xref: /linux/arch/xtensa/kernel/process.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 // TODO	verify coprocessor handling
2 /*
3  * arch/xtensa/kernel/process.c
4  *
5  * Xtensa Processor version.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file "COPYING" in the main directory of this archive
9  * for more details.
10  *
11  * Copyright (C) 2001 - 2005 Tensilica Inc.
12  *
13  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
14  * Chris Zankel <chris@zankel.net>
15  * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
16  * Kevin Chea
17  */
18 
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/smp.h>
24 #include <linux/smp_lock.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/elf.h>
30 #include <linux/init.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/module.h>
34 #include <linux/mqueue.h>
35 
36 #include <asm/pgtable.h>
37 #include <asm/uaccess.h>
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/processor.h>
41 #include <asm/platform.h>
42 #include <asm/mmu.h>
43 #include <asm/irq.h>
44 #include <asm/atomic.h>
45 #include <asm/asm-offsets.h>
46 #include <asm/coprocessor.h>
47 
48 extern void ret_from_fork(void);
49 
50 static struct fs_struct init_fs = INIT_FS;
51 static struct files_struct init_files = INIT_FILES;
52 static struct signal_struct init_signals = INIT_SIGNALS(init_signals);
53 static struct sighand_struct init_sighand = INIT_SIGHAND(init_sighand);
54 struct mm_struct init_mm = INIT_MM(init_mm);
55 EXPORT_SYMBOL(init_mm);
56 
57 union thread_union init_thread_union
58 	__attribute__((__section__(".data.init_task"))) =
59 { INIT_THREAD_INFO(init_task) };
60 
61 struct task_struct init_task = INIT_TASK(init_task);
62 EXPORT_SYMBOL(init_task);
63 
64 struct task_struct *current_set[NR_CPUS] = {&init_task, };
65 
66 void (*pm_power_off)(void) = NULL;
67 EXPORT_SYMBOL(pm_power_off);
68 
69 
70 #if XCHAL_CP_NUM > 0
71 
72 /*
73  * Coprocessor ownership.
74  */
75 
76 coprocessor_info_t coprocessor_info[] = {
77 	{ 0, XTENSA_CPE_CP0_OFFSET },
78 	{ 0, XTENSA_CPE_CP1_OFFSET },
79 	{ 0, XTENSA_CPE_CP2_OFFSET },
80 	{ 0, XTENSA_CPE_CP3_OFFSET },
81 	{ 0, XTENSA_CPE_CP4_OFFSET },
82 	{ 0, XTENSA_CPE_CP5_OFFSET },
83 	{ 0, XTENSA_CPE_CP6_OFFSET },
84 	{ 0, XTENSA_CPE_CP7_OFFSET },
85 };
86 
87 #endif
88 
89 /*
90  * Powermanagement idle function, if any is provided by the platform.
91  */
92 
93 void cpu_idle(void)
94 {
95   	local_irq_enable();
96 
97 	/* endless idle loop with no priority at all */
98 	while (1) {
99 		while (!need_resched())
100 			platform_idle();
101 		preempt_enable_no_resched();
102 		schedule();
103 		preempt_disable();
104 	}
105 }
106 
107 /*
108  * Free current thread data structures etc..
109  */
110 
111 void exit_thread(void)
112 {
113 	release_coprocessors(current);	/* Empty macro if no CPs are defined */
114 }
115 
116 void flush_thread(void)
117 {
118 	release_coprocessors(current);	/* Empty macro if no CPs are defined */
119 }
120 
121 /*
122  * Copy thread.
123  *
124  * The stack layout for the new thread looks like this:
125  *
126  *	+------------------------+ <- sp in childregs (= tos)
127  *	|       childregs        |
128  *	+------------------------+ <- thread.sp = sp in dummy-frame
129  *	|      dummy-frame       |    (saved in dummy-frame spill-area)
130  *	+------------------------+
131  *
132  * We create a dummy frame to return to ret_from_fork:
133  *   a0 points to ret_from_fork (simulating a call4)
134  *   sp points to itself (thread.sp)
135  *   a2, a3 are unused.
136  *
137  * Note: This is a pristine frame, so we don't need any spill region on top of
138  *       childregs.
