1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Xen SMP support 4 * 5 * This file implements the Xen versions of smp_ops. SMP under Xen is 6 * very straightforward. Bringing a CPU up is simply a matter of 7 * loading its initial context and setting it running. 8 * 9 * IPIs are handled through the Xen event mechanism. 10 * 11 * Because virtual CPUs can be scheduled onto any real CPU, there's no 12 * useful topology information for the kernel to make use of. As a 13 * result, all CPUs are treated as if they're single-core and 14 * single-threaded. 15 */ 16 #include <linux/sched.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/smp.h> 21 #include <linux/irq_work.h> 22 #include <linux/tick.h> 23 #include <linux/nmi.h> 24 #include <linux/cpuhotplug.h> 25 #include <linux/stackprotector.h> 26 #include <linux/pgtable.h> 27 28 #include <asm/paravirt.h> 29 #include <asm/idtentry.h> 30 #include <asm/desc.h> 31 #include <asm/cpu.h> 32 #include <asm/io_apic.h> 33 34 #include <xen/interface/xen.h> 35 #include <xen/interface/vcpu.h> 36 #include <xen/interface/xenpmu.h> 37 38 #include <asm/spec-ctrl.h> 39 #include <asm/xen/interface.h> 40 #include <asm/xen/hypercall.h> 41 42 #include <xen/xen.h> 43 #include <xen/page.h> 44 #include <xen/events.h> 45 46 #include <xen/hvc-console.h> 47 #include "xen-ops.h" 48 #include "mmu.h" 49 #include "smp.h" 50 #include "pmu.h" 51 52 cpumask_var_t xen_cpu_initialized_map; 53 54 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; 55 static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 }; 56 57 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); 58 void asm_cpu_bringup_and_idle(void); 59 60 static void cpu_bringup(void) 61 { 62 int cpu; 63 64 cr4_init(); 65 cpu_init(); 66 touch_softlockup_watchdog(); 67 preempt_disable(); 68 69 /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */ 70 if (!xen_feature(XENFEAT_supervisor_mode_kernel)) { 71 xen_enable_sysenter(); 72 xen_enable_syscall(); 73 } 74 cpu = smp_processor_id(); 75 smp_store_cpu_info(cpu); 76 cpu_data(cpu).x86_max_cores = 1; 77 set_cpu_sibling_map(cpu); 78 79 speculative_store_bypass_ht_init(); 80 81 xen_setup_cpu_clockevents(); 82 83 notify_cpu_starting(cpu); 84 85 set_cpu_online(cpu, true); 86 87 cpu_set_state_online(cpu); /* Implies full memory barrier. */ 88 89 /* We can take interrupts now: we're officially "up". */ 90 local_irq_enable(); 91 } 92 93 asmlinkage __visible void cpu_bringup_and_idle(void) 94 { 95 cpu_bringup(); 96 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 97 } 98 99 void xen_smp_intr_free_pv(unsigned int cpu) 100 { 101 if (per_cpu(xen_irq_work, cpu).irq >= 0) { 102 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); 103 per_cpu(xen_irq_work, cpu).irq = -1; 104 kfree(per_cpu(xen_irq_work, cpu).name); 105 per_cpu(xen_irq_work, cpu).name = NULL; 106 } 107 108 if (per_cpu(xen_pmu_irq, cpu).irq >= 0) { 109 unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL); 110 per_cpu(xen_pmu_irq, cpu).irq = -1; 111 kfree(per_cpu(xen_pmu_irq, cpu).name); 112 per_cpu(xen_pmu_irq, cpu).name = NULL; 113 } 114 } 115 116 int xen_smp_intr_init_pv(unsigned int cpu) 117 { 118 int rc; 119 char *callfunc_name, *pmu_name; 120 121 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); 122 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, 123 cpu, 