xref: /linux/arch/x86/xen/smp.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * Xen SMP support
3  *
4  * This file implements the Xen versions of smp_ops.  SMP under Xen is
5  * very straightforward.  Bringing a CPU up is simply a matter of
6  * loading its initial context and setting it running.
7  *
8  * IPIs are handled through the Xen event mechanism.
9  *
10  * Because virtual CPUs can be scheduled onto any real CPU, there's no
11  * useful topology information for the kernel to make use of.  As a
12  * result, all CPUs are treated as if they're single-core and
13  * single-threaded.
14  */
15 #include <linux/sched.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/smp.h>
19 #include <linux/irq_work.h>
20 #include <linux/tick.h>
21 
22 #include <asm/paravirt.h>
23 #include <asm/desc.h>
24 #include <asm/pgtable.h>
25 #include <asm/cpu.h>
26 
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
29 #include <xen/interface/xenpmu.h>
30 
31 #include <asm/xen/interface.h>
32 #include <asm/xen/hypercall.h>
33 
34 #include <xen/xen.h>
35 #include <xen/page.h>
36 #include <xen/events.h>
37 
38 #include <xen/hvc-console.h>
39 #include "xen-ops.h"
40 #include "mmu.h"
41 #include "smp.h"
42 #include "pmu.h"
43 
44 cpumask_var_t xen_cpu_initialized_map;
45 
46 struct xen_common_irq {
47 	int irq;
48 	char *name;
49 };
50 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
51 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
52 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
53 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
54 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
55 static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 };
56 
57 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
58 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
59 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
60 
61 /*
62  * Reschedule call back.
63  */
64 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
65 {
66 	inc_irq_stat(irq_resched_count);
67 	scheduler_ipi();
68 
69 	return IRQ_HANDLED;
70 }
71 
72 static void cpu_bringup(void)
73 {
74 	int cpu;
75 
76 	cpu_init();
77 	touch_softlockup_watchdog();
78 	preempt_disable();
79 
80 	/* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
81 	if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
82 		xen_enable_sysenter();
83 		xen_enable_syscall();
84 	}
85 	cpu = smp_processor_id();
86 	smp_store_cpu_info(cpu);
87 	cpu_data(cpu).x86_max_cores = 1;
88 	set_cpu_sibling_map(cpu);
89 
90 	xen_setup_cpu_clockevents();
91 
92 	notify_cpu_starting(cpu);
93 
94 	set_cpu_online(cpu, true);
95 
96 	cpu_set_state_online(cpu);  /* Implies full memory barrier. */
97 
98 	/* We can take interrupts now: we're officially "up". */
99 	local_irq_enable();
100 }
101 
102 /*
103  * Note: cpu parameter is only relevant for PVH. The reason for passing it
104  * is we can't do smp_processor_id until the percpu segments are loaded, for
105  * which we need the cpu number! So we pass it in rdi as first parameter.
106  */
107 asmlinkage __visible void cpu_bringup_and_idle(int cpu)
108 {
109 #ifdef CONFIG_XEN_PVH
110 	if (xen_feature(XENFEAT_auto_translated_physmap) &&
111 	    xen_feature(XENFEAT_supervisor_mode_kernel))
112 		xen_pvh_secondary_vcpu_init(cpu);
113 #endif
114 	cpu_bringup();
115 	cpu_startup_entry(CPUHP_ONLINE);
116 }
117 
118 static void xen_smp_intr_free(unsigned int cpu)
119 {
120 	if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
121 		unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
122 		per_cpu(xen_resched_irq, cpu).irq = -1;
123 		kfree(per_cpu(xen_resched_irq, cpu).name);
124 		per_cpu(xen_resched_irq, cpu).name = NULL;
125 	}
126 	if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
127 		unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
128 		per_cpu(xen_callfunc_irq, cpu).irq = -1;
129 		kfree(per_cpu(xen_callfunc_irq, cpu).name);
130 		per_cpu(xen_callfunc_irq, cpu).name = NULL;
131 	}
132 	if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
133 		unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
134 		per_cpu(xen_debug_irq, cpu).irq = -1;
135 		kfree(per_cpu(xen_debug_irq, cpu).name);
136 		per_cpu(xen_debug_irq, cpu).name = NULL;
137 	}
138 	if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
139 		unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
140 				       NULL);
141 		per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
