1 /* 2 * Machine specific setup for xen 3 * 4 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 5 */ 6 7 #include <linux/init.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/pm.h> 11 #include <linux/memblock.h> 12 #include <linux/cpuidle.h> 13 #include <linux/cpufreq.h> 14 15 #include <asm/elf.h> 16 #include <asm/vdso.h> 17 #include <asm/e820.h> 18 #include <asm/setup.h> 19 #include <asm/acpi.h> 20 #include <asm/numa.h> 21 #include <asm/xen/hypervisor.h> 22 #include <asm/xen/hypercall.h> 23 24 #include <xen/xen.h> 25 #include <xen/page.h> 26 #include <xen/interface/callback.h> 27 #include <xen/interface/memory.h> 28 #include <xen/interface/physdev.h> 29 #include <xen/features.h> 30 #include <xen/hvc-console.h> 31 #include "xen-ops.h" 32 #include "vdso.h" 33 #include "mmu.h" 34 35 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024) 36 37 /* Amount of extra memory space we add to the e820 ranges */ 38 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; 39 40 /* Number of pages released from the initial allocation. */ 41 unsigned long xen_released_pages; 42 43 /* E820 map used during setting up memory. */ 44 static struct e820entry xen_e820_map[E820MAX] __initdata; 45 static u32 xen_e820_map_entries __initdata; 46 47 /* 48 * Buffer used to remap identity mapped pages. We only need the virtual space. 49 * The physical page behind this address is remapped as needed to different 50 * buffer pages. 51 */ 52 #define REMAP_SIZE (P2M_PER_PAGE - 3) 53 static struct { 54 unsigned long next_area_mfn; 55 unsigned long target_pfn; 56 unsigned long size; 57 unsigned long mfns[REMAP_SIZE]; 58 } xen_remap_buf __initdata __aligned(PAGE_SIZE); 59 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY; 60 61 /* 62 * The maximum amount of extra memory compared to the base size. The 63 * main scaling factor is the size of struct page. At extreme ratios 64 * of base:extra, all the base memory can be filled with page 65 * structures for the extra memory, leaving no space for anything 66 * else. 67 * 68 * 10x seems like a reasonable balance between scaling flexibility and 69 * leaving a practically usable system. 70 */ 71 #define EXTRA_MEM_RATIO (10) 72 73 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB); 74 75 static void __init xen_parse_512gb(void) 76 { 77 bool val = false; 78 char *arg; 79 80 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit"); 81 if (!arg) 82 return; 83 84 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit="); 85 if (!arg) 86 val = true; 87 else if (strtobool(arg + strlen("xen_512gb_limit="), &val)) 88 return; 89 90 xen_512gb_limit = val; 91 } 92 93 static void __init xen_add_extra_mem(unsigned long start_pfn, 94 unsigned long n_pfns) 95 { 96 int i; 97 98 /* 99 * No need to check for zero size, should happen rarely and will only 100 * write a new entry regarded to be unused due to zero size. 101 */ 102 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 103 /* Add new region. */ 104 if (xen_extra_mem[i].n_pfns == 0) { 105 xen_extra_mem[i].start_pfn = start_pfn; 106 xen_extra_mem[i].n_pfns = n_pfns; 107 break; 108 } 109 /* Append to existing region. */ 110 if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns == 111 start_pfn) { 112 xen_extra_mem[i].n_pfns += n_pfns; 113 break; 114 } 115 } 116 if (i == XEN_EXTRA_MEM_MAX_REGIONS) 117 printk(KERN_WARNING "Warning: not enough extra memory regions\n"); 118 119 memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); 120 } 121 122 static void __init xen_del_extra_mem(unsigned long start_pfn, 123 unsigned long n_pfns) 124 { 125 int i; 126 unsigned long start_r, size_r; 127 128 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 129 start_r = xen_extra_mem[i].start_pfn; 130 size_r = xen_extra_mem[i].n_pfns; 131 132 /* Start of region. */ 133 if (start_r == start_pfn) { 134 