xref: /linux/arch/x86/xen/time.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xen time implementation.
4  *
5  * This is implemented in terms of a clocksource driver which uses
6  * the hypervisor clock as a nanosecond timebase, and a clockevent
7  * driver which uses the hypervisor's timer mechanism.
8  *
9  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10  */
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
19 
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28 
29 #include "xen-ops.h"
30 
31 /* Minimum amount of time until next clock event fires */
32 #define TIMER_SLOP	100000
33 
34 static u64 xen_sched_clock_offset __read_mostly;
35 
36 /* Get the TSC speed from Xen */
37 static unsigned long xen_tsc_khz(void)
38 {
39 	struct pvclock_vcpu_time_info *info =
40 		&HYPERVISOR_shared_info->vcpu_info[0].time;
41 
42 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
43 	return pvclock_tsc_khz(info);
44 }
45 
46 static u64 xen_clocksource_read(void)
47 {
48         struct pvclock_vcpu_time_info *src;
49 	u64 ret;
50 
51 	preempt_disable_notrace();
52 	src = &__this_cpu_read(xen_vcpu)->time;
53 	ret = pvclock_clocksource_read(src);
54 	preempt_enable_notrace();
55 	return ret;
56 }
57 
58 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
59 {
60 	return xen_clocksource_read();
61 }
62 
63 static u64 xen_sched_clock(void)
64 {
65 	return xen_clocksource_read() - xen_sched_clock_offset;
66 }
67 
68 static void xen_read_wallclock(struct timespec64 *ts)
69 {
70 	struct shared_info *s = HYPERVISOR_shared_info;
71 	struct pvclock_wall_clock *wall_clock = &(s->wc);
72         struct pvclock_vcpu_time_info *vcpu_time;
73 
74 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
75 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
76 	put_cpu_var(xen_vcpu);
77 }
78 
79 static void xen_get_wallclock(struct timespec64 *now)
80 {
81 	xen_read_wallclock(now);
82 }
83 
84 static int xen_set_wallclock(const struct timespec64 *now)
85 {
86 	return -ENODEV;
87 }
88 
89 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
90 				   unsigned long was_set, void *priv)
91 {
92 	/* Protected by the calling core code serialization */
93 	static struct timespec64 next_sync;
94 
95 	struct xen_platform_op op;
96 	struct timespec64 now;
97 	struct timekeeper *tk = priv;
98 	static bool settime64_supported = true;
99 	int ret;
100 
101 	now.tv_sec = tk->xtime_sec;
102 	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
103 
104 	/*
105 	 * We only take the expensive HV call when the clock was set
106 	 * or when the 11 minutes RTC synchronization time elapsed.
107 	 */
108 	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
109 		return NOTIFY_OK;
110 
111 again:
112 	if (settime64_supported) {
113 		op.cmd = XENPF_settime64;
114 		op.u.settime64.mbz = 0;
115 		op.u.settime64.secs = now.tv_sec;
116 		op.u.settime64.nsecs = now.tv_nsec;
117 		op.u.settime64.system_time = xen_clocksource_read();
118 	} else {
119 		op.cmd = XENPF_settime32;
120 		op.u.settime32.secs = now.tv_sec;
121 		op.u.settime32.nsecs = now.tv_nsec;
122 		op.u.settime32.system_time = xen_clocksource_read();
123 	}
124 
125 	ret = HYPERVISOR_platform_op(&op);
126 
127 	if (ret == -ENOSYS && settime64_supported) {
128 		settime64_supported = false;
129 		goto again;
130 	}
131 	if (ret < 0)
132 		return NOTIFY_BAD;
133 
134 	/*
135 	 * Move the next drift compensation time 11 minutes
136 	 * ahead. That's emulating the sync_cmos_clock() update for
137 	 * the hardware RTC.
