xref: /linux/arch/x86/xen/time.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Xen time implementation.
3  *
4  * This is implemented in terms of a clocksource driver which uses
5  * the hypervisor clock as a nanosecond timebase, and a clockevent
6  * driver which uses the hypervisor's timer mechanism.
7  *
8  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9  */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
17 #include <linux/slab.h>
18 #include <linux/pvclock_gtod.h>
19 #include <linux/timekeeper_internal.h>
20 
21 #include <asm/pvclock.h>
22 #include <asm/xen/hypervisor.h>
23 #include <asm/xen/hypercall.h>
24 
25 #include <xen/events.h>
26 #include <xen/features.h>
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
29 
30 #include "xen-ops.h"
31 
32 /* Xen may fire a timer up to this many ns early */
33 #define TIMER_SLOP	100000
34 #define NS_PER_TICK	(1000000000LL / HZ)
35 
36 /* snapshots of runstate info */
37 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
38 
39 /* unused ns of stolen time */
40 static DEFINE_PER_CPU(u64, xen_residual_stolen);
41 
42 static void do_stolen_accounting(void)
43 {
44 	struct vcpu_runstate_info state;
45 	struct vcpu_runstate_info *snap;
46 	s64 runnable, offline, stolen;
47 	cputime_t ticks;
48 
49 	xen_get_runstate_snapshot(&state);
50 
51 	WARN_ON(state.state != RUNSTATE_running);
52 
53 	snap = this_cpu_ptr(&xen_runstate_snapshot);
54 
55 	/* work out how much time the VCPU has not been runn*ing*  */
56 	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
57 	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
58 
59 	*snap = state;
60 
61 	/* Add the appropriate number of ticks of stolen time,
62 	   including any left-overs from last time. */
63 	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
64 
65 	if (stolen < 0)
66 		stolen = 0;
67 
68 	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
69 	__this_cpu_write(xen_residual_stolen, stolen);
70 	account_steal_ticks(ticks);
71 }
72 
73 /* Get the TSC speed from Xen */
74 static unsigned long xen_tsc_khz(void)
75 {
76 	struct pvclock_vcpu_time_info *info =
77 		&HYPERVISOR_shared_info->vcpu_info[0].time;
78 
79 	return pvclock_tsc_khz(info);
80 }
81 
82 cycle_t xen_clocksource_read(void)
83 {
84         struct pvclock_vcpu_time_info *src;
85 	cycle_t ret;
86 
87 	preempt_disable_notrace();
88 	src = &__this_cpu_read(xen_vcpu)->time;
89 	ret = pvclock_clocksource_read(src);
90 	preempt_enable_notrace();
91 	return ret;
92 }
93 
94 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
95 {
96 	return xen_clocksource_read();
97 }
98 
99 static void xen_read_wallclock(struct timespec *ts)
100 {
101 	struct shared_info *s = HYPERVISOR_shared_info;
102 	struct pvclock_wall_clock *wall_clock = &(s->wc);
103         struct pvclock_vcpu_time_info *vcpu_time;
104 
105 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
106 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
107 	put_cpu_var(xen_vcpu);
108 }
109 
110 static void xen_get_wallclock(struct timespec *now)
111 {
112 	xen_read_wallclock(now);
113 }
114 
115 static int xen_set_wallclock(const struct timespec *now)
116 {
117 	return -1;
118 }
119 
120 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
121 				   unsigned long was_set, void *priv)
122 {
123 	/* Protected by the calling core code serialization */
124 	static struct timespec64 next_sync;
125 
126 	struct xen_platform_op op;
127 	struct timespec64 now;
128 	struct timekeeper *tk = priv;
129 	static bool settime64_supported = true;
130 	int ret;
131 
132 	now.tv_sec = tk->xtime_sec;
133 	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
134 
135 	/*
136 	 * We only take the expensive HV call when the clock was set
137 	 * or when the 11 minutes RTC synchronization time elapsed.
138 	 */
139 	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
140 		return NOTIFY_OK;
141 
142 again:
143 	if (settime64_supported) {
144 		op.cmd = XENPF_settime64;
145 		op.u.settime64.mbz = 0;
146 		op.u.settime64.secs = now.tv_sec;
147 		op.u.settime64.nsecs = now.tv_nsec;
148 		op.u.settime64.system_time = xen_clocksource_read();
149 	} else {
150 		op.cmd = XENPF_settime32;
151 		op.u.settime32.secs = now.tv_sec;
152 		op.u.settime32.nsecs = now.tv_nsec;
153 		op.u.settime32.system_time = xen_clocksource_read();
154 	}
155 
156 	ret = HYPERVISOR_platform_op(&op);
157 
158 	if (ret == -ENOSYS && settime64_supported) {
159 		settime64_supported = false;
160 		goto again;
161 	}
162 	if (ret < 0)
163 		return NOTIFY_BAD;
164 
165 	/*
166 	 * Move the next drift compensation time 11 minutes
167 	 * ahead. That's emulating the sync_cmos_clock() update for
168 	 * the hardware RTC.
