1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Xen SMP support 4 * 5 * This file implements the Xen versions of smp_ops. SMP under Xen is 6 * very straightforward. Bringing a CPU up is simply a matter of 7 * loading its initial context and setting it running. 8 * 9 * IPIs are handled through the Xen event mechanism. 10 * 11 * Because virtual CPUs can be scheduled onto any real CPU, there's no 12 * useful topology information for the kernel to make use of. As a 13 * result, all CPUs are treated as if they're single-core and 14 * single-threaded. 15 */ 16 #include <linux/sched.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/smp.h> 21 #include <linux/irq_work.h> 22 #include <linux/tick.h> 23 #include <linux/nmi.h> 24 #include <linux/cpuhotplug.h> 25 #include <linux/stackprotector.h> 26 27 #include <asm/paravirt.h> 28 #include <asm/desc.h> 29 #include <asm/pgtable.h> 30 #include <asm/cpu.h> 31 32 #include <xen/interface/xen.h> 33 #include <xen/interface/vcpu.h> 34 #include <xen/interface/xenpmu.h> 35 36 #include <asm/spec-ctrl.h> 37 #include <asm/xen/interface.h> 38 #include <asm/xen/hypercall.h> 39 40 #include <xen/xen.h> 41 #include <xen/page.h> 42 #include <xen/events.h> 43 44 #include <xen/hvc-console.h> 45 #include "xen-ops.h" 46 #include "mmu.h" 47 #include "smp.h" 48 #include "pmu.h" 49 50 cpumask_var_t xen_cpu_initialized_map; 51 52 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; 53 static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 }; 54 55 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); 56 57 static void cpu_bringup(void) 58 { 59 int cpu; 60 61 cpu_init(); 62 touch_softlockup_watchdog(); 63 preempt_disable(); 64 65 /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */ 66 if (!xen_feature(XENFEAT_supervisor_mode_kernel)) { 67 xen_enable_sysenter(); 68 xen_enable_syscall(); 69 } 70 cpu = smp_processor_id(); 71 smp_store_cpu_info(cpu); 72 cpu_data(cpu).x86_max_cores = 1; 73 set_cpu_sibling_map(cpu); 74 75 speculative_store_bypass_ht_init(); 76 77 xen_setup_cpu_clockevents(); 78 79 notify_cpu_starting(cpu); 80 81 set_cpu_online(cpu, true); 82 83 cpu_set_state_online(cpu); /* Implies full memory barrier. */ 84 85 /* We can take interrupts now: we're officially "up". */ 86 local_irq_enable(); 87 } 88 89 asmlinkage __visible void cpu_bringup_and_idle(void) 90 { 91 cpu_bringup(); 92 boot_init_stack_canary(); 93 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 94 } 95 96 void xen_smp_intr_free_pv(unsigned int cpu) 97 { 98 if (per_cpu(xen_irq_work, cpu).irq >= 0) { 99 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); 100 per_cpu(xen_irq_work, cpu).irq = -1; 101 kfree(per_cpu(xen_irq_work, cpu).name); 102 per_cpu(xen_irq_work, cpu).name = NULL; 103 } 104 105 if (per_cpu(xen_pmu_irq, cpu).irq >= 0) { 106 unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL); 107 per_cpu(xen_pmu_irq, cpu).irq = -1; 108 kfree(per_cpu(xen_pmu_irq, cpu).name); 109 per_cpu(xen_pmu_irq, cpu).name = NULL; 110 } 111 } 112 113 int xen_smp_intr_init_pv(unsigned int cpu) 114 { 115 int rc; 116 char *callfunc_name, *pmu_name; 117 118 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); 119 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, 120 cpu, 121 xen_irq_work_interrupt, 122 IRQF_PERCPU|IRQF_NOBALANCING, 123 callfunc_name, 124 NULL); 125 if (rc < 0) 126 goto fail; 127 per_cpu(xen_irq_work, cpu).irq = rc; 128 