xref: /linux/arch/xtensa/Kconfig (revision e85d29ba4b24f68e7a78cb85c55e754362eeb2de)
1# SPDX-License-Identifier: GPL-2.0
2config XTENSA
3	def_bool y
4	select ARCH_32BIT_OFF_T
5	select ARCH_HAS_BINFMT_FLAT if !MMU
6	select ARCH_HAS_DMA_PREP_COHERENT if MMU
7	select ARCH_HAS_SYNC_DMA_FOR_CPU if MMU
8	select ARCH_HAS_SYNC_DMA_FOR_DEVICE if MMU
9	select ARCH_HAS_DMA_SET_UNCACHED if MMU
10	select ARCH_HAS_STRNCPY_FROM_USER if !KASAN
11	select ARCH_HAS_STRNLEN_USER
12	select ARCH_USE_MEMTEST
13	select ARCH_USE_QUEUED_RWLOCKS
14	select ARCH_USE_QUEUED_SPINLOCKS
15	select ARCH_WANT_FRAME_POINTERS
16	select ARCH_WANT_IPC_PARSE_VERSION
17	select BUILDTIME_TABLE_SORT
18	select CLONE_BACKWARDS
19	select COMMON_CLK
20	select DMA_REMAP if MMU
21	select GENERIC_ATOMIC64
22	select GENERIC_IRQ_SHOW
23	select GENERIC_LIB_CMPDI2
24	select GENERIC_LIB_MULDI3
25	select GENERIC_LIB_UCMPDI2
26	select GENERIC_PCI_IOMAP
27	select GENERIC_SCHED_CLOCK
28	select HAVE_ARCH_AUDITSYSCALL
29	select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL
30	select HAVE_ARCH_KASAN if MMU && !XIP_KERNEL
31	select HAVE_ARCH_SECCOMP_FILTER
32	select HAVE_ARCH_TRACEHOOK
33	select HAVE_DEBUG_KMEMLEAK
34	select HAVE_DMA_CONTIGUOUS
35	select HAVE_EXIT_THREAD
36	select HAVE_FUNCTION_TRACER
37	select HAVE_HW_BREAKPOINT if PERF_EVENTS
38	select HAVE_IRQ_TIME_ACCOUNTING
39	select HAVE_PCI
40	select HAVE_PERF_EVENTS
41	select HAVE_STACKPROTECTOR
42	select HAVE_SYSCALL_TRACEPOINTS
43	select IRQ_DOMAIN
44	select MODULES_USE_ELF_RELA
45	select PERF_USE_VMALLOC
46	select SET_FS
47	select TRACE_IRQFLAGS_SUPPORT
48	select VIRT_TO_BUS
49	help
50	  Xtensa processors are 32-bit RISC machines designed by Tensilica
51	  primarily for embedded systems.  These processors are both
52	  configurable and extensible.  The Linux port to the Xtensa
53	  architecture supports all processor configurations and extensions,
54	  with reasonable minimum requirements.  The Xtensa Linux project has
55	  a home page at <http://www.linux-xtensa.org/>.
56
57config GENERIC_HWEIGHT
58	def_bool y
59
60config ARCH_HAS_ILOG2_U32
61	def_bool n
62
63config ARCH_HAS_ILOG2_U64
64	def_bool n
65
66config NO_IOPORT_MAP
67	def_bool n
68
69config HZ
70	int
71	default 100
72
73config LOCKDEP_SUPPORT
74	def_bool y
75
76config STACKTRACE_SUPPORT
77	def_bool y
78
79config MMU
80	def_bool n
81
82config HAVE_XTENSA_GPIO32
83	def_bool n
84
85config KASAN_SHADOW_OFFSET
86	hex
87	default 0x6e400000
88
89config CPU_BIG_ENDIAN
90	def_bool $(success,test "$(shell,echo __XTENSA_EB__ | $(CC) -E -P -)" = 1)
91
92config CPU_LITTLE_ENDIAN
93	def_bool !CPU_BIG_ENDIAN
94
95config CC_HAVE_CALL0_ABI
96	def_bool $(success,test "$(shell,echo __XTENSA_CALL0_ABI__ | $(CC) -mabi=call0 -E -P - 2>/dev/null)" = 1)
97
98menu "Processor type and features"
99
100choice
101	prompt "Xtensa Processor Configuration"
102	default XTENSA_VARIANT_FSF
103
104config XTENSA_VARIANT_FSF
105	bool "fsf - default (not generic) configuration"
106	select MMU
107
108config XTENSA_VARIANT_DC232B
109	bool "dc232b - Diamond 232L Standard Core Rev.B (LE)"
