xref: /linux/arch/x86/xen/time.c (revision 8795a739e5c72abeec51caf36b6df2b37e5720c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xen time implementation.
4  *
5  * This is implemented in terms of a clocksource driver which uses
6  * the hypervisor clock as a nanosecond timebase, and a clockevent
7  * driver which uses the hypervisor's timer mechanism.
8  *
9  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10  */
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
19 
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28 
29 #include "xen-ops.h"
30 
31 /* Minimum amount of time until next clock event fires */
32 #define TIMER_SLOP	100000
33 
34 static u64 xen_sched_clock_offset __read_mostly;
35 
36 /* Get the TSC speed from Xen */
37 static unsigned long xen_tsc_khz(void)
38 {
39 	struct pvclock_vcpu_time_info *info =
40 		&HYPERVISOR_shared_info->vcpu_info[0].time;
41 
42 	return pvclock_tsc_khz(info);
43 }
44 
45 static u64 xen_clocksource_read(void)
46 {
47         struct pvclock_vcpu_time_info *src;
48 	u64 ret;
49 
50 	preempt_disable_notrace();
51 	src = &__this_cpu_read(xen_vcpu)->time;
52 	ret = pvclock_clocksource_read(src);
53 	preempt_enable_notrace();
54 	return ret;
55 }
56 
57 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
58 {
59 	return xen_clocksource_read();
60 }
61 
62 static u64 xen_sched_clock(void)
63 {
64 	return xen_clocksource_read() - xen_sched_clock_offset;
65 }
66 
67 static void xen_read_wallclock(struct timespec64 *ts)
68 {
69 	struct shared_info *s = HYPERVISOR_shared_info;
70 	struct pvclock_wall_clock *wall_clock = &(s->wc);
71         struct pvclock_vcpu_time_info *vcpu_time;
72 
73 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
74 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
75 	put_cpu_var(xen_vcpu);
76 }
77 
78 static void xen_get_wallclock(struct timespec64 *now)
79 {
80 	xen_read_wallclock(now);
81 }
82 
83 static int xen_set_wallclock(const struct timespec64 *now)
84 {
85 	return -ENODEV;
86 }
87 
88 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
89 				   unsigned long was_set, void *priv)
90 {
91 	/* Protected by the calling core code serialization */
92 	static struct timespec64 next_sync;
93 
94 	struct xen_platform_op op;
95 	struct timespec64 now;
96 	struct timekeeper *tk = priv;
97 	static bool settime64_supported = true;
98 	int ret;
99 
100 	now.tv_sec = tk->xtime_sec;
101 	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
102 
103 	/*
104 	 * We only take the expensive HV call when the clock was set
105 	 * or when the 11 minutes RTC synchronization time elapsed.
106 	 */
107 	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
108 		return NOTIFY_OK;
109 
110 again:
111 	if (settime64_supported) {
112 		op.cmd = XENPF_settime64;
113 		op.u.settime64.mbz = 0;
114 		op.u.settime64.secs = now.tv_sec;
115 		op.u.settime64.nsecs = now.tv_nsec;
116 		op.u.settime64.system_time = xen_clocksource_read();
117 	} else {
118 		op.cmd = XENPF_settime32;
119 		op.u.settime32.secs = now.tv_sec;
120 		op.u.settime32.nsecs = now.tv_nsec;
121 		op.u.settime32.system_time = xen_clocksource_read();
122 	}
123 
124 	ret = HYPERVISOR_platform_op(&op);
125 
126 	if (ret == -ENOSYS && settime64_supported) {
127 		settime64_supported = false;
128 		goto again;
129 	}
130 	if (ret < 0)
131 		return NOTIFY_BAD;
132 
133 	/*
134 	 * Move the next drift compensation time 11 minutes
135 	 * ahead. That's emulating the sync_cmos_clock() update for
136 	 * the hardware RTC.
