1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Xen time implementation. 4 * 5 * This is implemented in terms of a clocksource driver which uses 6 * the hypervisor clock as a nanosecond timebase, and a clockevent 7 * driver which uses the hypervisor's timer mechanism. 8 * 9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 10 */ 11 #include <linux/kernel.h> 12 #include <linux/interrupt.h> 13 #include <linux/clocksource.h> 14 #include <linux/clockchips.h> 15 #include <linux/gfp.h> 16 #include <linux/slab.h> 17 #include <linux/pvclock_gtod.h> 18 #include <linux/timekeeper_internal.h> 19 20 #include <asm/pvclock.h> 21 #include <asm/xen/hypervisor.h> 22 #include <asm/xen/hypercall.h> 23 24 #include <xen/events.h> 25 #include <xen/features.h> 26 #include <xen/interface/xen.h> 27 #include <xen/interface/vcpu.h> 28 29 #include "xen-ops.h" 30 31 /* Xen may fire a timer up to this many ns early */ 32 #define TIMER_SLOP 100000 33 34 /* Get the TSC speed from Xen */ 35 static unsigned long xen_tsc_khz(void) 36 { 37 struct pvclock_vcpu_time_info *info = 38 &HYPERVISOR_shared_info->vcpu_info[0].time; 39 40 return pvclock_tsc_khz(info); 41 } 42 43 u64 xen_clocksource_read(void) 44 { 45 struct pvclock_vcpu_time_info *src; 46 u64 ret; 47 48 preempt_disable_notrace(); 49 src = &__this_cpu_read(xen_vcpu)->time; 50 ret = pvclock_clocksource_read(src); 51 preempt_enable_notrace(); 52 return ret; 53 } 54 55 static u64 xen_clocksource_get_cycles(struct clocksource *cs) 56 { 57 return xen_clocksource_read(); 58 } 59 60 static void xen_read_wallclock(struct timespec64 *ts) 61 { 62 struct shared_info *s = HYPERVISOR_shared_info; 63 struct pvclock_wall_clock *wall_clock = &(s->wc); 64 struct pvclock_vcpu_time_info *vcpu_time; 65 66 vcpu_time = &get_cpu_var(xen_vcpu)->time; 67 pvclock_read_wallclock(wall_clock, vcpu_time, ts); 68 put_cpu_var(xen_vcpu); 69 } 70 71 static void xen_get_wallclock(struct timespec64 *now) 72 { 73 xen_read_wallclock(now); 74 } 75 76 static int xen_set_wallclock(const struct timespec64 *now) 77 { 78 return -ENODEV; 79 } 80 81 static int xen_pvclock_gtod_notify(struct notifier_block *nb, 82 unsigned long was_set, void *priv) 83 { 84 /* Protected by the calling core code serialization */ 85 static struct timespec64 next_sync; 86 87 struct xen_platform_op op; 88 struct timespec64 now; 89 struct timekeeper *tk = priv; 90 static bool settime64_supported = true; 91 int ret; 92 93 now.tv_sec = tk->xtime_sec; 94 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 95 96 /* 97 * We only take the expensive HV call when the clock was set 98 * or when the 11 minutes RTC synchronization time elapsed. 99 */ 100 if (!was_set && timespec64_compare(&now, &next_sync) < 0) 101 return NOTIFY_OK; 102 103 again: 104 if (settime64_supported) { 105 op.cmd = XENPF_settime64; 106 op.u.settime64.mbz = 0; 107 op.u.settime64.secs = now.tv_sec; 108 op.u.settime64.nsecs = now.tv_nsec; 109 op.u.settime64.system_time = xen_clocksource_read(); 110 } else { 111 op.cmd = XENPF_settime32; 112 op.u.settime32.secs = now.tv_sec; 113 op.u.settime32.nsecs = now.tv_nsec; 114 op.u.settime32.system_time = xen_clocksource_read(); 115 } 116 117 ret = HYPERVISOR_platform_op(&op); 118 119 if (ret == -ENOSYS && settime64_supported) { 120 settime64_supported = false; 121 goto again; 122 } 123 if (ret < 0) 124 return NOTIFY_BAD; 125 126 /* 127 * Move the next drift compensation time 11 minutes 128 * ahead. That's emulating the sync_cmos_clock() update for 129 * the hardware RTC. 130 */ 131 next_sync = now; 132 next_sync.tv_sec += 11 * 60; 133 134 return NOTIFY_OK; 135 } 136 137 static struct notifier_block xen_pvclock_gtod_notifier = { 138 .notifier_call = xen_pvclock_gtod_notify, 139 }; 140 141 static struct clocksource xen_clocksource __read_mostly = { 142 .name = "xen", 143 .rating = 400, 144 .read = xen_clocksource_get_cycles, 145 .mask = ~0, 146 