xref: /linux/arch/x86/xen/spinlock.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Split spinlock implementation out into its own file, so it can be
3  * compiled in a FTRACE-compatible way.
4  */
5 #include <linux/kernel_stat.h>
6 #include <linux/spinlock.h>
7 #include <linux/debugfs.h>
8 #include <linux/log2.h>
9 #include <linux/gfp.h>
10 #include <linux/slab.h>
11 
12 #include <asm/paravirt.h>
13 
14 #include <xen/interface/xen.h>
15 #include <xen/events.h>
16 
17 #include "xen-ops.h"
18 #include "debugfs.h"
19 
20 static DEFINE_PER_CPU(int, lock_kicker_irq) = -1;
21 static DEFINE_PER_CPU(char *, irq_name);
22 static bool xen_pvspin = true;
23 
24 #ifdef CONFIG_QUEUED_SPINLOCKS
25 
26 #include <asm/qspinlock.h>
27 
28 static void xen_qlock_kick(int cpu)
29 {
30 	int irq = per_cpu(lock_kicker_irq, cpu);
31 
32 	/* Don't kick if the target's kicker interrupt is not initialized. */
33 	if (irq == -1)
34 		return;
35 
36 	xen_send_IPI_one(cpu, XEN_SPIN_UNLOCK_VECTOR);
37 }
38 
39 /*
40  * Halt the current CPU & release it back to the host
41  */
42 static void xen_qlock_wait(u8 *byte, u8 val)
43 {
44 	int irq = __this_cpu_read(lock_kicker_irq);
45 
46 	/* If kicker interrupts not initialized yet, just spin */
47 	if (irq == -1)
48 		return;
49 
50 	/* clear pending */
51 	xen_clear_irq_pending(irq);
52 	barrier();
53 
54 	/*
55 	 * We check the byte value after clearing pending IRQ to make sure
56 	 * that we won't miss a wakeup event because of the clearing.
57 	 *
58 	 * The sync_clear_bit() call in xen_clear_irq_pending() is atomic.
59 	 * So it is effectively a memory barrier for x86.
60 	 */
61 	if (READ_ONCE(*byte) != val)
62 		return;
63 
64 	/*
65 	 * If an interrupt happens here, it will leave the wakeup irq
66 	 * pending, which will cause xen_poll_irq() to return
67 	 * immediately.
68 	 */
69 
70 	/* Block until irq becomes pending (or perhaps a spurious wakeup) */
71 	xen_poll_irq(irq);
72 }
73 
74 #else /* CONFIG_QUEUED_SPINLOCKS */
75 
76 enum xen_contention_stat {
77 	TAKEN_SLOW,
78 	TAKEN_SLOW_PICKUP,
79 	TAKEN_SLOW_SPURIOUS,
80 	RELEASED_SLOW,
81 	RELEASED_SLOW_KICKED,
82 	NR_CONTENTION_STATS
83 };
84 
85 
86 #ifdef CONFIG_XEN_DEBUG_FS
87 #define HISTO_BUCKETS	30
88 static struct xen_spinlock_stats
89 {
90 	u32 contention_stats[NR_CONTENTION_STATS];
91 	u32 histo_spin_blocked[HISTO_BUCKETS+1];
92 	u64 time_blocked;
93 } spinlock_stats;
94 
95 static u8 zero_stats;
96 
97 static inline void check_zero(void)
98 {
99 	u8 ret;
100 	u8 old = READ_ONCE(zero_stats);
101 	if (unlikely(old)) {
102 		ret = cmpxchg(&zero_stats, old, 0);
103 		/* This ensures only one fellow resets the stat */
104 		if (ret == old)
105 			memset(&spinlock_stats, 0, sizeof(spinlock_stats));
106 	}
107 }
108 
109 static inline void add_stats(enum xen_contention_stat var, u32 val)
110 {
111 	check_zero();
112 	spinlock_stats.contention_stats[var] += val;
113 }
114 
115 static inline u64 spin_time_start(void)
116 {
117 	return xen_clocksource_read();
118 }
119 
120 static void __spin_time_accum(u64 delta, u32 *array)
121 {
122 	unsigned index = ilog2(delta);
123 
124 	check_zero();
125 
126 	if (index < HISTO_BUCKETS)
127 		array[index]++;
128 	else
129 		array[HISTO_BUCKETS]++;
130 }
131 
132 static inline void spin_time_accum_blocked(u64 start)
133 {
134 	u32 delta = xen_clocksource_read() - start;
135 
136 	__spin_time_accum(delta, spinlock_stats.histo_spin_blocked);
137 	spinlock_stats.time_blocked += delta;
138 }
139 #else  /* !CONFIG_XEN_DEBUG_FS */
140 static inline void add_stats(enum xen_contention_stat var, u32 val)
141 {
142 }
143 
144 static inline u64 spin_time_start(void)
145 {
146 	return 0;
147 }
148 
149 static inline void spin_time_accum_blocked(u64 start)
150 {
151 }
152 #endif  /* CONFIG_XEN_DEBUG_FS */
153 
154 struct xen_lock_waiting {
155 	struct arch_spinlock *lock;
156 	__ticket_t want;
157 };
158 
159 static DEFINE_PER_CPU(struct xen_lock_waiting, lock_waiting);
160 static cpumask_t waiting_cpus;
161 
162 __visible void xen_lock_spinning(struct arch_spinlock *lock, __ticket_t want)
163 {
164 	int irq = __this_cpu_read(lock_kicker_irq);
165 	struct xen_lock_waiting *w = this_cpu_ptr(&lock_waiting);
166 	int cpu = smp_processor_id();
167 	u64 start;
168 	__ticket_t head;
169 	unsigned long flags;
170 
171 	/* If kicker interrupts not initialized yet, just spin */
172 	if (irq == -1)
173 		return;
174 
175 	start = spin_time_start();
176 
177 	/*
178 	 * Make sure an interrupt handler can't upset things in a
179 	 * partially setup state.