124 xen_irq_work_interrupt, 125 IRQF_PERCPU|IRQF_NOBALANCING, 126 callfunc_name, 127 NULL); 128 if (rc < 0) 129 goto fail; 130 per_cpu(xen_irq_work, cpu).irq = rc; 131 per_cpu(xen_irq_work, cpu).name = callfunc_name; 132 133 if (is_xen_pmu(cpu)) { 134 pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu); 135 rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu, 136 xen_pmu_irq_handler, 137 IRQF_PERCPU|IRQF_NOBALANCING, 138 pmu_name, NULL); 139 if (rc < 0) 140 goto fail; 141 per_cpu(xen_pmu_irq, cpu).irq = rc; 142 per_cpu(xen_pmu_irq, cpu).name = pmu_name; 143 } 144 145 return 0; 146 147 fail: 148 xen_smp_intr_free_pv(cpu); 149 return rc; 150 } 151 152 static void __init xen_fill_possible_map(void) 153 { 154 int i, rc; 155 156 if (xen_initial_domain()) 157 return; 158 159 for (i = 0; i < nr_cpu_ids; i++) { 160 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 161 if (rc >= 0) { 162 num_processors++; 163 set_cpu_possible(i, true); 164 } 165 } 166 } 167 168 static void __init xen_filter_cpu_maps(void) 169 { 170 int i, rc; 171 unsigned int subtract = 0; 172 173 if (!xen_initial_domain()) 174 return; 175 176 num_processors = 0; 177 disabled_cpus = 0; 178 for (i = 0; i < nr_cpu_ids; i++) { 179 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 180 if (rc >= 0) { 181 num_processors++; 182 set_cpu_possible(i, true); 183 } else { 184 set_cpu_possible(i, false); 185 set_cpu_present(i, false); 186 subtract++; 187 } 188 } 189 #ifdef CONFIG_HOTPLUG_CPU 190 /* This is akin to using 'nr_cpus' on the Linux command line. 191 * Which is OK as when we use 'dom0_max_vcpus=X' we can only 192 * have up to X, while nr_cpu_ids is greater than X. This 193 * normally is not a problem, except when CPU hotplugging 194 * is involved and then there might be more than X CPUs 195 * in the guest - which will not work as there is no 196 * hypercall to expand the max number of VCPUs an already 197 * running guest has. So cap it up to X. */ 198 if (subtract) 199 nr_cpu_ids = nr_cpu_ids - subtract; 200 #endif 201 202 } 203 204 static void __init xen_pv_smp_prepare_boot_cpu(void) 205 { 206 BUG_ON(smp_processor_id() != 0); 207 native_smp_prepare_boot_cpu(); 208 209 if (!xen_feature(XENFEAT_writable_page_tables)) 210 /* We've switched to the "real" per-cpu gdt, so make 211 * sure the old memory can be recycled. */ 212 make_lowmem_page_readwrite(xen_initial_gdt); 213 214 xen_filter_cpu_maps(); 215 xen_setup_vcpu_info_placement(); 216 217 /* 218 * The alternative logic (which patches the unlock/lock) runs before 219 * the smp bootup up code is activated. Hence we need to set this up 220 * the core kernel is being patched. Otherwise we will have only 221 * modules patched but not core code. 222 */ 223 xen_init_spinlocks(); 224 } 225 226 static void __init xen_pv_smp_prepare_cpus(unsigned int max_cpus) 227 { 228 unsigned cpu; 229 unsigned int i; 230 231 if (skip_ioapic_setup) { 232 char *m = (max_cpus == 0) ? 