BUG_ON(n_pfns > size_r); 135 xen_extra_mem[i].start_pfn += n_pfns; 136 xen_extra_mem[i].n_pfns -= n_pfns; 137 break; 138 } 139 /* End of region. */ 140 if (start_r + size_r == start_pfn + n_pfns) { 141 BUG_ON(n_pfns > size_r); 142 xen_extra_mem[i].n_pfns -= n_pfns; 143 break; 144 } 145 /* Mid of region. */ 146 if (start_pfn > start_r && start_pfn < start_r + size_r) { 147 BUG_ON(start_pfn + n_pfns > start_r + size_r); 148 xen_extra_mem[i].n_pfns = start_pfn - start_r; 149 /* Calling memblock_reserve() again is okay. */ 150 xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r - 151 (start_pfn + n_pfns)); 152 break; 153 } 154 } 155 memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); 156 } 157 158 /* 159 * Called during boot before the p2m list can take entries beyond the 160 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as 161 * invalid. 162 */ 163 unsigned long __ref xen_chk_extra_mem(unsigned long pfn) 164 { 165 int i; 166 167 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 168 if (pfn >= xen_extra_mem[i].start_pfn && 169 pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns) 170 return INVALID_P2M_ENTRY; 171 } 172 173 return IDENTITY_FRAME(pfn); 174 } 175 176 /* 177 * Mark all pfns of extra mem as invalid in p2m list. 178 */ 179 void __init xen_inv_extra_mem(void) 180 { 181 unsigned long pfn, pfn_s, pfn_e; 182 int i; 183 184 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 185 if (!xen_extra_mem[i].n_pfns) 186 continue; 187 pfn_s = xen_extra_mem[i].start_pfn; 188 pfn_e = pfn_s + xen_extra_mem[i].n_pfns; 189 for (pfn = pfn_s; pfn < pfn_e; pfn++) 190 set_phys_to_machine(pfn, INVALID_P2M_ENTRY); 191 } 192 } 193 194 /* 195 * Finds the next RAM pfn available in the E820 map after min_pfn. 196 * This function updates min_pfn with the pfn found and returns 197 * the size of that range or zero if not found. 198 */ 199 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn) 200 { 201 const struct e820entry *entry = xen_e820_map; 202 unsigned int i; 203 unsigned long done = 0; 204 205 for (i = 0; i < xen_e820_map_entries; i++, entry++) { 206 unsigned long s_pfn; 207 unsigned long e_pfn; 208 209 if (entry->type != E820_RAM) 210 continue; 211 212 e_pfn = PFN_DOWN(entry->addr + entry->size); 213 214 /* We only care about E820 after this */ 215 if (e_pfn <= *min_pfn) 216 continue; 217 218 s_pfn = PFN_UP(entry->addr); 219 220 /* If min_pfn falls within the E820 entry, we want to start 221 * at the min_pfn PFN. 222 */ 223 if (s_pfn <= *min_pfn) { 224 done = e_pfn - *min_pfn; 225 } else { 226 done = e_pfn - s_pfn; 227 *min_pfn = s_pfn; 228 } 229 break; 230 } 231 232 return done; 233 } 234 235 static int __init xen_free_mfn(unsigned long mfn) 236 { 237 struct xen_memory_reservation reservation = { 238 .address_bits = 0, 239 .extent_order = 0, 240 .domid = DOMID_SELF 241 }; 242 243 set_xen_guest_handle(reservation.extent_start, &mfn); 244 reservation.nr_extents = 1; 245 246 return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation); 247 } 248 249 /* 250 * This releases a chunk of memory and then does the identity map. It's used 251 * as a fallback if the remapping fails. 252 */ 253 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn, 254 unsigned long end_pfn, unsigned long nr_pages) 255 { 256 unsigned long pfn, end; 257 int ret; 258 259 WARN_ON(start_pfn > end_pfn); 260 261 /* Release pages first. */ 262 end = min(end_pfn, nr_pages); 263 for (pfn = start_pfn; pfn < end; pfn++) { 264 unsigned long mfn = pfn_to_mfn(pfn); 265 266 /* Make sure pfn exists to start with */ 267 if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) 268 continue; 269 270 ret = xen_free_mfn(mfn); 271 WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret); 272 273 if (ret == 1) { 274 xen_released_pages++; 275 if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY)) 276 break; 277 } else 278 break; 279 } 280 281 set_phys_range_identity(start_pfn, end_pfn); 282 } 283 284 /* 285 * Helper function to update the p2m and m2p tables and kernel mapping. 