138 	 */
139 	next_sync = now;
140 	next_sync.tv_sec += 11 * 60;
141 
142 	return NOTIFY_OK;
143 }
144 
145 static struct notifier_block xen_pvclock_gtod_notifier = {
146 	.notifier_call = xen_pvclock_gtod_notify,
147 };
148 
149 static int xen_cs_enable(struct clocksource *cs)
150 {
151 	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
152 	return 0;
153 }
154 
155 static struct clocksource xen_clocksource __read_mostly = {
156 	.name	= "xen",
157 	.rating	= 400,
158 	.read	= xen_clocksource_get_cycles,
159 	.mask	= CLOCKSOURCE_MASK(64),
160 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
161 	.enable = xen_cs_enable,
162 };
163 
164 /*
165    Xen clockevent implementation
166 
167    Xen has two clockevent implementations:
168 
169    The old timer_op one works with all released versions of Xen prior
170    to version 3.0.4.  This version of the hypervisor provides a
171    single-shot timer with nanosecond resolution.  However, sharing the
172    same event channel is a 100Hz tick which is delivered while the
173    vcpu is running.  We don't care about or use this tick, but it will
174    cause the core time code to think the timer fired too soon, and
175    will end up resetting it each time.  It could be filtered, but
176    doing so has complications when the ktime clocksource is not yet
177    the xen clocksource (ie, at boot time).
178 
179    The new vcpu_op-based timer interface allows the tick timer period
180    to be changed or turned off.  The tick timer is not useful as a
181    periodic timer because events are only delivered to running vcpus.
182    The one-shot timer can report when a timeout is in the past, so
183    set_next_event is capable of returning -ETIME when appropriate.
184    This interface is used when available.
185 */
186 
187 
188 /*
189   Get a hypervisor absolute time.  In theory we could maintain an
190   offset between the kernel's time and the hypervisor's time, and
191   apply that to a kernel's absolute timeout.  Unfortunately the
192   hypervisor and kernel times can drift even if the kernel is using
193   the Xen clocksource, because ntp can warp the kernel's clocksource.
194 */
195 static s64 get_abs_timeout(unsigned long delta)
196 {
197 	return xen_clocksource_read() + delta;
198 }
199 
200 static int xen_timerop_shutdown(struct clock_event_device *evt)
201 {
202 	/* cancel timeout */
203 	HYPERVISOR_set_timer_op(0);
204 
205 	return 0;
206 }
207 
208 static int xen_timerop_set_next_event(unsigned long delta,
209 				      struct clock_event_device *evt)
210 {
211 	WARN_ON(!clockevent_state_oneshot(evt));
212 
213 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
214 		BUG();
215 
216 	/* We may have missed the deadline, but there's no real way of
217 	   knowing for sure.  If the event was in the past, then we'll
218 	   get an immediate interrupt. */
219 
220 	return 0;
221 }
222 
223 static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
224 	.name			= "xen",
225 	.features		= CLOCK_EVT_FEAT_ONESHOT,
226 
227 	.max_delta_ns		= 0xffffffff,
228 	.max_delta_ticks	= 0xffffffff,
229 	.min_delta_ns		= TIMER_SLOP,
230 	.min_delta_ticks	= TIMER_SLOP,
231 
232 	.mult			= 1,
233 	.shift			= 0,
234 	.rating			= 500,
235 
236 	.set_state_shutdown	= xen_timerop_shutdown,
237 	.set_next_event		= xen_timerop_set_next_event,
238 };
239 
240 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
241 {
242 	int cpu = smp_processor_id();
243 
244 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
245 			       NULL) ||
246 	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
247 			       NULL))
248 		BUG();
249 
250 	return 0;
251 }
252 
253 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
254 {
255 	int cpu = smp_processor_id();
256 
257 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
258 			       NULL))
259 		BUG();
260 
261 	return 0;
262 }
263 
264 static int xen_vcpuop_set_next_event(unsigned long delta,
265 				     struct clock_event_device *evt)
266 {
267 	int cpu = smp_processor_id();
268 	struct vcpu_set_singleshot_timer single;
269 	int ret;
270 
271 	WARN_ON(!clockevent_state_oneshot(evt));
272 
273 	single.timeout_abs_ns = get_abs_timeout(delta);
274 	/* Get an event anyway, even if the timeout is already expired */
275 	single.flags = 0;
276 
277 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
278 				 &single);
279 	BUG_ON(ret != 0);
280 
281 	return ret;
282 }
283 
284 static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
285 	.name = "xen",
286 	.features = CLOCK_EVT_FEAT_ONESHOT,
287 
288 	.max_delta_ns = 0xffffffff,
289 	.max_delta_ticks = 0xffffffff,
290 	.min_delta_ns = TIMER_SLOP,