233 "The nosmp parameter is incompatible with Xen; " \ 234 "use Xen dom0_max_vcpus=1 parameter" : 235 "The noapic parameter is incompatible with Xen"; 236 237 xen_raw_printk(m); 238 panic(m); 239 } 240 xen_init_lock_cpu(0); 241 242 smp_store_boot_cpu_info(); 243 cpu_data(0).x86_max_cores = 1; 244 245 for_each_possible_cpu(i) { 246 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 247 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 248 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL); 249 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 250 } 251 set_cpu_sibling_map(0); 252 253 speculative_store_bypass_ht_init(); 254 255 xen_pmu_init(0); 256 257 if (xen_smp_intr_init(0) || xen_smp_intr_init_pv(0)) 258 BUG(); 259 260 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) 261 panic("could not allocate xen_cpu_initialized_map\n"); 262 263 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); 264 265 /* Restrict the possible_map according to max_cpus. */ 266 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { 267 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) 268 continue; 269 set_cpu_possible(cpu, false); 270 } 271 272 for_each_possible_cpu(cpu) 273 set_cpu_present(cpu, true); 274 } 275 276 static int 277 cpu_initialize_context(unsigned int cpu, struct task_struct *idle) 278 { 279 struct vcpu_guest_context *ctxt; 280 struct desc_struct *gdt; 281 unsigned long gdt_mfn; 282 283 /* used to tell cpu_init() that it can proceed with initialization */ 284 cpumask_set_cpu(cpu, cpu_callout_mask); 285 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) 286 return 0; 287 288 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 289 if (ctxt == NULL) 290 return -ENOMEM; 291 292 gdt = get_cpu_gdt_rw(cpu); 293 294 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); 295 296 /* 297 * Bring up the CPU in cpu_bringup_and_idle() with the stack 298 * pointing just below where pt_regs would be if it were a normal 299 * kernel entry. 300 */ 301 ctxt->user_regs.eip = (unsigned long)asm_cpu_bringup_and_idle; 302 ctxt->flags = VGCF_IN_KERNEL; 303 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ 304 ctxt->user_regs.ds = __USER_DS; 305 ctxt->user_regs.es = __USER_DS; 306 ctxt->user_regs.ss = __KERNEL_DS; 307 ctxt->user_regs.cs = __KERNEL_CS; 308 ctxt->user_regs.esp = (unsigned long)task_pt_regs(idle); 309 310 xen_copy_trap_info(ctxt->trap_ctxt); 311 312 ctxt->ldt_ents = 0; 313 314 BUG_ON((unsigned long)gdt & ~PAGE_MASK); 315 316 gdt_mfn = arbitrary_virt_to_mfn(gdt); 317 make_lowmem_page_readonly(gdt); 318 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); 319 320 ctxt->gdt_frames[0] = gdt_mfn; 321 ctxt->gdt_ents = GDT_ENTRIES; 322 323 /* 324 * Set SS:SP that Xen will use when entering guest kernel mode 325 * from guest user mode. Subsequent calls to load_sp0() can 326 * change this value. 327 */ 328 ctxt->kernel_ss = __KERNEL_DS; 329 ctxt->kernel_sp = task_top_of_stack(idle); 330 331 ctxt->gs_base_kernel = per_cpu_offset(cpu); 332 ctxt->event_callback_eip = 333 (unsigned long)xen_asm_exc_xen_hypervisor_callback; 334 ctxt->failsafe_callback_eip = 335 (unsigned long)xen_failsafe_callback; 336 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); 337 338 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir)); 339 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, xen_vcpu_nr(cpu), ctxt)) 340 BUG(); 341 342 kfree(ctxt); 343 return 0; 344 } 345 346 static int xen_pv_cpu_up(unsigned int cpu, struct task_struct *idle) 347 { 348 int rc; 349 350 rc = common_cpu_up(cpu, idle); 351 if (rc) 352 return rc; 353 354 xen_setup_runstate_info(cpu); 355 356 /* 357 * PV VCPUs are always successfully taken down (see 'while' loop 358 * in xen_cpu_die()), so -EBUSY is an error. 