286 */ 287 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn) 288 { 289 struct mmu_update update = { 290 .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE, 291 .val = pfn 292 }; 293 294 /* Update p2m */ 295 if (!set_phys_to_machine(pfn, mfn)) { 296 WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n", 297 pfn, mfn); 298 BUG(); 299 } 300 301 /* Update m2p */ 302 if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) { 303 WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n", 304 mfn, pfn); 305 BUG(); 306 } 307 308 /* Update kernel mapping, but not for highmem. */ 309 if (pfn >= PFN_UP(__pa(high_memory - 1))) 310 return; 311 312 if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT), 313 mfn_pte(mfn, PAGE_KERNEL), 0)) { 314 WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n", 315 mfn, pfn); 316 BUG(); 317 } 318 } 319 320 /* 321 * This function updates the p2m and m2p tables with an identity map from 322 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the 323 * original allocation at remap_pfn. The information needed for remapping is 324 * saved in the memory itself to avoid the need for allocating buffers. The 325 * complete remap information is contained in a list of MFNs each containing 326 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap. 327 * This enables us to preserve the original mfn sequence while doing the 328 * remapping at a time when the memory management is capable of allocating 329 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and 330 * its callers. 331 */ 332 static void __init xen_do_set_identity_and_remap_chunk( 333 unsigned long start_pfn, unsigned long size, unsigned long remap_pfn) 334 { 335 unsigned long buf = (unsigned long)&xen_remap_buf; 336 unsigned long mfn_save, mfn; 337 unsigned long ident_pfn_iter, remap_pfn_iter; 338 unsigned long ident_end_pfn = start_pfn + size; 339 unsigned long left = size; 340 unsigned int i, chunk; 341 342 WARN_ON(size == 0); 343 344 BUG_ON(xen_feature(XENFEAT_auto_translated_physmap)); 345 346 mfn_save = virt_to_mfn(buf); 347 348 for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn; 349 ident_pfn_iter < ident_end_pfn; 350 ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) { 351 chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE; 352 353 /* Map first pfn to xen_remap_buf */ 354 mfn = pfn_to_mfn(ident_pfn_iter); 355 set_pte_mfn(buf, mfn, PAGE_KERNEL); 356 357 /* Save mapping information in page */ 358 xen_remap_buf.next_area_mfn = xen_remap_mfn; 359 xen_remap_buf.target_pfn = remap_pfn_iter; 360 xen_remap_buf.size = chunk; 361 for (i = 0; i < chunk; i++) 362 xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i); 363 364 /* Put remap buf into list. */ 365 xen_remap_mfn = mfn; 366 367 /* Set identity map */ 368 set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk); 369 370 left -= chunk; 371 } 372 373 /* Restore old xen_remap_buf mapping */ 374 set_pte_mfn(buf, mfn_save, PAGE_KERNEL); 375 } 376 377 /* 378 * This function takes a contiguous pfn range that needs to be identity mapped 379 * and: 380 * 381 * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn. 382 * 2) Calls the do_ function to actually do the mapping/remapping work. 383 * 384 * The goal is to not allocate additional memory but to remap the existing 385 * pages. In the case of an error the underlying memory is simply released back 386 * to Xen and not remapped. 