110	select MMU
111	select HAVE_XTENSA_GPIO32
112	help
113	  This variant refers to Tensilica's Diamond 232L Standard core Rev.B (LE).
114
115config XTENSA_VARIANT_DC233C
116	bool "dc233c - Diamond 233L Standard Core Rev.C (LE)"
117	select MMU
118	select HAVE_XTENSA_GPIO32
119	help
120	  This variant refers to Tensilica's Diamond 233L Standard core Rev.C (LE).
121
122config XTENSA_VARIANT_CUSTOM
123	bool "Custom Xtensa processor configuration"
124	select HAVE_XTENSA_GPIO32
125	help
126	  Select this variant to use a custom Xtensa processor configuration.
127	  You will be prompted for a processor variant CORENAME.
128endchoice
129
130config XTENSA_VARIANT_CUSTOM_NAME
131	string "Xtensa Processor Custom Core Variant Name"
132	depends on XTENSA_VARIANT_CUSTOM
133	help
134	  Provide the name of a custom Xtensa processor variant.
135	  This CORENAME selects arch/xtensa/variant/CORENAME.
136	  Don't forget you have to select MMU if you have one.
137
138config XTENSA_VARIANT_NAME
139	string
140	default "dc232b"			if XTENSA_VARIANT_DC232B
141	default "dc233c"			if XTENSA_VARIANT_DC233C
142	default "fsf"				if XTENSA_VARIANT_FSF
143	default XTENSA_VARIANT_CUSTOM_NAME	if XTENSA_VARIANT_CUSTOM
144
145config XTENSA_VARIANT_MMU
146	bool "Core variant has a Full MMU (TLB, Pages, Protection, etc)"
147	depends on XTENSA_VARIANT_CUSTOM
148	default y
149	select MMU
150	help
151	  Build a Conventional Kernel with full MMU support,
152	  ie: it supports a TLB with auto-loading, page protection.
153
154config XTENSA_VARIANT_HAVE_PERF_EVENTS
155	bool "Core variant has Performance Monitor Module"
156	depends on XTENSA_VARIANT_CUSTOM
157	default n
158	help
159	  Enable if core variant has Performance Monitor Module with
160	  External Registers Interface.
161
162	  If unsure, say N.
163
164config XTENSA_FAKE_NMI
165	bool "Treat PMM IRQ as NMI"
166	depends on XTENSA_VARIANT_HAVE_PERF_EVENTS
167	default n
168	help
169	  If PMM IRQ is the only IRQ at EXCM level it is safe to
170	  treat it as NMI, which improves accuracy of profiling.
171
172	  If there are other interrupts at or above PMM IRQ priority level
173	  but not above the EXCM level, PMM IRQ still may be treated as NMI,
174	  but only if these IRQs are not used. There will be a build warning
175	  saying that this is not safe, and a bugcheck if one of these IRQs
176	  actually fire.
177
178	  If unsure, say N.
179
180config XTENSA_UNALIGNED_USER
181	bool "Unaligned memory access in user space"
182	help
183	  The Xtensa architecture currently does not handle unaligned
184	  memory accesses in hardware but through an exception handler.
185	  Per default, unaligned memory accesses are disabled in user space.
186
187	  Say Y here to enable unaligned memory access in user space.
188
189config HAVE_SMP
190	bool "System Supports SMP (MX)"
191	depends on XTENSA_VARIANT_CUSTOM
192	select XTENSA_MX
193	help
194	  This option is used to indicate that the system-on-a-chip (SOC)
195	  supports Multiprocessing. Multiprocessor support implemented above
196	  the CPU core definition and currently needs to be selected manually.
197
198	  Multiprocessor support is implemented with external cache and
199	  interrupt controllers.