359 */ 360 rc = cpu_check_up_prepare(cpu); 361 if (rc) 362 return rc; 363 364 /* make sure interrupts start blocked */ 365 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; 366 367 rc = cpu_initialize_context(cpu, idle); 368 if (rc) 369 return rc; 370 371 xen_pmu_init(cpu); 372 373 rc = HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL); 374 BUG_ON(rc); 375 376 while (cpu_report_state(cpu) != CPU_ONLINE) 377 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 378 379 return 0; 380 } 381 382 #ifdef CONFIG_HOTPLUG_CPU 383 static int xen_pv_cpu_disable(void) 384 { 385 unsigned int cpu = smp_processor_id(); 386 if (cpu == 0) 387 return -EBUSY; 388 389 cpu_disable_common(); 390 391 load_cr3(swapper_pg_dir); 392 return 0; 393 } 394 395 static void xen_pv_cpu_die(unsigned int cpu) 396 { 397 while (HYPERVISOR_vcpu_op(VCPUOP_is_up, 398 xen_vcpu_nr(cpu), NULL)) { 399 __set_current_state(TASK_UNINTERRUPTIBLE); 400 schedule_timeout(HZ/10); 401 } 402 403 if (common_cpu_die(cpu) == 0) { 404 xen_smp_intr_free(cpu); 405 xen_uninit_lock_cpu(cpu); 406 xen_teardown_timer(cpu); 407 xen_pmu_finish(cpu); 408 } 409 } 410 411 static void xen_pv_play_dead(void) /* used only with HOTPLUG_CPU */ 412 { 413 play_dead_common(); 414 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(smp_processor_id()), NULL); 415 cpu_bringup(); 416 /* 417 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) 418 * clears certain data that the cpu_idle loop (which called us 419 * and that we return from) expects. The only way to get that 420 * data back is to call: 421 */ 422 tick_nohz_idle_enter(); 423 tick_nohz_idle_stop_tick_protected(); 424 425 cpuhp_online_idle(CPUHP_AP_ONLINE_IDLE); 426 } 427 428 #else /* !CONFIG_HOTPLUG_CPU */ 429 static int xen_pv_cpu_disable(void) 430 { 431 return -ENOSYS; 432 } 433 434 static void xen_pv_cpu_die(unsigned int cpu) 435 { 436 BUG(); 437 } 438 439 static void xen_pv_play_dead(void) 440 { 441 BUG(); 442 } 443 444 #endif 445 static void stop_self(void *v) 446 { 447 int cpu = smp_processor_id(); 448 449 /* make sure we're not pinning something down */ 450 load_cr3(swapper_pg_dir); 451 /* should set up a minimal gdt */ 452 453 set_cpu_online(cpu, false); 454 455 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL); 456 BUG(); 457 } 458 459 static void xen_pv_stop_other_cpus(int wait) 460 { 461 smp_call_function(stop_self, NULL, wait); 462 } 463 464 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) 465 { 466 irq_enter(); 467 irq_work_run(); 468 inc_irq_stat(apic_irq_work_irqs); 469 irq_exit(); 470 471 return IRQ_HANDLED; 472 } 473 474 static const struct smp_ops xen_smp_ops __initconst = { 475 .smp_prepare_boot_cpu = xen_pv_smp_prepare_boot_cpu, 476 .smp_prepare_cpus = xen_pv_smp_prepare_cpus, 477 .smp_cpus_done = xen_smp_cpus_done, 478 479 .cpu_up = xen_pv_cpu_up, 480 .cpu_die = xen_pv_cpu_die, 481 .cpu_disable = xen_pv_cpu_disable, 482 .play_dead = xen_pv_play_dead, 483 484 .stop_other_cpus = xen_pv_stop_other_cpus, 485 .smp_send_reschedule = xen_smp_send_reschedule, 486 487 .send_call_func_ipi = xen_smp_send_call_function_ipi, 488 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, 489 }; 490 491 void __init xen_smp_init(void) 492 { 493 smp_ops = xen_smp_ops; 494 xen_fill_possible_map(); 495 } 496