xref: /linux/arch/x86/xen/time.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Xen time implementation.
3  *
4  * This is implemented in terms of a clocksource driver which uses
5  * the hypervisor clock as a nanosecond timebase, and a clockevent
6  * driver which uses the hypervisor's timer mechanism.
7  *
8  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9  */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
17 #include <linux/slab.h>
18 #include <linux/pvclock_gtod.h>
19 
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28 
29 #include "xen-ops.h"
30 
31 /* Xen may fire a timer up to this many ns early */
32 #define TIMER_SLOP	100000
33 #define NS_PER_TICK	(1000000000LL / HZ)
34 
35 /* runstate info updated by Xen */
36 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
37 
38 /* snapshots of runstate info */
39 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
40 
41 /* unused ns of stolen time */
42 static DEFINE_PER_CPU(u64, xen_residual_stolen);
43 
44 /* return an consistent snapshot of 64-bit time/counter value */
45 static u64 get64(const u64 *p)
46 {
47 	u64 ret;
48 
49 	if (BITS_PER_LONG < 64) {
50 		u32 *p32 = (u32 *)p;
51 		u32 h, l;
52 
53 		/*
54 		 * Read high then low, and then make sure high is
55 		 * still the same; this will only loop if low wraps
56 		 * and carries into high.
57 		 * XXX some clean way to make this endian-proof?
58 		 */
59 		do {
60 			h = p32[1];
61 			barrier();
62 			l = p32[0];
63 			barrier();
64 		} while (p32[1] != h);
65 
66 		ret = (((u64)h) << 32) | l;
67 	} else
68 		ret = *p;
69 
70 	return ret;
71 }
72 
73 /*
74  * Runstate accounting
75  */
76 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
77 {
78 	u64 state_time;
79 	struct vcpu_runstate_info *state;
80 
81 	BUG_ON(preemptible());
82 
83 	state = this_cpu_ptr(&xen_runstate);
84 
85 	/*
86 	 * The runstate info is always updated by the hypervisor on
87 	 * the current CPU, so there's no need to use anything
88 	 * stronger than a compiler barrier when fetching it.
89 	 */
90 	do {
91 		state_time = get64(&state->state_entry_time);
92 		barrier();
93 		*res = *state;
94 		barrier();
95 	} while (get64(&state->state_entry_time) != state_time);
96 }
97 
98 /* return true when a vcpu could run but has no real cpu to run on */
99 bool xen_vcpu_stolen(int vcpu)
100 {
101 	return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
102 }
103 
104 void xen_setup_runstate_info(int cpu)
105 {
106 	struct vcpu_register_runstate_memory_area area;
107 
108 	area.addr.v = &per_cpu(xen_runstate, cpu);
109 
110 	if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
111 			       cpu, &area))
112 		BUG();
113 }
114 
115 static void do_stolen_accounting(void)
116 {
117 	struct vcpu_runstate_info state;
118 	struct vcpu_runstate_info *snap;
119 	s64 runnable, offline, stolen;
120 	cputime_t ticks;
121 
122 	get_runstate_snapshot(&state);
123 
124 	WARN_ON(state.state != RUNSTATE_running);
125 
126 	snap = this_cpu_ptr(&xen_runstate_snapshot);
127 
128 	/* work out how much time the VCPU has not been runn*ing*  */
129 	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130 	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131 
132 	*snap = state;
133 
134 	/* Add the appropriate number of ticks of stolen time,
135 	   including any left-overs from last time. */
136 	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
137 
138 	if (stolen < 0)
139 		stolen = 0;
140 
141 	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142 	__this_cpu_write(xen_residual_stolen, stolen);
143 	account_steal_ticks(ticks);
144 }
145 
146 /* Get the TSC speed from Xen */
147 static unsigned long xen_tsc_khz(void)
148 {
149 	struct pvclock_vcpu_time_info *info =
150 		&HYPERVISOR_shared_info->vcpu_info[0].time;
151 
152 	return pvclock_tsc_khz(info);
153 }
154 