291 	.min_delta_ticks = TIMER_SLOP,
292 
293 	.mult = 1,
294 	.shift = 0,
295 	.rating = 500,
296 
297 	.set_state_shutdown = xen_vcpuop_shutdown,
298 	.set_state_oneshot = xen_vcpuop_set_oneshot,
299 	.set_next_event = xen_vcpuop_set_next_event,
300 };
301 
302 static const struct clock_event_device *xen_clockevent =
303 	&xen_timerop_clockevent;
304 
305 struct xen_clock_event_device {
306 	struct clock_event_device evt;
307 	char name[16];
308 };
309 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
310 
311 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
312 {
313 	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
314 	irqreturn_t ret;
315 
316 	ret = IRQ_NONE;
317 	if (evt->event_handler) {
318 		evt->event_handler(evt);
319 		ret = IRQ_HANDLED;
320 	}
321 
322 	return ret;
323 }
324 
325 void xen_teardown_timer(int cpu)
326 {
327 	struct clock_event_device *evt;
328 	evt = &per_cpu(xen_clock_events, cpu).evt;
329 
330 	if (evt->irq >= 0) {
331 		unbind_from_irqhandler(evt->irq, NULL);
332 		evt->irq = -1;
333 	}
334 }
335 
336 void xen_setup_timer(int cpu)
337 {
338 	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
339 	struct clock_event_device *evt = &xevt->evt;
340 	int irq;
341 
342 	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
343 	if (evt->irq >= 0)
344 		xen_teardown_timer(cpu);
345 
346 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
347 
348 	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
349 
350 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
351 				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
352 				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
353 				      xevt->name, NULL);
354 	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
355 
356 	memcpy(evt, xen_clockevent, sizeof(*evt));
357 
358 	evt->cpumask = cpumask_of(cpu);
359 	evt->irq = irq;
360 }
361 
362 
363 void xen_setup_cpu_clockevents(void)
364 {
365 	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
366 }
367 
368 void xen_timer_resume(void)
369 {
370 	int cpu;
371 
372 	if (xen_clockevent != &xen_vcpuop_clockevent)
373 		return;
374 
375 	for_each_online_cpu(cpu) {
376 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
377 				       xen_vcpu_nr(cpu), NULL))
378 			BUG();
379 	}
380 }
381 
382 static const struct pv_time_ops xen_time_ops __initconst = {
383 	.sched_clock = xen_sched_clock,
384 	.steal_clock = xen_steal_clock,
385 };
386 
387 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
388 static u64 xen_clock_value_saved;
389 
390 void xen_save_time_memory_area(void)
391 {
392 	struct vcpu_register_time_memory_area t;
393 	int ret;
394 
395 	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
396 
397 	if (!xen_clock)
398 		return;
399 
400 	t.addr.v = NULL;
401 
402 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
403 	if (ret != 0)
404 		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
405 			  ret);
406 	else
407 		clear_page(xen_clock);
408 }
409 
410 void xen_restore_time_memory_area(void)
411 {
412 	struct vcpu_register_time_memory_area t;
413 	int ret;
414 
415 	if (!xen_clock)
416 		goto out;
417 
418 	t.addr.v = &xen_clock->pvti;
419 
420 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
421 
422 	/*
423 	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
424 	 * register the secondary time info with Xen or if we migrated to a
425 	 * host without the necessary flags. On both of these cases what
426 	 * happens is either process seeing a zeroed out pvti or seeing no
427 	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
428 	 * if 0, it discards the data in pvti and fallbacks to a system
429 	 * call for a reliable timestamp.
430 	 */
431 	if (ret != 0)
432 		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
433 			  ret);
434 
435 out:
436 	/* Need pvclock_resume() before using xen_clocksource_read(). */
437 	pvclock_resume();
438 	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
439 }
440 
441 static void xen_setup_vsyscall_time_info(void)
442 {
443 	struct vcpu_register_time_memory_area t;
444 	struct pvclock_vsyscall_time_info *ti;
445 	int ret;
446 
447 	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
448 	if (!ti)
449 		return;
450 
451 	t.addr.v = &ti->pvti;
452 
453 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
454 	if (ret) {
455 		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
456 		free_page((unsigned long)ti);
457 		return;
458 	}
459 
460 	/*
461 	 * If primary time info had this bit set, secondary should too since
462 	 * it's the same data on both just different memory regions. But we
463 	 * still check it in case hypervisor is buggy.
