xref: /linux/arch/x86/xen/mmu_pv.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Xen mmu operations
5  *
6  * This file contains the various mmu fetch and update operations.
7  * The most important job they must perform is the mapping between the
8  * domain's pfn and the overall machine mfns.
9  *
10  * Xen allows guests to directly update the pagetable, in a controlled
11  * fashion.  In other words, the guest modifies the same pagetable
12  * that the CPU actually uses, which eliminates the overhead of having
13  * a separate shadow pagetable.
14  *
15  * In order to allow this, it falls on the guest domain to map its
16  * notion of a "physical" pfn - which is just a domain-local linear
17  * address - into a real "machine address" which the CPU's MMU can
18  * use.
19  *
20  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21  * inserted directly into the pagetable.  When creating a new
22  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
23  * when reading the content back with __(pgd|pmd|pte)_val, it converts
24  * the mfn back into a pfn.
25  *
26  * The other constraint is that all pages which make up a pagetable
27  * must be mapped read-only in the guest.  This prevents uncontrolled
28  * guest updates to the pagetable.  Xen strictly enforces this, and
29  * will disallow any pagetable update which will end up mapping a
30  * pagetable page RW, and will disallow using any writable page as a
31  * pagetable.
32  *
33  * Naively, when loading %cr3 with the base of a new pagetable, Xen
34  * would need to validate the whole pagetable before going on.
35  * Naturally, this is quite slow.  The solution is to "pin" a
36  * pagetable, which enforces all the constraints on the pagetable even
37  * when it is not actively in use.  This means that Xen can be assured
38  * that it is still valid when you do load it into %cr3, and doesn't
39  * need to revalidate it.
40  *
41  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
42  */
43 #include <linux/sched/mm.h>
44 #include <linux/debugfs.h>
45 #include <linux/bug.h>
46 #include <linux/vmalloc.h>
47 #include <linux/export.h>
48 #include <linux/init.h>
49 #include <linux/gfp.h>
50 #include <linux/memblock.h>
51 #include <linux/seq_file.h>
52 #include <linux/crash_dump.h>
53 #include <linux/pgtable.h>
54 #ifdef CONFIG_KEXEC_CORE
55 #include <linux/kexec.h>
56 #endif
57 
58 #include <trace/events/xen.h>
59 
60 #include <asm/tlbflush.h>
61 #include <asm/fixmap.h>
62 #include <asm/mmu_context.h>
63 #include <asm/setup.h>
64 #include <asm/paravirt.h>
65 #include <asm/e820/api.h>
66 #include <asm/linkage.h>
67 #include <asm/page.h>
68 #include <asm/init.h>
69 #include <asm/memtype.h>
70 #include <asm/smp.h>
71 #include <asm/tlb.h>
72 
73 #include <asm/xen/hypercall.h>
74 #include <asm/xen/hypervisor.h>
75 
76 #include <xen/xen.h>
77 #include <xen/page.h>
78 #include <xen/interface/xen.h>
79 #include <xen/interface/hvm/hvm_op.h>
80 #include <xen/interface/version.h>
81 #include <xen/interface/memory.h>
82 #include <xen/hvc-console.h>
83 #include <xen/swiotlb-xen.h>
84 
85 #include "multicalls.h"
86 #include "mmu.h"
87 #include "debugfs.h"
88 
89 /*
90  * Prototypes for functions called via PV_CALLEE_SAVE_REGS_THUNK() in order
91  * to avoid warnings with "-Wmissing-prototypes".
92  */
93 pteval_t xen_pte_val(pte_t pte);
94 pgdval_t xen_pgd_val(pgd_t pgd);
95 pmdval_t xen_pmd_val(pmd_t pmd);
96 pudval_t xen_pud_val(pud_t pud);
97 p4dval_t xen_p4d_val(p4d_t p4d);
98 pte_t xen_make_pte(pteval_t pte);
99 pgd_t xen_make_pgd(pgdval_t pgd);
100 pmd_t xen_make_pmd(pmdval_t pmd);
101 pud_t xen_make_pud(pudval_t pud);
102 p4d_t xen_make_p4d(p4dval_t p4d);
103 pte_t xen_make_pte_init(pteval_t pte);
104 
105 #ifdef CONFIG_X86_VSYSCALL_EMULATION
106 /* l3 pud for userspace vsyscall mapping */
107 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
108 #endif
109 
110 /*
111  * Protects atomic reservation decrease/increase against concurrent increases.
112  * Also protects non-atomic updates of current_pages and balloon lists.