155 cycle_t xen_clocksource_read(void)
156 {
157         struct pvclock_vcpu_time_info *src;
158 	cycle_t ret;
159 
160 	preempt_disable_notrace();
161 	src = &__this_cpu_read(xen_vcpu)->time;
162 	ret = pvclock_clocksource_read(src);
163 	preempt_enable_notrace();
164 	return ret;
165 }
166 
167 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
168 {
169 	return xen_clocksource_read();
170 }
171 
172 static void xen_read_wallclock(struct timespec *ts)
173 {
174 	struct shared_info *s = HYPERVISOR_shared_info;
175 	struct pvclock_wall_clock *wall_clock = &(s->wc);
176         struct pvclock_vcpu_time_info *vcpu_time;
177 
178 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
179 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
180 	put_cpu_var(xen_vcpu);
181 }
182 
183 static void xen_get_wallclock(struct timespec *now)
184 {
185 	xen_read_wallclock(now);
186 }
187 
188 static int xen_set_wallclock(const struct timespec *now)
189 {
190 	return -1;
191 }
192 
193 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
194 				   unsigned long was_set, void *priv)
195 {
196 	/* Protected by the calling core code serialization */
197 	static struct timespec next_sync;
198 
199 	struct xen_platform_op op;
200 	struct timespec now;
201 
202 	now = __current_kernel_time();
203 
204 	/*
205 	 * We only take the expensive HV call when the clock was set
206 	 * or when the 11 minutes RTC synchronization time elapsed.
207 	 */
208 	if (!was_set && timespec_compare(&now, &next_sync) < 0)
209 		return NOTIFY_OK;
210 
211 	op.cmd = XENPF_settime;
212 	op.u.settime.secs = now.tv_sec;
213 	op.u.settime.nsecs = now.tv_nsec;
214 	op.u.settime.system_time = xen_clocksource_read();
215 
216 	(void)HYPERVISOR_dom0_op(&op);
217 
218 	/*
219 	 * Move the next drift compensation time 11 minutes
220 	 * ahead. That's emulating the sync_cmos_clock() update for
221 	 * the hardware RTC.
222 	 */
223 	next_sync = now;
224 	next_sync.tv_sec += 11 * 60;
225 
226 	return NOTIFY_OK;
227 }
228 
229 static struct notifier_block xen_pvclock_gtod_notifier = {
230 	.notifier_call = xen_pvclock_gtod_notify,
231 };
232 
233 static struct clocksource xen_clocksource __read_mostly = {
234 	.name = "xen",
235 	.rating = 400,
236 	.read = xen_clocksource_get_cycles,
237 	.mask = ~0,
238 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
239 };
240 
241 /*
242    Xen clockevent implementation
243 
244    Xen has two clockevent implementations:
245 
246    The old timer_op one works with all released versions of Xen prior
247    to version 3.0.4.  This version of the hypervisor provides a
248    single-shot timer with nanosecond resolution.  However, sharing the
249    same event channel is a 100Hz tick which is delivered while the
250    vcpu is running.  We don't care about or use this tick, but it will
251    cause the core time code to think the timer fired too soon, and
252    will end up resetting it each time.  It could be filtered, but
253    doing so has complications when the ktime clocksource is not yet
254    the xen clocksource (ie, at boot time).
255 
256    The new vcpu_op-based timer interface allows the tick timer period
257    to be changed or turned off.  The tick timer is not useful as a
258    periodic timer because events are only delivered to running vcpus.
259    The one-shot timer can report when a timeout is in the past, so
260    set_next_event is capable of returning -ETIME when appropriate.
261    This interface is used when available.
262 */
263 
264 
265 /*
266   Get a hypervisor absolute time.  In theory we could maintain an
267   offset between the kernel's time and the hypervisor's time, and
268   apply that to a kernel's absolute timeout.  Unfortunately the
269   hypervisor and kernel times can drift even if the kernel is using
270   the Xen clocksource, because ntp can warp the kernel's clocksource.
