xref: /linux/arch/xtensa/Kconfig (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1# SPDX-License-Identifier: GPL-2.0
2config XTENSA
3	def_bool y
4	select ARCH_32BIT_OFF_T
5	select ARCH_HAS_BINFMT_FLAT if !MMU
6	select ARCH_HAS_DMA_PREP_COHERENT if MMU
7	select ARCH_HAS_SYNC_DMA_FOR_CPU if MMU
8	select ARCH_HAS_SYNC_DMA_FOR_DEVICE if MMU
9	select ARCH_HAS_DMA_SET_UNCACHED if MMU
10	select ARCH_USE_MEMTEST
11	select ARCH_USE_QUEUED_RWLOCKS
12	select ARCH_USE_QUEUED_SPINLOCKS
13	select ARCH_WANT_FRAME_POINTERS
14	select ARCH_WANT_IPC_PARSE_VERSION
15	select BUILDTIME_TABLE_SORT
16	select CLONE_BACKWARDS
17	select COMMON_CLK
18	select DMA_REMAP if MMU
19	select GENERIC_ATOMIC64
20	select GENERIC_IRQ_SHOW
21	select GENERIC_PCI_IOMAP
22	select GENERIC_SCHED_CLOCK
23	select GENERIC_STRNCPY_FROM_USER if KASAN
24	select HAVE_ARCH_AUDITSYSCALL
25	select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL
26	select HAVE_ARCH_KASAN if MMU && !XIP_KERNEL
27	select HAVE_ARCH_SECCOMP_FILTER
28	select HAVE_ARCH_TRACEHOOK
29	select HAVE_DEBUG_KMEMLEAK
30	select HAVE_DMA_CONTIGUOUS
31	select HAVE_EXIT_THREAD
32	select HAVE_FUNCTION_TRACER
33	select HAVE_FUTEX_CMPXCHG if !MMU
34	select HAVE_HW_BREAKPOINT if PERF_EVENTS
35	select HAVE_IRQ_TIME_ACCOUNTING
36	select HAVE_PCI
37	select HAVE_PERF_EVENTS
38	select HAVE_STACKPROTECTOR
39	select HAVE_SYSCALL_TRACEPOINTS
40	select IRQ_DOMAIN
41	select MODULES_USE_ELF_RELA
42	select PERF_USE_VMALLOC
43	select SET_FS
44	select VIRT_TO_BUS
45	help
46	  Xtensa processors are 32-bit RISC machines designed by Tensilica
47	  primarily for embedded systems.  These processors are both
48	  configurable and extensible.  The Linux port to the Xtensa
49	  architecture supports all processor configurations and extensions,
50	  with reasonable minimum requirements.  The Xtensa Linux project has
51	  a home page at <http://www.linux-xtensa.org/>.
52
53config GENERIC_HWEIGHT
54	def_bool y
55
56config ARCH_HAS_ILOG2_U32
57	def_bool n
58
59config ARCH_HAS_ILOG2_U64
60	def_bool n
61
62config NO_IOPORT_MAP
63	def_bool n
64
65config HZ
66	int
67	default 100
68
69config LOCKDEP_SUPPORT
70	def_bool y
71
72config STACKTRACE_SUPPORT
73	def_bool y
74
75config TRACE_IRQFLAGS_SUPPORT
76	def_bool y
77
78config MMU
79	def_bool n
80
81config HAVE_XTENSA_GPIO32
82	def_bool n
83
84config KASAN_SHADOW_OFFSET
85	hex
86	default 0x6e400000
87
88config CPU_BIG_ENDIAN
89	def_bool $(success,test "$(shell,echo __XTENSA_EB__ | $(CC) -E -P -)" = 1)
90
91config CPU_LITTLE_ENDIAN
92	def_bool !CPU_BIG_ENDIAN
93
94menu "Processor type and features"
95
96choice
97	prompt "Xtensa Processor Configuration"
98	default XTENSA_VARIANT_FSF
99
100config XTENSA_VARIANT_FSF
101	bool "fsf - default (not generic) configuration"
102	select MMU
103
104config XTENSA_VARIANT_DC232B
105	bool "dc232b - Diamond 232L Standard Core Rev.B (LE)"