142 		kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
143 		per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
144 	}
145 	if (xen_hvm_domain())
146 		return;
147 
148 	if (per_cpu(xen_irq_work, cpu).irq >= 0) {
149 		unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
150 		per_cpu(xen_irq_work, cpu).irq = -1;
151 		kfree(per_cpu(xen_irq_work, cpu).name);
152 		per_cpu(xen_irq_work, cpu).name = NULL;
153 	}
154 
155 	if (per_cpu(xen_pmu_irq, cpu).irq >= 0) {
156 		unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL);
157 		per_cpu(xen_pmu_irq, cpu).irq = -1;
158 		kfree(per_cpu(xen_pmu_irq, cpu).name);
159 		per_cpu(xen_pmu_irq, cpu).name = NULL;
160 	}
161 };
162 static int xen_smp_intr_init(unsigned int cpu)
163 {
164 	int rc;
165 	char *resched_name, *callfunc_name, *debug_name, *pmu_name;
166 
167 	resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
168 	rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
169 				    cpu,
170 				    xen_reschedule_interrupt,
171 				    IRQF_PERCPU|IRQF_NOBALANCING,
172 				    resched_name,
173 				    NULL);
174 	if (rc < 0)
175 		goto fail;
176 	per_cpu(xen_resched_irq, cpu).irq = rc;
177 	per_cpu(xen_resched_irq, cpu).name = resched_name;
178 
179 	callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
180 	rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
181 				    cpu,
182 				    xen_call_function_interrupt,
183 				    IRQF_PERCPU|IRQF_NOBALANCING,
184 				    callfunc_name,
185 				    NULL);
186 	if (rc < 0)
187 		goto fail;
188 	per_cpu(xen_callfunc_irq, cpu).irq = rc;
189 	per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
190 
191 	debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
192 	rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
193 				     IRQF_PERCPU | IRQF_NOBALANCING,
194 				     debug_name, NULL);
195 	if (rc < 0)
196 		goto fail;
197 	per_cpu(xen_debug_irq, cpu).irq = rc;
198 	per_cpu(xen_debug_irq, cpu).name = debug_name;
199 
200 	callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
201 	rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
202 				    cpu,
203 				    xen_call_function_single_interrupt,
204 				    IRQF_PERCPU|IRQF_NOBALANCING,
205 				    callfunc_name,
206 				    NULL);
207 	if (rc < 0)
208 		goto fail;
209 	per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
210 	per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
211 
212 	/*
213 	 * The IRQ worker on PVHVM goes through the native path and uses the
214 	 * IPI mechanism.
215 	 */
216 	if (xen_hvm_domain())
217 		return 0;
218 
219 	callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
220 	rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
221 				    cpu,
222 				    xen_irq_work_interrupt,
223 				    IRQF_PERCPU|IRQF_NOBALANCING,
224 				    callfunc_name,
225 				    NULL);
226 	if (rc < 0)
227 		goto fail;
228 	per_cpu(xen_irq_work, cpu).irq = rc;
229 	per_cpu(xen_irq_work, cpu).name = callfunc_name;
230 
231 	if (is_xen_pmu(cpu)) {
232 		pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu);
233 		rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu,
234 					     xen_pmu_irq_handler,
235 					     IRQF_PERCPU|IRQF_NOBALANCING,
236 					     pmu_name, NULL);
237 		if (rc < 0)
238 			goto fail;
239 		per_cpu(xen_pmu_irq, cpu).irq = rc;
240 		per_cpu(xen_pmu_irq, cpu).name = pmu_name;
241 	}
242 
243 	return 0;
244 
245  fail:
246 	xen_smp_intr_free(cpu);
247 	return rc;
248 }
249 
250 static void __init xen_fill_possible_map(void)
251 {
252 	int i, rc;
253 
254 	if (xen_initial_domain())
255 		return;
256 
257 	for (i = 0; i < nr_cpu_ids; i++) {
258 		rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
259 		if (rc >= 0) {
260 			num_processors++;
261 			set_cpu_possible(i, true);
262 		}
263 	}
264 }
265 
266 static void __init xen_filter_cpu_maps(void)
267 {
268 	int i, rc;
269 	unsigned int subtract = 0;
270 
271 	if (!xen_initial_domain())
272 		return;
273 
274 	num_processors = 0;
275 	disabled_cpus = 0;
276 	for (i = 0; i < nr_cpu_ids; i++) {
277 		rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
278 		if (rc >= 0) {
279 			num_processors++;
280 			set_cpu_possible(i, true);
281 		} else {
282 			set_cpu_possible(i, false);
283 			set_cpu_present(i, false);
284 			subtract++;
285 		}
286 	}
287 #ifdef CONFIG_HOTPLUG_CPU
288 	/* This is akin to using 'nr_cpus' on the Linux command line.