271 */
272 static s64 get_abs_timeout(unsigned long delta)
273 {
274 	return xen_clocksource_read() + delta;
275 }
276 
277 static int xen_timerop_shutdown(struct clock_event_device *evt)
278 {
279 	/* cancel timeout */
280 	HYPERVISOR_set_timer_op(0);
281 
282 	return 0;
283 }
284 
285 static int xen_timerop_set_next_event(unsigned long delta,
286 				      struct clock_event_device *evt)
287 {
288 	WARN_ON(!clockevent_state_oneshot(evt));
289 
290 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
291 		BUG();
292 
293 	/* We may have missed the deadline, but there's no real way of
294 	   knowing for sure.  If the event was in the past, then we'll
295 	   get an immediate interrupt. */
296 
297 	return 0;
298 }
299 
300 static const struct clock_event_device xen_timerop_clockevent = {
301 	.name			= "xen",
302 	.features		= CLOCK_EVT_FEAT_ONESHOT,
303 
304 	.max_delta_ns		= 0xffffffff,
305 	.min_delta_ns		= TIMER_SLOP,
306 
307 	.mult			= 1,
308 	.shift			= 0,
309 	.rating			= 500,
310 
311 	.set_state_shutdown	= xen_timerop_shutdown,
312 	.set_next_event		= xen_timerop_set_next_event,
313 };
314 
315 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
316 {
317 	int cpu = smp_processor_id();
318 
319 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
320 	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
321 		BUG();
322 
323 	return 0;
324 }
325 
326 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
327 {
328 	int cpu = smp_processor_id();
329 
330 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
331 		BUG();
332 
333 	return 0;
334 }
335 
336 static int xen_vcpuop_set_next_event(unsigned long delta,
337 				     struct clock_event_device *evt)
338 {
339 	int cpu = smp_processor_id();
340 	struct vcpu_set_singleshot_timer single;
341 	int ret;
342 
343 	WARN_ON(!clockevent_state_oneshot(evt));
344 
345 	single.timeout_abs_ns = get_abs_timeout(delta);
346 	single.flags = VCPU_SSHOTTMR_future;
347 
348 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
349 
350 	BUG_ON(ret != 0 && ret != -ETIME);
351 
352 	return ret;
353 }
354 
355 static const struct clock_event_device xen_vcpuop_clockevent = {
356 	.name = "xen",
357 	.features = CLOCK_EVT_FEAT_ONESHOT,
358 
359 	.max_delta_ns = 0xffffffff,
360 	.min_delta_ns = TIMER_SLOP,
361 
362 	.mult = 1,
363 	.shift = 0,
364 	.rating = 500,
365 
366 	.set_state_shutdown = xen_vcpuop_shutdown,
367 	.set_state_oneshot = xen_vcpuop_set_oneshot,
368 	.set_next_event = xen_vcpuop_set_next_event,
369 };
370 
371 static const struct clock_event_device *xen_clockevent =
372 	&xen_timerop_clockevent;
373 
374 struct xen_clock_event_device {
375 	struct clock_event_device evt;
376 	char name[16];
377 };
378 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
379 
380 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
381 {
382 	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
383 	irqreturn_t ret;
384 
385 	ret = IRQ_NONE;
386 	if (evt->event_handler) {
387 		evt->event_handler(evt);
388 		ret = IRQ_HANDLED;
389 	}
390 
391 	do_stolen_accounting();
392 
393 	return ret;
394 }
395 
396 void xen_teardown_timer(int cpu)
397 {
398 	struct clock_event_device *evt;
399 	BUG_ON(cpu == 0);
400 	evt = &per_cpu(xen_clock_events, cpu).evt;
401 
402 	if (evt->irq >= 0) {
403 		unbind_from_irqhandler(evt->irq, NULL);
404 		evt->irq = -1;
405 	}
406 }
407 
408 void xen_setup_timer(int cpu)
409 {
410 	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
411 	struct clock_event_device *evt = &xevt->evt;
412 	int irq;
413 
414 	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
415 	if (evt->irq >= 0)
416 		xen_teardown_timer(cpu);
417 