106	select MMU
107	select HAVE_XTENSA_GPIO32
108	help
109	  This variant refers to Tensilica's Diamond 232L Standard core Rev.B (LE).
110
111config XTENSA_VARIANT_DC233C
112	bool "dc233c - Diamond 233L Standard Core Rev.C (LE)"
113	select MMU
114	select HAVE_XTENSA_GPIO32
115	help
116	  This variant refers to Tensilica's Diamond 233L Standard core Rev.C (LE).
117
118config XTENSA_VARIANT_CUSTOM
119	bool "Custom Xtensa processor configuration"
120	select HAVE_XTENSA_GPIO32
121	help
122	  Select this variant to use a custom Xtensa processor configuration.
123	  You will be prompted for a processor variant CORENAME.
124endchoice
125
126config XTENSA_VARIANT_CUSTOM_NAME
127	string "Xtensa Processor Custom Core Variant Name"
128	depends on XTENSA_VARIANT_CUSTOM
129	help
130	  Provide the name of a custom Xtensa processor variant.
131	  This CORENAME selects arch/xtensa/variant/CORENAME.
132	  Don't forget you have to select MMU if you have one.
133
134config XTENSA_VARIANT_NAME
135	string
136	default "dc232b"			if XTENSA_VARIANT_DC232B
137	default "dc233c"			if XTENSA_VARIANT_DC233C
138	default "fsf"				if XTENSA_VARIANT_FSF
139	default XTENSA_VARIANT_CUSTOM_NAME	if XTENSA_VARIANT_CUSTOM
140
141config XTENSA_VARIANT_MMU
142	bool "Core variant has a Full MMU (TLB, Pages, Protection, etc)"
143	depends on XTENSA_VARIANT_CUSTOM
144	default y
145	select MMU
146	help
147	  Build a Conventional Kernel with full MMU support,
148	  ie: it supports a TLB with auto-loading, page protection.
149
150config XTENSA_VARIANT_HAVE_PERF_EVENTS
151	bool "Core variant has Performance Monitor Module"
152	depends on XTENSA_VARIANT_CUSTOM
153	default n
154	help
155	  Enable if core variant has Performance Monitor Module with
156	  External Registers Interface.
157
158	  If unsure, say N.
159
160config XTENSA_FAKE_NMI
161	bool "Treat PMM IRQ as NMI"
162	depends on XTENSA_VARIANT_HAVE_PERF_EVENTS
163	default n
164	help
165	  If PMM IRQ is the only IRQ at EXCM level it is safe to
166	  treat it as NMI, which improves accuracy of profiling.
167
168	  If there are other interrupts at or above PMM IRQ priority level
169	  but not above the EXCM level, PMM IRQ still may be treated as NMI,
170	  but only if these IRQs are not used. There will be a build warning
171	  saying that this is not safe, and a bugcheck if one of these IRQs
172	  actually fire.
173
174	  If unsure, say N.
175
176config XTENSA_UNALIGNED_USER
177	bool "Unaligned memory access in user space"
178	help
179	  The Xtensa architecture currently does not handle unaligned
180	  memory accesses in hardware but through an exception handler.
181	  Per default, unaligned memory accesses are disabled in user space.
182
183	  Say Y here to enable unaligned memory access in user space.
184
185config HAVE_SMP
186	bool "System Supports SMP (MX)"
187	depends on XTENSA_VARIANT_CUSTOM
188	select XTENSA_MX
189	help
190	  This option is used to indicate that the system-on-a-chip (SOC)
191	  supports Multiprocessing. Multiprocessor support implemented above
192	  the CPU core definition and currently needs to be selected manually.
193
194	  Multiprocessor support is implemented with external cache and
195	  interrupt controllers.
