1 /* 2 * Xen time implementation. 3 * 4 * This is implemented in terms of a clocksource driver which uses 5 * the hypervisor clock as a nanosecond timebase, and a clockevent 6 * driver which uses the hypervisor's timer mechanism. 7 * 8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 9 */ 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/clocksource.h> 13 #include <linux/clockchips.h> 14 #include <linux/kernel_stat.h> 15 16 #include <asm/xen/hypervisor.h> 17 #include <asm/xen/hypercall.h> 18 19 #include <xen/events.h> 20 #include <xen/interface/xen.h> 21 #include <xen/interface/vcpu.h> 22 23 #include "xen-ops.h" 24 25 #define XEN_SHIFT 22 26 27 /* Xen may fire a timer up to this many ns early */ 28 #define TIMER_SLOP 100000 29 #define NS_PER_TICK (1000000000LL / HZ) 30 31 static cycle_t xen_clocksource_read(void); 32 33 /* These are perodically updated in shared_info, and then copied here. */ 34 struct shadow_time_info { 35 u64 tsc_timestamp; /* TSC at last update of time vals. */ 36 u64 system_timestamp; /* Time, in nanosecs, since boot. */ 37 u32 tsc_to_nsec_mul; 38 int tsc_shift; 39 u32 version; 40 }; 41 42 static DEFINE_PER_CPU(struct shadow_time_info, shadow_time); 43 44 /* runstate info updated by Xen */ 45 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate); 46 47 /* snapshots of runstate info */ 48 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot); 49 50 /* unused ns of stolen and blocked time */ 51 static DEFINE_PER_CPU(u64, residual_stolen); 52 static DEFINE_PER_CPU(u64, residual_blocked); 53 54 /* return an consistent snapshot of 64-bit time/counter value */ 55 static u64 get64(const u64 *p) 56 { 57 u64 ret; 58 59 if (BITS_PER_LONG < 64) { 60 u32 *p32 = (u32 *)p; 61 u32 h, l; 62 63 /* 64 * Read high then low, and then make sure high is 65 * still the same; this will only loop if low wraps 66 * and carries into high. 67 * XXX some clean way to make this endian-proof? 68 */ 69 do { 70 h = p32[1]; 71 barrier(); 72 l = p32[0]; 73 barrier(); 74 } while (p32[1] != h); 75 76 ret = (((u64)h) << 32) | l; 77 } else 78 ret = *p; 79 80 return ret; 81 } 82 83 /* 84 * Runstate accounting 85 */ 86 static void get_runstate_snapshot(struct vcpu_runstate_info *res) 87 { 88 u64 state_time; 89 struct vcpu_runstate_info *state; 90 91 BUG_ON(preemptible()); 92 93 state = &__get_cpu_var(runstate); 94 95 /* 96 * The runstate info is always updated by the hypervisor on 97 * the current CPU, so there's no need to use anything 98 * stronger than a compiler barrier when fetching it. 99 */ 100 do { 101 state_time = get64(&state->state_entry_time); 102 barrier(); 103 *res = *state; 104 barrier(); 105 } while (get64(&state->state_entry_time) != state_time); 106 } 107 108 static void setup_runstate_info(int cpu) 109 { 110 struct vcpu_register_runstate_memory_area area; 111 112 area.addr.v = &per_cpu(runstate, cpu); 113 114 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, 115 cpu, &area)) 116 BUG(); 117 } 118 119 static void do_stolen_accounting(void) 120 { 121 struct vcpu_runstate_info state; 122 struct vcpu_runstate_info *snap; 123 s64 blocked, runnable, offline, stolen; 124 cputime_t ticks; 125 126 get_runstate_snapshot(&state); 127 128 WARN_ON(state.state != RUNSTATE_running); 129 130 snap = &__get_cpu_var(runstate_snapshot); 131 132 /* work out how much time the VCPU has not been runn*ing* */ 133 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; 134 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; 135 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; 136 137 *snap = state; 138 139 /* Add the appropriate number of ticks of stolen time, 140 including any left-overs from last time. Passing NULL to 141 account_steal_time accounts the time as stolen. */ 142 stolen = runnable + offline + __get_cpu_var(residual_stolen); 143 144 if (stolen < 0) 145 stolen = 0; 146 147 ticks = 0; 148 while (stolen >= NS_PER_TICK) { 149 ticks++; 150 stolen -= NS_PER_TICK; 151 } 152 __get_cpu_var(residual_stolen) = stolen; 153 account_steal_time(NULL, ticks); 154 155 /* Add the appropriate number of ticks of blocked time, 156 including any left-overs from last time. Passing idle to 157 account_steal_time accounts the time as idle/wait. */ 158 blocked += __get_cpu_var(residual_blocked); 159 160 if (blocked < 0) 161 blocked = 0; 162 163 ticks = 0; 164 while (blocked >= NS_PER_TICK) { 165 ticks++; 166 blocked -= NS_PER_TICK; 167 } 168 __get_cpu_var(residual_blocked) = blocked; 169 account_steal_time(idle_task(smp_processor_id()), ticks); 170 } 171 172 /* 173 * Xen sched_clock implementation. Returns the number of unstolen 174 * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED 175 * states. 176 */ 177 unsigned long long xen_sched_clock(void) 178 { 179 struct vcpu_runstate_info state; 180 cycle_t now; 181 u64 ret; 182 s64 offset; 183 184 /* 185 * Ideally sched_clock should be called on a per-cpu basis 186 * anyway, so preempt should already be disabled, but that's 187 * not current practice at the moment. 188 */ 189 preempt_disable(); 190 191 now = xen_clocksource_read(); 192 193 get_runstate_snapshot(&state); 194 195 WARN_ON(state.state != RUNSTATE_running); 196 197 offset = now - state.state_entry_time; 198 if (offset < 0) 199 offset = 0; 200 201 ret = state.time[RUNSTATE_blocked] + 202 state.time[RUNSTATE_running] + 203 offset; 204 205 preempt_enable(); 206 207 return ret; 208 } 209 210 211 /* Get the CPU speed from Xen */ 212 unsigned long xen_cpu_khz(void) 213 { 214 u64 cpu_khz = 1000000ULL << 32; 215 const struct vcpu_time_info *info = 216 &HYPERVISOR_shared_info->vcpu_info[0].time; 217 218 do_div(cpu_khz, info->tsc_to_system_mul); 219 if (info->tsc_shift < 0) 220 cpu_khz <<= -info->tsc_shift; 221 else 222 cpu_khz >>= info->tsc_shift; 223 224 return cpu_khz; 225 } 226 227 /* 228 * Reads a consistent set of time-base values from Xen, into a shadow data 229 * area. 230 */ 231 static unsigned get_time_values_from_xen(void) 232 { 233 struct vcpu_time_info *src; 234 struct shadow_time_info *dst; 235 236 /* src is shared memory with the hypervisor, so we need to 237 make sure we get a consistent snapshot, even in the face of 238 being preempted. */ 239 src = &__get_cpu_var(xen_vcpu)->time; 240 dst = &__get_cpu_var(shadow_time); 241 242 do { 243 dst->version = src->version; 244 rmb(); /* fetch version before data */ 245 dst->tsc_timestamp = src->tsc_timestamp; 246 dst->system_timestamp = src->system_time; 247 dst->tsc_to_nsec_mul = src->tsc_to_system_mul; 248 dst->tsc_shift = src->tsc_shift; 249 rmb(); /* test version after fetching data */ 250 } while ((src->version & 1) | (dst->version ^ src->version)); 251 252 return dst->version; 253 } 254 255 /* 256 * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction, 257 * yielding a 64-bit result. 258 */ 259 static inline u64 scale_delta(u64 delta, u32 mul_frac, int shift) 260 { 261 u64 product; 262 #ifdef __i386__ 263 u32 tmp1, tmp2; 264 #endif 265 266 if (shift < 0) 267 delta >>= -shift; 268 else 269 delta <<= shift; 270 271 #ifdef __i386__ 272 __asm__ ( 273 "mul %5 ; " 274 "mov %4,%%eax ; " 275 "mov %%edx,%4 ; " 276 "mul %5 ; " 277 "xor %5,%5 ; " 278 "add %4,%%eax ; " 279 "adc %5,%%edx ; " 280 : "=A" (product), "=r" (tmp1), "=r" (tmp2) 281 : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) ); 282 #elif __x86_64__ 283 __asm__ ( 284 "mul %%rdx ; shrd $32,%%rdx,%%rax" 285 : "=a" (product) : "0" (delta), "d" ((u64)mul_frac) ); 286 #else 287 #error implement me! 288 #endif 289 290 return product; 291 } 292 293 static u64 get_nsec_offset(struct shadow_time_info *shadow) 294 { 295 u64 now, delta; 296 now = native_read_tsc(); 297 delta = now - shadow->tsc_timestamp; 298 return scale_delta(delta, shadow->tsc_to_nsec_mul, shadow->tsc_shift); 299 } 300 301 static cycle_t xen_clocksource_read(void) 302 { 303 struct shadow_time_info *shadow = &get_cpu_var(shadow_time); 