418 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
419 
420 	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
421 
422 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
423 				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
424 				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
425 				      xevt->name, NULL);
426 	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
427 
428 	memcpy(evt, xen_clockevent, sizeof(*evt));
429 
430 	evt->cpumask = cpumask_of(cpu);
431 	evt->irq = irq;
432 }
433 
434 
435 void xen_setup_cpu_clockevents(void)
436 {
437 	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
438 }
439 
440 void xen_timer_resume(void)
441 {
442 	int cpu;
443 
444 	pvclock_resume();
445 
446 	if (xen_clockevent != &xen_vcpuop_clockevent)
447 		return;
448 
449 	for_each_online_cpu(cpu) {
450 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
451 			BUG();
452 	}
453 }
454 
455 static const struct pv_time_ops xen_time_ops __initconst = {
456 	.sched_clock = xen_clocksource_read,
457 };
458 
459 static void __init xen_time_init(void)
460 {
461 	int cpu = smp_processor_id();
462 	struct timespec tp;
463 
464 	/* As Dom0 is never moved, no penalty on using TSC there */
465 	if (xen_initial_domain())
466 		xen_clocksource.rating = 275;
467 
468 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
469 
470 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
471 		/* Successfully turned off 100Hz tick, so we have the
472 		   vcpuop-based timer interface */
473 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
474 		xen_clockevent = &xen_vcpuop_clockevent;
475 	}
476 
477 	/* Set initial system time with full resolution */
478 	xen_read_wallclock(&tp);
479 	do_settimeofday(&tp);
480 
481 	setup_force_cpu_cap(X86_FEATURE_TSC);
482 
483 	xen_setup_runstate_info(cpu);
484 	xen_setup_timer(cpu);
485 	xen_setup_cpu_clockevents();
486 
487 	if (xen_initial_domain())
488 		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
489 }
490 
491 void __init xen_init_time_ops(void)
492 {
493 	pv_time_ops = xen_time_ops;
494 
495 	x86_init.timers.timer_init = xen_time_init;
496 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
497 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
498 
499 	x86_platform.calibrate_tsc = xen_tsc_khz;
500 	x86_platform.get_wallclock = xen_get_wallclock;
501 	/* Dom0 uses the native method to set the hardware RTC. */
502 	if (!xen_initial_domain())
503 		x86_platform.set_wallclock = xen_set_wallclock;
504 }
505 
506 #ifdef CONFIG_XEN_PVHVM
507 static void xen_hvm_setup_cpu_clockevents(void)
508 {
509 	int cpu = smp_processor_id();
510 	xen_setup_runstate_info(cpu);
511 	/*
512 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
513 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
514 	 * early bootup and also during CPU hotplug events).
515 	 */
516 	xen_setup_cpu_clockevents();
517 }
518 
519 void __init xen_hvm_init_time_ops(void)
520 {
521 	/* vector callback is needed otherwise we cannot receive interrupts
522 	 * on cpu > 0 and at this point we don't know how many cpus are
523 	 * available */
524 	if (!xen_have_vector_callback)
525 		return;
526 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
527 		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
528 				"disable pv timer\n");
529 		return;
530 	}
531 
532 	pv_time_ops = xen_time_ops;
533 	x86_init.timers.setup_percpu_clockev = xen_time_init;
534 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
535 
536 	x86_platform.calibrate_tsc = xen_tsc_khz;
537 	x86_platform.get_wallclock = xen_get_wallclock;
538 	x86_platform.set_wallclock = xen_set_wallclock;
539 }
540 #endif
541