196
197	  The MX interrupt distributer adds Interprocessor Interrupts
198	  and causes the IRQ numbers to be increased by 4 for devices
199	  like the open cores ethernet driver and the serial interface.
200
201	  You still have to select "Enable SMP" to enable SMP on this SOC.
202
203config SMP
204	bool "Enable Symmetric multi-processing support"
205	depends on HAVE_SMP
206	select GENERIC_SMP_IDLE_THREAD
207	help
208	  Enabled SMP Software; allows more than one CPU/CORE
209	  to be activated during startup.
210
211config NR_CPUS
212	depends on SMP
213	int "Maximum number of CPUs (2-32)"
214	range 2 32
215	default "4"
216
217config HOTPLUG_CPU
218	bool "Enable CPU hotplug support"
219	depends on SMP
220	help
221	  Say Y here to allow turning CPUs off and on. CPUs can be
222	  controlled through /sys/devices/system/cpu.
223
224	  Say N if you want to disable CPU hotplug.
225
226config FAST_SYSCALL_XTENSA
227	bool "Enable fast atomic syscalls"
228	default n
229	help
230	  fast_syscall_xtensa is a syscall that can make atomic operations
231	  on UP kernel when processor has no s32c1i support.
232
233	  This syscall is deprecated. It may have issues when called with
234	  invalid arguments. It is provided only for backwards compatibility.
235	  Only enable it if your userspace software requires it.
236
237	  If unsure, say N.
238
239config FAST_SYSCALL_SPILL_REGISTERS
240	bool "Enable spill registers syscall"
241	default n
242	help
243	  fast_syscall_spill_registers is a syscall that spills all active
244	  register windows of a calling userspace task onto its stack.
245
246	  This syscall is deprecated. It may have issues when called with
247	  invalid arguments. It is provided only for backwards compatibility.
248	  Only enable it if your userspace software requires it.
249
250	  If unsure, say N.
251
252config USER_ABI_CALL0
253	bool
254
255choice
256	prompt "Userspace ABI"
257	default USER_ABI_DEFAULT
258	help
259	  Select supported userspace ABI.
260
261	  If unsure, choose the default ABI.
262
263config USER_ABI_DEFAULT
264	bool "Default ABI only"
265	help
266	  Assume default userspace ABI. For XEA2 cores it is windowed ABI.
267	  call0 ABI binaries may be run on such kernel, but signal delivery
268	  will not work correctly for them.
269
270config USER_ABI_CALL0_ONLY
271	bool "Call0 ABI only"
272	select USER_ABI_CALL0
273	help
274	  Select this option to support only call0 ABI in userspace.
275	  Windowed ABI binaries will crash with a segfault caused by
276	  an illegal instruction exception on the first 'entry' opcode.
277
278	  Choose this option if you're planning to run only user code
279	  built with call0 ABI.
280
281config USER_ABI_CALL0_PROBE
282	bool "Support both windowed and call0 ABI by probing"
283	select USER_ABI_CALL0
284	help
285	  Select this option to support both windowed and call0 userspace
286	  ABIs. When enabled all processes are started with PS.WOE disabled
287	  and a fast user exception handler for an illegal instruction is
288	  used to turn on PS.WOE bit on the first 'entry' opcode executed by
289	  the userspace.
290
291	  This option should be enabled for the kernel that must support
292	  both call0 and windowed ABIs in userspace at the same time.
293
294	  Note that Xtensa ISA does not guarantee that entry opcode will
295	  raise an illegal instruction exception on cores with XEA2 when
296	  PS.WOE is disabled, check whether the target core supports it.
297
298endchoice
299
300endmenu
301
302config XTENSA_CALIBRATE_CCOUNT
303	def_bool n
304	help
305	  On some platforms (XT2000, for example), the CPU clock rate can
306	  vary.  The frequency can be determined, however, by measuring
307	  against a well known, fixed frequency, such as an UART oscillator.