387 */ 388 static unsigned long __init xen_set_identity_and_remap_chunk( 389 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, 390 unsigned long remap_pfn) 391 { 392 unsigned long pfn; 393 unsigned long i = 0; 394 unsigned long n = end_pfn - start_pfn; 395 396 if (remap_pfn == 0) 397 remap_pfn = nr_pages; 398 399 while (i < n) { 400 unsigned long cur_pfn = start_pfn + i; 401 unsigned long left = n - i; 402 unsigned long size = left; 403 unsigned long remap_range_size; 404 405 /* Do not remap pages beyond the current allocation */ 406 if (cur_pfn >= nr_pages) { 407 /* Identity map remaining pages */ 408 set_phys_range_identity(cur_pfn, cur_pfn + size); 409 break; 410 } 411 if (cur_pfn + size > nr_pages) 412 size = nr_pages - cur_pfn; 413 414 remap_range_size = xen_find_pfn_range(&remap_pfn); 415 if (!remap_range_size) { 416 pr_warning("Unable to find available pfn range, not remapping identity pages\n"); 417 xen_set_identity_and_release_chunk(cur_pfn, 418 cur_pfn + left, nr_pages); 419 break; 420 } 421 /* Adjust size to fit in current e820 RAM region */ 422 if (size > remap_range_size) 423 size = remap_range_size; 424 425 xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn); 426 427 /* Update variables to reflect new mappings. */ 428 i += size; 429 remap_pfn += size; 430 } 431 432 /* 433 * If the PFNs are currently mapped, the VA mapping also needs 434 * to be updated to be 1:1. 435 */ 436 for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) 437 (void)HYPERVISOR_update_va_mapping( 438 (unsigned long)__va(pfn << PAGE_SHIFT), 439 mfn_pte(pfn, PAGE_KERNEL_IO), 0); 440 441 return remap_pfn; 442 } 443 444 static unsigned long __init xen_count_remap_pages( 445 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, 446 unsigned long remap_pages) 447 { 448 if (start_pfn >= nr_pages) 449 return remap_pages; 450 451 return remap_pages + min(end_pfn, nr_pages) - start_pfn; 452 } 453 454 static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages, 455 unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn, 456 unsigned long nr_pages, unsigned long last_val)) 457 { 458 phys_addr_t start = 0; 459 unsigned long ret_val = 0; 460 const struct e820entry *entry = xen_e820_map; 461 int i; 462 463 /* 464 * Combine non-RAM regions and gaps until a RAM region (or the 465 * end of the map) is reached, then call the provided function 466 * to perform its duty on the non-RAM region. 467 * 468 * The combined non-RAM regions are rounded to a whole number 469 * of pages so any partial pages are accessible via the 1:1 470 * mapping. This is needed for some BIOSes that put (for 471 * example) the DMI tables in a reserved region that begins on 472 * a non-page boundary. 473 */ 474 for (i = 0; i < xen_e820_map_entries; i++, entry++) { 475 phys_addr_t end = entry->addr + entry->size; 476 if (entry->type == E820_RAM || i == xen_e820_map_entries - 1) { 477 unsigned long start_pfn = PFN_DOWN(start); 478 unsigned long end_pfn = PFN_UP(end); 479 480 if (entry->type == E820_RAM) 481 end_pfn = PFN_UP(entry->addr); 482 483 if (start_pfn < end_pfn) 484 ret_val = func(start_pfn, end_pfn, nr_pages, 485 ret_val); 486 start = end; 487 } 488 } 489 490 return ret_val; 491 } 492 493 /* 494 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk(). 495 * The remap information (which mfn remap to which pfn) is contained in the 496 * to be remapped memory itself in a linked list anchored at xen_remap_mfn. 497 * This scheme allows to remap the different chunks in arbitrary order while 498 * the resulting mapping will be independant from the order. 