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 147 }; 148 149 /* 150 Xen clockevent implementation 151 152 Xen has two clockevent implementations: 153 154 The old timer_op one works with all released versions of Xen prior 155 to version 3.0.4. This version of the hypervisor provides a 156 single-shot timer with nanosecond resolution. However, sharing the 157 same event channel is a 100Hz tick which is delivered while the 158 vcpu is running. We don't care about or use this tick, but it will 159 cause the core time code to think the timer fired too soon, and 160 will end up resetting it each time. It could be filtered, but 161 doing so has complications when the ktime clocksource is not yet 162 the xen clocksource (ie, at boot time). 163 164 The new vcpu_op-based timer interface allows the tick timer period 165 to be changed or turned off. The tick timer is not useful as a 166 periodic timer because events are only delivered to running vcpus. 167 The one-shot timer can report when a timeout is in the past, so 168 set_next_event is capable of returning -ETIME when appropriate. 169 This interface is used when available. 170 */ 171 172 173 /* 174 Get a hypervisor absolute time. In theory we could maintain an 175 offset between the kernel's time and the hypervisor's time, and 176 apply that to a kernel's absolute timeout. Unfortunately the 177 hypervisor and kernel times can drift even if the kernel is using 178 the Xen clocksource, because ntp can warp the kernel's clocksource. 179 */ 180 static s64 get_abs_timeout(unsigned long delta) 181 { 182 return xen_clocksource_read() + delta; 183 } 184 185 static int xen_timerop_shutdown(struct clock_event_device *evt) 186 { 187 /* cancel timeout */ 188 HYPERVISOR_set_timer_op(0); 189 190 return 0; 191 } 192 193 static int xen_timerop_set_next_event(unsigned long delta, 194 struct clock_event_device *evt) 195 { 196 WARN_ON(!clockevent_state_oneshot(evt)); 197 198 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 199 BUG(); 200 201 /* We may have missed the deadline, but there's no real way of 202 knowing for sure. If the event was in the past, then we'll 203 get an immediate interrupt. */ 204 205 return 0; 206 } 207 208 static const struct clock_event_device xen_timerop_clockevent = { 209 .name = "xen", 210 .features = CLOCK_EVT_FEAT_ONESHOT, 211 212 .max_delta_ns = 0xffffffff, 213 .max_delta_ticks = 0xffffffff, 214 .min_delta_ns = TIMER_SLOP, 215 .min_delta_ticks = TIMER_SLOP, 216 217 .mult = 1, 218 .shift = 0, 219 .rating = 500, 220 221 .set_state_shutdown = xen_timerop_shutdown, 222 .set_next_event = xen_timerop_set_next_event, 223 }; 224 225 static int xen_vcpuop_shutdown(struct clock_event_device *evt) 226 { 227 int cpu = smp_processor_id(); 228 229 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu), 230 NULL) || 231 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 232 NULL)) 233 BUG(); 234 235 return 0; 236 } 237 238 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt) 239 { 240 int cpu = smp_processor_id(); 241 242 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 243 NULL)) 244 BUG(); 245 246 return 0; 247 } 248 249 static int xen_vcpuop_set_next_event(unsigned long delta, 250 struct clock_event_device *evt) 251 { 252 int cpu = smp_processor_id(); 253 struct vcpu_set_singleshot_timer single; 254 int ret; 255 256 WARN_ON(!clockevent_state_oneshot(evt)); 257 258 single.timeout_abs_ns = get_abs_timeout(delta); 259 /* Get an event anyway, even if the timeout is already expired */ 260 single.flags = 0; 261 262 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu), 263 &single); 264 BUG_ON(ret != 0); 265 266 return ret; 267 } 268 269 static const struct clock_event_device xen_vcpuop_clockevent = { 270 .name = "xen", 271 .features = CLOCK_EVT_FEAT_ONESHOT, 272 273 .max_delta_ns = 0xffffffff, 274 .max_delta_ticks = 0xffffffff, 275 .min_delta_ns = TIMER_SLOP, 276 .min_delta_ticks = TIMER_SLOP, 277 278 .mult = 1, 279 .shift = 0, 280 .rating = 500, 281 282 .set_state_shutdown = xen_vcpuop_shutdown, 283 .set_state_oneshot = xen_vcpuop_set_oneshot, 284 .set_next_event = xen_vcpuop_set_next_event, 285 }; 286 287 static const struct clock_event_device *xen_clockevent = 288 &xen_timerop_clockevent; 289 290 struct xen_clock_event_device { 291 struct clock_event_device evt; 292 char name[16]; 293 }; 294 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 }; 295 296 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 297 { 298 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt); 299 irqreturn_t ret; 300 301 ret = IRQ_NONE; 302 if (evt->event_handler) { 303 evt->event_handler(evt); 304 ret = IRQ_HANDLED; 305 } 306 307 return ret; 308 } 309 310 void xen_teardown_timer(int cpu) 311 { 312 struct clock_event_device *evt; 313 evt = &per_cpu(xen_clock_events, cpu).evt; 314 315 if (evt->irq >= 0) { 316 unbind_from_irqhandler(evt->irq, NULL); 317 evt->irq = -1; 318 } 319 } 320 321 void xen_setup_timer(int cpu) 322 { 323 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu); 324 struct clock_event_device *evt = &xevt->evt; 325 int irq; 326 327 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu); 328 if (evt->irq >= 0) 329 xen_teardown_timer(cpu); 330 331 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 332 333 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu); 334 335 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 336 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER| 337 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME, 338 xevt->name, NULL); 339 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX); 340 341 memcpy(evt, xen_clockevent, sizeof(*evt)); 342 343 evt->cpumask = cpumask_of(cpu); 344 evt->irq = irq; 345 } 346 347 348 void xen_setup_cpu_clockevents(void) 349 { 350 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt)); 351 } 352 353 void xen_timer_resume(void) 354 { 355 int cpu; 356 357 pvclock_resume(); 358 359 if (xen_clockevent != &xen_vcpuop_clockevent) 360 return; 361 362 for_each_online_cpu(cpu) { 363 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, 364 xen_vcpu_nr(cpu), NULL)) 365 BUG(); 366 } 367 } 368 369 static const struct pv_time_ops xen_time_ops __initconst = { 370 .sched_clock = xen_clocksource_read, 371 .steal_clock = xen_steal_clock, 372 }; 373 374 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly; 375 376 void xen_save_time_memory_area(void) 377 { 378 struct vcpu_register_time_memory_area t; 379 int ret; 380 381 if (!xen_clock) 382 return; 383 384 t.addr.v = NULL; 385 386 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t); 387 if (ret != 0) 388 pr_notice("Cannot save secondary vcpu_time_info (err %d)", 389 ret); 390 else 391 clear_page(xen_clock); 392 } 393 394 void xen_restore_time_memory_area(void) 395 { 396 struct vcpu_register_time_memory_area t; 397 int ret; 398 399 if (!xen_clock) 400 return; 401 402 t.addr.v = &xen_clock->pvti; 403 404 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t); 405 406 /* 407 * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the 408 * secondary time info with Xen or if we migrated to a host without the 409 * necessary flags. On both of these cases what happens is either 410 * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT 411 * bit set. Userspace checks the latter and if 0, it discards the data 412 * in pvti and fallbacks to a system call for a reliable timestamp. 