200
201	  The MX interrupt distributer adds Interprocessor Interrupts
202	  and causes the IRQ numbers to be increased by 4 for devices
203	  like the open cores ethernet driver and the serial interface.
204
205	  You still have to select "Enable SMP" to enable SMP on this SOC.
206
207config SMP
208	bool "Enable Symmetric multi-processing support"
209	depends on HAVE_SMP
210	select GENERIC_SMP_IDLE_THREAD
211	help
212	  Enabled SMP Software; allows more than one CPU/CORE
213	  to be activated during startup.
214
215config NR_CPUS
216	depends on SMP
217	int "Maximum number of CPUs (2-32)"
218	range 2 32
219	default "4"
220
221config HOTPLUG_CPU
222	bool "Enable CPU hotplug support"
223	depends on SMP
224	help
225	  Say Y here to allow turning CPUs off and on. CPUs can be
226	  controlled through /sys/devices/system/cpu.
227
228	  Say N if you want to disable CPU hotplug.
229
230config SECONDARY_RESET_VECTOR
231	bool "Secondary cores use alternative reset vector"
232	default y
233	depends on HAVE_SMP
234	help
235	  Secondary cores may be configured to use alternative reset vector,
236	  or all cores may use primary reset vector.
237	  Say Y here to supply handler for the alternative reset location.
238
239config FAST_SYSCALL_XTENSA
240	bool "Enable fast atomic syscalls"
241	default n
242	help
243	  fast_syscall_xtensa is a syscall that can make atomic operations
244	  on UP kernel when processor has no s32c1i support.
245
246	  This syscall is deprecated. It may have issues when called with
247	  invalid arguments. It is provided only for backwards compatibility.
248	  Only enable it if your userspace software requires it.
249
250	  If unsure, say N.
251
252config FAST_SYSCALL_SPILL_REGISTERS
253	bool "Enable spill registers syscall"
254	default n
255	help
256	  fast_syscall_spill_registers is a syscall that spills all active
257	  register windows of a calling userspace task onto its stack.
258
259	  This syscall is deprecated. It may have issues when called with
260	  invalid arguments. It is provided only for backwards compatibility.
261	  Only enable it if your userspace software requires it.
262
263	  If unsure, say N.
264
265choice
266	prompt "Kernel ABI"
267	default KERNEL_ABI_DEFAULT
268	help
269	  Select ABI for the kernel code. This ABI is independent of the
270	  supported userspace ABI and any combination of the
271	  kernel/userspace ABI is possible and should work.
272
273	  In case both kernel and userspace support only call0 ABI
274	  all register windows support code will be omitted from the
275	  build.
276
277	  If unsure, choose the default ABI.
278
279config KERNEL_ABI_DEFAULT
280	bool "Default ABI"
281	help
282	  Select this option to compile kernel code with the default ABI
283	  selected for the toolchain.
284	  Normally cores with windowed registers option use windowed ABI and
285	  cores without it use call0 ABI.
286
287config KERNEL_ABI_CALL0
288	bool "Call0 ABI" if CC_HAVE_CALL0_ABI
289	help
290	  Select this option to compile kernel code with call0 ABI even with
291	  toolchain that defaults to windowed ABI.
292	  When this option is not selected the default toolchain ABI will
293	  be used for the kernel code.
294
295endchoice
296
297config USER_ABI_CALL0
298	bool
299
300choice
301	prompt "Userspace ABI"
302	default USER_ABI_DEFAULT
303	help
304	  Select supported userspace ABI.
305
306	  If unsure, choose the default ABI.
307
308config USER_ABI_DEFAULT
309	bool "Default ABI only"
310	help
311	  Assume default userspace ABI. For XEA2 cores it is windowed ABI.
312	  call0 ABI binaries may be run on such kernel, but signal delivery
313	  will not work correctly for them.
314
315config USER_ABI_CALL0_ONLY
316	bool "Call0 ABI only"
317	select USER_ABI_CALL0
318	help
319	  Select this option to support only call0 ABI in userspace.
320	  Windowed ABI binaries will crash with a segfault caused by
321	  an illegal instruction exception on the first 'entry' opcode.
322
323	  Choose this option if you're planning to run only user code
324	  built with call0 ABI.