137 	 */
138 	next_sync = now;
139 	next_sync.tv_sec += 11 * 60;
140 
141 	return NOTIFY_OK;
142 }
143 
144 static struct notifier_block xen_pvclock_gtod_notifier = {
145 	.notifier_call = xen_pvclock_gtod_notify,
146 };
147 
148 static struct clocksource xen_clocksource __read_mostly = {
149 	.name = "xen",
150 	.rating = 400,
151 	.read = xen_clocksource_get_cycles,
152 	.mask = ~0,
153 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
154 };
155 
156 /*
157    Xen clockevent implementation
158 
159    Xen has two clockevent implementations:
160 
161    The old timer_op one works with all released versions of Xen prior
162    to version 3.0.4.  This version of the hypervisor provides a
163    single-shot timer with nanosecond resolution.  However, sharing the
164    same event channel is a 100Hz tick which is delivered while the
165    vcpu is running.  We don't care about or use this tick, but it will
166    cause the core time code to think the timer fired too soon, and
167    will end up resetting it each time.  It could be filtered, but
168    doing so has complications when the ktime clocksource is not yet
169    the xen clocksource (ie, at boot time).
170 
171    The new vcpu_op-based timer interface allows the tick timer period
172    to be changed or turned off.  The tick timer is not useful as a
173    periodic timer because events are only delivered to running vcpus.
174    The one-shot timer can report when a timeout is in the past, so
175    set_next_event is capable of returning -ETIME when appropriate.
176    This interface is used when available.
177 */
178 
179 
180 /*
181   Get a hypervisor absolute time.  In theory we could maintain an
182   offset between the kernel's time and the hypervisor's time, and
183   apply that to a kernel's absolute timeout.  Unfortunately the
184   hypervisor and kernel times can drift even if the kernel is using
185   the Xen clocksource, because ntp can warp the kernel's clocksource.
186 */
187 static s64 get_abs_timeout(unsigned long delta)
188 {
189 	return xen_clocksource_read() + delta;
190 }
191 
192 static int xen_timerop_shutdown(struct clock_event_device *evt)
193 {
194 	/* cancel timeout */
195 	HYPERVISOR_set_timer_op(0);
196 
197 	return 0;
198 }
199 
200 static int xen_timerop_set_next_event(unsigned long delta,
201 				      struct clock_event_device *evt)
202 {
203 	WARN_ON(!clockevent_state_oneshot(evt));
204 
205 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
206 		BUG();
207 
208 	/* We may have missed the deadline, but there's no real way of
209 	   knowing for sure.  If the event was in the past, then we'll
210 	   get an immediate interrupt. */
211 
212 	return 0;
213 }
214 
215 static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
216 	.name			= "xen",
217 	.features		= CLOCK_EVT_FEAT_ONESHOT,
218 
219 	.max_delta_ns		= 0xffffffff,
220 	.max_delta_ticks	= 0xffffffff,
221 	.min_delta_ns		= TIMER_SLOP,
222 	.min_delta_ticks	= TIMER_SLOP,
223 
224 	.mult			= 1,
225 	.shift			= 0,
226 	.rating			= 500,
227 
228 	.set_state_shutdown	= xen_timerop_shutdown,
229 	.set_next_event		= xen_timerop_set_next_event,
230 };
231 
232 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
233 {
234 	int cpu = smp_processor_id();
235 
236 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
237 			       NULL) ||
238 	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
239 			       NULL))
240 		BUG();
241 
242 	return 0;
243 }
244 
245 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
246 {
247 	int cpu = smp_processor_id();
248 
249 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
250 			       NULL))
251 		BUG();
252 
253 	return 0;
254 }
255 
256 static int xen_vcpuop_set_next_event(unsigned long delta,
257 				     struct clock_event_device *evt)
258 {
259 	int cpu = smp_processor_id();
260 	struct vcpu_set_singleshot_timer single;
261 	int ret;
262 
263 	WARN_ON(!clockevent_state_oneshot(evt));
264 
265 	single.timeout_abs_ns = get_abs_timeout(delta);
266 	/* Get an event anyway, even if the timeout is already expired */
267 	single.flags = 0;
268 
269 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
270 				 &single);
271 	BUG_ON(ret != 0);
272 
273 	return ret;
274 }
275 
276 static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
277 	.name = "xen",
278 	.features = CLOCK_EVT_FEAT_ONESHOT,
279 
280 	.max_delta_ns = 0xffffffff,
281 	.max_delta_ticks = 0xffffffff,
282 	.min_delta_ns = TIMER_SLOP,
283 	.min_delta_ticks = TIMER_SLOP,
284 
285 	.mult = 1,
286 	.shift = 0,
287 	.rating = 500,