308
309config SERIAL_CONSOLE
310	def_bool n
311
312config PLATFORM_HAVE_XIP
313	def_bool n
314
315menu "Platform options"
316
317choice
318	prompt "Xtensa System Type"
319	default XTENSA_PLATFORM_ISS
320
321config XTENSA_PLATFORM_ISS
322	bool "ISS"
323	select XTENSA_CALIBRATE_CCOUNT
324	select SERIAL_CONSOLE
325	help
326	  ISS is an acronym for Tensilica's Instruction Set Simulator.
327
328config XTENSA_PLATFORM_XT2000
329	bool "XT2000"
330	select HAVE_IDE
331	help
332	  XT2000 is the name of Tensilica's feature-rich emulation platform.
333	  This hardware is capable of running a full Linux distribution.
334
335config XTENSA_PLATFORM_XTFPGA
336	bool "XTFPGA"
337	select ETHOC if ETHERNET
338	select PLATFORM_WANT_DEFAULT_MEM if !MMU
339	select SERIAL_CONSOLE
340	select XTENSA_CALIBRATE_CCOUNT
341	select PLATFORM_HAVE_XIP
342	help
343	  XTFPGA is the name of Tensilica board family (LX60, LX110, LX200, ML605).
344	  This hardware is capable of running a full Linux distribution.
345
346endchoice
347
348config PLATFORM_NR_IRQS
349	int
350	default 3 if XTENSA_PLATFORM_XT2000
351	default 0
352
353config XTENSA_CPU_CLOCK
354	int "CPU clock rate [MHz]"
355	depends on !XTENSA_CALIBRATE_CCOUNT
356	default 16
357
358config GENERIC_CALIBRATE_DELAY
359	bool "Auto calibration of the BogoMIPS value"
360	help
361	  The BogoMIPS value can easily be derived from the CPU frequency.
362
363config CMDLINE_BOOL
364	bool "Default bootloader kernel arguments"
365
366config CMDLINE
367	string "Initial kernel command string"
368	depends on CMDLINE_BOOL
369	default "console=ttyS0,38400 root=/dev/ram"
370	help
371	  On some architectures (EBSA110 and CATS), there is currently no way
372	  for the boot loader to pass arguments to the kernel. For these
373	  architectures, you should supply some command-line options at build
374	  time by entering them here. As a minimum, you should specify the
375	  memory size and the root device (e.g., mem=64M root=/dev/nfs).
376
377config USE_OF
378	bool "Flattened Device Tree support"
379	select OF
380	select OF_EARLY_FLATTREE
381	help
382	  Include support for flattened device tree machine descriptions.
383
384config BUILTIN_DTB_SOURCE
385	string "DTB to build into the kernel image"
386	depends on OF
387
388config PARSE_BOOTPARAM
389	bool "Parse bootparam block"
390	default y
391	help
392	  Parse parameters passed to the kernel from the bootloader. It may
393	  be disabled if the kernel is known to run without the bootloader.
394
395	  If unsure, say Y.
396
397choice
398	prompt "Semihosting interface"
399	default XTENSA_SIMCALL_ISS
400	depends on XTENSA_PLATFORM_ISS
401	help
402	  Choose semihosting interface that will be used for serial port,
403	  block device and networking.
404
405config XTENSA_SIMCALL_ISS
406	bool "simcall"
407	help
408	  Use simcall instruction. simcall is only available on simulators,
409	  it does nothing on hardware.
410
411config XTENSA_SIMCALL_GDBIO
412	bool "GDBIO"
413	help
414	  Use break instruction. It is available on real hardware when GDB
415	  is attached to it via JTAG.
416
417endchoice
418
419config BLK_DEV_SIMDISK
420	tristate "Host file-based simulated block device support"
421	default n
422	depends on XTENSA_PLATFORM_ISS && BLOCK
423	help
424	  Create block devices that map to files in the host file system.
425	  Device binding to host file may be changed at runtime via proc
426	  interface provided the device is not in use.