169 	 */
170 	next_sync = now;
171 	next_sync.tv_sec += 11 * 60;
172 
173 	return NOTIFY_OK;
174 }
175 
176 static struct notifier_block xen_pvclock_gtod_notifier = {
177 	.notifier_call = xen_pvclock_gtod_notify,
178 };
179 
180 static struct clocksource xen_clocksource __read_mostly = {
181 	.name = "xen",
182 	.rating = 400,
183 	.read = xen_clocksource_get_cycles,
184 	.mask = ~0,
185 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
186 };
187 
188 /*
189    Xen clockevent implementation
190 
191    Xen has two clockevent implementations:
192 
193    The old timer_op one works with all released versions of Xen prior
194    to version 3.0.4.  This version of the hypervisor provides a
195    single-shot timer with nanosecond resolution.  However, sharing the
196    same event channel is a 100Hz tick which is delivered while the
197    vcpu is running.  We don't care about or use this tick, but it will
198    cause the core time code to think the timer fired too soon, and
199    will end up resetting it each time.  It could be filtered, but
200    doing so has complications when the ktime clocksource is not yet
201    the xen clocksource (ie, at boot time).
202 
203    The new vcpu_op-based timer interface allows the tick timer period
204    to be changed or turned off.  The tick timer is not useful as a
205    periodic timer because events are only delivered to running vcpus.
206    The one-shot timer can report when a timeout is in the past, so
207    set_next_event is capable of returning -ETIME when appropriate.
208    This interface is used when available.
209 */
210 
211 
212 /*
213   Get a hypervisor absolute time.  In theory we could maintain an
214   offset between the kernel's time and the hypervisor's time, and
215   apply that to a kernel's absolute timeout.  Unfortunately the
216   hypervisor and kernel times can drift even if the kernel is using
217   the Xen clocksource, because ntp can warp the kernel's clocksource.
218 */
219 static s64 get_abs_timeout(unsigned long delta)
220 {
221 	return xen_clocksource_read() + delta;
222 }
223 
224 static int xen_timerop_shutdown(struct clock_event_device *evt)
225 {
226 	/* cancel timeout */
227 	HYPERVISOR_set_timer_op(0);
228 
229 	return 0;
230 }
231 
232 static int xen_timerop_set_next_event(unsigned long delta,
233 				      struct clock_event_device *evt)
234 {
235 	WARN_ON(!clockevent_state_oneshot(evt));
236 
237 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
238 		BUG();
239 
240 	/* We may have missed the deadline, but there's no real way of
241 	   knowing for sure.  If the event was in the past, then we'll
242 	   get an immediate interrupt. */
243 
244 	return 0;
245 }
246 
247 static const struct clock_event_device xen_timerop_clockevent = {
248 	.name			= "xen",
249 	.features		= CLOCK_EVT_FEAT_ONESHOT,
250 
251 	.max_delta_ns		= 0xffffffff,
252 	.min_delta_ns		= TIMER_SLOP,
253 
254 	.mult			= 1,
255 	.shift			= 0,
256 	.rating			= 500,
257 
258 	.set_state_shutdown	= xen_timerop_shutdown,
259 	.set_next_event		= xen_timerop_set_next_event,
260 };
261 
262 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
263 {
264 	int cpu = smp_processor_id();
265 
266 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
267 	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
268 		BUG();
269 
270 	return 0;
271 }
272 
273 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
274 {
275 	int cpu = smp_processor_id();
276 
277 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
278 		BUG();
279 
280 	return 0;
281 }
282 
283 static int xen_vcpuop_set_next_event(unsigned long delta,
284 				     struct clock_event_device *evt)
285 {
286 	int cpu = smp_processor_id();
287 	struct vcpu_set_singleshot_timer single;
288 	int ret;
289 
290 	WARN_ON(!clockevent_state_oneshot(evt));
291 
292 	single.timeout_abs_ns = get_abs_timeout(delta);
293 	single.flags = VCPU_SSHOTTMR_future;
294 
295 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
296 
297 	BUG_ON(ret != 0 && ret != -ETIME);
298 
299 	return ret;
300 }
301 
302 static const struct clock_event_device xen_vcpuop_clockevent = {
303 	.name = "xen",
304 	.features = CLOCK_EVT_FEAT_ONESHOT,
305 
306 	.max_delta_ns = 0xffffffff,
307 	.min_delta_ns = TIMER_SLOP,
308 
309 	.mult = 1,
310 	.shift = 0,
311 	.rating = 500,
312 
313 	.set_state_shutdown = xen_vcpuop_shutdown,
314 	.set_state_oneshot = xen_vcpuop_set_oneshot,
315 	.set_next_event = xen_vcpuop_set_next_event,
316 };
317 
318 static const struct clock_event_device *xen_clockevent =
319 	&xen_timerop_clockevent;
320 
321 struct xen_clock_event_device {
322 	struct clock_event_device evt;
