xref: /linux/arch/xtensa/kernel/pci-dma.c (revision 8795a739e5c72abeec51caf36b6df2b37e5720c5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DMA coherent memory allocation.
4  *
5  * Copyright (C) 2002 - 2005 Tensilica Inc.
6  * Copyright (C) 2015 Cadence Design Systems Inc.
7  *
8  * Based on version for i386.
9  *
10  * Chris Zankel <chris@zankel.net>
11  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
12  */
13 
14 #include <linux/dma-contiguous.h>
15 #include <linux/dma-noncoherent.h>
16 #include <linux/dma-direct.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/types.h>
21 #include <asm/cacheflush.h>
22 #include <asm/io.h>
23 #include <asm/platform.h>
24 
25 static void do_cache_op(phys_addr_t paddr, size_t size,
26 			void (*fn)(unsigned long, unsigned long))
27 {
28 	unsigned long off = paddr & (PAGE_SIZE - 1);
29 	unsigned long pfn = PFN_DOWN(paddr);
30 	struct page *page = pfn_to_page(pfn);
31 
32 	if (!PageHighMem(page))
33 		fn((unsigned long)phys_to_virt(paddr), size);
34 	else
35 		while (size > 0) {
36 			size_t sz = min_t(size_t, size, PAGE_SIZE - off);
37 			void *vaddr = kmap_atomic(page);
38 
39 			fn((unsigned long)vaddr + off, sz);
40 			kunmap_atomic(vaddr);
41 			off = 0;
42 			++page;
43 			size -= sz;
44 		}
45 }
46 
47 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
48 		size_t size, enum dma_data_direction dir)
49 {
50 	switch (dir) {
51 	case DMA_BIDIRECTIONAL:
52 	case DMA_FROM_DEVICE:
53 		do_cache_op(paddr, size, __invalidate_dcache_range);
54 		break;
55 
56 	case DMA_NONE:
57 		BUG();
58 		break;
59 
60 	default:
61 		break;
62 	}
63 }
64 
65 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
66 		size_t size, enum dma_data_direction dir)
67 {
68 	switch (dir) {
69 	case DMA_BIDIRECTIONAL:
70 	case DMA_TO_DEVICE:
71 		if (XCHAL_DCACHE_IS_WRITEBACK)
72 			do_cache_op(paddr, size, __flush_dcache_range);
73 		break;
74 
75 	case DMA_NONE:
76 		BUG();
77 		break;
78 
79 	default:
80 		break;
81 	}
82 }
83 
84 #ifdef CONFIG_MMU
85 bool platform_vaddr_cached(const void *p)
86 {
87 	unsigned long addr = (unsigned long)p;
88 
89 	return addr >= XCHAL_KSEG_CACHED_VADDR &&
90 	       addr - XCHAL_KSEG_CACHED_VADDR < XCHAL_KSEG_SIZE;
91 }
92 
93 bool platform_vaddr_uncached(const void *p)
94 {
95 	unsigned long addr = (unsigned long)p;
96 
97 	return addr >= XCHAL_KSEG_BYPASS_VADDR &&
98 	       addr - XCHAL_KSEG_BYPASS_VADDR < XCHAL_KSEG_SIZE;
99 }
100 
101 void *platform_vaddr_to_uncached(void *p)
102 {
103 	return p + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR;
104 }
105 
106 void *platform_vaddr_to_cached(void *p)
107 {
108 	return p + XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR;
109 }
110 #else
111 bool __attribute__((weak)) platform_vaddr_cached(const void *p)
112 {
113 	WARN_ONCE(1, "Default %s implementation is used\n", __func__);
114 	return true;
115 }
116 
117 bool __attribute__((weak)) platform_vaddr_uncached(const void *p)
118 {
119 	WARN_ONCE(1, "Default %s implementation is used\n", __func__);
120 	return false;
121 }
122 
123 void __attribute__((weak)) *platform_vaddr_to_uncached(void *p)
124 {
125 	WARN_ONCE(1, "Default %s implementation is used\n", __func__);
126 	return p;
127 }
128 
129 void __attribute__((weak)) *platform_vaddr_to_cached(void *p)
130 {
131 	WARN_ONCE(1, "Default %s implementation is used\n", __func__);
132 	return p;
133 }
134 #endif
135 
136 /*
137  * Note: We assume that the full memory space is always mapped to 'kseg'
138  *	 Otherwise we have to use page attributes (not implemented).
139  */
140 
141 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
142 		gfp_t flag, unsigned long attrs)
143 {
144 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
145 	struct page *page = NULL;
146 
147 	/* ignore region speicifiers */
148 
149 	flag &= ~(__GFP_DMA | __GFP_HIGHMEM);
150 
151 	if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
152 		flag |= GFP_DMA;
153 
154 	if (gfpflags_allow_blocking(flag))
155 		page = dma_alloc_from_contiguous(dev, count, get_order(size),
156 						 flag & __GFP_NOWARN);
157 
158 	if (!page)
159 		page = alloc_pages(flag | __GFP_ZERO, get_order(size));
160 
161 	if (!page)
162 		return NULL;
163 
164 	*handle = phys_to_dma(dev, page_to_phys(page));
165 
166 #ifdef CONFIG_MMU
167 	if (PageHighMem(page)) {
168 		void *p;
169 
170 		p = dma_common_contiguous_remap(page, size,
171 						pgprot_noncached(PAGE_KERNEL),
172 						__builtin_return_address(0));
173 		if (!p) {
174 			if (!dma_release_from_contiguous(dev, page, count))
175 				__free_pages(page, get_order(size));
176 		}
177 		return p;
178 	}
179 #endif
180 	BUG_ON(!platform_vaddr_cached(page_address(page)));
181 	__invalidate_dcache_range((unsigned long)page_address(page), size);
182 	return platform_vaddr_to_uncached(page_address(page));
183 }
184 
185 void arch_dma_free(struct device *dev, size_t size, void *vaddr,
186 		dma_addr_t dma_handle, unsigned long attrs)
187 {
188 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
189 	struct page *page;
190 
191 	if (platform_vaddr_uncached(vaddr)) {
192 		page = virt_to_page(platform_vaddr_to_cached(vaddr));
193 	} else {
194 #ifdef CONFIG_MMU
195 		dma_common_free_remap(vaddr, size);
196 #endif
197 		page = pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_handle)));
198 	}
199 
200 	if (!dma_release_from_contiguous(dev, page, count))
201 		__free_pages(page, get_order(size));
202 }
203