289 	 * Which is OK as when we use 'dom0_max_vcpus=X' we can only
290 	 * have up to X, while nr_cpu_ids is greater than X. This
291 	 * normally is not a problem, except when CPU hotplugging
292 	 * is involved and then there might be more than X CPUs
293 	 * in the guest - which will not work as there is no
294 	 * hypercall to expand the max number of VCPUs an already
295 	 * running guest has. So cap it up to X. */
296 	if (subtract)
297 		nr_cpu_ids = nr_cpu_ids - subtract;
298 #endif
299 
300 }
301 
302 static void __init xen_smp_prepare_boot_cpu(void)
303 {
304 	BUG_ON(smp_processor_id() != 0);
305 	native_smp_prepare_boot_cpu();
306 
307 	if (xen_pv_domain()) {
308 		if (!xen_feature(XENFEAT_writable_page_tables))
309 			/* We've switched to the "real" per-cpu gdt, so make
310 			 * sure the old memory can be recycled. */
311 			make_lowmem_page_readwrite(xen_initial_gdt);
312 
313 #ifdef CONFIG_X86_32
314 		/*
315 		 * Xen starts us with XEN_FLAT_RING1_DS, but linux code
316 		 * expects __USER_DS
317 		 */
318 		loadsegment(ds, __USER_DS);
319 		loadsegment(es, __USER_DS);
320 #endif
321 
322 		xen_filter_cpu_maps();
323 		xen_setup_vcpu_info_placement();
324 	}
325 	/*
326 	 * The alternative logic (which patches the unlock/lock) runs before
327 	 * the smp bootup up code is activated. Hence we need to set this up
328 	 * the core kernel is being patched. Otherwise we will have only
329 	 * modules patched but not core code.
330 	 */
331 	xen_init_spinlocks();
332 }
333 
334 static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
335 {
336 	unsigned cpu;
337 	unsigned int i;
338 
339 	if (skip_ioapic_setup) {
340 		char *m = (max_cpus == 0) ?
341 			"The nosmp parameter is incompatible with Xen; " \
342 			"use Xen dom0_max_vcpus=1 parameter" :
343 			"The noapic parameter is incompatible with Xen";
344 
345 		xen_raw_printk(m);
346 		panic(m);
347 	}
348 	xen_init_lock_cpu(0);
349 
350 	smp_store_boot_cpu_info();
351 	cpu_data(0).x86_max_cores = 1;
352 
353 	for_each_possible_cpu(i) {
354 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
355 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
356 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
357 	}
358 	set_cpu_sibling_map(0);
359 
360 	xen_pmu_init(0);
361 
362 	if (xen_smp_intr_init(0))
363 		BUG();
364 
365 	if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
366 		panic("could not allocate xen_cpu_initialized_map\n");
367 
368 	cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
369 
370 	/* Restrict the possible_map according to max_cpus. */
371 	while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
372 		for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
373 			continue;
374 		set_cpu_possible(cpu, false);
375 	}
376 
377 	for_each_possible_cpu(cpu)
378 		set_cpu_present(cpu, true);
379 }
380 
381 static int
382 cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
383 {
384 	struct vcpu_guest_context *ctxt;