304 cycle_t ret; 305 unsigned version; 306 307 do { 308 version = get_time_values_from_xen(); 309 barrier(); 310 ret = shadow->system_timestamp + get_nsec_offset(shadow); 311 barrier(); 312 } while (version != __get_cpu_var(xen_vcpu)->time.version); 313 314 put_cpu_var(shadow_time); 315 316 return ret; 317 } 318 319 static void xen_read_wallclock(struct timespec *ts) 320 { 321 const struct shared_info *s = HYPERVISOR_shared_info; 322 u32 version; 323 u64 delta; 324 struct timespec now; 325 326 /* get wallclock at system boot */ 327 do { 328 version = s->wc_version; 329 rmb(); /* fetch version before time */ 330 now.tv_sec = s->wc_sec; 331 now.tv_nsec = s->wc_nsec; 332 rmb(); /* fetch time before checking version */ 333 } while ((s->wc_version & 1) | (version ^ s->wc_version)); 334 335 delta = xen_clocksource_read(); /* time since system boot */ 336 delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec; 337 338 now.tv_nsec = do_div(delta, NSEC_PER_SEC); 339 now.tv_sec = delta; 340 341 set_normalized_timespec(ts, now.tv_sec, now.tv_nsec); 342 } 343 344 unsigned long xen_get_wallclock(void) 345 { 346 struct timespec ts; 347 348 xen_read_wallclock(&ts); 349 350 return ts.tv_sec; 351 } 352 353 int xen_set_wallclock(unsigned long now) 354 { 355 /* do nothing for domU */ 356 return -1; 357 } 358 359 static struct clocksource xen_clocksource __read_mostly = { 360 .name = "xen", 361 .rating = 400, 362 .read = xen_clocksource_read, 363 .mask = ~0, 364 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */ 365 .shift = XEN_SHIFT, 366 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 367 }; 368 369 /* 370 Xen clockevent implementation 371 372 Xen has two clockevent implementations: 373 374 The old timer_op one works with all released versions of Xen prior 375 to version 3.0.4. This version of the hypervisor provides a 376 single-shot timer with nanosecond resolution. However, sharing the 377 same event channel is a 100Hz tick which is delivered while the 378 vcpu is running. We don't care about or use this tick, but it will 379 cause the core time code to think the timer fired too soon, and 380 will end up resetting it each time. It could be filtered, but 381 doing so has complications when the ktime clocksource is not yet 382 the xen clocksource (ie, at boot time). 383 384 The new vcpu_op-based timer interface allows the tick timer period 385 to be changed or turned off. The tick timer is not useful as a 386 periodic timer because events are only delivered to running vcpus. 387 The one-shot timer can report when a timeout is in the past, so 388 set_next_event is capable of returning -ETIME when appropriate. 389 This interface is used when available. 390 */ 391 392 393 /* 394 Get a hypervisor absolute time. In theory we could maintain an 395 offset between the kernel's time and the hypervisor's time, and 396 apply that to a kernel's absolute timeout. Unfortunately the 397 hypervisor and kernel times can drift even if the kernel is using 398 the Xen clocksource, because ntp can warp the kernel's clocksource. 399 */ 400 static s64 get_abs_timeout(unsigned long delta) 401 { 402 return xen_clocksource_read() + delta; 403 } 404 405 static void xen_timerop_set_mode(enum clock_event_mode mode, 406 struct clock_event_device *evt) 407 { 408 switch (mode) { 409 case CLOCK_EVT_MODE_PERIODIC: 410 /* unsupported */ 411 WARN_ON(1); 412 break; 413 414 case CLOCK_EVT_MODE_ONESHOT: 415 case CLOCK_EVT_MODE_RESUME: 416 break; 417 418 case CLOCK_EVT_MODE_UNUSED: 419 case CLOCK_EVT_MODE_SHUTDOWN: 420 HYPERVISOR_set_timer_op(0); /* cancel timeout */ 421 break; 422 } 423 } 424 425 static int xen_timerop_set_next_event(unsigned long delta, 426 struct clock_event_device *evt) 427 { 428 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); 429 430 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 431 BUG(); 432 433 /* We may have missed the deadline, but there's no real