499 */ 500 void __init xen_remap_memory(void) 501 { 502 unsigned long buf = (unsigned long)&xen_remap_buf; 503 unsigned long mfn_save, mfn, pfn; 504 unsigned long remapped = 0; 505 unsigned int i; 506 unsigned long pfn_s = ~0UL; 507 unsigned long len = 0; 508 509 mfn_save = virt_to_mfn(buf); 510 511 while (xen_remap_mfn != INVALID_P2M_ENTRY) { 512 /* Map the remap information */ 513 set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL); 514 515 BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]); 516 517 pfn = xen_remap_buf.target_pfn; 518 for (i = 0; i < xen_remap_buf.size; i++) { 519 mfn = xen_remap_buf.mfns[i]; 520 xen_update_mem_tables(pfn, mfn); 521 remapped++; 522 pfn++; 523 } 524 if (pfn_s == ~0UL || pfn == pfn_s) { 525 pfn_s = xen_remap_buf.target_pfn; 526 len += xen_remap_buf.size; 527 } else if (pfn_s + len == xen_remap_buf.target_pfn) { 528 len += xen_remap_buf.size; 529 } else { 530 xen_del_extra_mem(pfn_s, len); 531 pfn_s = xen_remap_buf.target_pfn; 532 len = xen_remap_buf.size; 533 } 534 535 mfn = xen_remap_mfn; 536 xen_remap_mfn = xen_remap_buf.next_area_mfn; 537 } 538 539 if (pfn_s != ~0UL && len) 540 xen_del_extra_mem(pfn_s, len); 541 542 set_pte_mfn(buf, mfn_save, PAGE_KERNEL); 543 544 pr_info("Remapped %ld page(s)\n", remapped); 545 } 546 547 static unsigned long __init xen_get_pages_limit(void) 548 { 549 unsigned long limit; 550 551 #ifdef CONFIG_X86_32 552 limit = GB(64) / PAGE_SIZE; 553 #else 554 limit = MAXMEM / PAGE_SIZE; 555 if (!xen_initial_domain() && xen_512gb_limit) 556 limit = GB(512) / PAGE_SIZE; 557 #endif 558 return limit; 559 } 560 561 static unsigned long __init xen_get_max_pages(void) 562 { 563 unsigned long max_pages, limit; 564 domid_t domid = DOMID_SELF; 565 long ret; 566 567 limit = xen_get_pages_limit(); 568 max_pages = limit; 569 570 /* 571 * For the initial domain we use the maximum reservation as 572 * the maximum page. 573 * 574 * For guest domains the current maximum reservation reflects 575 * the current maximum rather than the static maximum. In this 576 * case the e820 map provided to us will cover the static 577 * maximum region. 578 */ 579 if (xen_initial_domain()) { 580 ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); 581 if (ret > 0) 582 max_pages = ret; 583 } 584 585 return min(max_pages, limit); 586 } 587 588 static void __init xen_align_and_add_e820_region(phys_addr_t start, 589 phys_addr_t size, int type) 590 { 591 phys_addr_t end = start + size; 592 593 /* Align RAM regions to page boundaries. */ 594 if (type == E820_RAM) { 595 start = PAGE_ALIGN(start); 596 end &= ~((phys_addr_t)PAGE_SIZE - 1); 597 } 598 599 e820_add_region(start, end - start, type); 600 } 601 602 static void __init xen_ignore_unusable(void) 603 { 604 struct e820entry *entry = xen_e820_map; 605 unsigned int i; 606 607 for (i = 0; i < xen_e820_map_entries; i++, entry++) { 608 if (entry->type == E820_UNUSABLE) 609 entry->type = E820_RAM; 610 } 611 } 612 613 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size) 614 { 615 struct e820entry *entry; 616 unsigned mapcnt; 617 phys_addr_t end; 618 619 if (!size) 620 return false; 621 622 end = start + size; 623 entry = xen_e820_map; 624 625 for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++) { 626 if (entry->type == E820_RAM && entry->addr <= start && 627 (entry->addr + entry->size) >= end) 628 return false; 629 630 entry++; 631 } 632 633 return true; 634 } 635 636 /* 637 * Find a free area in physical memory not yet reserved and compliant with 638 * E820 map. 639 * Used to relocate pre-allocated areas like initrd or p2m list which are in 640 * conflict with the to be used E820 map. 641 * In case no area is found, return 0. Otherwise return the physical address 642 * of the area which is already reserved for convenience. 