per_cpu(xen_irq_work, cpu).name = callfunc_name; 129 130 if (is_xen_pmu(cpu)) { 131 pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu); 132 rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu, 133 xen_pmu_irq_handler, 134 IRQF_PERCPU|IRQF_NOBALANCING, 135 pmu_name, NULL); 136 if (rc < 0) 137 goto fail; 138 per_cpu(xen_pmu_irq, cpu).irq = rc; 139 per_cpu(xen_pmu_irq, cpu).name = pmu_name; 140 } 141 142 return 0; 143 144 fail: 145 xen_smp_intr_free_pv(cpu); 146 return rc; 147 } 148 149 static void __init xen_fill_possible_map(void) 150 { 151 int i, rc; 152 153 if (xen_initial_domain()) 154 return; 155 156 for (i = 0; i < nr_cpu_ids; i++) { 157 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 158 if (rc >= 0) { 159 num_processors++; 160 set_cpu_possible(i, true); 161 } 162 } 163 } 164 165 static void __init xen_filter_cpu_maps(void) 166 { 167 int i, rc; 168 unsigned int subtract = 0; 169 170 if (!xen_initial_domain()) 171 return; 172 173 num_processors = 0; 174 disabled_cpus = 0; 175 for (i = 0; i < nr_cpu_ids; i++) { 176 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 177 if (rc >= 0) { 178 num_processors++; 179 set_cpu_possible(i, true); 180 } else { 181 set_cpu_possible(i, false); 182 set_cpu_present(i, false); 183 subtract++; 184 } 185 } 186 #ifdef CONFIG_HOTPLUG_CPU 187 /* This is akin to using 'nr_cpus' on the Linux command line. 188 * Which is OK as when we use 'dom0_max_vcpus=X' we can only 189 * have up to X, while nr_cpu_ids is greater than X. This 190 * normally is not a problem, except when CPU hotplugging 191 * is involved and then there might be more than X CPUs 192 * in the guest - which will not work as there is no 193 * hypercall to expand the max number of VCPUs an already 194 * running guest has. So cap it up to X. */ 195 if (subtract) 196 nr_cpu_ids = nr_cpu_ids - subtract; 197 #endif 198 199 } 200 201 static void __init xen_pv_smp_prepare_boot_cpu(void) 202 { 203 BUG_ON(smp_processor_id() != 0); 204 native_smp_prepare_boot_cpu(); 205 206 if (!xen_feature(XENFEAT_writable_page_tables)) 207 /* We've switched to the "real" per-cpu gdt, so make 208 * sure the old memory can be recycled. */ 209 make_lowmem_page_readwrite(xen_initial_gdt); 210 211 #ifdef CONFIG_X86_32 212 /* 213 * Xen starts us with XEN_FLAT_RING1_DS, but linux code 214 * expects __USER_DS 215 */ 216 loadsegment(ds, __USER_DS); 217 loadsegment(es, __USER_DS); 218 #endif 219 220 xen_filter_cpu_maps(); 221 xen_setup_vcpu_info_placement(); 222 223 /* 224 * The alternative logic (which patches the unlock/lock) runs before 225 * the smp bootup up code is activated. Hence we need to set this up 226 * the core kernel is being patched. Otherwise we will have only 227 * modules patched but not core code. 228 */ 229 xen_init_spinlocks(); 230 } 231 232 static void __init xen_pv_smp_prepare_cpus(unsigned int max_cpus) 233 { 234 unsigned cpu; 235 unsigned int i; 236 237 if (skip_ioapic_setup) { 238 char *m = (max_cpus == 0) ? 