1 /* 2 * Xen time implementation. 3 * 4 * This is implemented in terms of a clocksource driver which uses 5 * the hypervisor clock as a nanosecond timebase, and a clockevent 6 * driver which uses the hypervisor's timer mechanism. 7 * 8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 9 */ 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/clocksource.h> 13 #include <linux/clockchips.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/math64.h> 16 #include <linux/gfp.h> 17 #include <linux/slab.h> 18 #include <linux/pvclock_gtod.h> 19 20 #include <asm/pvclock.h> 21 #include <asm/xen/hypervisor.h> 22 #include <asm/xen/hypercall.h> 23 24 #include <xen/events.h> 25 #include <xen/features.h> 26 #include <xen/interface/xen.h> 27 #include <xen/interface/vcpu.h> 28 29 #include "xen-ops.h" 30 31 /* Xen may fire a timer up to this many ns early */ 32 #define TIMER_SLOP 100000 33 #define NS_PER_TICK (1000000000LL / HZ) 34 35 /* runstate info updated by Xen */ 36 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate); 37 38 /* snapshots of runstate info */ 39 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot); 40 41 /* unused ns of stolen time */ 42 static DEFINE_PER_CPU(u64, xen_residual_stolen); 43 44 /* return an consistent snapshot of 64-bit time/counter value */ 45 static u64 get64(const u64 *p) 46 { 47 u64 ret; 48 49 if (BITS_PER_LONG < 64) { 50 u32 *p32 = (u32 *)p; 51 u32 h, l; 52 53 /* 54 * Read high then low, and then make sure high is 55 * still the same; this will only loop if low wraps 56 * and carries into high. 57 * XXX some clean way to make this endian-proof? 58 */ 59 do { 60 h = p32[1]; 61 barrier(); 62 l = p32[0]; 63 barrier(); 64 } while (p32[1] != h); 65 66 ret = (((u64)h) << 32) | l; 67 } else 68 ret = *p; 69 70 return ret; 71 } 72 73 /* 74 * Runstate accounting 75 */ 76 static void get_runstate_snapshot(struct vcpu_runstate_info *res) 77 { 78 u64 state_time; 79 struct vcpu_runstate_info *state; 80 81 BUG_ON(preemptible()); 82 83 state = this_cpu_ptr(&xen_runstate); 84 85 /* 86 * The runstate info is always updated by the hypervisor on 87 * the current CPU, so there's no need to use anything 88 * stronger than a compiler barrier when fetching it. 89 */ 90 do { 91 state_time = get64(&state->state_entry_time); 92 barrier(); 93 *res = *state; 94 barrier(); 95 } while (get64(&state->state_entry_time) != state_time); 96 } 97 98 /* return true when a vcpu could run but has no real cpu to run on */ 99 bool xen_vcpu_stolen(int vcpu) 100 { 101 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable; 102 } 103 104 void xen_setup_runstate_info(int cpu) 105 { 106 struct vcpu_register_runstate_memory_area area; 107 108 area.addr.v = &per_cpu(xen_runstate, cpu); 109 110 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, 111 cpu, &area)) 112 BUG(); 113 } 114 115 static void do_stolen_accounting(void) 116 { 117 struct vcpu_runstate_info state; 118 struct vcpu_runstate_info *snap; 119 s64 runnable, offline, stolen; 120 cputime_t ticks; 121 122 get_runstate_snapshot(&state); 123 124 WARN_ON(state.state != RUNSTATE_running); 125 126 snap = this_cpu_ptr(&xen_runstate_snapshot); 127 128 /* work out how much time the VCPU has not been runn*ing* */ 129 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; 130 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; 131 132 *snap = state; 133 134 /* Add the appropriate number of ticks of stolen time, 135 including any left-overs from last time. */ 136 stolen = runnable + offline + __this_cpu_read(xen_residual_stolen); 137 138 if (stolen < 0) 139 stolen = 0; 140 141 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); 142 __this_cpu_write(xen_residual_stolen, stolen); 143 