 4676ec7026aSMax Filippov __asm__ __volatile__("wsr %0, excsave" __stringify(XCHAL_DEBUGLEVEL) 4686ec7026aSMax Filippov :: "a"(debugsave)); 4696ec7026aSMax Filippov } 4706ec7026aSMax Filippov 4715a0015d6SChris Zankel /* 4725a0015d6SChris Zankel * Initialize dispatch tables. 4735a0015d6SChris Zankel * 4745a0015d6SChris Zankel * The exception vectors are stored compressed the __init section in the 4755a0015d6SChris Zankel * dispatch_init_table. This function initializes the following three tables 4765a0015d6SChris Zankel * from that compressed table: 4775a0015d6SChris Zankel * - fast user first dispatch table for user exceptions 4785a0015d6SChris Zankel * - fast kernel first dispatch table for kernel exceptions 4795a0015d6SChris Zankel * - default C-handler C-handler called by the default fast handler. 4805a0015d6SChris Zankel * 4815a0015d6SChris Zankel * See vectors.S for more details. 4825a0015d6SChris Zankel */ 4835a0015d6SChris Zankel 484b91dc336SChris Zankel void __init trap_init(void) 4855a0015d6SChris Zankel { 4865a0015d6SChris Zankel int i; 4875a0015d6SChris Zankel 4885a0015d6SChris Zankel /* Setup default vectors. */ 4895a0015d6SChris Zankel 490f21a79caSMax Filippov for (i = 0; i < EXCCAUSE_N; i++) { 491f21a79caSMax Filippov set_handler(fast_user_handler, i, user_exception); 492f21a79caSMax Filippov set_handler(fast_kernel_handler, i, kernel_exception); 493f21a79caSMax Filippov set_handler(default_handler, i, do_unhandled); 4945a0015d6SChris Zankel } 4955a0015d6SChris Zankel 4965a0015d6SChris Zankel /* Setup specific handlers. */ 4975a0015d6SChris Zankel 4985a0015d6SChris Zankel for(i = 0; dispatch_init_table[i].cause >= 0; i++) { 4995a0015d6SChris Zankel int fast = dispatch_init_table[i].fast; 5005a0015d6SChris Zankel int cause = dispatch_init_table[i].cause; 5015a0015d6SChris Zankel void *handler = dispatch_init_table[i].handler; 5025a0015d6SChris Zankel 5035a0015d6SChris Zankel if (fast == 0) 504f21a79caSMax Filippov set_handler(default_handler, cause, handler); 50560deebe6SMax Filippov if ((fast & USER) != 0) 506f21a79caSMax Filippov set_handler(fast_user_handler, cause, handler); 50760deebe6SMax Filippov if ((fast & KRNL) != 0) 508f21a79caSMax Filippov set_handler(fast_kernel_handler, cause, handler); 5095a0015d6SChris Zankel } 5105a0015d6SChris Zankel 5115a0015d6SChris Zankel /* Initialize EXCSAVE_1 to hold the address of the exception table. */ 512f615136cSMax Filippov trap_init_excsave(); 5136ec7026aSMax Filippov trap_init_debug(); 5145a0015d6SChris Zankel } 5155a0015d6SChris Zankel 516f615136cSMax Filippov #ifdef CONFIG_SMP 51749b424feSMax Filippov void secondary_trap_init(void) 518f615136cSMax Filippov { 519f615136cSMax Filippov trap_init_excsave(); 5206ec7026aSMax Filippov trap_init_debug(); 521f615136cSMax Filippov } 522f615136cSMax Filippov #endif 523f615136cSMax Filippov 5245a0015d6SChris Zankel /* 5255a0015d6SChris Zankel * This function dumps the current valid window frame and other base registers. 