239 "The nosmp parameter is incompatible with Xen; " \ 240 "use Xen dom0_max_vcpus=1 parameter" : 241 "The noapic parameter is incompatible with Xen"; 242 243 xen_raw_printk(m); 244 panic(m); 245 } 246 xen_init_lock_cpu(0); 247 248 smp_store_boot_cpu_info(); 249 cpu_data(0).x86_max_cores = 1; 250 251 for_each_possible_cpu(i) { 252 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 253 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 254 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL); 255 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 256 } 257 set_cpu_sibling_map(0); 258 259 speculative_store_bypass_ht_init(); 260 261 xen_pmu_init(0); 262 263 if (xen_smp_intr_init(0) || xen_smp_intr_init_pv(0)) 264 BUG(); 265 266 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) 267 panic("could not allocate xen_cpu_initialized_map\n"); 268 269 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); 270 271 /* Restrict the possible_map according to max_cpus. */ 272 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { 273 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) 274 continue; 275 set_cpu_possible(cpu, false); 276 } 277 278 for_each_possible_cpu(cpu) 279 set_cpu_present(cpu, true); 280 } 281 282 static int 283 cpu_initialize_context(unsigned int cpu, struct task_struct *idle) 284 { 285 struct vcpu_guest_context *ctxt; 286 struct desc_struct *gdt; 287 unsigned long gdt_mfn; 288 289 /* used to tell cpu_init() that it can proceed with initialization */ 290 cpumask_set_cpu(cpu, cpu_callout_mask); 291 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) 292 return 0; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (ctxt == NULL) 296 return -ENOMEM; 297 298 gdt = get_cpu_gdt_rw(cpu); 299 300 #ifdef CONFIG_X86_32 301 ctxt->user_regs.fs = __KERNEL_PERCPU; 302 ctxt->user_regs.gs = __KERNEL_STACK_CANARY; 303 #endif 304 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); 305 306 /* 307 * Bring up the CPU in cpu_bringup_and_idle() with the stack 308 * pointing just below where pt_regs would be if it were a normal 309 * kernel entry. 310 */ 311 ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; 312 ctxt->flags = VGCF_IN_KERNEL; 313 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ 314 ctxt->user_regs.ds = __USER_DS; 315 ctxt->user_regs.es = __USER_DS; 316 ctxt->user_regs.ss = __KERNEL_DS; 317 ctxt->user_regs.cs = __KERNEL_CS; 318 ctxt->user_regs.esp = (unsigned long)task_pt_regs(idle); 319 320 xen_copy_trap_info(ctxt->trap_ctxt); 321 322 ctxt->ldt_ents = 0; 323 324 BUG_ON((unsigned long)gdt & ~PAGE_MASK); 325 326 gdt_mfn = arbitrary_virt_to_mfn(gdt); 327 make_lowmem_page_readonly(gdt); 328 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); 329 330 ctxt->gdt_frames[0] = gdt_mfn; 331 ctxt->gdt_ents = GDT_ENTRIES; 332 333 /* 334 * Set SS:SP that Xen will use when entering guest kernel mode 335 * from guest user mode. Subsequent calls to load_sp0() can 336 * change this value. 337 */ 338 ctxt->kernel_ss = __KERNEL_DS; 339 ctxt->kernel_sp = task_top_of_stack(idle); 340 341 #ifdef CONFIG_X86_32 342 ctxt->event_callback_cs = __KERNEL_CS; 343 ctxt->failsafe_callback_cs = __KERNEL_CS; 344 #else 345 ctxt->gs_base_kernel = per_cpu_offset(cpu); 346 #endif 347 ctxt->event_callback_eip = 348 (unsigned long)xen_hypervisor_callback; 349 ctxt->failsafe_callback_eip = 350 (unsigned long)xen_failsafe_callback; 351 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); 352 353 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir)); 354 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, xen_vcpu_nr(cpu), ctxt)) 355 BUG(); 356 357 kfree(ctxt); 358 return 0; 359 } 360 361 static int xen_pv_cpu_up(unsigned int cpu, struct task_struct *idle) 362 { 363 int rc; 364 365 rc = common_cpu_up(cpu, idle); 366 if (rc) 367 return rc; 368 369 xen_setup_runstate_info(cpu); 370 371 /* 372 * PV VCPUs are always successfully taken down (see 'while' loop 373 * in xen_cpu_die()), so -EBUSY is an error. 