385 	struct desc_struct *gdt;
386 	unsigned long gdt_mfn;
387 
388 	/* used to tell cpu_init() that it can proceed with initialization */
389 	cpumask_set_cpu(cpu, cpu_callout_mask);
390 	if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
391 		return 0;
392 
393 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
394 	if (ctxt == NULL)
395 		return -ENOMEM;
396 
397 	gdt = get_cpu_gdt_table(cpu);
398 
399 #ifdef CONFIG_X86_32
400 	/* Note: PVH is not yet supported on x86_32. */
401 	ctxt->user_regs.fs = __KERNEL_PERCPU;
402 	ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
403 #endif
404 	memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
405 
406 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
407 		ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
408 		ctxt->flags = VGCF_IN_KERNEL;
409 		ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
410 		ctxt->user_regs.ds = __USER_DS;
411 		ctxt->user_regs.es = __USER_DS;
412 		ctxt->user_regs.ss = __KERNEL_DS;
413 
414 		xen_copy_trap_info(ctxt->trap_ctxt);
415 
416 		ctxt->ldt_ents = 0;
417 
418 		BUG_ON((unsigned long)gdt & ~PAGE_MASK);
419 
420 		gdt_mfn = arbitrary_virt_to_mfn(gdt);
421 		make_lowmem_page_readonly(gdt);
422 		make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
423 
424 		ctxt->gdt_frames[0] = gdt_mfn;
425 		ctxt->gdt_ents      = GDT_ENTRIES;
426 
427 		ctxt->kernel_ss = __KERNEL_DS;
428 		ctxt->kernel_sp = idle->thread.sp0;
429 
430 #ifdef CONFIG_X86_32
431 		ctxt->event_callback_cs     = __KERNEL_CS;
432 		ctxt->failsafe_callback_cs  = __KERNEL_CS;
433 #else
434 		ctxt->gs_base_kernel = per_cpu_offset(cpu);
435 #endif
436 		ctxt->event_callback_eip    =
437 					(unsigned long)xen_hypervisor_callback;
438 		ctxt->failsafe_callback_eip =
439 					(unsigned long)xen_failsafe_callback;
440 		ctxt->user_regs.cs = __KERNEL_CS;
441 		per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
442 	}
443 #ifdef CONFIG_XEN_PVH
444 	else {
445 		/*
446 		 * The vcpu comes on kernel page tables which have the NX pte
447 		 * bit set. This means before DS/SS is touched, NX in
448 		 * EFER must be set. Hence the following assembly glue code.
449 		 */
450 		ctxt->user_regs.eip = (unsigned long)xen_pvh_early_cpu_init;
451 		ctxt->user_regs.rdi = cpu;
452 		ctxt->user_regs.rsi = true;  /* entry == true */
453 	}
454 #endif
455 	ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
456 	ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir));
457 	if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
458 		BUG();
459 
460 	kfree(ctxt);
461 	return 0;
462 }
463 
464 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
465 {
466 	int rc;
467 
468 	common_cpu_up(cpu, idle);
469 
470 	xen_setup_runstate_info(cpu);
471 	xen_setup_timer(cpu);
472 	xen_init_lock_cpu(cpu);
473 
474 	/*
475 	 * PV VCPUs are always successfully taken down (see 'while' loop
476 	 * in xen_cpu_die()), so -EBUSY is an error.