288 
289 	.set_state_shutdown = xen_vcpuop_shutdown,
290 	.set_state_oneshot = xen_vcpuop_set_oneshot,
291 	.set_next_event = xen_vcpuop_set_next_event,
292 };
293 
294 static const struct clock_event_device *xen_clockevent =
295 	&xen_timerop_clockevent;
296 
297 struct xen_clock_event_device {
298 	struct clock_event_device evt;
299 	char name[16];
300 };
301 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
302 
303 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
304 {
305 	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
306 	irqreturn_t ret;
307 
308 	ret = IRQ_NONE;
309 	if (evt->event_handler) {
310 		evt->event_handler(evt);
311 		ret = IRQ_HANDLED;
312 	}
313 
314 	return ret;
315 }
316 
317 void xen_teardown_timer(int cpu)
318 {
319 	struct clock_event_device *evt;
320 	evt = &per_cpu(xen_clock_events, cpu).evt;
321 
322 	if (evt->irq >= 0) {
323 		unbind_from_irqhandler(evt->irq, NULL);
324 		evt->irq = -1;
325 	}
326 }
327 
328 void xen_setup_timer(int cpu)
329 {
330 	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
331 	struct clock_event_device *evt = &xevt->evt;
332 	int irq;
333 
334 	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
335 	if (evt->irq >= 0)
336 		xen_teardown_timer(cpu);
337 
338 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
339 
340 	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
341 
342 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
343 				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
344 				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
345 				      xevt->name, NULL);
346 	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
347 
348 	memcpy(evt, xen_clockevent, sizeof(*evt));
349 
350 	evt->cpumask = cpumask_of(cpu);
351 	evt->irq = irq;
352 }
353 
354 
355 void xen_setup_cpu_clockevents(void)
356 {
357 	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
358 }
359 
360 void xen_timer_resume(void)
361 {
362 	int cpu;
363 
364 	if (xen_clockevent != &xen_vcpuop_clockevent)
365 		return;
366 
367 	for_each_online_cpu(cpu) {
368 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
369 				       xen_vcpu_nr(cpu), NULL))
370 			BUG();
371 	}
372 }
373 
374 static const struct pv_time_ops xen_time_ops __initconst = {
375 	.sched_clock = xen_sched_clock,
376 	.steal_clock = xen_steal_clock,
377 };
378 
379 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
380 static u64 xen_clock_value_saved;
381 
382 void xen_save_time_memory_area(void)
383 {
384 	struct vcpu_register_time_memory_area t;
385 	int ret;
386 
387 	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
388 
389 	if (!xen_clock)
390 		return;
391 
392 	t.addr.v = NULL;
393 
394 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
395 	if (ret != 0)
396 		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
397 			  ret);
398 	else
399 		clear_page(xen_clock);
400 }
401 
402 void xen_restore_time_memory_area(void)
403 {
404 	struct vcpu_register_time_memory_area t;
405 	int ret;
406 
407 	if (!xen_clock)
408 		goto out;
409 
410 	t.addr.v = &xen_clock->pvti;
411 
412 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
413 
414 	/*
415 	 * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the
416 	 * secondary time info with Xen or if we migrated to a host without the
417 	 * necessary flags. On both of these cases what happens is either
418 	 * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT
419 	 * bit set. Userspace checks the latter and if 0, it discards the data
420 	 * in pvti and fallbacks to a system call for a reliable timestamp.
421 	 */
422 	if (ret != 0)
423 		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
424 			  ret);
425 
426 out:
427 	/* Need pvclock_resume() before using xen_clocksource_read(). */
428 	pvclock_resume();
429 	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
430 }
431 
432 static void xen_setup_vsyscall_time_info(void)
433 {
434 	struct vcpu_register_time_memory_area t;
435 	struct pvclock_vsyscall_time_info *ti;
436 	int ret;
437 
438 	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
439 	if (!ti)
440 		return;
441 
442 	t.addr.v = &ti->pvti;
443 
444 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
445 	if (ret) {
446 		pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret);
447 		free_page((unsigned long)ti);
448 		return;
449 	}
450 
451 	/*
452 	 * If primary time info had this bit set, secondary should too since
453 	 * it's the same data on both just different memory regions. But we
454 	 * still check it in case hypervisor is buggy.