427
428config BLK_DEV_SIMDISK_COUNT
429	int "Number of host file-based simulated block devices"
430	range 1 10
431	depends on BLK_DEV_SIMDISK
432	default 2
433	help
434	  This is the default minimal number of created block devices.
435	  Kernel/module parameter 'simdisk_count' may be used to change this
436	  value at runtime. More file names (but no more than 10) may be
437	  specified as parameters, simdisk_count grows accordingly.
438
439config SIMDISK0_FILENAME
440	string "Host filename for the first simulated device"
441	depends on BLK_DEV_SIMDISK = y
442	default ""
443	help
444	  Attach a first simdisk to a host file. Conventionally, this file
445	  contains a root file system.
446
447config SIMDISK1_FILENAME
448	string "Host filename for the second simulated device"
449	depends on BLK_DEV_SIMDISK = y && BLK_DEV_SIMDISK_COUNT != 1
450	default ""
451	help
452	  Another simulated disk in a host file for a buildroot-independent
453	  storage.
454
455config XTFPGA_LCD
456	bool "Enable XTFPGA LCD driver"
457	depends on XTENSA_PLATFORM_XTFPGA
458	default n
459	help
460	  There's a 2x16 LCD on most of XTFPGA boards, kernel may output
461	  progress messages there during bootup/shutdown. It may be useful
462	  during board bringup.
463
464	  If unsure, say N.
465
466config XTFPGA_LCD_BASE_ADDR
467	hex "XTFPGA LCD base address"
468	depends on XTFPGA_LCD
469	default "0x0d0c0000"
470	help
471	  Base address of the LCD controller inside KIO region.
472	  Different boards from XTFPGA family have LCD controller at different
473	  addresses. Please consult prototyping user guide for your board for
474	  the correct address. Wrong address here may lead to hardware lockup.
475
476config XTFPGA_LCD_8BIT_ACCESS
477	bool "Use 8-bit access to XTFPGA LCD"
478	depends on XTFPGA_LCD
479	default n
480	help
481	  LCD may be connected with 4- or 8-bit interface, 8-bit access may
482	  only be used with 8-bit interface. Please consult prototyping user
483	  guide for your board for the correct interface width.
484
485comment "Kernel memory layout"
486
487config INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
488	bool "Initialize Xtensa MMU inside the Linux kernel code"
489	depends on !XTENSA_VARIANT_FSF && !XTENSA_VARIANT_DC232B
490	default y if XTENSA_VARIANT_DC233C || XTENSA_VARIANT_CUSTOM
491	help
492	  Earlier version initialized the MMU in the exception vector
493	  before jumping to _startup in head.S and had an advantage that
494	  it was possible to place a software breakpoint at 'reset' and
495	  then enter your normal kernel breakpoints once the MMU was mapped
496	  to the kernel mappings (0XC0000000).
497
498	  This unfortunately won't work for U-Boot and likely also won't
499	  work for using KEXEC to have a hot kernel ready for doing a
500	  KDUMP.
501
502	  So now the MMU is initialized in head.S but it's necessary to
503	  use hardware breakpoints (gdb 'hbreak' cmd) to break at _startup.
504	  xt-gdb can't place a Software Breakpoint in the  0XD region prior
505	  to mapping the MMU and after mapping even if the area of low memory
506	  was mapped gdb wouldn't remove the breakpoint on hitting it as the
507	  PC wouldn't match. Since Hardware Breakpoints are recommended for
508	  Linux configurations it seems reasonable to just assume they exist
509	  and leave this older mechanism for unfortunate souls that choose
510	  not to follow Tensilica's recommendation.
511
512	  Selecting this will cause U-Boot to set the KERNEL Load and Entry
513	  address at 0x00003000 instead of the mapped std of 0xD0003000.