374 */ 375 rc = cpu_check_up_prepare(cpu); 376 if (rc) 377 return rc; 378 379 /* make sure interrupts start blocked */ 380 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; 381 382 rc = cpu_initialize_context(cpu, idle); 383 if (rc) 384 return rc; 385 386 xen_pmu_init(cpu); 387 388 rc = HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL); 389 BUG_ON(rc); 390 391 while (cpu_report_state(cpu) != CPU_ONLINE) 392 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 393 394 return 0; 395 } 396 397 #ifdef CONFIG_HOTPLUG_CPU 398 static int xen_pv_cpu_disable(void) 399 { 400 unsigned int cpu = smp_processor_id(); 401 if (cpu == 0) 402 return -EBUSY; 403 404 cpu_disable_common(); 405 406 load_cr3(swapper_pg_dir); 407 return 0; 408 } 409 410 static void xen_pv_cpu_die(unsigned int cpu) 411 { 412 while (HYPERVISOR_vcpu_op(VCPUOP_is_up, 413 xen_vcpu_nr(cpu), NULL)) { 414 __set_current_state(TASK_UNINTERRUPTIBLE); 415 schedule_timeout(HZ/10); 416 } 417 418 if (common_cpu_die(cpu) == 0) { 419 xen_smp_intr_free(cpu); 420 xen_uninit_lock_cpu(cpu); 421 xen_teardown_timer(cpu); 422 xen_pmu_finish(cpu); 423 } 424 } 425 426 static void xen_pv_play_dead(void) /* used only with HOTPLUG_CPU */ 427 { 428 play_dead_common(); 429 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(smp_processor_id()), NULL); 430 cpu_bringup(); 431 /* 432 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) 433 * clears certain data that the cpu_idle loop (which called us 434 * and that we return from) expects. The only way to get that 435 * data back is to call: 436 */ 437 tick_nohz_idle_enter(); 438 tick_nohz_idle_stop_tick_protected(); 439 440 cpuhp_online_idle(CPUHP_AP_ONLINE_IDLE); 441 } 442 443 #else /* !CONFIG_HOTPLUG_CPU */ 444 static int xen_pv_cpu_disable(void) 445 { 446 return -ENOSYS; 447 } 448 449 static void xen_pv_cpu_die(unsigned int cpu) 450 { 451 BUG(); 452 } 453 454 static void xen_pv_play_dead(void) 455 { 456 BUG(); 457 } 458 459 #endif 460 static void stop_self(void *v) 461 { 462 int cpu = smp_processor_id(); 463 464 /* make sure we're not pinning something down */ 465 load_cr3(swapper_pg_dir); 466 /* should set up a minimal gdt */ 467 468 set_cpu_online(cpu, false); 469 470 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL); 471 BUG(); 472 } 473 474 static void xen_pv_stop_other_cpus(int wait) 475 { 476 smp_call_function(stop_self, NULL, wait); 477 } 478 479 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) 480 { 481 irq_enter(); 482 irq_work_run(); 483 inc_irq_stat(apic_irq_work_irqs); 484 irq_exit(); 485 486 return IRQ_HANDLED; 487 } 488 489 static const struct smp_ops xen_smp_ops __initconst = { 490 .smp_prepare_boot_cpu = xen_pv_smp_prepare_boot_cpu, 491 .smp_prepare_cpus = xen_pv_smp_prepare_cpus, 492 .smp_cpus_done = xen_smp_cpus_done, 493 494 .cpu_up = xen_pv_cpu_up, 495 .cpu_die = xen_pv_cpu_die, 496 .cpu_disable = xen_pv_cpu_disable, 497 .play_dead = xen_pv_play_dead, 498 499 .stop_other_cpus = xen_pv_stop_other_cpus, 500 .smp_send_reschedule = xen_smp_send_reschedule, 501 502 .send_call_func_ipi = xen_smp_send_call_function_ipi, 503 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, 504 }; 505 506 void __init xen_smp_init(void) 507 { 508 smp_ops = xen_smp_ops; 509 xen_fill_possible_map(); 510 } 511