xref: /linux/arch/xtensa/kernel/ptrace.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 // TODO some minor issues
2 /*
3  * This file is subject to the terms and conditions of the GNU General Public
4  * License.  See the file "COPYING" in the main directory of this archive
5  * for more details.
6  *
7  * Copyright (C) 2001 - 2007  Tensilica Inc.
8  *
9  * Joe Taylor	<joe@tensilica.com, joetylr@yahoo.com>
10  * Chris Zankel <chris@zankel.net>
11  * Scott Foehner<sfoehner@yahoo.com>,
12  * Kevin Chea
13  * Marc Gauthier<marc@tensilica.com> <marc@alumni.uwaterloo.ca>
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/mm.h>
19 #include <linux/errno.h>
20 #include <linux/ptrace.h>
21 #include <linux/smp.h>
22 #include <linux/security.h>
23 #include <linux/signal.h>
24 
25 #include <asm/pgtable.h>
26 #include <asm/page.h>
27 #include <asm/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/elf.h>
30 #include <asm/coprocessor.h>
31 
32 
33 void user_enable_single_step(struct task_struct *child)
34 {
35 	child->ptrace |= PT_SINGLESTEP;
36 }
37 
38 void user_disable_single_step(struct task_struct *child)
39 {
40 	child->ptrace &= ~PT_SINGLESTEP;
41 }
42 
43 /*
44  * Called by kernel/ptrace.c when detaching to disable single stepping.
45  */
46 
47 void ptrace_disable(struct task_struct *child)
48 {
49 	/* Nothing to do.. */
50 }
51 
52 int ptrace_getregs(struct task_struct *child, void __user *uregs)
53 {
54 	struct pt_regs *regs = task_pt_regs(child);
55 	xtensa_gregset_t __user *gregset = uregs;
56 	unsigned long wb = regs->windowbase;
57 	int i;
58 
59 	if (!access_ok(VERIFY_WRITE, uregs, sizeof(xtensa_gregset_t)))
60 		return -EIO;
61 
62 	__put_user(regs->pc, &gregset->pc);
63 	__put_user(regs->ps & ~(1 << PS_EXCM_BIT), &gregset->ps);
64 	__put_user(regs->lbeg, &gregset->lbeg);
65 	__put_user(regs->lend, &gregset->lend);
66 	__put_user(regs->lcount, &gregset->lcount);
67 	__put_user(regs->windowstart, &gregset->windowstart);
68 	__put_user(regs->windowbase, &gregset->windowbase);
69 	__put_user(regs->threadptr, &gregset->threadptr);
70 
71 	for (i = 0; i < XCHAL_NUM_AREGS; i++)
72 		__put_user(regs->areg[i],
73 				gregset->a + ((wb * 4 + i) % XCHAL_NUM_AREGS));
74 
75 	return 0;
76 }
77 
78 int ptrace_setregs(struct task_struct *child, void __user *uregs)
79 {
80 	struct pt_regs *regs = task_pt_regs(child);
81 	xtensa_gregset_t *gregset = uregs;
82 	const unsigned long ps_mask = PS_CALLINC_MASK | PS_OWB_MASK;
83 	unsigned long ps;
84 	unsigned long wb, ws;
85 
86 	if (!access_ok(VERIFY_WRITE, uregs, sizeof(xtensa_gregset_t)))
87 		return -EIO;
88 
89 	__get_user(regs->pc, &gregset->pc);
90 	__get_user(ps, &gregset->ps);
91 	__get_user(regs->lbeg, &gregset->lbeg);
92 	__get_user(regs->lend, &gregset->lend);
93 	__get_user(regs->lcount, &gregset->lcount);
94 	__get_user(ws, &gregset->windowstart);
95 	__get_user(wb, &gregset->windowbase);
96 	__get_user(regs->threadptr, &gregset->threadptr);
97 
98 	regs->ps = (regs->ps & ~ps_mask) | (ps & ps_mask) | (1 << PS_EXCM_BIT);
99 
100 	if (wb >= XCHAL_NUM_AREGS / 4)
101 		return -EFAULT;
102 
103 	if (wb != regs->windowbase || ws != regs->windowstart) {
104 		unsigned long rotws, wmask;
105 
106 		rotws = (((ws | (ws << WSBITS)) >> wb) &