643 */ 644 phys_addr_t __init xen_find_free_area(phys_addr_t size) 645 { 646 unsigned mapcnt; 647 phys_addr_t addr, start; 648 struct e820entry *entry = xen_e820_map; 649 650 for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++, entry++) { 651 if (entry->type != E820_RAM || entry->size < size) 652 continue; 653 start = entry->addr; 654 for (addr = start; addr < start + size; addr += PAGE_SIZE) { 655 if (!memblock_is_reserved(addr)) 656 continue; 657 start = addr + PAGE_SIZE; 658 if (start + size > entry->addr + entry->size) 659 break; 660 } 661 if (addr >= start + size) { 662 memblock_reserve(start, size); 663 return start; 664 } 665 } 666 667 return 0; 668 } 669 670 /* 671 * Like memcpy, but with physical addresses for dest and src. 672 */ 673 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src, 674 phys_addr_t n) 675 { 676 phys_addr_t dest_off, src_off, dest_len, src_len, len; 677 void *from, *to; 678 679 while (n) { 680 dest_off = dest & ~PAGE_MASK; 681 src_off = src & ~PAGE_MASK; 682 dest_len = n; 683 if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off) 684 dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off; 685 src_len = n; 686 if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off) 687 src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off; 688 len = min(dest_len, src_len); 689 to = early_memremap(dest - dest_off, dest_len + dest_off); 690 from = early_memremap(src - src_off, src_len + src_off); 691 memcpy(to, from, len); 692 early_memunmap(to, dest_len + dest_off); 693 early_memunmap(from, src_len + src_off); 694 n -= len; 695 dest += len; 696 src += len; 697 } 698 } 699 700 /* 701 * Reserve Xen mfn_list. 702 */ 703 static void __init xen_reserve_xen_mfnlist(void) 704 { 705 phys_addr_t start, size; 706 707 if (xen_start_info->mfn_list >= __START_KERNEL_map) { 708 start = __pa(xen_start_info->mfn_list); 709 size = PFN_ALIGN(xen_start_info->nr_pages * 710 sizeof(unsigned long)); 711 } else { 712 start = PFN_PHYS(xen_start_info->first_p2m_pfn); 713 size = PFN_PHYS(xen_start_info->nr_p2m_frames); 714 } 715 716 if (!xen_is_e820_reserved(start, size)) { 717 memblock_reserve(start, size); 718 return; 719 } 720 721 #ifdef CONFIG_X86_32 722 /* 723 * Relocating the p2m on 32 bit system to an arbitrary virtual address 724 * is not supported, so just give up. 725 */ 726 xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n"); 727 BUG(); 728 #else 729 xen_relocate_p2m(); 730 #endif 731 } 732 733 /** 734 * machine_specific_memory_setup - Hook for machine specific memory setup. 735 **/ 736 char * __init xen_memory_setup(void) 737 { 738 unsigned long max_pfn, pfn_s, n_pfns; 739 phys_addr_t mem_end, addr, size, chunk_size; 740 u32 type; 741 int rc; 742 struct xen_memory_map memmap; 743 unsigned long max_pages; 744 unsigned long extra_pages = 0; 745 int i; 746 int op; 747 748 xen_parse_512gb(); 749 max_pfn = xen_get_pages_limit(); 750 max_pfn = min(max_pfn, xen_start_info->nr_pages); 751 mem_end = PFN_PHYS(max_pfn); 752 753 memmap.nr_entries = E820MAX; 754 set_xen_guest_handle(memmap.buffer, xen_e820_map); 755 756 op = xen_initial_domain() ? 757 XENMEM_machine_memory_map : 758 XENMEM_memory_map; 759 rc = HYPERVISOR_memory_op(op, &memmap); 760 if (rc == -ENOSYS) { 761 BUG_ON(xen_initial_domain()); 762 memmap.nr_entries = 1; 763 xen_e820_map[0].addr = 0ULL; 764 xen_e820_map[0].size = mem_end; 765 /* 8MB slack (to balance backend allocations). */ 766 xen_e820_map[0].size += 8ULL << 20; 767 xen_e820_map[0].type = E820_RAM; 768 rc = 0; 769 } 770 BUG_ON(rc); 771 BUG_ON(memmap.nr_entries == 0); 772 xen_e820_map_entries = memmap.nr_entries; 773 774 /* 775 * Xen won't allow a 1:1 mapping to be created to UNUSABLE 776 * regions, so if we're using the machine memory map leave the 777 * region as RAM as it is in the pseudo-physical map. 778 * 779 * UNUSABLE regions in domUs are not handled and will need 780 * a patch in the future. 781 */ 782 if (xen_initial_domain()) 783 xen_ignore_unusable(); 784 785 /* Make sure the Xen-supplied memory map is well-ordered. */ 786 sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map), 787 &xen_e820_map_entries); 788 789 max_pages = xen_get_max_pages(); 790 791 /* How many extra pages do we need due to remapping? */ 792 max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages); 793 794 if (max_pages > max_pfn) 795 extra_pages += max_pages - max_pfn; 796 797 /* 798 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO 799 * factor the base size. On non-highmem systems, the base 800 * size is the full initial memory allocation; on highmem it 801 * is limited to the max size of lowmem, so that it doesn't 802 * get completely filled. 