account_steal_ticks(ticks); 144 } 145 146 /* Get the TSC speed from Xen */ 147 static unsigned long xen_tsc_khz(void) 148 { 149 struct pvclock_vcpu_time_info *info = 150 &HYPERVISOR_shared_info->vcpu_info[0].time; 151 152 return pvclock_tsc_khz(info); 153 } 154 155 cycle_t xen_clocksource_read(void) 156 { 157 struct pvclock_vcpu_time_info *src; 158 cycle_t ret; 159 160 preempt_disable_notrace(); 161 src = &__this_cpu_read(xen_vcpu)->time; 162 ret = pvclock_clocksource_read(src); 163 preempt_enable_notrace(); 164 return ret; 165 } 166 167 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs) 168 { 169 return xen_clocksource_read(); 170 } 171 172 static void xen_read_wallclock(struct timespec *ts) 173 { 174 struct shared_info *s = HYPERVISOR_shared_info; 175 struct pvclock_wall_clock *wall_clock = &(s->wc); 176 struct pvclock_vcpu_time_info *vcpu_time; 177 178 vcpu_time = &get_cpu_var(xen_vcpu)->time; 179 pvclock_read_wallclock(wall_clock, vcpu_time, ts); 180 put_cpu_var(xen_vcpu); 181 } 182 183 static void xen_get_wallclock(struct timespec *now) 184 { 185 xen_read_wallclock(now); 186 } 187 188 static int xen_set_wallclock(const struct timespec *now) 189 { 190 return -1; 191 } 192 193 static int xen_pvclock_gtod_notify(struct notifier_block *nb, 194 unsigned long was_set, void *priv) 195 { 196 /* Protected by the calling core code serialization */ 197 static struct timespec next_sync; 198 199 struct xen_platform_op op; 200 struct timespec now; 201 202 now = __current_kernel_time(); 203 204 /* 205 * We only take the expensive HV call when the clock was set 206 * or when the 11 minutes RTC synchronization time elapsed. 207 */ 208 if (!was_set && timespec_compare(&now, &next_sync) < 0) 209 return NOTIFY_OK; 210 211 op.cmd = XENPF_settime; 212 op.u.settime.secs = now.tv_sec; 213 op.u.settime.nsecs = now.tv_nsec; 214 op.u.settime.system_time = xen_clocksource_read(); 215 216 (void)HYPERVISOR_dom0_op(&op); 217 218 /* 219 * Move the next drift compensation time 11 minutes 220 * ahead. That's emulating the sync_cmos_clock() update for 221 * the hardware RTC. 222 */ 223 next_sync = now; 224 next_sync.tv_sec += 11 * 60; 225 226 return NOTIFY_OK; 227 } 228 229 static struct notifier_block xen_pvclock_gtod_notifier = { 230 .notifier_call = xen_pvclock_gtod_notify, 231 }; 232 233 static struct clocksource xen_clocksource __read_mostly = { 234 .name = "xen", 235 .rating = 400, 236 .read = xen_clocksource_get_cycles, 237 .mask = ~0, 238 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 239 }; 240 241 /* 242 Xen clockevent implementation 243 244 Xen has two clockevent implementations: 245 246 The old timer_op one works with all released versions of Xen prior 247 to version 3.0.4. This version of the hypervisor provides a 248 single-shot timer with nanosecond resolution. However, sharing the 249 same event channel is a 100Hz tick which is delivered while the 250 vcpu is running. We don't care about or use this tick, but it will 251 cause the core time code to think the timer fired too soon, and 252 will end up resetting it each time. It could be filtered, but 253 doing so has complications when the ktime clocksource is not yet 254 the xen clocksource (ie, at boot time). 255 256 The new vcpu_op-based timer interface allows the tick timer period 257 to be changed or turned off. The tick timer is not useful as a 258 periodic timer because events are only delivered to running vcpus. 259 The one-shot timer can report when a timeout is in the past, so 260 set_next_event is capable of returning -ETIME when appropriate. 261 This interface is used when available. 