5265a0015d6SChris Zankel */ 5275a0015d6SChris Zankel 5285a0015d6SChris Zankel void show_regs(struct pt_regs * regs) 5295a0015d6SChris Zankel { 530431d1a34SMax Filippov int i; 5315a0015d6SChris Zankel 532a43cb95dSTejun Heo show_regs_print_info(KERN_DEFAULT); 533a43cb95dSTejun Heo 5348d7e8240SChris Zankel for (i = 0; i < 16; i++) { 5355a0015d6SChris Zankel if ((i % 8) == 0) 536d4eccafcSMax Filippov pr_info("a%02d:", i); 537d4eccafcSMax Filippov pr_cont(" %08lx", regs->areg[i]); 5385a0015d6SChris Zankel } 539d4eccafcSMax Filippov pr_cont("\n"); 540d4eccafcSMax Filippov pr_info("pc: %08lx, ps: %08lx, depc: %08lx, excvaddr: %08lx\n", 5415a0015d6SChris Zankel regs->pc, regs->ps, regs->depc, regs->excvaddr); 542d4eccafcSMax Filippov pr_info("lbeg: %08lx, lend: %08lx lcount: %08lx, sar: %08lx\n", 5435a0015d6SChris Zankel regs->lbeg, regs->lend, regs->lcount, regs->sar); 5445a0015d6SChris Zankel if (user_mode(regs)) 545d4eccafcSMax Filippov pr_cont("wb: %08lx, ws: %08lx, wmask: %08lx, syscall: %ld\n", 5465a0015d6SChris Zankel regs->windowbase, regs->windowstart, regs->wmask, 5475a0015d6SChris Zankel regs->syscall); 5485a0015d6SChris Zankel } 5495a0015d6SChris Zankel 5503e4196a5SMax Filippov static int show_trace_cb(struct stackframe *frame, void *data) 551586411dcSJohannes Weiner { 55247fb7029SDmitry Safonov const char *loglvl = data; 55347fb7029SDmitry Safonov 554e640cc30SMax Filippov if (kernel_text_address(frame->pc)) 55547fb7029SDmitry Safonov printk("%s [<%08lx>] %pB\n", 55647fb7029SDmitry Safonov loglvl, frame->pc, (void *)frame->pc); 5573e4196a5SMax Filippov return 0; 558586411dcSJohannes Weiner } 559586411dcSJohannes Weiner 56047fb7029SDmitry Safonov static void show_trace(struct task_struct *task, unsigned long *sp, 56147fb7029SDmitry Safonov const char *loglvl) 5625a0015d6SChris Zankel { 5633e4196a5SMax Filippov if (!sp) 5643e4196a5SMax Filippov sp = stack_pointer(task); 5655a0015d6SChris Zankel 56647fb7029SDmitry Safonov printk("%sCall Trace:\n", loglvl); 56747fb7029SDmitry Safonov walk_stackframe(sp, show_trace_cb, (void *)loglvl); 5685a0015d6SChris Zankel } 5695a0015d6SChris Zankel 570c5fccebcSMax Filippov #define STACK_DUMP_ENTRY_SIZE 4 571cc34f290SMax Filippov #define STACK_DUMP_LINE_SIZE 16 5728951eb15SMax Filippov static size_t kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 5735a0015d6SChris Zankel 574cc34f290SMax Filippov struct stack_fragment 575cc34f290SMax Filippov { 576cc34f290SMax Filippov size_t len; 577cc34f290SMax Filippov size_t off; 578cc34f290SMax Filippov u8 *sp; 579cc34f290SMax Filippov const char *loglvl; 580cc34f290SMax Filippov }; 581cc34f290SMax Filippov 582cc34f290SMax Filippov static int show_stack_fragment_cb(struct stackframe *frame, void *data) 583cc34f290SMax Filippov { 584cc34f290SMax Filippov struct stack_fragment *sf = data; 585cc34f290SMax Filippov 586cc34f290SMax Filippov while (sf->off < sf->len) { 587cc34f290SMax Filippov u8 line[STACK_DUMP_LINE_SIZE]; 588cc34f290SMax Filippov size_t line_len = sf->len - sf->off > STACK_DUMP_LINE_SIZE ? 