139  */
140 
141 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
142 		unsigned long unused,
143                 struct task_struct * p, struct pt_regs * regs)
144 {
145 	struct pt_regs *childregs;
146 	unsigned long tos;
147 	int user_mode = user_mode(regs);
148 
149 	/* Set up new TSS. */
150 	tos = (unsigned long)task_stack_page(p) + THREAD_SIZE;
151 	if (user_mode)
152 		childregs = (struct pt_regs*)(tos - PT_USER_SIZE);
153 	else
154 		childregs = (struct pt_regs*)tos - 1;
155 
156 	*childregs = *regs;
157 
158 	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
159 	*((int*)childregs - 3) = (unsigned long)childregs;
160 	*((int*)childregs - 4) = 0;
161 
162 	childregs->areg[1] = tos;
163 	childregs->areg[2] = 0;
164 	p->set_child_tid = p->clear_child_tid = NULL;
165 	p->thread.ra = MAKE_RA_FOR_CALL((unsigned long)ret_from_fork, 0x1);
166 	p->thread.sp = (unsigned long)childregs;
167 	if (user_mode(regs)) {
168 
169 		int len = childregs->wmask & ~0xf;
170 		childregs->areg[1] = usp;
171 		memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
172 		       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
173 
174 		if (clone_flags & CLONE_SETTLS)
175 			childregs->areg[2] = childregs->areg[6];
176 
177 	} else {
178 		/* In kernel space, we start a new thread with a new stack. */
179 		childregs->wmask = 1;
180 	}
181 	return 0;
182 }
183 
184 
185 /*
186  * Create a kernel thread
187  */
188 
189 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
190 {
191 	long retval;
192 	__asm__ __volatile__
193 		("mov           a5, %4\n\t" /* preserve fn in a5 */
194 		 "mov           a6, %3\n\t" /* preserve and setup arg in a6 */
195 		 "movi		a2, %1\n\t" /* load __NR_clone for syscall*/
196 		 "mov		a3, sp\n\t" /* sp check and sys_clone */
197 		 "mov		a4, %5\n\t" /* load flags for syscall */
198 		 "syscall\n\t"
199 		 "beq		a3, sp, 1f\n\t" /* branch if parent */
200 		 "callx4	a5\n\t"     /* call fn */
201 		 "movi		a2, %2\n\t" /* load __NR_exit for syscall */
202 		 "mov		a3, a6\n\t" /* load fn return value */
203 		 "syscall\n"
204 		 "1:\n\t"
205 		 "mov		%0, a2\n\t" /* parent returns zero */
206 		 :"=r" (retval)
207 		 :"i" (__NR_clone), "i" (__NR_exit),
208 		 "r" (arg), "r" (fn),
209 		 "r" (flags | CLONE_VM)
210 		 : "a2", "a3", "a4", "a5", "a6" );
211 	return retval;
212 }
213 
214 
215 /*
216  * These bracket the sleeping functions..
217  */
218 
219 unsigned long get_wchan(struct task_struct *p)
220 {
221 	unsigned long sp, pc;
222 	unsigned long stack_page = (unsigned long) task_stack_page(p);
223 	int count = 0;
224 
225 	if (!p || p == current || p->state == TASK_RUNNING)
226 		return 0;
227 
228 	sp = p->thread.sp;
229 	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
230 
231 	do {
232 		if (sp < stack_page + sizeof(struct task_struct) ||
233 		    sp >= (stack_page + THREAD_SIZE) ||
234 		    pc == 0)
235 			return 0;
236 		if (!in_sched_functions(pc))
237 			return pc;
238 
239 		/* Stack layout: sp-4: ra, sp-3: sp' */
240 
241 		pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
242 		sp = *(unsigned long *)sp - 3;
243 	} while (count++ < 16);
244 	return 0;
245 }
246 
247 /*
248  * do_copy_regs() gathers information from 'struct pt_regs' and
249  * 'current->thread.areg[]' to fill in the xtensa_gregset_t
250  * structure.
251  *
252  * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
253  * of processor registers.  Besides different ordering,
254  * xtensa_gregset_t contains non-live register information that
255  * 'struct pt_regs' does not.  Exception handling (primarily) uses
256  * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
257  *
258  */
259 
260 void do_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs,
261 		   struct task_struct *tsk)
262 {
263 	int i, n, wb_offset;
264 
265 	elfregs->xchal_config_id0 = XCHAL_HW_CONFIGID0;
266 	elfregs->xchal_config_id1 = XCHAL_HW_CONFIGID1;
267 
268 	__asm__ __volatile__ ("rsr  %0, 176\n" : "=a" (i));
269  	elfregs->cpux = i;
270 	__asm__ __volatile__ ("rsr  %0, 208\n" : "=a" (i));
271  	elfregs->cpuy = i;
272 
273 	/* Note:  PS.EXCM is not set while user task is running; its
274 	 * being set in regs->ps is for exception handling convenience.