477 	 */
478 	rc = cpu_check_up_prepare(cpu);
479 	if (rc)
480 		return rc;
481 
482 	/* make sure interrupts start blocked */
483 	per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
484 
485 	rc = cpu_initialize_context(cpu, idle);
486 	if (rc)
487 		return rc;
488 
489 	xen_pmu_init(cpu);
490 
491 	rc = xen_smp_intr_init(cpu);
492 	if (rc)
493 		return rc;
494 
495 	rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
496 	BUG_ON(rc);
497 
498 	while (cpu_report_state(cpu) != CPU_ONLINE)
499 		HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
500 
501 	return 0;
502 }
503 
504 static void xen_smp_cpus_done(unsigned int max_cpus)
505 {
506 }
507 
508 #ifdef CONFIG_HOTPLUG_CPU
509 static int xen_cpu_disable(void)
510 {
511 	unsigned int cpu = smp_processor_id();
512 	if (cpu == 0)
513 		return -EBUSY;
514 
515 	cpu_disable_common();
516 
517 	load_cr3(swapper_pg_dir);
518 	return 0;
519 }
520 
521 static void xen_cpu_die(unsigned int cpu)
522 {
523 	while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
524 		__set_current_state(TASK_UNINTERRUPTIBLE);
525 		schedule_timeout(HZ/10);
526 	}
527 
528 	if (common_cpu_die(cpu) == 0) {
529 		xen_smp_intr_free(cpu);
530 		xen_uninit_lock_cpu(cpu);
531 		xen_teardown_timer(cpu);
532 		xen_pmu_finish(cpu);
533 	}
534 }
535 
536 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
537 {
538 	play_dead_common();
539 	HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
540 	cpu_bringup();
541 	/*
542 	 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
543 	 * clears certain data that the cpu_idle loop (which called us
544 	 * and that we return from) expects. The only way to get that
545 	 * data back is to call:
546 	 */
547 	tick_nohz_idle_enter();
548 }
549 
550 #else /* !CONFIG_HOTPLUG_CPU */
551 static int xen_cpu_disable(void)
552 {
553 	return -ENOSYS;
554 }
555 
556 static void xen_cpu_die(unsigned int cpu)
557 {
558 	BUG();
559 }
560 
561 static void xen_play_dead(void)
562 {
563 	BUG();
564 }
565 
566 #endif
567 static void stop_self(void *v)
568 {
569 	int cpu = smp_processor_id();
570 
571 	/* make sure we're not pinning something down */
572 	load_cr3(swapper_pg_dir);
573 	/* should set up a minimal gdt */
574 
575 	set_cpu_online(cpu, false);
576 
577 	HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
578 	BUG();
579 }
580 
581 static void xen_stop_other_cpus(int wait)
582 {
583 	smp_call_function(stop_self, NULL, wait);
584 }
585 
586 static void xen_smp_send_reschedule(int cpu)
587 {
588 	xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
589 }
590 
591 static void __xen_send_IPI_mask(const struct cpumask *mask,
592 			      int vector)
593 {
594 	unsigned cpu;
595 
596 	for_each_cpu_and(cpu, mask, cpu_online_mask)
597 		xen_send_IPI_one(cpu, vector);
598 }
599 
600 static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
601 {
602 	int cpu;
603 
604 	__xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
605 
606 	/* Make sure other vcpus get a chance to run if they need to. */
607 	for_each_cpu(cpu, mask) {
608 		if (xen_vcpu_stolen(cpu)) {
609 			HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
610 			break;
611 		}
612 	}
613 }
614 
615 static void xen_smp_send_call_function_single_ipi(int cpu)
616 {
617 	__xen_send_IPI_mask(cpumask_of(cpu),
618 			  XEN_CALL_FUNCTION_SINGLE_VECTOR);
619 }
620 
621 static inline int xen_map_vector(int vector)
622 {
623 	int xen_vector;
624 
625 	switch (vector) {
626 	case RESCHEDULE_VECTOR:
627 		xen_vector = XEN_RESCHEDULE_VECTOR;
628 		break;
629 	case CALL_FUNCTION_VECTOR:
630 		xen_vector = XEN_CALL_FUNCTION_VECTOR;
631 		break;
632 	case CALL_FUNCTION_SINGLE_VECTOR:
633 		xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
634 		break;
635 	case IRQ_WORK_VECTOR:
636 		xen_vector = XEN_IRQ_WORK_VECTOR;
637 		break;
638 #ifdef CONFIG_X86_64
639 	case NMI_VECTOR:
640 	case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
641 		xen_vector = XEN_NMI_VECTOR;
642 		break;
643 #endif
644 	default:
645 		xen_vector = -1;
646 		printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
647 			vector);
648 	}
649 
650 	return xen_vector;
651 }
652 
653 void xen_send_IPI_mask(const struct cpumask *mask,