803 * 804 * Make sure we have no memory above max_pages, as this area 805 * isn't handled by the p2m management. 806 * 807 * In principle there could be a problem in lowmem systems if 808 * the initial memory is also very large with respect to 809 * lowmem, but we won't try to deal with that here. 810 */ 811 extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), 812 extra_pages, max_pages - max_pfn); 813 i = 0; 814 addr = xen_e820_map[0].addr; 815 size = xen_e820_map[0].size; 816 while (i < xen_e820_map_entries) { 817 bool discard = false; 818 819 chunk_size = size; 820 type = xen_e820_map[i].type; 821 822 if (type == E820_RAM) { 823 if (addr < mem_end) { 824 chunk_size = min(size, mem_end - addr); 825 } else if (extra_pages) { 826 chunk_size = min(size, PFN_PHYS(extra_pages)); 827 pfn_s = PFN_UP(addr); 828 n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s; 829 extra_pages -= n_pfns; 830 xen_add_extra_mem(pfn_s, n_pfns); 831 xen_max_p2m_pfn = pfn_s + n_pfns; 832 } else 833 discard = true; 834 } 835 836 if (!discard) 837 xen_align_and_add_e820_region(addr, chunk_size, type); 838 839 addr += chunk_size; 840 size -= chunk_size; 841 if (size == 0) { 842 i++; 843 if (i < xen_e820_map_entries) { 844 addr = xen_e820_map[i].addr; 845 size = xen_e820_map[i].size; 846 } 847 } 848 } 849 850 /* 851 * Set the rest as identity mapped, in case PCI BARs are 852 * located here. 853 */ 854 set_phys_range_identity(addr / PAGE_SIZE, ~0ul); 855 856 /* 857 * In domU, the ISA region is normal, usable memory, but we 858 * reserve ISA memory anyway because too many things poke 859 * about in there. 860 */ 861 e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, 862 E820_RESERVED); 863 864 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map); 865 866 /* 867 * Check whether the kernel itself conflicts with the target E820 map. 868 * Failing now is better than running into weird problems later due 869 * to relocating (and even reusing) pages with kernel text or data. 870 */ 871 if (xen_is_e820_reserved(__pa_symbol(_text), 872 __pa_symbol(__bss_stop) - __pa_symbol(_text))) { 873 xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n"); 874 BUG(); 875 } 876 877 /* 878 * Check for a conflict of the hypervisor supplied page tables with 879 * the target E820 map. 880 */ 881 xen_pt_check_e820(); 882 883 xen_reserve_xen_mfnlist(); 884 885 /* Check for a conflict of the initrd with the target E820 map. */ 886 if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image, 887 boot_params.hdr.ramdisk_size)) { 888 phys_addr_t new_area, start, size; 889 890 new_area = xen_find_free_area(boot_params.hdr.ramdisk_size); 891 if (!new_area) { 892 xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n"); 893 BUG(); 894 } 895 896 start = boot_params.hdr.ramdisk_image; 897 size = boot_params.hdr.ramdisk_size; 898 xen_phys_memcpy(new_area, start, size); 899 pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n", 900 start, start + size, new_area, new_area + size); 901 memblock_free(start, size); 902 boot_params.hdr.ramdisk_image = new_area; 903 boot_params.ext_ramdisk_image = new_area >> 32; 904 } 905 906 /* 907 * Set identity map on non-RAM pages and prepare remapping the 908 * underlying RAM. 909 */ 910 xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk); 911 912 pr_info("Released %ld page(s)\n", xen_released_pages); 913 914 return "Xen"; 915 } 916 917 /* 918 * Machine specific memory setup for auto-translated guests. 