589cc34f290SMax Filippov STACK_DUMP_LINE_SIZE : sf->len - sf->off; 590cc34f290SMax Filippov bool arrow = sf->off == 0; 591cc34f290SMax Filippov 592cc34f290SMax Filippov if (frame && frame->sp == (unsigned long)(sf->sp + sf->off)) 593cc34f290SMax Filippov arrow = true; 594cc34f290SMax Filippov 595cc34f290SMax Filippov __memcpy(line, sf->sp + sf->off, line_len); 596cc34f290SMax Filippov print_hex_dump(sf->loglvl, arrow ? "> " : " ", DUMP_PREFIX_NONE, 597cc34f290SMax Filippov STACK_DUMP_LINE_SIZE, STACK_DUMP_ENTRY_SIZE, 598cc34f290SMax Filippov line, line_len, false); 599cc34f290SMax Filippov sf->off += STACK_DUMP_LINE_SIZE; 600cc34f290SMax Filippov if (arrow) 601cc34f290SMax Filippov return 0; 602cc34f290SMax Filippov } 603cc34f290SMax Filippov return 1; 604cc34f290SMax Filippov } 605cc34f290SMax Filippov 6069cb8f069SDmitry Safonov void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl) 6075a0015d6SChris Zankel { 608cc34f290SMax Filippov struct stack_fragment sf; 6095a0015d6SChris Zankel 61028a0ce7fSJohannes Weiner if (!sp) 611586411dcSJohannes Weiner sp = stack_pointer(task); 612c5fccebcSMax Filippov 613cc34f290SMax Filippov sf.len = min((-(size_t)sp) & (THREAD_SIZE - STACK_DUMP_ENTRY_SIZE), 614c5fccebcSMax Filippov kstack_depth_to_print * STACK_DUMP_ENTRY_SIZE); 615cc34f290SMax Filippov sf.off = 0; 616cc34f290SMax Filippov sf.sp = (u8 *)sp; 617cc34f290SMax Filippov sf.loglvl = loglvl; 6185a0015d6SChris Zankel 61920da1e8bSDmitry Safonov printk("%sStack:\n", loglvl); 620cc34f290SMax Filippov walk_stackframe(sp, show_stack_fragment_cb, &sf); 621cc34f290SMax Filippov while (sf.off < sf.len) 622cc34f290SMax Filippov show_stack_fragment_cb(NULL, &sf); 62320da1e8bSDmitry Safonov show_trace(task, sp, loglvl); 62420da1e8bSDmitry Safonov } 62520da1e8bSDmitry Safonov 62634af946aSIngo Molnar DEFINE_SPINLOCK(die_lock); 6275a0015d6SChris Zankel 6289fd5a04dSEric W. Biederman void __noreturn die(const char * str, struct pt_regs * regs, long err) 6295a0015d6SChris Zankel { 6305a0015d6SChris Zankel static int die_counter; 6316c5260d7SThomas Gleixner const char *pr = ""; 6326c5260d7SThomas Gleixner 6336c5260d7SThomas Gleixner if (IS_ENABLED(CONFIG_PREEMPTION)) 6346c5260d7SThomas Gleixner pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT"; 6355a0015d6SChris Zankel 6365a0015d6SChris Zankel console_verbose(); 6375a0015d6SChris Zankel spin_lock_irq(&die_lock); 6385a0015d6SChris Zankel 6396c5260d7SThomas Gleixner pr_info("%s: sig: %ld [#%d]%s\n", str, err, ++die_counter, pr); 6405a0015d6SChris Zankel show_regs(regs); 6415a0015d6SChris Zankel if (!user_mode(regs)) 6429cb8f069SDmitry Safonov show_stack(NULL, (unsigned long *)regs->areg[1], KERN_INFO); 6435a0015d6SChris Zankel 644373d4d09SRusty Russell add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 6455a0015d6SChris Zankel spin_unlock_irq(&die_lock); 6465a0015d6SChris Zankel 6475a0015d6SChris Zankel if (in_interrupt()) 6485a0015d6SChris Zankel panic("Fatal exception in interrupt"); 6495a0015d6SChris Zankel 650cea6a4baSHorms if (panic_on_oops) 651012c437dSHorms panic("Fatal exception"); 652cea6a4baSHorms 6530e25498fSEric W. Biederman make_task_dead(err); 6545a0015d6SChris Zankel } 655