455 	 */
456 	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
457 		t.addr.v = NULL;
458 		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
459 					 0, &t);
460 		if (!ret)
461 			free_page((unsigned long)ti);
462 
463 		pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n");
464 		return;
465 	}
466 
467 	xen_clock = ti;
468 	pvclock_set_pvti_cpu0_va(xen_clock);
469 
470 	xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK;
471 }
472 
473 static void __init xen_time_init(void)
474 {
475 	struct pvclock_vcpu_time_info *pvti;
476 	int cpu = smp_processor_id();
477 	struct timespec64 tp;
478 
479 	/* As Dom0 is never moved, no penalty on using TSC there */
480 	if (xen_initial_domain())
481 		xen_clocksource.rating = 275;
482 
483 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
484 
485 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
486 			       NULL) == 0) {
487 		/* Successfully turned off 100Hz tick, so we have the
488 		   vcpuop-based timer interface */
489 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
490 		xen_clockevent = &xen_vcpuop_clockevent;
491 	}
492 
493 	/* Set initial system time with full resolution */
494 	xen_read_wallclock(&tp);
495 	do_settimeofday64(&tp);
496 
497 	setup_force_cpu_cap(X86_FEATURE_TSC);
498 
499 	/*
500 	 * We check ahead on the primary time info if this
501 	 * bit is supported hence speeding up Xen clocksource.
502 	 */
503 	pvti = &__this_cpu_read(xen_vcpu)->time;
504 	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
505 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
506 		xen_setup_vsyscall_time_info();
507 	}
508 
509 	xen_setup_runstate_info(cpu);
510 	xen_setup_timer(cpu);
511 	xen_setup_cpu_clockevents();
512 
513 	xen_time_setup_guest();
514 
515 	if (xen_initial_domain())
516 		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
517 }
518 
519 void __init xen_init_time_ops(void)
520 {
521 	xen_sched_clock_offset = xen_clocksource_read();
522 	pv_ops.time = xen_time_ops;
523 
524 	x86_init.timers.timer_init = xen_time_init;
525 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
526 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
527 
528 	x86_platform.calibrate_tsc = xen_tsc_khz;
529 	x86_platform.get_wallclock = xen_get_wallclock;
530 	/* Dom0 uses the native method to set the hardware RTC. */
531 	if (!xen_initial_domain())
532 		x86_platform.set_wallclock = xen_set_wallclock;
533 }
534 
535 #ifdef CONFIG_XEN_PVHVM
536 static void xen_hvm_setup_cpu_clockevents(void)
537 {
538 	int cpu = smp_processor_id();
539 	xen_setup_runstate_info(cpu);
540 	/*
541 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
542 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
543 	 * early bootup and also during CPU hotplug events).
544 	 */
545 	xen_setup_cpu_clockevents();
546 }
547 
548 void __init xen_hvm_init_time_ops(void)
549 {
550 	/*
551 	 * vector callback is needed otherwise we cannot receive interrupts
552 	 * on cpu > 0 and at this point we don't know how many cpus are
553 	 * available.
554 	 */
555 	if (!xen_have_vector_callback)
556 		return;
557 
558 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
559 		pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
560 		return;
561 	}
562 
563 	xen_sched_clock_offset = xen_clocksource_read();
564 	pv_ops.time = xen_time_ops;
565 	x86_init.timers.setup_percpu_clockev = xen_time_init;
566 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
567 
568 	x86_platform.calibrate_tsc = xen_tsc_khz;
569 	x86_platform.get_wallclock = xen_get_wallclock;
570 	x86_platform.set_wallclock = xen_set_wallclock;
571 }
572 #endif
573 
574 /* Kernel parameter to specify Xen timer slop */
575 static int __init parse_xen_timer_slop(char *ptr)
576 {
577 	unsigned long slop = memparse(ptr, NULL);
578 
579 	xen_timerop_clockevent.min_delta_ns = slop;
580 	xen_timerop_clockevent.min_delta_ticks = slop;
581 	xen_vcpuop_clockevent.min_delta_ns = slop;
582 	xen_vcpuop_clockevent.min_delta_ticks = slop;
583 
584 	return 0;
585 }
586 early_param("xen_timer_slop", parse_xen_timer_slop);
587