275 	 */
276 
277 	elfregs->pc		= regs->pc;
278 	elfregs->ps		= (regs->ps & ~XCHAL_PS_EXCM_MASK);
279 	elfregs->exccause	= regs->exccause;
280 	elfregs->excvaddr	= regs->excvaddr;
281 	elfregs->windowbase	= regs->windowbase;
282 	elfregs->windowstart	= regs->windowstart;
283 	elfregs->lbeg		= regs->lbeg;
284 	elfregs->lend		= regs->lend;
285 	elfregs->lcount		= regs->lcount;
286 	elfregs->sar		= regs->sar;
287 	elfregs->syscall	= regs->syscall;
288 
289 	/* Copy register file.
290 	 * The layout looks like this:
291 	 *
292 	 * |  a0 ... a15  | Z ... Z |  arX ... arY  |
293 	 *  current window  unused    saved frames
294 	 */
295 
296 	memset (elfregs->ar, 0, sizeof(elfregs->ar));
297 
298 	wb_offset = regs->windowbase * 4;
299 	n = (regs->wmask&1)? 4 : (regs->wmask&2)? 8 : (regs->wmask&4)? 12 : 16;
300 
301 	for (i = 0; i < n; i++)
302 		elfregs->ar[(wb_offset + i) % XCHAL_NUM_AREGS] = regs->areg[i];
303 
304 	n = (regs->wmask >> 4) * 4;
305 
306 	for (i = XCHAL_NUM_AREGS - n; n > 0; i++, n--)
307 		elfregs->ar[(wb_offset + i) % XCHAL_NUM_AREGS] = regs->areg[i];
308 }
309 
310 void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
311 {
312 	do_copy_regs ((xtensa_gregset_t *)elfregs, regs, current);
313 }
314 
315 
316 /* The inverse of do_copy_regs().  No error or sanity checking. */
317 
318 void do_restore_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs,
319 		      struct task_struct *tsk)
320 {
321 	int i, n, wb_offset;
322 
323 	/* Note:  PS.EXCM is not set while user task is running; it
324 	 * needs to be set in regs->ps is for exception handling convenience.
325 	 */
326 
327 	regs->pc		= elfregs->pc;
328 	regs->ps		= (elfregs->ps | XCHAL_PS_EXCM_MASK);
329 	regs->exccause		= elfregs->exccause;
330 	regs->excvaddr		= elfregs->excvaddr;
331 	regs->windowbase	= elfregs->windowbase;
332 	regs->windowstart	= elfregs->windowstart;
333 	regs->lbeg		= elfregs->lbeg;
334 	regs->lend		= elfregs->lend;
335 	regs->lcount		= elfregs->lcount;
336 	regs->sar		= elfregs->sar;
337 	regs->syscall	= elfregs->syscall;
338 
339 	/* Clear everything. */
340 
341 	memset (regs->areg, 0, sizeof(regs->areg));
342 
343 	/* Copy regs from live window frame. */
344 
345 	wb_offset = regs->windowbase * 4;
346 	n = (regs->wmask&1)? 4 : (regs->wmask&2)? 8 : (regs->wmask&4)? 12 : 16;
347 
348 	for (i = 0; i < n; i++)
349 		regs->areg[(wb_offset+i) % XCHAL_NUM_AREGS] = elfregs->ar[i];
350 
351 	n = (regs->wmask >> 4) * 4;
352 
353 	for (i = XCHAL_NUM_AREGS - n; n > 0; i++, n--)
354 		regs->areg[(wb_offset+i) % XCHAL_NUM_AREGS] = elfregs->ar[i];
355 }
356 
357 /*
358  * do_save_fpregs() gathers information from 'struct pt_regs' and
359  * 'current->thread' to fill in the elf_fpregset_t structure.
360  *
361  * Core files and ptrace use elf_fpregset_t.