107 				((1 << WSBITS) - 1)) & ~1;
108 		wmask = ((rotws ? WSBITS + 1 - ffs(rotws) : 0) << 4) |
109 			(rotws & 0xF) | 1;
110 		regs->windowbase = wb;
111 		regs->windowstart = ws;
112 		regs->wmask = wmask;
113 	}
114 
115 	if (wb != 0 &&  __copy_from_user(regs->areg + XCHAL_NUM_AREGS - wb * 4,
116 				gregset->a, wb * 16))
117 		return -EFAULT;
118 
119 	if (__copy_from_user(regs->areg, gregset->a + wb * 4,
120 				(WSBITS - wb) * 16))
121 		return -EFAULT;
122 
123 	return 0;
124 }
125 
126 
127 int ptrace_getxregs(struct task_struct *child, void __user *uregs)
128 {
129 	struct pt_regs *regs = task_pt_regs(child);
130 	struct thread_info *ti = task_thread_info(child);
131 	elf_xtregs_t __user *xtregs = uregs;
132 	int ret = 0;
133 
134 	if (!access_ok(VERIFY_WRITE, uregs, sizeof(elf_xtregs_t)))
135 		return -EIO;
136 
137 #if XTENSA_HAVE_COPROCESSORS
138 	/* Flush all coprocessor registers to memory. */
139 	coprocessor_flush_all(ti);
140 	ret |= __copy_to_user(&xtregs->cp0, &ti->xtregs_cp,
141 			      sizeof(xtregs_coprocessor_t));
142 #endif
143 	ret |= __copy_to_user(&xtregs->opt, &regs->xtregs_opt,
144 			      sizeof(xtregs->opt));
145 	ret |= __copy_to_user(&xtregs->user,&ti->xtregs_user,
146 			      sizeof(xtregs->user));
147 
148 	return ret ? -EFAULT : 0;
149 }
150 
151 int ptrace_setxregs(struct task_struct *child, void __user *uregs)
152 {
153 	struct thread_info *ti = task_thread_info(child);
154 	struct pt_regs *regs = task_pt_regs(child);
155 	elf_xtregs_t *xtregs = uregs;
156 	int ret = 0;
157 
158 	if (!access_ok(VERIFY_READ, uregs, sizeof(elf_xtregs_t)))
159 		return -EFAULT;
160 
161 #if XTENSA_HAVE_COPROCESSORS
162 	/* Flush all coprocessors before we overwrite them. */
163 	coprocessor_flush_all(ti);
164 	coprocessor_release_all(ti);
165 
166 	ret |= __copy_from_user(&ti->xtregs_cp, &xtregs->cp0,
167 				sizeof(xtregs_coprocessor_t));
168 #endif
169 	ret |= __copy_from_user(&regs->xtregs_opt, &xtregs->opt,
170 				sizeof(xtregs->opt));
171 	ret |= __copy_from_user(&ti->xtregs_user, &xtregs->user,
172 				sizeof(xtregs->user));
173 
174 	return ret ? -EFAULT : 0;
175 }
176 
177 int ptrace_peekusr(struct task_struct *child, long regno, long __user *ret)
178 {
179 	struct pt_regs *regs;
180 	unsigned long tmp;
181 
182 	regs = task_pt_regs(child);
183 	tmp = 0;  /* Default return value. */
184 
185 	switch(regno) {
186 
187 		case REG_AR_BASE ... REG_AR_BASE + XCHAL_NUM_AREGS - 1:
188 			tmp = regs->areg[regno - REG_AR_BASE];
189 			break;
190 
191 		case REG_A_BASE ... REG_A_BASE + 15:
192 			tmp = regs->areg[regno - REG_A_BASE];
193 			break;
194 
195 		case REG_PC:
196 			tmp = regs->pc;
197 			break;
198 
199 		case REG_PS:
200 			/* Note:  PS.EXCM is not set while user task is running;
201 			 * its being set in regs is for exception handling
202 			 * convenience.  */
203 			tmp = (regs->ps & ~(1 << PS_EXCM_BIT));
204 			break;
205 
206 		case REG_WB:
207 			break;		/* tmp = 0 */
208 
209 		case REG_WS:
210 		{
211 			unsigned long wb = regs->windowbase;
212 			unsigned long ws = regs->windowstart;
213 			tmp = ((ws>>wb) | (ws<<(WSBITS-wb))) & ((1<<WSBITS)-1);
214 			break;
215 		}
216 		case REG_LBEG:
217 			tmp = regs->lbeg;
218 			break;
219 