262 */ 263 264 265 /* 266 Get a hypervisor absolute time. In theory we could maintain an 267 offset between the kernel's time and the hypervisor's time, and 268 apply that to a kernel's absolute timeout. Unfortunately the 269 hypervisor and kernel times can drift even if the kernel is using 270 the Xen clocksource, because ntp can warp the kernel's clocksource. 271 */ 272 static s64 get_abs_timeout(unsigned long delta) 273 { 274 return xen_clocksource_read() + delta; 275 } 276 277 static int xen_timerop_shutdown(struct clock_event_device *evt) 278 { 279 /* cancel timeout */ 280 HYPERVISOR_set_timer_op(0); 281 282 return 0; 283 } 284 285 static int xen_timerop_set_next_event(unsigned long delta, 286 struct clock_event_device *evt) 287 { 288 WARN_ON(!clockevent_state_oneshot(evt)); 289 290 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 291 BUG(); 292 293 /* We may have missed the deadline, but there's no real way of 294 knowing for sure. If the event was in the past, then we'll 295 get an immediate interrupt. */ 296 297 return 0; 298 } 299 300 static const struct clock_event_device xen_timerop_clockevent = { 301 .name = "xen", 302 .features = CLOCK_EVT_FEAT_ONESHOT, 303 304 .max_delta_ns = 0xffffffff, 305 .min_delta_ns = TIMER_SLOP, 306 307 .mult = 1, 308 .shift = 0, 309 .rating = 500, 310 311 .set_state_shutdown = xen_timerop_shutdown, 312 .set_next_event = xen_timerop_set_next_event, 313 }; 314 315 static int xen_vcpuop_shutdown(struct clock_event_device *evt) 316 { 317 int cpu = smp_processor_id(); 318 319 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || 320 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 321 BUG(); 322 323 return 0; 324 } 325 326 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt) 327 { 328 int cpu = smp_processor_id(); 329 330 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 331 BUG(); 332 333 return 0; 334 } 335 336 static int xen_vcpuop_set_next_event(unsigned long delta, 337 struct clock_event_device *evt) 338 { 339 int cpu = smp_processor_id(); 340 struct vcpu_set_singleshot_timer single; 341 int ret; 342 343 WARN_ON(!clockevent_state_oneshot(evt)); 344 345 single.timeout_abs_ns = get_abs_timeout(delta); 346 single.flags = VCPU_SSHOTTMR_future; 347 348 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); 349 350 BUG_ON(ret != 0 && ret != -ETIME); 351 352 return ret; 353 } 354 355 static const struct clock_event_device xen_vcpuop_clockevent = { 356 .name = "xen", 357 .features = CLOCK_EVT_FEAT_ONESHOT, 358 359 .max_delta_ns = 0xffffffff, 360 .min_delta_ns = TIMER_SLOP, 361 362 .mult = 1, 363 .shift = 0, 364 .rating = 500, 365 366 .set_state_shutdown = xen_vcpuop_shutdown, 367 .set_state_oneshot = xen_vcpuop_set_oneshot, 368 .set_next_event = xen_vcpuop_set_next_event, 369 }; 370 371 static const struct clock_event_device *xen_clockevent = 372 &xen_timerop_clockevent; 373 374 struct xen_clock_event_device { 375 struct clock_event_device evt; 376 char name[16]; 377 }; 378 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 }; 379 380 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 381 { 382 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt); 383 irqreturn_t ret; 384 385 ret = IRQ_NONE; 386 if (evt->event_handler) { 387 evt->event_handler(evt); 388 ret = IRQ_HANDLED; 389 } 390 391 do_stolen_accounting(); 392 393 return ret; 394 } 395 396 void xen_teardown_timer(int cpu) 397 { 398 struct clock_event_device *evt; 399 BUG_ON(cpu == 0); 400 evt = &per_cpu(xen_clock_events, cpu).evt; 401 402 if (evt->irq >= 0) { 403 unbind_from_irqhandler(evt->irq, NULL); 404 evt->irq = -1; 405 } 406 } 407 408 void xen_setup_timer(int cpu) 409 { 410 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu); 411 struct clock_event_device *evt = &xevt->evt; 412 int irq; 413 414 