464 	 */
465 	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
466 		t.addr.v = NULL;
467 		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
468 					 0, &t);
469 		if (!ret)
470 			free_page((unsigned long)ti);
471 
472 		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
473 		return;
474 	}
475 
476 	xen_clock = ti;
477 	pvclock_set_pvti_cpu0_va(xen_clock);
478 
479 	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
480 }
481 
482 static void __init xen_time_init(void)
483 {
484 	struct pvclock_vcpu_time_info *pvti;
485 	int cpu = smp_processor_id();
486 	struct timespec64 tp;
487 
488 	/* As Dom0 is never moved, no penalty on using TSC there */
489 	if (xen_initial_domain())
490 		xen_clocksource.rating = 275;
491 
492 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
493 
494 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
495 			       NULL) == 0) {
496 		/* Successfully turned off 100Hz tick, so we have the
497 		   vcpuop-based timer interface */
498 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
499 		xen_clockevent = &xen_vcpuop_clockevent;
500 	}
501 
502 	/* Set initial system time with full resolution */
503 	xen_read_wallclock(&tp);
504 	do_settimeofday64(&tp);
505 
506 	setup_force_cpu_cap(X86_FEATURE_TSC);
507 
508 	/*
509 	 * We check ahead on the primary time info if this
510 	 * bit is supported hence speeding up Xen clocksource.
511 	 */
512 	pvti = &__this_cpu_read(xen_vcpu)->time;
513 	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
514 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
515 		xen_setup_vsyscall_time_info();
516 	}
517 
518 	xen_setup_runstate_info(cpu);
519 	xen_setup_timer(cpu);
520 	xen_setup_cpu_clockevents();
521 
522 	xen_time_setup_guest();
523 
524 	if (xen_initial_domain())
525 		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
526 }
527 
528 void __init xen_init_time_ops(void)
529 {
530 	xen_sched_clock_offset = xen_clocksource_read();
531 	pv_ops.time = xen_time_ops;
532 
533 	x86_init.timers.timer_init = xen_time_init;
534 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
535 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
536 
537 	x86_platform.calibrate_tsc = xen_tsc_khz;
538 	x86_platform.get_wallclock = xen_get_wallclock;
539 	/* Dom0 uses the native method to set the hardware RTC. */
540 	if (!xen_initial_domain())
541 		x86_platform.set_wallclock = xen_set_wallclock;
542 }
543 
544 #ifdef CONFIG_XEN_PVHVM
545 static void xen_hvm_setup_cpu_clockevents(void)
546 {
547 	int cpu = smp_processor_id();
548 	xen_setup_runstate_info(cpu);
549 	/*
550 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
551 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
552 	 * early bootup and also during CPU hotplug events).
553 	 */
554 	xen_setup_cpu_clockevents();
555 }
556 
557 void __init xen_hvm_init_time_ops(void)
558 {
559 	/*
560 	 * vector callback is needed otherwise we cannot receive interrupts
561 	 * on cpu > 0 and at this point we don't know how many cpus are
562 	 * available.
563 	 */
564 	if (!xen_have_vector_callback)
565 		return;
566 
567 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
568 		pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
569 		return;
570 	}
571 
572 	xen_sched_clock_offset = xen_clocksource_read();
573 	pv_ops.time = xen_time_ops;
574 	x86_init.timers.setup_percpu_clockev = xen_time_init;
575 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
576 
577 	x86_platform.calibrate_tsc = xen_tsc_khz;
578 	x86_platform.get_wallclock = xen_get_wallclock;
579 	x86_platform.set_wallclock = xen_set_wallclock;
580 }
581 #endif
582 
583 /* Kernel parameter to specify Xen timer slop */
584 static int __init parse_xen_timer_slop(char *ptr)
585 {
586 	unsigned long slop = memparse(ptr, NULL);
587 
588 	xen_timerop_clockevent.min_delta_ns = slop;
589 	xen_timerop_clockevent.min_delta_ticks = slop;
590 	xen_vcpuop_clockevent.min_delta_ns = slop;
591 	xen_vcpuop_clockevent.min_delta_ticks = slop;
592 
593 	return 0;
594 }
595 early_param("xen_timer_slop", parse_xen_timer_slop);
596