325
326config USER_ABI_CALL0_PROBE
327	bool "Support both windowed and call0 ABI by probing"
328	select USER_ABI_CALL0
329	help
330	  Select this option to support both windowed and call0 userspace
331	  ABIs. When enabled all processes are started with PS.WOE disabled
332	  and a fast user exception handler for an illegal instruction is
333	  used to turn on PS.WOE bit on the first 'entry' opcode executed by
334	  the userspace.
335
336	  This option should be enabled for the kernel that must support
337	  both call0 and windowed ABIs in userspace at the same time.
338
339	  Note that Xtensa ISA does not guarantee that entry opcode will
340	  raise an illegal instruction exception on cores with XEA2 when
341	  PS.WOE is disabled, check whether the target core supports it.
342
343endchoice
344
345endmenu
346
347config XTENSA_CALIBRATE_CCOUNT
348	def_bool n
349	help
350	  On some platforms (XT2000, for example), the CPU clock rate can
351	  vary.  The frequency can be determined, however, by measuring
352	  against a well known, fixed frequency, such as an UART oscillator.
353
354config SERIAL_CONSOLE
355	def_bool n
356
357config PLATFORM_HAVE_XIP
358	def_bool n
359
360menu "Platform options"
361
362choice
363	prompt "Xtensa System Type"
364	default XTENSA_PLATFORM_ISS
365
366config XTENSA_PLATFORM_ISS
367	bool "ISS"
368	select XTENSA_CALIBRATE_CCOUNT
369	select SERIAL_CONSOLE
370	help
371	  ISS is an acronym for Tensilica's Instruction Set Simulator.
372
373config XTENSA_PLATFORM_XT2000
374	bool "XT2000"
375	help
376	  XT2000 is the name of Tensilica's feature-rich emulation platform.
377	  This hardware is capable of running a full Linux distribution.
378
379config XTENSA_PLATFORM_XTFPGA
380	bool "XTFPGA"
381	select ETHOC if ETHERNET
382	select PLATFORM_WANT_DEFAULT_MEM if !MMU
383	select SERIAL_CONSOLE
384	select XTENSA_CALIBRATE_CCOUNT
385	select PLATFORM_HAVE_XIP
386	help
387	  XTFPGA is the name of Tensilica board family (LX60, LX110, LX200, ML605).
388	  This hardware is capable of running a full Linux distribution.
389
390endchoice
391
392config PLATFORM_NR_IRQS
393	int
394	default 3 if XTENSA_PLATFORM_XT2000
395	default 0
396
397config XTENSA_CPU_CLOCK
398	int "CPU clock rate [MHz]"
399	depends on !XTENSA_CALIBRATE_CCOUNT
400	default 16
401
402config GENERIC_CALIBRATE_DELAY
403	bool "Auto calibration of the BogoMIPS value"
404	help
405	  The BogoMIPS value can easily be derived from the CPU frequency.
406
407config CMDLINE_BOOL
408	bool "Default bootloader kernel arguments"
409
410config CMDLINE
411	string "Initial kernel command string"
412	depends on CMDLINE_BOOL
413	default "console=ttyS0,38400 root=/dev/ram"
414	help
415	  On some architectures (EBSA110 and CATS), there is currently no way
416	  for the boot loader to pass arguments to the kernel. For these
417	  architectures, you should supply some command-line options at build
418	  time by entering them here. As a minimum, you should specify the
419	  memory size and the root device (e.g., mem=64M root=/dev/nfs).
420
421config USE_OF
422	bool "Flattened Device Tree support"
423	select OF
424	select OF_EARLY_FLATTREE
425	help
426	  Include support for flattened device tree machine descriptions.
427
428config BUILTIN_DTB_SOURCE
429	string "DTB to build into the kernel image"
430	depends on OF
431
432config PARSE_BOOTPARAM
433	bool "Parse bootparam block"
434	default y
435	help
436	  Parse parameters passed to the kernel from the bootloader. It may
437	  be disabled if the kernel is known to run without the bootloader.
438
439	  If unsure, say Y.
440
441choice
442	prompt "Semihosting interface"
443	default XTENSA_SIMCALL_ISS
444	depends on XTENSA_PLATFORM_ISS
445	help
446	  Choose semihosting interface that will be used for serial port,
447	  block device and networking.