113  */
114 static DEFINE_SPINLOCK(xen_reservation_lock);
115 
116 /*
117  * Note about cr3 (pagetable base) values:
118  *
119  * xen_cr3 contains the current logical cr3 value; it contains the
120  * last set cr3.  This may not be the current effective cr3, because
121  * its update may be being lazily deferred.  However, a vcpu looking
122  * at its own cr3 can use this value knowing that it everything will
123  * be self-consistent.
124  *
125  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
126  * hypercall to set the vcpu cr3 is complete (so it may be a little
127  * out of date, but it will never be set early).  If one vcpu is
128  * looking at another vcpu's cr3 value, it should use this variable.
129  */
130 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
131 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
132 
133 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
134 
135 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
136 
137 /*
138  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
139  * redzone above it, so round it up to a PGD boundary.
140  */
141 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
142 
143 void make_lowmem_page_readonly(void *vaddr)
144 {
145 	pte_t *pte, ptev;
146 	unsigned long address = (unsigned long)vaddr;
147 	unsigned int level;
148 
149 	pte = lookup_address(address, &level);
150 	if (pte == NULL)
151 		return;		/* vaddr missing */
152 
153 	ptev = pte_wrprotect(*pte);
154 
155 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
156 		BUG();
157 }
158 
159 void make_lowmem_page_readwrite(void *vaddr)
160 {
161 	pte_t *pte, ptev;
162 	unsigned long address = (unsigned long)vaddr;
163 	unsigned int level;
164 
165 	pte = lookup_address(address, &level);
166 	if (pte == NULL)
167 		return;		/* vaddr missing */
168 
169 	ptev = pte_mkwrite_novma(*pte);
170 
171 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
172 		BUG();
173 }
174 
175 
176 /*
177  * During early boot all page table pages are pinned, but we do not have struct
178  * pages, so return true until struct pages are ready.
179  */
180 static bool xen_page_pinned(void *ptr)
181 {
182 	if (static_branch_likely(&xen_struct_pages_ready)) {
183 		struct page *page = virt_to_page(ptr);
184 
185 		return PagePinned(page);
186 	}
187 	return true;
188 }
189 
190 static void xen_extend_mmu_update(const struct mmu_update *update)
191 {
192 	struct multicall_space mcs;
193 	struct mmu_update *u;
194 
195 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
196 
197 	if (mcs.mc != NULL) {
198 		mcs.mc->args[1]++;
199 	} else {
200 		mcs = __xen_mc_entry(sizeof(*u));
201 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
202 	}
203 
204 	u = mcs.args;
205 	*u = *update;
206 }
207 
208 static void xen_extend_mmuext_op(const struct mmuext_op *op)
209 {
210 	struct multicall_space mcs;
211 	struct mmuext_op *u;
212 
213 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
214 
215 	if (mcs.mc != NULL) {
216 		mcs.mc->args[1]++;
217 	} else {
218 		mcs = __xen_mc_entry(sizeof(*u));
219 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
220 	}
221 
222 	u = mcs.args;
223 	*u = *op;
224 }
225 
226 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
227 {
228 	struct mmu_update u;
229 
230 	preempt_disable();
231 
232 	xen_mc_batch();
233 
234 	/* ptr may be ioremapped for 64-bit pagetable setup */
235 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
236 	u.val = pmd_val_ma(val);
237 	xen_extend_mmu_update(&u);
238 
239 	xen_mc_issue(XEN_LAZY_MMU);
240 
241 	preempt_enable();
242 }
243 
244 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
245 {
246 	trace_xen_mmu_set_pmd(ptr, val);
247 
248 	/* If page is not pinned, we can just update the entry
249 	   directly */
250 	if (!xen_page_pinned(ptr)) {
251 		*ptr = val;
252 		return;
253 	}
254 
255 	xen_set_pmd_hyper(ptr, val);
256 }
257 
258 /*
259  * Associate a virtual page frame with a given physical page frame
260  * and protection flags for that frame.
261  */
262 void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
263 {
264 	if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
265 					 UVMF_INVLPG))
266 		BUG();
267 }
268 
269 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
270 {
271 	struct mmu_update u;
272 
273 	if (xen_get_lazy_mode() != XEN_LAZY_MMU)
274 		return false;
275 
276 	xen_mc_batch();
277 
278 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
279 	u.val = pte_val_ma(pteval);
280 	xen_extend_mmu_update(&u);
281 
282 	xen_mc_issue(XEN_LAZY_MMU);
283 
284 	return true;
285 }
286 
287 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
288 {
289 	if (!xen_batched_set_pte(ptep, pteval)) {
290 		/*
291 		 * Could call native_set_pte() here and trap and
292 		 * emulate the PTE write, but a hypercall is much cheaper.