180 	 */
181 	local_irq_save(flags);
182 	/*
183 	 * We don't really care if we're overwriting some other
184 	 * (lock,want) pair, as that would mean that we're currently
185 	 * in an interrupt context, and the outer context had
186 	 * interrupts enabled.  That has already kicked the VCPU out
187 	 * of xen_poll_irq(), so it will just return spuriously and
188 	 * retry with newly setup (lock,want).
189 	 *
190 	 * The ordering protocol on this is that the "lock" pointer
191 	 * may only be set non-NULL if the "want" ticket is correct.
192 	 * If we're updating "want", we must first clear "lock".
193 	 */
194 	w->lock = NULL;
195 	smp_wmb();
196 	w->want = want;
197 	smp_wmb();
198 	w->lock = lock;
199 
200 	/* This uses set_bit, which atomic and therefore a barrier */
201 	cpumask_set_cpu(cpu, &waiting_cpus);
202 	add_stats(TAKEN_SLOW, 1);
203 
204 	/* clear pending */
205 	xen_clear_irq_pending(irq);
206 
207 	/* Only check lock once pending cleared */
208 	barrier();
209 
210 	/*
211 	 * Mark entry to slowpath before doing the pickup test to make
212 	 * sure we don't deadlock with an unlocker.
213 	 */
214 	__ticket_enter_slowpath(lock);
215 
216 	/* make sure enter_slowpath, which is atomic does not cross the read */
217 	smp_mb__after_atomic();
218 
219 	/*
220 	 * check again make sure it didn't become free while
221 	 * we weren't looking
222 	 */
223 	head = READ_ONCE(lock->tickets.head);
224 	if (__tickets_equal(head, want)) {
225 		add_stats(TAKEN_SLOW_PICKUP, 1);
226 		goto out;
227 	}
228 
229 	/* Allow interrupts while blocked */
230 	local_irq_restore(flags);
231 
232 	/*
233 	 * If an interrupt happens here, it will leave the wakeup irq
234 	 * pending, which will cause xen_poll_irq() to return
235 	 * immediately.
236 	 */
237 
238 	/* Block until irq becomes pending (or perhaps a spurious wakeup) */
239 	xen_poll_irq(irq);
240 	add_stats(TAKEN_SLOW_SPURIOUS, !xen_test_irq_pending(irq));
241 
242 	local_irq_save(flags);
243 
244 	kstat_incr_irq_this_cpu(irq);
245 out:
246 	cpumask_clear_cpu(cpu, &waiting_cpus);
247 	w->lock = NULL;
248 
249 	local_irq_restore(flags);
250 
251 	spin_time_accum_blocked(start);
252 }
253 PV_CALLEE_SAVE_REGS_THUNK(xen_lock_spinning);
254 
255 static void xen_unlock_kick(struct arch_spinlock *lock, __ticket_t next)
256 {
257 	int cpu;
258 
259 	add_stats(RELEASED_SLOW, 1);
260 
261 	for_each_cpu(cpu, &waiting_cpus) {
262 		const struct xen_lock_waiting *w = &per_cpu(lock_waiting, cpu);
263 
264 		/* Make sure we read lock before want */
265 		if (READ_ONCE(w->lock) == lock &&
266 		    READ_ONCE(w->want) == next) {
267 			add_stats(RELEASED_SLOW_KICKED, 1);
268 			xen_send_IPI_one(cpu, XEN_SPIN_UNLOCK_VECTOR);
269 			break;
270 		}
271 	}
272 }
273 #endif /* CONFIG_QUEUED_SPINLOCKS */
274 
275 static irqreturn_t dummy_handler(int irq, void *dev_id)
276 {
277 	BUG();
278 	return IRQ_HANDLED;
279 }
280 
281 void xen_init_lock_cpu(int cpu)
282 {
283 	int irq;
284 	char *name;
285 
286 	if (!xen_pvspin)
287 		return;
288 
289 	WARN(per_cpu(lock_kicker_irq, cpu) >= 0, "spinlock on CPU%d exists on IRQ%d!\n",
290 	     cpu, per_cpu(lock_kicker_irq, cpu));
291 
292 	name = kasprintf(GFP_KERNEL, "spinlock%d", cpu);
293 	irq = bind_ipi_to_irqhandler(XEN_SPIN_UNLOCK_VECTOR,
294 				     cpu,
295 				     dummy_handler,
296 				     IRQF_PERCPU|IRQF_NOBALANCING,
297 				     name,
298 				     NULL);
299 
300 	if (irq >= 0) {
301 		disable_irq(irq); /* make sure it's never delivered */
302 		per_cpu(lock_kicker_irq, cpu) = irq;
303 		per_cpu(irq_name, cpu) = name;