448
449config XTENSA_SIMCALL_ISS
450	bool "simcall"
451	help
452	  Use simcall instruction. simcall is only available on simulators,
453	  it does nothing on hardware.
454
455config XTENSA_SIMCALL_GDBIO
456	bool "GDBIO"
457	help
458	  Use break instruction. It is available on real hardware when GDB
459	  is attached to it via JTAG.
460
461endchoice
462
463config BLK_DEV_SIMDISK
464	tristate "Host file-based simulated block device support"
465	default n
466	depends on XTENSA_PLATFORM_ISS && BLOCK
467	help
468	  Create block devices that map to files in the host file system.
469	  Device binding to host file may be changed at runtime via proc
470	  interface provided the device is not in use.
471
472config BLK_DEV_SIMDISK_COUNT
473	int "Number of host file-based simulated block devices"
474	range 1 10
475	depends on BLK_DEV_SIMDISK
476	default 2
477	help
478	  This is the default minimal number of created block devices.
479	  Kernel/module parameter 'simdisk_count' may be used to change this
480	  value at runtime. More file names (but no more than 10) may be
481	  specified as parameters, simdisk_count grows accordingly.
482
483config SIMDISK0_FILENAME
484	string "Host filename for the first simulated device"
485	depends on BLK_DEV_SIMDISK = y
486	default ""
487	help
488	  Attach a first simdisk to a host file. Conventionally, this file
489	  contains a root file system.
490
491config SIMDISK1_FILENAME
492	string "Host filename for the second simulated device"
493	depends on BLK_DEV_SIMDISK = y && BLK_DEV_SIMDISK_COUNT != 1
494	default ""
495	help
496	  Another simulated disk in a host file for a buildroot-independent
497	  storage.
498
499config XTFPGA_LCD
500	bool "Enable XTFPGA LCD driver"
501	depends on XTENSA_PLATFORM_XTFPGA
502	default n
503	help
504	  There's a 2x16 LCD on most of XTFPGA boards, kernel may output
505	  progress messages there during bootup/shutdown. It may be useful
506	  during board bringup.
507
508	  If unsure, say N.
509
510config XTFPGA_LCD_BASE_ADDR
511	hex "XTFPGA LCD base address"
512	depends on XTFPGA_LCD
513	default "0x0d0c0000"
514	help
515	  Base address of the LCD controller inside KIO region.
516	  Different boards from XTFPGA family have LCD controller at different
517	  addresses. Please consult prototyping user guide for your board for
518	  the correct address. Wrong address here may lead to hardware lockup.
519
520config XTFPGA_LCD_8BIT_ACCESS
521	bool "Use 8-bit access to XTFPGA LCD"
522	depends on XTFPGA_LCD
523	default n
524	help
525	  LCD may be connected with 4- or 8-bit interface, 8-bit access may
526	  only be used with 8-bit interface. Please consult prototyping user
527	  guide for your board for the correct interface width.
528
529comment "Kernel memory layout"
530
531config INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
532	bool "Initialize Xtensa MMU inside the Linux kernel code"
533	depends on !XTENSA_VARIANT_FSF && !XTENSA_VARIANT_DC232B
534	default y if XTENSA_VARIANT_DC233C || XTENSA_VARIANT_CUSTOM
535	help
536	  Earlier version initialized the MMU in the exception vector
537	  before jumping to _startup in head.S and had an advantage that
538	  it was possible to place a software breakpoint at 'reset' and
539	  then enter your normal kernel breakpoints once the MMU was mapped
540	  to the kernel mappings (0XC0000000).
541
542	  This unfortunately won't work for U-Boot and likely also won't
543	  work for using KEXEC to have a hot kernel ready for doing a
544	  KDUMP.
545
546	  So now the MMU is initialized in head.S but it's necessary to
547	  use hardware breakpoints (gdb 'hbreak' cmd) to break at _startup.
548	  xt-gdb can't place a Software Breakpoint in the  0XD region prior
549	  to mapping the MMU and after mapping even if the area of low memory
550	  was mapped gdb wouldn't remove the breakpoint on hitting it as the
551	  PC wouldn't match. Since Hardware Breakpoints are recommended for
552	  Linux configurations it seems reasonable to just assume they exist
553	  and leave this older mechanism for unfortunate souls that choose
554	  not to follow Tensilica's recommendation.