220 		case REG_LEND:
221 			tmp = regs->lend;
222 			break;
223 
224 		case REG_LCOUNT:
225 			tmp = regs->lcount;
226 			break;
227 
228 		case REG_SAR:
229 			tmp = regs->sar;
230 			break;
231 
232 		case SYSCALL_NR:
233 			tmp = regs->syscall;
234 			break;
235 
236 		default:
237 			return -EIO;
238 	}
239 	return put_user(tmp, ret);
240 }
241 
242 int ptrace_pokeusr(struct task_struct *child, long regno, long val)
243 {
244 	struct pt_regs *regs;
245 	regs = task_pt_regs(child);
246 
247 	switch (regno) {
248 		case REG_AR_BASE ... REG_AR_BASE + XCHAL_NUM_AREGS - 1:
249 			regs->areg[regno - REG_AR_BASE] = val;
250 			break;
251 
252 		case REG_A_BASE ... REG_A_BASE + 15:
253 			regs->areg[regno - REG_A_BASE] = val;
254 			break;
255 
256 		case REG_PC:
257 			regs->pc = val;
258 			break;
259 
260 		case SYSCALL_NR:
261 			regs->syscall = val;
262 			break;
263 
264 		default:
265 			return -EIO;
266 	}
267 	return 0;
268 }
269 
270 long arch_ptrace(struct task_struct *child, long request,
271 		 unsigned long addr, unsigned long data)
272 {
273 	int ret = -EPERM;
274 	void __user *datap = (void __user *) data;
275 
276 	switch (request) {
277 	case PTRACE_PEEKTEXT:	/* read word at location addr. */
278 	case PTRACE_PEEKDATA:
279 		ret = generic_ptrace_peekdata(child, addr, data);
280 		break;
281 
282 	case PTRACE_PEEKUSR:	/* read register specified by addr. */
283 		ret = ptrace_peekusr(child, addr, datap);
284 		break;
285 
286 	case PTRACE_POKETEXT:	/* write the word at location addr. */
287 	case PTRACE_POKEDATA:
288 		ret = generic_ptrace_pokedata(child, addr, data);
289 		break;
290 
291 	case PTRACE_POKEUSR:	/* write register specified by addr. */
292 		ret = ptrace_pokeusr(child, addr, data);
293 		break;
294 
295 	case PTRACE_GETREGS:
296 		ret = ptrace_getregs(child, datap);
297 		break;
298 
299 	case PTRACE_SETREGS:
300 		ret = ptrace_setregs(child, datap);
301 		break;
302 
303 	case PTRACE_GETXTREGS:
304 		ret = ptrace_getxregs(child, datap);
305 		break;
306 
307 	case PTRACE_SETXTREGS:
308 		ret = ptrace_setxregs(child, datap);
309 		break;
310 
311 	default:
312 		ret = ptrace_request(child, request, addr, data);
313 		break;
314 	}
315 
316 	return ret;
317 }
318 
319 void do_syscall_trace(void)
320 {
321 	/*
322 	 * The 0x80 provides a way for the tracing parent to distinguish
323 	 * between a syscall stop and SIGTRAP delivery
324 	 */
325 	ptrace_notify(SIGTRAP|((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
326 
327 	/*
328 	 * this isn't the same as continuing with a signal, but it will do
329 	 * for normal use.  strace only continues with a signal if the
330 	 * stopping signal is not SIGTRAP.  -brl
331 	 */
332 	if (current->exit_code) {
333 		send_sig(current->exit_code, current, 1);
334 		current->exit_code = 0;
335 	}
336 }
337 
338 void do_syscall_trace_enter(struct pt_regs *regs)
339 {
340 	if (test_thread_flag(TIF_SYSCALL_TRACE)
341 			&& (current->ptrace & PT_PTRACED))
342 		do_syscall_trace();
343 
344 #if 0
345 	audit_syscall_entry(...);
346 #endif
347 }
348 
349 void do_syscall_trace_leave(struct pt_regs *regs)
350 {
351 	if ((test_thread_flag(TIF_SYSCALL_TRACE))
352 			&& (current->ptrace & PT_PTRACED))
353 		do_syscall_trace();
354 }
355