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu); 415 if (evt->irq >= 0) 416 xen_teardown_timer(cpu); 417 418 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 419 420 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu); 421 422 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 423 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER| 424 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME, 425 xevt->name, NULL); 426 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX); 427 428 memcpy(evt, xen_clockevent, sizeof(*evt)); 429 430 evt->cpumask = cpumask_of(cpu); 431 evt->irq = irq; 432 } 433 434 435 void xen_setup_cpu_clockevents(void) 436 { 437 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt)); 438 } 439 440 void xen_timer_resume(void) 441 { 442 int cpu; 443 444 pvclock_resume(); 445 446 if (xen_clockevent != &xen_vcpuop_clockevent) 447 return; 448 449 for_each_online_cpu(cpu) { 450 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 451 BUG(); 452 } 453 } 454 455 static const struct pv_time_ops xen_time_ops __initconst = { 456 .sched_clock = xen_clocksource_read, 457 }; 458 459 static void __init xen_time_init(void) 460 { 461 int cpu = smp_processor_id(); 462 struct timespec tp; 463 464 /* As Dom0 is never moved, no penalty on using TSC there */ 465 if (xen_initial_domain()) 466 xen_clocksource.rating = 275; 467 468 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC); 469 470 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { 471 /* Successfully turned off 100Hz tick, so we have the 472 vcpuop-based timer interface */ 473 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 474 xen_clockevent = &xen_vcpuop_clockevent; 475 } 476 477 /* Set initial system time with full resolution */ 478 xen_read_wallclock(&tp); 479 do_settimeofday(&tp); 480 481 setup_force_cpu_cap(X86_FEATURE_TSC); 482 483 xen_setup_runstate_info(cpu); 484 xen_setup_timer(cpu); 485 xen_setup_cpu_clockevents(); 486 487 if (xen_initial_domain()) 488 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier); 489 } 490 491 void __init xen_init_time_ops(void) 492 { 493 pv_time_ops = xen_time_ops; 494 495 x86_init.timers.timer_init = xen_time_init; 496 x86_init.timers.setup_percpu_clockev = x86_init_noop; 497 x86_cpuinit.setup_percpu_clockev = x86_init_noop; 498 499 x86_platform.calibrate_tsc = xen_tsc_khz; 500 x86_platform.get_wallclock = xen_get_wallclock; 501 /* Dom0 uses the native method to set the hardware RTC. */ 502 if (!xen_initial_domain()) 503 x86_platform.set_wallclock = xen_set_wallclock; 504 } 505 506 #ifdef CONFIG_XEN_PVHVM 507 static void xen_hvm_setup_cpu_clockevents(void) 508 { 509 int cpu = smp_processor_id(); 510 xen_setup_runstate_info(cpu); 511 /* 512 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence 513 * doing it xen_hvm_cpu_notify (which gets called by smp_init during 514 * early bootup and also during CPU hotplug events). 515 */ 516 xen_setup_cpu_clockevents(); 517 } 518 519 void __init xen_hvm_init_time_ops(void) 520 { 521 /* vector callback is needed otherwise we cannot receive interrupts 522 * on cpu > 0 and at this point we don't know how many cpus are 523 * available */ 524 if (!xen_have_vector_callback) 525 return; 526 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) { 527 printk(KERN_INFO "Xen doesn't support pvclock on HVM," 528 "disable pv timer\n"); 529 return; 530 } 531 532 pv_time_ops = xen_time_ops; 533 x86_init.timers.setup_percpu_clockev = xen_time_init; 534 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents; 535 536 x86_platform.calibrate_tsc = xen_tsc_khz; 537 x86_platform.get_wallclock = xen_get_wallclock; 538 x86_platform.set_wallclock = xen_set_wallclock; 539 } 540 #endif 541