654 			      int vector)
655 {
656 	int xen_vector = xen_map_vector(vector);
657 
658 	if (xen_vector >= 0)
659 		__xen_send_IPI_mask(mask, xen_vector);
660 }
661 
662 void xen_send_IPI_all(int vector)
663 {
664 	int xen_vector = xen_map_vector(vector);
665 
666 	if (xen_vector >= 0)
667 		__xen_send_IPI_mask(cpu_online_mask, xen_vector);
668 }
669 
670 void xen_send_IPI_self(int vector)
671 {
672 	int xen_vector = xen_map_vector(vector);
673 
674 	if (xen_vector >= 0)
675 		xen_send_IPI_one(smp_processor_id(), xen_vector);
676 }
677 
678 void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
679 				int vector)
680 {
681 	unsigned cpu;
682 	unsigned int this_cpu = smp_processor_id();
683 	int xen_vector = xen_map_vector(vector);
684 
685 	if (!(num_online_cpus() > 1) || (xen_vector < 0))
686 		return;
687 
688 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
689 		if (this_cpu == cpu)
690 			continue;
691 
692 		xen_send_IPI_one(cpu, xen_vector);
693 	}
694 }
695 
696 void xen_send_IPI_allbutself(int vector)
697 {
698 	xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
699 }
700 
701 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
702 {
703 	irq_enter();
704 	generic_smp_call_function_interrupt();
705 	inc_irq_stat(irq_call_count);
706 	irq_exit();
707 
708 	return IRQ_HANDLED;
709 }
710 
711 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
712 {
713 	irq_enter();
714 	generic_smp_call_function_single_interrupt();
715 	inc_irq_stat(irq_call_count);
716 	irq_exit();
717 
718 	return IRQ_HANDLED;
719 }
720 
721 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
722 {
723 	irq_enter();
724 	irq_work_run();
725 	inc_irq_stat(apic_irq_work_irqs);
726 	irq_exit();
727 
728 	return IRQ_HANDLED;
729 }
730 
731 static const struct smp_ops xen_smp_ops __initconst = {
732 	.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
733 	.smp_prepare_cpus = xen_smp_prepare_cpus,
734 	.smp_cpus_done = xen_smp_cpus_done,
735 
736 	.cpu_up = xen_cpu_up,
737 	.cpu_die = xen_cpu_die,
738 	.cpu_disable = xen_cpu_disable,
739 	.play_dead = xen_play_dead,
740 
741 	.stop_other_cpus = xen_stop_other_cpus,
742 	.smp_send_reschedule = xen_smp_send_reschedule,
743 
744 	.send_call_func_ipi = xen_smp_send_call_function_ipi,
745 	.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
746 };
747 
748 void __init xen_smp_init(void)
749 {
750 	smp_ops = xen_smp_ops;
751 	xen_fill_possible_map();
752 }
753 
754 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
755 {
756 	native_smp_prepare_cpus(max_cpus);
757 	WARN_ON(xen_smp_intr_init(0));
758 
759 	xen_init_lock_cpu(0);
760 }
761 
762 static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
763 {
764 	int rc;
765 
766 	/*
767 	 * This can happen if CPU was offlined earlier and
768 	 * offlining timed out in common_cpu_die().
769 	 */
770 	if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) {
771 		xen_smp_intr_free(cpu);
772 		xen_uninit_lock_cpu(cpu);
773 	}
774 
775 	/*
776 	 * xen_smp_intr_init() needs to run before native_cpu_up()
777 	 * so that IPI vectors are set up on the booting CPU before
778 	 * it is marked online in native_cpu_up().
779 	*/
780 	rc = xen_smp_intr_init(cpu);
781 	WARN_ON(rc);
782 	if (!rc)
783 		rc =  native_cpu_up(cpu, tidle);
784 
785 	/*
786 	 * We must initialize the slowpath CPU kicker _after_ the native
787 	 * path has executed. If we initialized it before none of the
788 	 * unlocker IPI kicks would reach the booting CPU as the booting
789 	 * CPU had not set itself 'online' in cpu_online_mask. That mask
790 	 * is checked when IPIs are sent (on HVM at least).
791 	 */
792 	xen_init_lock_cpu(cpu);
793 	return rc;
794 }
795 
796 void __init xen_hvm_smp_init(void)
797 {
798 	if (!xen_have_vector_callback)
799 		return;
800 	smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
801 	smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
802 	smp_ops.cpu_up = xen_hvm_cpu_up;
803 	smp_ops.cpu_die = xen_cpu_die;
804 	smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
805 	smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
806 	smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;
807 }
808