1 /* 2 * Xen time implementation. 3 * 4 * This is implemented in terms of a clocksource driver which uses 5 * the hypervisor clock as a nanosecond timebase, and a clockevent 6 * driver which uses the hypervisor's timer mechanism. 7 * 8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 9 */ 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/clocksource.h> 13 #include <linux/clockchips.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/math64.h> 16 #include <linux/gfp.h> 17 #include <linux/slab.h> 18 #include <linux/pvclock_gtod.h> 19 #include <linux/timekeeper_internal.h> 20 21 #include <asm/pvclock.h> 22 #include <asm/xen/hypervisor.h> 23 #include <asm/xen/hypercall.h> 24 25 #include <xen/events.h> 26 #include <xen/features.h> 27 #include <xen/interface/xen.h> 28 #include <xen/interface/vcpu.h> 29 30 #include "xen-ops.h" 31 32 /* Xen may fire a timer up to this many ns early */ 33 #define TIMER_SLOP 100000 34 #define NS_PER_TICK (1000000000LL / HZ) 35 36 /* snapshots of runstate info */ 37 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot); 38 39 /* unused ns of stolen time */ 40 static DEFINE_PER_CPU(u64, xen_residual_stolen); 41 42 static void do_stolen_accounting(void) 43 { 44 struct vcpu_runstate_info state; 45 struct vcpu_runstate_info *snap; 46 s64 runnable, offline, stolen; 47 cputime_t ticks; 48 49 xen_get_runstate_snapshot(&state); 50 51 WARN_ON(state.state != RUNSTATE_running); 52 53 snap = this_cpu_ptr(&xen_runstate_snapshot); 54 55 /* work out how much time the VCPU has not been runn*ing* */ 56 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; 57 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; 58 59 *snap = state; 60 61 /* Add the appropriate number of ticks of stolen time, 62 including any left-overs from last time. */ 63 stolen = runnable + offline + __this_cpu_read(xen_residual_stolen); 64 65 if (stolen < 0) 66 stolen = 0; 67 68 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); 69 __this_cpu_write(xen_residual_stolen, stolen); 70 account_steal_ticks(ticks); 71 } 72 73 /* Get the TSC speed from Xen */ 74 static unsigned long xen_tsc_khz(void) 75 { 76 struct pvclock_vcpu_time_info *info = 77 &HYPERVISOR_shared_info->vcpu_info[0].time; 78 79 return pvclock_tsc_khz(info); 80 } 81 82 cycle_t xen_clocksource_read(void) 83 { 84 struct pvclock_vcpu_time_info *src; 85 cycle_t ret; 86 87 preempt_disable_notrace(); 88 src = &__this_cpu_read(xen_vcpu)->time; 89 ret = pvclock_clocksource_read(src); 90 preempt_enable_notrace(); 91 return ret; 92 } 93 94 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs) 95 { 96 return xen_clocksource_read(); 97 } 98 99 static void xen_read_wallclock(struct timespec *ts) 100 { 101 struct shared_info *s = HYPERVISOR_shared_info; 102 struct pvclock_wall_clock *wall_clock = &(s->wc); 103 struct pvclock_vcpu_time_info *vcpu_time; 104 105 vcpu_time = &get_cpu_var(xen_vcpu)->time; 106 pvclock_read_wallclock(wall_clock, vcpu_time, ts); 107 put_cpu_var(xen_vcpu); 108 } 109 110 static void xen_get_wallclock(struct timespec *now) 111 { 112 xen_read_wallclock(now); 113 } 114 115 static int xen_set_wallclock(const struct timespec *now) 116 { 117 return -1; 118 } 119 120 static int xen_pvclock_gtod_notify(struct notifier_block *nb, 121 unsigned long was_set, void *priv) 122 { 123 /* Protected by the calling core code serialization */ 124 static struct timespec64 next_sync; 125 126 struct xen_platform_op op; 127 struct timespec64 now; 128 struct timekeeper *tk = priv; 129 static bool settime64_supported = true; 130 int ret; 131 132 now.tv_sec = tk->xtime_sec; 133 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 134 135 /* 136 * We only take the expensive HV call when the clock was set 137 * or when the 11 minutes RTC synchronization time elapsed. 138 */ 139 if (!was_set && timespec64_compare(&now, &next_sync) < 0) 140 return NOTIFY_OK; 141 142 again: 143 if (settime64_supported) { 144 op.cmd = XENPF_settime64; 145 op.u.settime64.mbz = 0; 146 op.u.settime64.secs = now.tv_sec; 147 op.u.settime64.nsecs = now.tv_nsec; 148 op.u.settime64.system_time = xen_clocksource_read(); 149 } else { 150 op.cmd = XENPF_settime32; 151 op.u.settime32.secs = now.tv_sec; 152 op.u.settime32.nsecs = now.tv_nsec; 153 op.u.settime32.system_time = xen_clocksource_read(); 154 } 155 156 ret = HYPERVISOR_platform_op(&op); 157 158 if (ret == -ENOSYS && settime64_supported) { 159 settime64_supported = false; 160 goto again; 161 } 162 if (ret < 0) 163 return NOTIFY_BAD; 164 165 /* 166 * Move the next drift compensation time 11 minutes 167 * ahead. That's emulating the sync_cmos_clock() update for 168 * the hardware RTC. 169 */ 170 next_sync = now; 171 next_sync.tv_sec += 11 * 60; 172 173 return NOTIFY_OK; 174 } 175 176 static struct notifier_block xen_pvclock_gtod_notifier = { 177 .notifier_call = xen_pvclock_gtod_notify, 178 }; 179 180 static struct clocksource xen_clocksource __read_mostly = { 181 .name = "xen", 182 .rating = 400, 183 .read = xen_clocksource_get_cycles, 184 .mask = ~0, 185 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 186 }; 187 188 /* 189 Xen clockevent implementation 190 191 Xen has two clockevent implementations: 192 193 The old timer_op one works with all released versions of Xen prior 194 to version 3.0.4. This version of the hypervisor provides a 195 single-shot timer with nanosecond resolution. However, sharing the 196 same event channel is a 100Hz tick which is delivered while the 197 vcpu is running. We don't care about or use this tick, but it will 198 cause the core time code to think the timer fired too soon, and 199 will end up resetting it each time. It could be filtered, but 200 doing so has complications when the ktime clocksource is not yet 201 the xen clocksource (ie, at boot time). 202 203 The new vcpu_op-based timer interface allows the tick timer period 204 to be changed or turned off. The tick timer is not useful as a 205 periodic timer because events are only delivered to running vcpus. 206 The one-shot timer can report when a timeout is in the past, so 207 set_next_event is capable of returning -ETIME when appropriate. 208 This interface is used when available. 209 */ 210 211 212 /* 213 Get a hypervisor absolute time. In theory we could maintain an 214 offset between the kernel's time and the hypervisor's time, and 215 apply that to a kernel's absolute timeout. Unfortunately the 216 hypervisor and kernel times can drift even if the kernel is using 217 the Xen clocksource, because ntp can warp the kernel's clocksource. 218 */ 219 static s64 get_abs_timeout(unsigned long delta) 220 { 221 return xen_clocksource_read() + delta; 222 } 223 224 static int xen_timerop_shutdown(struct clock_event_device *evt) 225 { 226 /* cancel timeout */ 227 HYPERVISOR_set_timer_op(0); 228 229 return 0; 230 } 231 232 static int xen_timerop_set_next_event(unsigned long delta, 233 struct clock_event_device *evt) 234 { 235 WARN_ON(!clockevent_state_oneshot(evt)); 236 237 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 238 BUG(); 239 240 /* We may have missed the deadline, but there's no real way of 241 knowing for sure. If the event was in the past, then we'll 242 get an immediate interrupt. */ 243 244 return 0; 245 } 246 247 static const struct clock_event_device xen_timerop_clockevent = { 248 .name = "xen", 249 .features = CLOCK_EVT_FEAT_ONESHOT, 250 251 .max_delta_ns = 0xffffffff, 252 .min_delta_ns = TIMER_SLOP, 253 254 .mult = 1, 255 .shift = 0, 256 .rating = 500, 257 258 .set_state_shutdown = xen_timerop_shutdown, 259 .set_next_event = xen_timerop_set_next_event, 260 }; 261 262 static int xen_vcpuop_shutdown(struct clock_event_device *evt) 263 { 264 int cpu = smp_processor_id(); 265 266 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || 267 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 268 BUG(); 269 270 return 0; 271 } 272 273 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt) 274 { 275 int cpu = smp_processor_id(); 276 277 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 278 BUG(); 279 280 return 0; 281 } 282 283 static int xen_vcpuop_set_next_event(unsigned long delta, 284 struct clock_event_device *evt) 285 { 286 int cpu = smp_processor_id(); 287 struct vcpu_set_singleshot_timer single; 288 int ret; 289 290 WARN_ON(!clockevent_state_oneshot(evt)); 291 292 single.timeout_abs_ns = get_abs_timeout(delta); 293 single.flags = VCPU_SSHOTTMR_future; 294 295 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); 296 297 BUG_ON(ret != 0 && ret != -ETIME); 298 299 return ret; 300 } 301 302 static const struct clock_event_device xen_vcpuop_clockevent = { 303 .name = "xen", 304 .features = CLOCK_EVT_FEAT_ONESHOT, 305 306 .max_delta_ns = 0xffffffff, 307 .min_delta_ns = TIMER_SLOP, 308 309 .mult = 1, 310 .shift = 0, 311 .rating = 500, 312 313 .set_state_shutdown = xen_vcpuop_shutdown, 314 .set_state_oneshot = xen_vcpuop_set_oneshot, 315 .set_next_event = xen_vcpuop_set_next_event, 316 }; 317 318 static const struct clock_event_device *xen_clockevent = 319 &xen_timerop_clockevent; 320 321 struct xen_clock_event_device { 322 struct clock_event_device evt; 