1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Xen hypercall batching. 4 * 5 * Xen allows multiple hypercalls to be issued at once, using the 6 * multicall interface. This allows the cost of trapping into the 7 * hypervisor to be amortized over several calls. 8 * 9 * This file implements a simple interface for multicalls. There's a 10 * per-cpu buffer of outstanding multicalls. When you want to queue a 11 * multicall for issuing, you can allocate a multicall slot for the 12 * call and its arguments, along with storage for space which is 13 * pointed to by the arguments (for passing pointers to structures, 14 * etc). When the multicall is actually issued, all the space for the 15 * commands and allocated memory is freed for reuse. 16 * 17 * Multicalls are flushed whenever any of the buffers get full, or 18 * when explicitly requested. There's no way to get per-multicall 19 * return results back. It will BUG if any of the multicalls fail. 20 * 21 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 22 */ 23 #include <linux/percpu.h> 24 #include <linux/hardirq.h> 25 #include <linux/debugfs.h> 26 #include <linux/jump_label.h> 27 #include <linux/printk.h> 28 29 #include <asm/xen/hypercall.h> 30 31 #include "xen-ops.h" 32 33 #define MC_BATCH 32 34 35 #define MC_ARGS (MC_BATCH * 16) 36 37 38 struct mc_buffer { 39 unsigned mcidx, argidx, cbidx; 40 struct multicall_entry entries[MC_BATCH]; 41 unsigned char args[MC_ARGS]; 42 struct callback { 43 void (*fn)(void *); 44 void *data; 45 } callbacks[MC_BATCH]; 46 }; 47 48 struct mc_debug_data { 49 struct multicall_entry entries[MC_BATCH]; 50 void *caller[MC_BATCH]; 51 size_t argsz[MC_BATCH]; 52 unsigned long *args[MC_BATCH]; 53 }; 54 55 static DEFINE_PER_CPU(struct mc_buffer, mc_buffer); 56 static struct mc_debug_data mc_debug_data_early __initdata; 57 static struct mc_debug_data __percpu *mc_debug_data __refdata = 58 &mc_debug_data_early; 59 DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags); 60 61 static struct static_key mc_debug __ro_after_init; 62 static bool mc_debug_enabled __initdata; 63 64 static int __init xen_parse_mc_debug(char *arg) 65 { 66 mc_debug_enabled = true; 67 static_key_slow_inc(&mc_debug); 68 69 return 0; 70 } 71 early_param("xen_mc_debug", xen_parse_mc_debug); 72 73 static int __init mc_debug_enable(void) 74 { 75 struct mc_debug_data __percpu *mcdb; 76 unsigned long flags; 77 78 if (!mc_debug_enabled) 79 return 0; 80 81 mcdb = alloc_percpu(struct mc_debug_data); 82 if (!mcdb) { 83 pr_err("xen_mc_debug inactive\n"); 84 static_key_slow_dec(&mc_debug); 85 return -ENOMEM; 86 } 87 88 /* Be careful when switching to percpu debug data. */ 89 local_irq_save(flags); 90 xen_mc_flush(); 91 mc_debug_data = mcdb; 92 local_irq_restore(flags); 93 94 pr_info("xen_mc_debug active\n"); 95 96 return 0; 97 } 98 early_initcall(mc_debug_enable); 99 100 /* Number of parameters of hypercalls used via multicalls. */ 101 static const uint8_t hpcpars[] = { 102 [__HYPERVISOR_mmu_update] = 4, 103 [__HYPERVISOR_stack_switch] = 2, 104 [__HYPERVISOR_fpu_taskswitch] = 1, 105 [__HYPERVISOR_update_descriptor] = 2, 106 [__HYPERVISOR_update_va_mapping] = 3, 107 [__HYPERVISOR_mmuext_op] = 4, 108 }; 109 110 static void print_debug_data(struct mc_buffer *b, struct mc_debug_data *mcdb, 111 int idx) 112 { 113 unsigned int arg; 114 unsigned int opidx = mcdb->entries[idx].op & 0xff; 115 unsigned int pars = 0; 116 117 pr_err(" call %2d: op=%lu result=%ld caller=%pS ", idx + 1, 118 mcdb->entries[idx].op, b->entries[idx].result, 119 mcdb->caller[idx]); 120 if (opidx < ARRAY_SIZE(hpcpars)) 121 pars = hpcpars[opidx]; 122 if (pars) { 123 pr_cont("pars="); 124 for (arg = 0; arg < pars; arg++) 125 pr_cont("%lx ", mcdb->entries[idx].args[arg]); 126 } 127 if (mcdb->argsz[idx]) { 128 pr_cont("args="); 129 for (arg = 0; arg < mcdb->argsz[idx] / 8; arg++) 130 pr_cont("%lx ", mcdb->args[idx][arg]); 131 } 132 pr_cont("\n"); 133 } 134 135 void xen_mc_flush(void) 136 { 137 struct mc_buffer *b = this_cpu_ptr(&mc_buffer); 138 struct multicall_entry *mc; 139 struct mc_debug_data *mcdb = NULL; 140 int ret = 0; 141 unsigned long flags; 142 int i; 143 144 BUG_ON(preemptible()); 145 146 /* Disable interrupts in case someone comes in and queues 147 something in the middle */ 148 local_irq_save(flags); 149 150 trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx); 151 152 if (static_key_false(&mc_debug)) { 153 mcdb = this_cpu_ptr(mc_debug_data); 154 memcpy(mcdb->entries, b->entries, 155 b->mcidx * sizeof(struct multicall_entry)); 156 } 157 158 switch (b->mcidx) { 159 case 0: 160 /* no-op */ 161 BUG_ON(b->argidx != 0); 162 break; 163 164 case 1: 165 /* Singleton multicall - bypass multicall machinery 166 and just do the call directly. */ 167 mc = &b->entries[0]; 168 169 mc->result = xen_single_call(mc->op, mc->args[0], mc->args[1], 170 mc->args[2], mc->args[3], 171 mc->args[4]); 172 ret = mc->result < 0; 173 break; 174 175 default: 176 if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0) 177 BUG(); 178 for (i = 0; i < b->mcidx; i++) 179 if (b->entries[i].result < 0) 180 ret++; 181 } 182 183 if (WARN_ON(ret)) { 184 pr_err("%d of %d multicall(s) failed: cpu %d\n", 185 ret, b->mcidx, smp_processor_id()); 186 for (i = 0; i < b->mcidx; i++) { 187 if (static_key_false(&mc_debug)) { 188 print_debug_data(b, mcdb, i); 189 } else if (b->entries[i].result < 0) { 190 pr_err(" call %2d: op=%lu arg=[%lx] result=%ld\n", 191 i + 1, 192 b->entries[i].op, 193 b->entries[i].args[0], 194 b->entries[i].result); 195 } 196 } 197 } 198 199 b->mcidx = 0; 200 b->argidx = 0; 201 202 for (i = 0; i < b->cbidx; i++) { 203 struct callback *cb = &b->callbacks[i]; 204 205 (*cb->fn)(cb->data); 206 } 207 b->cbidx = 0; 208 209 local_irq_restore(flags); 210 } 211 212 struct multicall_space __xen_mc_entry(size_t args) 213 { 214 struct mc_buffer *b = this_cpu_ptr(&mc_buffer); 215 struct multicall_space ret; 216 unsigned argidx = roundup(b->argidx, sizeof(u64)); 217 218 trace_xen_mc_entry_alloc(args); 219 220 BUG_ON(preemptible()); 221 BUG_ON(b->argidx >= MC_ARGS); 222 223 if (unlikely(b->mcidx == MC_BATCH || 224 (argidx + args) >= MC_ARGS)) { 225 trace_xen_mc_flush_reason((b->mcidx == MC_BATCH) ? 226 XEN_MC_FL_BATCH : XEN_MC_FL_ARGS); 227 xen_mc_flush(); 228 argidx = roundup(b->argidx, sizeof(u64)); 229 } 230 231 ret.mc = &b->entries[b->mcidx]; 232 if (static_key_false(&mc_debug)) { 233 struct mc_debug_data *mcdb = this_cpu_ptr(mc_debug_data); 234 235 mcdb->caller[b->mcidx] = __builtin_return_address(0); 236 mcdb->argsz[b->mcidx] = args; 237 mcdb->args[b->mcidx] = (unsigned long *)(&b->args[argidx]); 238 } 239 b->mcidx++; 240 ret.args = &b->args[argidx]; 241 b->argidx = argidx + args; 242 243 BUG_ON(b->argidx >= MC_ARGS); 244 return ret; 245 } 246 247 struct multicall_space xen_mc_extend_args(unsigned long op, size_t size) 248 { 249 struct mc_buffer *b = this_cpu_ptr(&mc_buffer); 250 struct multicall_space ret = { NULL, NULL }; 251 252 BUG_ON(preemptible()); 253 BUG_ON(b->argidx >= MC_ARGS); 254 255 if (unlikely(b->mcidx == 0 || 256 b->entries[b->mcidx - 1].op != op)) { 257 trace_xen_mc_extend_args(op, size, XEN_MC_XE_BAD_OP); 258 goto out; 259 } 260 261 if (unlikely((b->argidx + size) >= MC_ARGS)) { 262 trace_xen_mc_extend_args(op, size, XEN_MC_XE_NO_SPACE); 263 goto out; 264 } 265 266 ret.mc = &b->entries[b->mcidx - 1]; 267 ret.args = &b->args[b->argidx]; 268 b->argidx += size; 269 270 BUG_ON(b->argidx >= MC_ARGS); 271 272 trace_xen_mc_extend_args(op, size, XEN_MC_XE_OK); 273 out: 274 return ret; 275 } 276 277 void xen_mc_callback(void (*fn)(void *), void *data) 278 { 279 struct mc_buffer *b = this_cpu_ptr(&mc_buffer); 280 struct callback *cb; 281 282 if (b->cbidx == MC_BATCH) { 283 trace_xen_mc_flush_reason(XEN_MC_FL_CALLBACK); 284 xen_mc_flush(); 285 } 286 287 trace_xen_mc_callback(fn, data); 288 289 cb = &b->callbacks[b->cbidx++]; 290 cb->fn = fn; 291 cb->data = data; 292 } 293