555
556	  Selecting this will cause U-Boot to set the KERNEL Load and Entry
557	  address at 0x00003000 instead of the mapped std of 0xD0003000.
558
559	  If in doubt, say Y.
560
561config XIP_KERNEL
562	bool "Kernel Execute-In-Place from ROM"
563	depends on PLATFORM_HAVE_XIP
564	help
565	  Execute-In-Place allows the kernel to run from non-volatile storage
566	  directly addressable by the CPU, such as NOR flash. This saves RAM
567	  space since the text section of the kernel is not loaded from flash
568	  to RAM. Read-write sections, such as the data section and stack,
569	  are still copied to RAM. The XIP kernel is not compressed since
570	  it has to run directly from flash, so it will take more space to
571	  store it. The flash address used to link the kernel object files,
572	  and for storing it, is configuration dependent. Therefore, if you
573	  say Y here, you must know the proper physical address where to
574	  store the kernel image depending on your own flash memory usage.
575
576	  Also note that the make target becomes "make xipImage" rather than
577	  "make Image" or "make uImage". The final kernel binary to put in
578	  ROM memory will be arch/xtensa/boot/xipImage.
579
580	  If unsure, say N.
581
582config MEMMAP_CACHEATTR
583	hex "Cache attributes for the memory address space"
584	depends on !MMU
585	default 0x22222222
586	help
587	  These cache attributes are set up for noMMU systems. Each hex digit
588	  specifies cache attributes for the corresponding 512MB memory
589	  region: bits 0..3 -- for addresses 0x00000000..0x1fffffff,
590	  bits 4..7 -- for addresses 0x20000000..0x3fffffff, and so on.
591
592	  Cache attribute values are specific for the MMU type.
593	  For region protection MMUs:
594	    1: WT cached,
595	    2: cache bypass,
596	    4: WB cached,
597	    f: illegal.
598	  For full MMU:
599	    bit 0: executable,
600	    bit 1: writable,
601	    bits 2..3:
602	      0: cache bypass,
603	      1: WB cache,
604	      2: WT cache,
605	      3: special (c and e are illegal, f is reserved).
606	  For MPU:
607	    0: illegal,
608	    1: WB cache,
609	    2: WB, no-write-allocate cache,
610	    3: WT cache,
611	    4: cache bypass.
612
613config KSEG_PADDR
614	hex "Physical address of the KSEG mapping"
615	depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX && MMU
616	default 0x00000000
617	help
618	  This is the physical address where KSEG is mapped. Please refer to
619	  the chosen KSEG layout help for the required address alignment.
620	  Unpacked kernel image (including vectors) must be located completely
621	  within KSEG.
622	  Physical memory below this address is not available to linux.
623
624	  If unsure, leave the default value here.
625
626config KERNEL_VIRTUAL_ADDRESS
627	hex "Kernel virtual address"
628	depends on MMU && XIP_KERNEL
629	default 0xd0003000
630	help
631	  This is the virtual address where the XIP kernel is mapped.
632	  XIP kernel may be mapped into KSEG or KIO region, virtual address
633	  provided here must match kernel load address provided in
634	  KERNEL_LOAD_ADDRESS.
635
636config KERNEL_LOAD_ADDRESS
637	hex "Kernel load address"
638	default 0x60003000 if !MMU
639	default 0x00003000 if MMU && INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
640	default 0xd0003000 if MMU && !INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
641	help
642	  This is the address where the kernel is loaded.
643	  It is virtual address for MMUv2 configurations and physical address
644	  for all other configurations.
645
646	  If unsure, leave the default value here.
647
648choice
649	prompt "Relocatable vectors location"
650	default XTENSA_VECTORS_IN_TEXT
651	help
652	  Choose whether relocatable vectors are merged into the kernel .text
653	  or placed separately at runtime. This option does not affect
654	  configurations without VECBASE register where vectors are always
655	  placed at their hardware-defined locations.
656
657config XTENSA_VECTORS_IN_TEXT
658	bool "Merge relocatable vectors into kernel text"
659	depends on !MTD_XIP
660	help
661	  This option puts relocatable vectors into the kernel .text section
662	  with proper alignment.