413 */ 414 if (ret != 0) 415 pr_notice("Cannot restore secondary vcpu_time_info (err %d)", 416 ret); 417 } 418 419 static void xen_setup_vsyscall_time_info(void) 420 { 421 struct vcpu_register_time_memory_area t; 422 struct pvclock_vsyscall_time_info *ti; 423 int ret; 424 425 ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL); 426 if (!ti) 427 return; 428 429 t.addr.v = &ti->pvti; 430 431 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t); 432 if (ret) { 433 pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret); 434 free_page((unsigned long)ti); 435 return; 436 } 437 438 /* 439 * If primary time info had this bit set, secondary should too since 440 * it's the same data on both just different memory regions. But we 441 * still check it in case hypervisor is buggy. 442 */ 443 if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) { 444 t.addr.v = NULL; 445 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 446 0, &t); 447 if (!ret) 448 free_page((unsigned long)ti); 449 450 pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n"); 451 return; 452 } 453 454 xen_clock = ti; 455 pvclock_set_pvti_cpu0_va(xen_clock); 456 457 xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK; 458 } 459 460 static void __init xen_time_init(void) 461 { 462 struct pvclock_vcpu_time_info *pvti; 463 int cpu = smp_processor_id(); 464 struct timespec64 tp; 465 466 /* As Dom0 is never moved, no penalty on using TSC there */ 467 if (xen_initial_domain()) 468 xen_clocksource.rating = 275; 469 470 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC); 471 472 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 473 NULL) == 0) { 474 /* Successfully turned off 100Hz tick, so we have the 475 vcpuop-based timer interface */ 476 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 477 xen_clockevent = &xen_vcpuop_clockevent; 478 } 479 480 /* Set initial system time with full resolution */ 481 xen_read_wallclock(&tp); 482 do_settimeofday64(&tp); 483 484 setup_force_cpu_cap(X86_FEATURE_TSC); 485 486 /* 487 * We check ahead on the primary time info if this 488 * bit is supported hence speeding up Xen clocksource. 489 */ 490 pvti = &__this_cpu_read(xen_vcpu)->time; 491 if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) { 492 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT); 493 xen_setup_vsyscall_time_info(); 494 } 495 496 xen_setup_runstate_info(cpu); 497 xen_setup_timer(cpu); 498 xen_setup_cpu_clockevents(); 499 500 xen_time_setup_guest(); 501 502 if (xen_initial_domain()) 503 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier); 504 } 505 506 void __ref xen_init_time_ops(void) 507 { 508 pv_time_ops = xen_time_ops; 509 510 x86_init.timers.timer_init = xen_time_init; 511 x86_init.timers.setup_percpu_clockev = x86_init_noop; 512 x86_cpuinit.setup_percpu_clockev = x86_init_noop; 513 514 x86_platform.calibrate_tsc = xen_tsc_khz; 515 x86_platform.get_wallclock = xen_get_wallclock; 516 /* Dom0 uses the native method to set the hardware RTC. */ 517 if (!xen_initial_domain()) 518 x86_platform.set_wallclock = xen_set_wallclock; 519 } 520 521 #ifdef CONFIG_XEN_PVHVM 522 static void xen_hvm_setup_cpu_clockevents(void) 523 { 524 int cpu = smp_processor_id(); 525 xen_setup_runstate_info(cpu); 526 /* 527 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence 528 * doing it xen_hvm_cpu_notify (which gets called by smp_init during 529 * early bootup and also during CPU hotplug events). 530 */ 531 xen_setup_cpu_clockevents(); 532 } 533 534 void __init xen_hvm_init_time_ops(void) 535 { 536 /* 537 * vector callback is needed otherwise we cannot receive interrupts 538 * on cpu > 0 and at this point we don't know how many cpus are 539 * available. 540 */ 541 if (!xen_have_vector_callback) 542 return; 543 544 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) { 545 printk(KERN_INFO "Xen doesn't support pvclock on HVM," 546 "disable pv timer\n"); 547 return; 548 } 549 550 pv_time_ops = xen_time_ops; 551 x86_init.timers.setup_percpu_clockev = xen_time_init; 552 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents; 553 554 x86_platform.calibrate_tsc = xen_tsc_khz; 555 x86_platform.get_wallclock = xen_get_wallclock; 556 x86_platform.set_wallclock = xen_set_wallclock; 557 } 558 #endif 559