362  */
363 
364 void do_save_fpregs (elf_fpregset_t *fpregs, struct pt_regs *regs,
365 		     struct task_struct *tsk)
366 {
367 #if XCHAL_HAVE_CP
368 
369 	extern unsigned char	_xtensa_reginfo_tables[];
370 	extern unsigned		_xtensa_reginfo_table_size;
371 	int i;
372 	unsigned long flags;
373 
374 	/* Before dumping coprocessor state from memory,
375 	 * ensure any live coprocessor contents for this
376 	 * task are first saved to memory:
377 	 */
378 	local_irq_save(flags);
379 
380 	for (i = 0; i < XCHAL_CP_MAX; i++) {
381 		if (tsk == coprocessor_info[i].owner) {
382 			enable_coprocessor(i);
383 			save_coprocessor_registers(
384 			    tsk->thread.cp_save+coprocessor_info[i].offset,i);
385 			disable_coprocessor(i);
386 		}
387 	}
388 
389 	local_irq_restore(flags);
390 
391 	/* Now dump coprocessor & extra state: */
392 	memcpy((unsigned char*)fpregs,
393 		_xtensa_reginfo_tables, _xtensa_reginfo_table_size);
394 	memcpy((unsigned char*)fpregs + _xtensa_reginfo_table_size,
395 		tsk->thread.cp_save, XTENSA_CP_EXTRA_SIZE);
396 #endif
397 }
398 
399 /*
400  * The inverse of do_save_fpregs().
401  * Copies coprocessor and extra state from fpregs into regs and tsk->thread.
402  * Returns 0 on success, non-zero if layout doesn't match.
403  */
404 
405 int  do_restore_fpregs (elf_fpregset_t *fpregs, struct pt_regs *regs,
406 		        struct task_struct *tsk)
407 {
408 #if XCHAL_HAVE_CP
409 
410 	extern unsigned char	_xtensa_reginfo_tables[];
411 	extern unsigned		_xtensa_reginfo_table_size;
412 	int i;
413 	unsigned long flags;
414 
415 	/* Make sure save area layouts match.
416 	 * FIXME:  in the future we could allow restoring from
417 	 * a different layout of the same registers, by comparing
418 	 * fpregs' table with _xtensa_reginfo_tables and matching
419 	 * entries and copying registers one at a time.
420 	 * Not too sure yet whether that's very useful.
421 	 */
422 
423 	if( memcmp((unsigned char*)fpregs,
424 		_xtensa_reginfo_tables, _xtensa_reginfo_table_size) ) {
425 	    return -1;
426 	}
427 
428 	/* Before restoring coprocessor state from memory,
429 	 * ensure any live coprocessor contents for this
430 	 * task are first invalidated.
431 	 */
432 
433 	local_irq_save(flags);
434 
435 	for (i = 0; i < XCHAL_CP_MAX; i++) {
436 		if (tsk == coprocessor_info[i].owner) {
437 			enable_coprocessor(i);
438 			save_coprocessor_registers(
439 			    tsk->thread.cp_save+coprocessor_info[i].offset,i);
440 			coprocessor_info[i].owner = 0;
441 			disable_coprocessor(i);
442 		}
443 	}
444 
445 	local_irq_restore(flags);
446 
447 	/*  Now restore coprocessor & extra state:  */
448 
449 	memcpy(tsk->thread.cp_save,
450 		(unsigned char*)fpregs + _xtensa_reginfo_table_size,
451 		XTENSA_CP_EXTRA_SIZE);
452 #endif
453 	return 0;
454 }
455 /*
456  * Fill in the CP structure for a core dump for a particular task.
457  */
458 
459 int
460 dump_task_fpu(struct pt_regs *regs, struct task_struct *task, elf_fpregset_t *r)
461 {
462 /* see asm/coprocessor.h for this magic number 16 */
463 #if XTENSA_CP_EXTRA_SIZE > 16
464 	do_save_fpregs (r, regs, task);
465 
466 	/*  For now, bit 16 means some extra state may be present:  */
467 // FIXME!! need to track to return more accurate mask
468 	return 0x10000 | XCHAL_CP_MASK;
469 #else
470 	return 0;	/* no coprocessors active on this processor */
471 #endif
472 }
473 
474 /*
475  * Fill in the CP structure for a core dump.
476  * This includes any FPU coprocessor.
477  * Here, we dump all coprocessors, and other ("extra") custom state.
478  *
479  * This function is called by elf_core_dump() in fs/binfmt_elf.c
480  * (in which case 'regs' comes from calls to do_coredump, see signals.c).
481  */
482 int  dump_fpu(struct pt_regs *regs, elf_fpregset_t *r)
483 {
484 	return dump_task_fpu(regs, current, r);
485 }
486