323 char name[16]; 324 }; 325 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 }; 326 327 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 328 { 329 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt); 330 irqreturn_t ret; 331 332 ret = IRQ_NONE; 333 if (evt->event_handler) { 334 evt->event_handler(evt); 335 ret = IRQ_HANDLED; 336 } 337 338 do_stolen_accounting(); 339 340 return ret; 341 } 342 343 void xen_teardown_timer(int cpu) 344 { 345 struct clock_event_device *evt; 346 BUG_ON(cpu == 0); 347 evt = &per_cpu(xen_clock_events, cpu).evt; 348 349 if (evt->irq >= 0) { 350 unbind_from_irqhandler(evt->irq, NULL); 351 evt->irq = -1; 352 } 353 } 354 355 void xen_setup_timer(int cpu) 356 { 357 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu); 358 struct clock_event_device *evt = &xevt->evt; 359 int irq; 360 361 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu); 362 if (evt->irq >= 0) 363 xen_teardown_timer(cpu); 364 365 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 366 367 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu); 368 369 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 370 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER| 371 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME, 372 xevt->name, NULL); 373 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX); 374 375 memcpy(evt, xen_clockevent, sizeof(*evt)); 376 377 evt->cpumask = cpumask_of(cpu); 378 evt->irq = irq; 379 } 380 381 382 void xen_setup_cpu_clockevents(void) 383 { 384 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt)); 385 } 386 387 void xen_timer_resume(void) 388 { 389 int cpu; 390 391 pvclock_resume(); 392 393 if (xen_clockevent != &xen_vcpuop_clockevent) 394 return; 395 396 for_each_online_cpu(cpu) { 397 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 398 BUG(); 399 } 400 } 401 402 static const struct pv_time_ops xen_time_ops __initconst = { 403 .sched_clock = xen_clocksource_read, 404 }; 405 406 static void __init xen_time_init(void) 407 { 408 int cpu = smp_processor_id(); 409 struct timespec tp; 410 411 /* As Dom0 is never moved, no penalty on using TSC there */ 412 if (xen_initial_domain()) 413 xen_clocksource.rating = 275; 414 415 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC); 416 417 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { 418 /* Successfully turned off 100Hz tick, so we have the 419 vcpuop-based timer interface */ 420 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 421 xen_clockevent = &xen_vcpuop_clockevent; 422 } 423 424 /* Set initial system time with full resolution */ 425 xen_read_wallclock(&tp); 426 do_settimeofday(&tp); 427 428 setup_force_cpu_cap(X86_FEATURE_TSC); 429 430 xen_setup_runstate_info(cpu); 431 xen_setup_timer(cpu); 432 xen_setup_cpu_clockevents(); 433 434 if (xen_initial_domain()) 435 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier); 436 } 437 438 void __init xen_init_time_ops(void) 439 { 440 pv_time_ops = xen_time_ops; 441 442 x86_init.timers.timer_init = xen_time_init; 443 x86_init.timers.setup_percpu_clockev = x86_init_noop; 444 x86_cpuinit.setup_percpu_clockev = x86_init_noop; 445 446 x86_platform.calibrate_tsc = xen_tsc_khz; 447 x86_platform.get_wallclock = xen_get_wallclock; 448 /* Dom0 uses the native method to set the hardware RTC. */ 449 if (!xen_initial_domain()) 450 x86_platform.set_wallclock = xen_set_wallclock; 451 } 452 453 #ifdef CONFIG_XEN_PVHVM 454 static void xen_hvm_setup_cpu_clockevents(void) 455 { 456 int cpu = smp_processor_id(); 457 xen_setup_runstate_info(cpu); 458 /* 459 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence 460 * doing it xen_hvm_cpu_notify (which gets called by smp_init during 461 * early bootup and also during CPU hotplug events). 462 */ 463 xen_setup_cpu_clockevents(); 464 } 465 466 void __init xen_hvm_init_time_ops(void) 467 { 468 /* vector callback is needed otherwise we cannot receive interrupts 469 * on cpu > 0 and at this point we don't know how many cpus are 470 * available */ 471 if (!xen_have_vector_callback) 472 return; 473 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) { 474 printk(KERN_INFO "Xen doesn't support pvclock on HVM," 475 "disable pv timer\n"); 476 return; 477 } 478 479 pv_time_ops = xen_time_ops; 480 x86_init.timers.setup_percpu_clockev = xen_time_init; 481 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents; 482 483 x86_platform.calibrate_tsc = xen_tsc_khz; 484 x86_platform.get_wallclock = xen_get_wallclock; 485 x86_platform.set_wallclock = xen_set_wallclock; 486 } 487 #endif 488