663	  This is a safe choice for most configurations.
664
665config XTENSA_VECTORS_SEPARATE
666	bool "Put relocatable vectors at fixed address"
667	help
668	  This option puts relocatable vectors at specific virtual address.
669	  Vectors are merged with the .init data in the kernel image and
670	  are copied into their designated location during kernel startup.
671	  Use it to put vectors into IRAM or out of FLASH on kernels with
672	  XIP-aware MTD support.
673
674endchoice
675
676config VECTORS_ADDR
677	hex "Kernel vectors virtual address"
678	default 0x00000000
679	depends on XTENSA_VECTORS_SEPARATE
680	help
681	  This is the virtual address of the (relocatable) vectors base.
682	  It must be within KSEG if MMU is used.
683
684config XIP_DATA_ADDR
685	hex "XIP kernel data virtual address"
686	depends on XIP_KERNEL
687	default 0x00000000
688	help
689	  This is the virtual address where XIP kernel data is copied.
690	  It must be within KSEG if MMU is used.
691
692config PLATFORM_WANT_DEFAULT_MEM
693	def_bool n
694
695config DEFAULT_MEM_START
696	hex
697	prompt "PAGE_OFFSET/PHYS_OFFSET" if !MMU && PLATFORM_WANT_DEFAULT_MEM
698	default 0x60000000 if PLATFORM_WANT_DEFAULT_MEM
699	default 0x00000000
700	help
701	  This is the base address used for both PAGE_OFFSET and PHYS_OFFSET
702	  in noMMU configurations.
703
704	  If unsure, leave the default value here.
705
706choice
707	prompt "KSEG layout"
708	depends on MMU
709	default XTENSA_KSEG_MMU_V2
710
711config XTENSA_KSEG_MMU_V2
712	bool "MMUv2: 128MB cached + 128MB uncached"
713	help
714	  MMUv2 compatible kernel memory map: TLB way 5 maps 128MB starting
715	  at KSEG_PADDR to 0xd0000000 with cache and to 0xd8000000
716	  without cache.
717	  KSEG_PADDR must be aligned to 128MB.
718
719config XTENSA_KSEG_256M
720	bool "256MB cached + 256MB uncached"
721	depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
722	help
723	  TLB way 6 maps 256MB starting at KSEG_PADDR to 0xb0000000
724	  with cache and to 0xc0000000 without cache.
725	  KSEG_PADDR must be aligned to 256MB.
726
727config XTENSA_KSEG_512M
728	bool "512MB cached + 512MB uncached"
729	depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
730	help
731	  TLB way 6 maps 512MB starting at KSEG_PADDR to 0xa0000000
732	  with cache and to 0xc0000000 without cache.
733	  KSEG_PADDR must be aligned to 256MB.
734
735endchoice
736
737config HIGHMEM
738	bool "High Memory Support"
739	depends on MMU
740	select KMAP_LOCAL
741	help
742	  Linux can use the full amount of RAM in the system by
743	  default. However, the default MMUv2 setup only maps the
744	  lowermost 128 MB of memory linearly to the areas starting
745	  at 0xd0000000 (cached) and 0xd8000000 (uncached).
746	  When there are more than 128 MB memory in the system not
747	  all of it can be "permanently mapped" by the kernel.
748	  The physical memory that's not permanently mapped is called
749	  "high memory".
750
751	  If you are compiling a kernel which will never run on a
752	  machine with more than 128 MB total physical RAM, answer
753	  N here.
754
755	  If unsure, say Y.
756
757config FORCE_MAX_ZONEORDER
758	int "Maximum zone order"
759	default "11"
760	help
761	  The kernel memory allocator divides physically contiguous memory
762	  blocks into "zones", where each zone is a power of two number of
763	  pages.  This option selects the largest power of two that the kernel
764	  keeps in the memory allocator.  If you need to allocate very large
765	  blocks of physically contiguous memory, then you may need to
766	  increase this value.
767
768	  This config option is actually maximum order plus one. For example,
769	  a value of 11 means that the largest free memory block is 2^10 pages.
770
771endmenu
772
773menu "Power management options"
774
775source "kernel/power/Kconfig"
776
777endmenu
778