514
515	  If in doubt, say Y.
516
517config XIP_KERNEL
518	bool "Kernel Execute-In-Place from ROM"
519	depends on PLATFORM_HAVE_XIP
520	help
521	  Execute-In-Place allows the kernel to run from non-volatile storage
522	  directly addressable by the CPU, such as NOR flash. This saves RAM
523	  space since the text section of the kernel is not loaded from flash
524	  to RAM. Read-write sections, such as the data section and stack,
525	  are still copied to RAM. The XIP kernel is not compressed since
526	  it has to run directly from flash, so it will take more space to
527	  store it. The flash address used to link the kernel object files,
528	  and for storing it, is configuration dependent. Therefore, if you
529	  say Y here, you must know the proper physical address where to
530	  store the kernel image depending on your own flash memory usage.
531
532	  Also note that the make target becomes "make xipImage" rather than
533	  "make Image" or "make uImage". The final kernel binary to put in
534	  ROM memory will be arch/xtensa/boot/xipImage.
535
536	  If unsure, say N.
537
538config MEMMAP_CACHEATTR
539	hex "Cache attributes for the memory address space"
540	depends on !MMU
541	default 0x22222222
542	help
543	  These cache attributes are set up for noMMU systems. Each hex digit
544	  specifies cache attributes for the corresponding 512MB memory
545	  region: bits 0..3 -- for addresses 0x00000000..0x1fffffff,
546	  bits 4..7 -- for addresses 0x20000000..0x3fffffff, and so on.
547
548	  Cache attribute values are specific for the MMU type.
549	  For region protection MMUs:
550	    1: WT cached,
551	    2: cache bypass,
552	    4: WB cached,
553	    f: illegal.
554	  For full MMU:
555	    bit 0: executable,
556	    bit 1: writable,
557	    bits 2..3:
558	      0: cache bypass,
559	      1: WB cache,
560	      2: WT cache,
561	      3: special (c and e are illegal, f is reserved).
562	  For MPU:
563	    0: illegal,
564	    1: WB cache,
565	    2: WB, no-write-allocate cache,
566	    3: WT cache,
567	    4: cache bypass.
568
569config KSEG_PADDR
570	hex "Physical address of the KSEG mapping"
571	depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX && MMU
572	default 0x00000000
573	help
574	  This is the physical address where KSEG is mapped. Please refer to
575	  the chosen KSEG layout help for the required address alignment.
576	  Unpacked kernel image (including vectors) must be located completely
577	  within KSEG.
578	  Physical memory below this address is not available to linux.
579
580	  If unsure, leave the default value here.
581
582config KERNEL_VIRTUAL_ADDRESS
583	hex "Kernel virtual address"
584	depends on MMU && XIP_KERNEL
585	default 0xd0003000
586	help
587	  This is the virtual address where the XIP kernel is mapped.
588	  XIP kernel may be mapped into KSEG or KIO region, virtual address
589	  provided here must match kernel load address provided in
590	  KERNEL_LOAD_ADDRESS.
591
592config KERNEL_LOAD_ADDRESS
593	hex "Kernel load address"
594	default 0x60003000 if !MMU
595	default 0x00003000 if MMU && INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
596	default 0xd0003000 if MMU && !INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
597	help
598	  This is the address where the kernel is loaded.
599	  It is virtual address for MMUv2 configurations and physical address
600	  for all other configurations.
601
602	  If unsure, leave the default value here.
603
604choice
605	prompt "Relocatable vectors location"
606	default XTENSA_VECTORS_IN_TEXT
607	help
608	  Choose whether relocatable vectors are merged into the kernel .text
609	  or placed separately at runtime. This option does not affect
610	  configurations without VECBASE register where vectors are always
611	  placed at their hardware-defined locations.
612
613config XTENSA_VECTORS_IN_TEXT
614	bool "Merge relocatable vectors into kernel text"
615	depends on !MTD_XIP
616	help
617	  This option puts relocatable vectors into the kernel .text section
618	  with proper alignment.
619	  This is a safe choice for most configurations.
620
621config XTENSA_VECTORS_SEPARATE
622	bool "Put relocatable vectors at fixed address"
623	help
624	  This option puts relocatable vectors at specific virtual address.
625	  Vectors are merged with the .init data in the kernel image and
626	  are copied into their designated location during kernel startup.