way of 434 knowing for sure. If the event was in the past, then we'll 435 get an immediate interrupt. */ 436 437 return 0; 438 } 439 440 static const struct clock_event_device xen_timerop_clockevent = { 441 .name = "xen", 442 .features = CLOCK_EVT_FEAT_ONESHOT, 443 444 .max_delta_ns = 0xffffffff, 445 .min_delta_ns = TIMER_SLOP, 446 447 .mult = 1, 448 .shift = 0, 449 .rating = 500, 450 451 .set_mode = xen_timerop_set_mode, 452 .set_next_event = xen_timerop_set_next_event, 453 }; 454 455 456 457 static void xen_vcpuop_set_mode(enum clock_event_mode mode, 458 struct clock_event_device *evt) 459 { 460 int cpu = smp_processor_id(); 461 462 switch (mode) { 463 case CLOCK_EVT_MODE_PERIODIC: 464 WARN_ON(1); /* unsupported */ 465 break; 466 467 case CLOCK_EVT_MODE_ONESHOT: 468 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 469 BUG(); 470 break; 471 472 case CLOCK_EVT_MODE_UNUSED: 473 case CLOCK_EVT_MODE_SHUTDOWN: 474 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || 475 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 476 BUG(); 477 break; 478 case CLOCK_EVT_MODE_RESUME: 479 break; 480 } 481 } 482 483 static int xen_vcpuop_set_next_event(unsigned long delta, 484 struct clock_event_device *evt) 485 { 486 int cpu = smp_processor_id(); 487 struct vcpu_set_singleshot_timer single; 488 int ret; 489 490 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); 491 492 single.timeout_abs_ns = get_abs_timeout(delta); 493 single.flags = VCPU_SSHOTTMR_future; 494 495 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); 496 497 BUG_ON(ret != 0 && ret != -ETIME); 498 499 return ret; 500 } 501 502 static const struct clock_event_device xen_vcpuop_clockevent = { 503 .name = "xen", 504 .features = CLOCK_EVT_FEAT_ONESHOT, 505 506 .max_delta_ns = 0xffffffff, 507 .min_delta_ns = TIMER_SLOP, 508 509 .mult = 1, 510 .shift = 0, 511 .rating = 500, 512 513 .set_mode = xen_vcpuop_set_mode, 514 .set_next_event = xen_vcpuop_set_next_event, 515 }; 516 517 static const struct clock_event_device *xen_clockevent = 518 &xen_timerop_clockevent; 519 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events); 520 521 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 522 { 523 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events); 524 irqreturn_t ret; 525 526 ret = IRQ_NONE; 527 if (evt->event_handler) { 528 evt->event_handler(evt); 529 ret = IRQ_HANDLED; 530 } 531 532 do_stolen_accounting(); 533 534 return ret; 535 } 536 537 void xen_setup_timer(int cpu) 538 { 539 const char *name; 540 struct clock_event_device *evt; 541 int irq; 542 543 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 544 545 name = kasprintf(GFP_KERNEL, "timer%d", cpu); 546 if (!name) 547 name = "<timer kasprintf failed>"; 548 549 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 550 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 551 name, NULL); 552 553 evt = &per_cpu(xen_clock_events, cpu); 554 memcpy(evt, xen_clockevent, sizeof(*evt)); 555 556 evt->cpumask = cpumask_of_cpu(cpu); 557 evt->irq = irq; 558 559 setup_runstate_info(cpu); 560 } 561 562 void xen_setup_cpu_clockevents(void) 563 { 564 BUG_ON(preemptible()); 565 566 clockevents_register_device(&__get_cpu_var(xen_clock_events)); 567 } 568 569 __init void xen_time_init(void) 570 { 571 int cpu = smp_processor_id(); 572 573 get_time_values_from_xen(); 574 575 clocksource_register(&xen_clocksource); 576 577 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { 578 /* Successfully turned off 100Hz tick, so we have the 579 vcpuop-based timer interface */ 580 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 581 xen_clockevent = &xen_vcpuop_clockevent; 582 } 583 584 /* Set initial system time with full resolution */ 585 xen_read_wallclock(&xtime); 586 set_normalized_timespec(&wall_to_monotonic, 587 -xtime.tv_sec, -xtime.tv_nsec); 588 589 tsc_disable = 0; 590 591 xen_setup_timer(cpu); 592 xen_setup_cpu_clockevents(); 593 } 594