304 	}
305 
306 	printk("cpu %d spinlock event irq %d\n", cpu, irq);
307 }
308 
309 void xen_uninit_lock_cpu(int cpu)
310 {
311 	if (!xen_pvspin)
312 		return;
313 
314 	unbind_from_irqhandler(per_cpu(lock_kicker_irq, cpu), NULL);
315 	per_cpu(lock_kicker_irq, cpu) = -1;
316 	kfree(per_cpu(irq_name, cpu));
317 	per_cpu(irq_name, cpu) = NULL;
318 }
319 
320 
321 /*
322  * Our init of PV spinlocks is split in two init functions due to us
323  * using paravirt patching and jump labels patching and having to do
324  * all of this before SMP code is invoked.
325  *
326  * The paravirt patching needs to be done _before_ the alternative asm code
327  * is started, otherwise we would not patch the core kernel code.
328  */
329 void __init xen_init_spinlocks(void)
330 {
331 
332 	if (!xen_pvspin) {
333 		printk(KERN_DEBUG "xen: PV spinlocks disabled\n");
334 		return;
335 	}
336 	printk(KERN_DEBUG "xen: PV spinlocks enabled\n");
337 #ifdef CONFIG_QUEUED_SPINLOCKS
338 	__pv_init_lock_hash();
339 	pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
340 	pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock);
341 	pv_lock_ops.wait = xen_qlock_wait;
342 	pv_lock_ops.kick = xen_qlock_kick;
343 #else
344 	pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(xen_lock_spinning);
345 	pv_lock_ops.unlock_kick = xen_unlock_kick;
346 #endif
347 }
348 
349 /*
350  * While the jump_label init code needs to happend _after_ the jump labels are
351  * enabled and before SMP is started. Hence we use pre-SMP initcall level
352  * init. We cannot do it in xen_init_spinlocks as that is done before
353  * jump labels are activated.
354  */
355 static __init int xen_init_spinlocks_jump(void)
356 {
357 	if (!xen_pvspin)
358 		return 0;
359 
360 	if (!xen_domain())
361 		return 0;
362 
363 	static_key_slow_inc(&paravirt_ticketlocks_enabled);
364 	return 0;
365 }
366 early_initcall(xen_init_spinlocks_jump);
367 
368 static __init int xen_parse_nopvspin(char *arg)
369 {
370 	xen_pvspin = false;
371 	return 0;
372 }
373 early_param("xen_nopvspin", xen_parse_nopvspin);
374 
375 #if defined(CONFIG_XEN_DEBUG_FS) && !defined(CONFIG_QUEUED_SPINLOCKS)
376 
377 static struct dentry *d_spin_debug;
378 
379 static int __init xen_spinlock_debugfs(void)
380 {
381 	struct dentry *d_xen = xen_init_debugfs();
382 
383 	if (d_xen == NULL)
384 		return -ENOMEM;
385 
386 	if (!xen_pvspin)
387 		return 0;
388 
389 	d_spin_debug = debugfs_create_dir("spinlocks", d_xen);
390 
391 	debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats);
392 
393 	debugfs_create_u32("taken_slow", 0444, d_spin_debug,
394 			   &spinlock_stats.contention_stats[TAKEN_SLOW]);
395 	debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug,
396 			   &spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]);
397 	debugfs_create_u32("taken_slow_spurious", 0444, d_spin_debug,
398 			   &spinlock_stats.contention_stats[TAKEN_SLOW_SPURIOUS]);
399 
400 	debugfs_create_u32("released_slow", 0444, d_spin_debug,
401 			   &spinlock_stats.contention_stats[RELEASED_SLOW]);
402 	debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug,
403 			   &spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]);
404 
405 	debugfs_create_u64("time_blocked", 0444, d_spin_debug,
406 			   &spinlock_stats.time_blocked);
407 
408 	debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug,
409 				spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1);
410 
411 	return 0;
412 }
413 fs_initcall(xen_spinlock_debugfs);
414 
415 #endif	/* CONFIG_XEN_DEBUG_FS */
416