323 	char name[16];
324 };
325 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
326 
327 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
328 {
329 	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
330 	irqreturn_t ret;
331 
332 	ret = IRQ_NONE;
333 	if (evt->event_handler) {
334 		evt->event_handler(evt);
335 		ret = IRQ_HANDLED;
336 	}
337 
338 	do_stolen_accounting();
339 
340 	return ret;
341 }
342 
343 void xen_teardown_timer(int cpu)
344 {
345 	struct clock_event_device *evt;
346 	BUG_ON(cpu == 0);
347 	evt = &per_cpu(xen_clock_events, cpu).evt;
348 
349 	if (evt->irq >= 0) {
350 		unbind_from_irqhandler(evt->irq, NULL);
351 		evt->irq = -1;
352 	}
353 }
354 
355 void xen_setup_timer(int cpu)
356 {
357 	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
358 	struct clock_event_device *evt = &xevt->evt;
359 	int irq;
360 
361 	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
362 	if (evt->irq >= 0)
363 		xen_teardown_timer(cpu);
364 
365 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
366 
367 	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
368 
369 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
370 				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
371 				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
372 				      xevt->name, NULL);
373 	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
374 
375 	memcpy(evt, xen_clockevent, sizeof(*evt));
376 
377 	evt->cpumask = cpumask_of(cpu);
378 	evt->irq = irq;
379 }
380 
381 
382 void xen_setup_cpu_clockevents(void)
383 {
384 	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
385 }
386 
387 void xen_timer_resume(void)
388 {
389 	int cpu;
390 
391 	pvclock_resume();
392 
393 	if (xen_clockevent != &xen_vcpuop_clockevent)
394 		return;
395 
396 	for_each_online_cpu(cpu) {
397 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
398 			BUG();
399 	}
400 }
401 
402 static const struct pv_time_ops xen_time_ops __initconst = {
403 	.sched_clock = xen_clocksource_read,
404 };
405 
406 static void __init xen_time_init(void)
407 {
408 	int cpu = smp_processor_id();
409 	struct timespec tp;
410 
411 	/* As Dom0 is never moved, no penalty on using TSC there */
412 	if (xen_initial_domain())
413 		xen_clocksource.rating = 275;
414 
415 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
416 
417 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
418 		/* Successfully turned off 100Hz tick, so we have the
419 		   vcpuop-based timer interface */
420 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
421 		xen_clockevent = &xen_vcpuop_clockevent;
422 	}
423 
424 	/* Set initial system time with full resolution */
425 	xen_read_wallclock(&tp);
426 	do_settimeofday(&tp);
427 
428 	setup_force_cpu_cap(X86_FEATURE_TSC);
429 
430 	xen_setup_runstate_info(cpu);
431 	xen_setup_timer(cpu);
432 	xen_setup_cpu_clockevents();
433 
434 	if (xen_initial_domain())
435 		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
436 }
437 
438 void __init xen_init_time_ops(void)
439 {
440 	pv_time_ops = xen_time_ops;
441 
442 	x86_init.timers.timer_init = xen_time_init;
443 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
444 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
445 
446 	x86_platform.calibrate_tsc = xen_tsc_khz;
447 	x86_platform.get_wallclock = xen_get_wallclock;
448 	/* Dom0 uses the native method to set the hardware RTC. */
449 	if (!xen_initial_domain())
450 		x86_platform.set_wallclock = xen_set_wallclock;
451 }
452 
453 #ifdef CONFIG_XEN_PVHVM
454 static void xen_hvm_setup_cpu_clockevents(void)
455 {
456 	int cpu = smp_processor_id();
457 	xen_setup_runstate_info(cpu);
458 	/*
459 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
460 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
461 	 * early bootup and also during CPU hotplug events).
462 	 */
463 	xen_setup_cpu_clockevents();
464 }
465 
466 void __init xen_hvm_init_time_ops(void)
467 {
468 	/* vector callback is needed otherwise we cannot receive interrupts
469 	 * on cpu > 0 and at this point we don't know how many cpus are
470 	 * available */
471 	if (!xen_have_vector_callback)
472 		return;
473 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
474 		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
475 				"disable pv timer\n");
476 		return;
477 	}
478 
479 	pv_time_ops = xen_time_ops;
480 	x86_init.timers.setup_percpu_clockev = xen_time_init;
481 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
482 
483 	x86_platform.calibrate_tsc = xen_tsc_khz;
484 	x86_platform.get_wallclock = xen_get_wallclock;
485 	x86_platform.set_wallclock = xen_set_wallclock;
486 }
487 #endif
488