919 */ 920 char * __init xen_auto_xlated_memory_setup(void) 921 { 922 struct xen_memory_map memmap; 923 int i; 924 int rc; 925 926 memmap.nr_entries = E820MAX; 927 set_xen_guest_handle(memmap.buffer, xen_e820_map); 928 929 rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap); 930 if (rc < 0) 931 panic("No memory map (%d)\n", rc); 932 933 xen_e820_map_entries = memmap.nr_entries; 934 935 sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map), 936 &xen_e820_map_entries); 937 938 for (i = 0; i < xen_e820_map_entries; i++) 939 e820_add_region(xen_e820_map[i].addr, xen_e820_map[i].size, 940 xen_e820_map[i].type); 941 942 /* Remove p2m info, it is not needed. */ 943 xen_start_info->mfn_list = 0; 944 xen_start_info->first_p2m_pfn = 0; 945 xen_start_info->nr_p2m_frames = 0; 946 947 return "Xen"; 948 } 949 950 /* 951 * Set the bit indicating "nosegneg" library variants should be used. 952 * We only need to bother in pure 32-bit mode; compat 32-bit processes 953 * can have un-truncated segments, so wrapping around is allowed. 954 */ 955 static void __init fiddle_vdso(void) 956 { 957 #ifdef CONFIG_X86_32 958 u32 *mask = vdso_image_32.data + 959 vdso_image_32.sym_VDSO32_NOTE_MASK; 960 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; 961 #endif 962 } 963 964 static int register_callback(unsigned type, const void *func) 965 { 966 struct callback_register callback = { 967 .type = type, 968 .address = XEN_CALLBACK(__KERNEL_CS, func), 969 .flags = CALLBACKF_mask_events, 970 }; 971 972 return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); 973 } 974 975 void xen_enable_sysenter(void) 976 { 977 int ret; 978 unsigned sysenter_feature; 979 980 #ifdef CONFIG_X86_32 981 sysenter_feature = X86_FEATURE_SEP; 982 #else 983 sysenter_feature = X86_FEATURE_SYSENTER32; 984 #endif 985 986 if (!boot_cpu_has(sysenter_feature)) 987 return; 988 989 ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); 990 if(ret != 0) 991 setup_clear_cpu_cap(sysenter_feature); 992 } 993 994 void xen_enable_syscall(void) 995 { 996 #ifdef CONFIG_X86_64 997 int ret; 998 999 ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); 1000 if (ret != 0) { 1001 printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); 1002 /* Pretty fatal; 64-bit userspace has no other 1003 mechanism for syscalls. */ 1004 } 1005 1006 if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { 1007 ret = register_callback(CALLBACKTYPE_syscall32, 1008 xen_syscall32_target); 1009 if (ret != 0) 1010 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); 1011 } 1012 #endif /* CONFIG_X86_64 */ 1013 } 1014 1015 void __init xen_pvmmu_arch_setup(void) 1016 { 1017 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); 1018 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); 1019 1020 HYPERVISOR_vm_assist(VMASST_CMD_enable, 1021 VMASST_TYPE_pae_extended_cr3); 1022 1023 if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) || 1024 register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) 1025 BUG(); 1026 1027 xen_enable_sysenter(); 1028 xen_enable_syscall(); 1029 } 1030 1031 /* This function is not called for HVM domains */ 1032 void __init xen_arch_setup(void) 1033 { 1034 xen_panic_handler_init(); 1035 if (!xen_feature(XENFEAT_auto_translated_physmap)) 1036 xen_pvmmu_arch_setup(); 1037 1038 #ifdef CONFIG_ACPI 1039 if (!(xen_start_info->flags & SIF_INITDOMAIN)) { 1040 printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); 1041 disable_acpi(); 1042 } 1043 #endif 1044 1045 memcpy(boot_command_line, xen_start_info->cmd_line, 1046 MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? 1047 COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); 1048 1049 /* Set up idle, making sure it calls safe_halt() pvop */ 1050 disable_cpuidle(); 1051 disable_cpufreq(); 1052 WARN_ON(xen_set_default_idle()); 1053 fiddle_vdso(); 1054 #ifdef CONFIG_NUMA 1055 numa_off = 1; 1056 #endif 1057 } 1058