627	  Use it to put vectors into IRAM or out of FLASH on kernels with
628	  XIP-aware MTD support.
629
630endchoice
631
632config VECTORS_ADDR
633	hex "Kernel vectors virtual address"
634	default 0x00000000
635	depends on XTENSA_VECTORS_SEPARATE
636	help
637	  This is the virtual address of the (relocatable) vectors base.
638	  It must be within KSEG if MMU is used.
639
640config XIP_DATA_ADDR
641	hex "XIP kernel data virtual address"
642	depends on XIP_KERNEL
643	default 0x00000000
644	help
645	  This is the virtual address where XIP kernel data is copied.
646	  It must be within KSEG if MMU is used.
647
648config PLATFORM_WANT_DEFAULT_MEM
649	def_bool n
650
651config DEFAULT_MEM_START
652	hex
653	prompt "PAGE_OFFSET/PHYS_OFFSET" if !MMU && PLATFORM_WANT_DEFAULT_MEM
654	default 0x60000000 if PLATFORM_WANT_DEFAULT_MEM
655	default 0x00000000
656	help
657	  This is the base address used for both PAGE_OFFSET and PHYS_OFFSET
658	  in noMMU configurations.
659
660	  If unsure, leave the default value here.
661
662choice
663	prompt "KSEG layout"
664	depends on MMU
665	default XTENSA_KSEG_MMU_V2
666
667config XTENSA_KSEG_MMU_V2
668	bool "MMUv2: 128MB cached + 128MB uncached"
669	help
670	  MMUv2 compatible kernel memory map: TLB way 5 maps 128MB starting
671	  at KSEG_PADDR to 0xd0000000 with cache and to 0xd8000000
672	  without cache.
673	  KSEG_PADDR must be aligned to 128MB.
674
675config XTENSA_KSEG_256M
676	bool "256MB cached + 256MB uncached"
677	depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
678	help
679	  TLB way 6 maps 256MB starting at KSEG_PADDR to 0xb0000000
680	  with cache and to 0xc0000000 without cache.
681	  KSEG_PADDR must be aligned to 256MB.
682
683config XTENSA_KSEG_512M
684	bool "512MB cached + 512MB uncached"
685	depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
686	help
687	  TLB way 6 maps 512MB starting at KSEG_PADDR to 0xa0000000
688	  with cache and to 0xc0000000 without cache.
689	  KSEG_PADDR must be aligned to 256MB.
690
691endchoice
692
693config HIGHMEM
694	bool "High Memory Support"
695	depends on MMU
696	select KMAP_LOCAL
697	help
698	  Linux can use the full amount of RAM in the system by
699	  default. However, the default MMUv2 setup only maps the
700	  lowermost 128 MB of memory linearly to the areas starting
701	  at 0xd0000000 (cached) and 0xd8000000 (uncached).
702	  When there are more than 128 MB memory in the system not
703	  all of it can be "permanently mapped" by the kernel.
704	  The physical memory that's not permanently mapped is called
705	  "high memory".
706
707	  If you are compiling a kernel which will never run on a
708	  machine with more than 128 MB total physical RAM, answer
709	  N here.
710
711	  If unsure, say Y.
712
713config FORCE_MAX_ZONEORDER
714	int "Maximum zone order"
715	default "11"
716	help
717	  The kernel memory allocator divides physically contiguous memory
718	  blocks into "zones", where each zone is a power of two number of
719	  pages.  This option selects the largest power of two that the kernel
720	  keeps in the memory allocator.  If you need to allocate very large
721	  blocks of physically contiguous memory, then you may need to
722	  increase this value.
723
724	  This config option is actually maximum order plus one. For example,
725	  a value of 11 means that the largest free memory block is 2^10 pages.
726
727endmenu
728
729menu "Power management options"
730
731source "kernel/power/Kconfig"
732
733endmenu
734