293 		 */
294 		struct mmu_update u;
295 
296 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
297 		u.val = pte_val_ma(pteval);
298 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
299 	}
300 }
301 
302 static void xen_set_pte(pte_t *ptep, pte_t pteval)
303 {
304 	trace_xen_mmu_set_pte(ptep, pteval);
305 	__xen_set_pte(ptep, pteval);
306 }
307 
308 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
309 				 unsigned long addr, pte_t *ptep)
310 {
311 	/* Just return the pte as-is.  We preserve the bits on commit */
312 	trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
313 	return *ptep;
314 }
315 
316 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
317 				 pte_t *ptep, pte_t pte)
318 {
319 	struct mmu_update u;
320 
321 	trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
322 	xen_mc_batch();
323 
324 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
325 	u.val = pte_val_ma(pte);
326 	xen_extend_mmu_update(&u);
327 
328 	xen_mc_issue(XEN_LAZY_MMU);
329 }
330 
331 /* Assume pteval_t is equivalent to all the other *val_t types. */
332 static pteval_t pte_mfn_to_pfn(pteval_t val)
333 {
334 	if (val & _PAGE_PRESENT) {
335 		unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
336 		unsigned long pfn = mfn_to_pfn(mfn);
337 
338 		pteval_t flags = val & PTE_FLAGS_MASK;
339 		if (unlikely(pfn == ~0))
340 			val = flags & ~_PAGE_PRESENT;
341 		else
342 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
343 	}
344 
345 	return val;
346 }
347 
348 static pteval_t pte_pfn_to_mfn(pteval_t val)
349 {
350 	if (val & _PAGE_PRESENT) {
351 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
352 		pteval_t flags = val & PTE_FLAGS_MASK;
353 		unsigned long mfn;
354 
355 		mfn = __pfn_to_mfn(pfn);
356 
357 		/*
358 		 * If there's no mfn for the pfn, then just create an
359 		 * empty non-present pte.  Unfortunately this loses
360 		 * information about the original pfn, so
361 		 * pte_mfn_to_pfn is asymmetric.
362 		 */
363 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
364 			mfn = 0;
365 			flags = 0;
366 		} else
367 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
368 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
369 	}
370 
371 	return val;
372 }
373 
374 __visible pteval_t xen_pte_val(pte_t pte)
375 {
376 	pteval_t pteval = pte.pte;
377 
378 	return pte_mfn_to_pfn(pteval);
379 }
380 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
381 
382 __visible pgdval_t xen_pgd_val(pgd_t pgd)
383 {
384 	return pte_mfn_to_pfn(pgd.pgd);
385 }
386 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
387 
388 __visible pte_t xen_make_pte(pteval_t pte)
389 {
390 	pte = pte_pfn_to_mfn(pte);
391 
392 	return native_make_pte(pte);
393 }
394 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
395 
396 __visible pgd_t xen_make_pgd(pgdval_t pgd)
397 {
398 	pgd = pte_pfn_to_mfn(pgd);
399 	return native_make_pgd(pgd);
400 }
401 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
402 
403 __visible pmdval_t xen_pmd_val(pmd_t pmd)
404 {
405 	return pte_mfn_to_pfn(pmd.pmd);
406 }
407 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
408 
409 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
410 {
411 	struct mmu_update u;
412 
413 	preempt_disable();
414 
415 	xen_mc_batch();
416 
417 	/* ptr may be ioremapped for 64-bit pagetable setup */
418 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
419 	u.val = pud_val_ma(val);
420 	xen_extend_mmu_update(&u);
421 
422 	xen_mc_issue(XEN_LAZY_MMU);
423 
424 	preempt_enable();
425 }
426 
427 static void xen_set_pud(pud_t *ptr, pud_t val)
428 {
429 	trace_xen_mmu_set_pud(ptr, val);
430 
431 	/* If page is not pinned, we can just update the entry
432 	   directly */
433 	if (!xen_page_pinned(ptr)) {
434 		*ptr = val;
435 		return;
436 	}
437 
438 	xen_set_pud_hyper(ptr, val);
439 }
440 
441 __visible pmd_t xen_make_pmd(pmdval_t pmd)
442 {
443 	pmd = pte_pfn_to_mfn(pmd);
444 	return native_make_pmd(pmd);
445 }
446 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
447 
448 __visible pudval_t xen_pud_val(pud_t pud)
449 {
450 	return pte_mfn_to_pfn(pud.pud);
451 }
452 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
453 
454 __visible pud_t xen_make_pud(pudval_t pud)
455 {
456 	pud = pte_pfn_to_mfn(pud);
457 
458 	return native_make_pud(pud);
459 }
460 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
461 
462 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
463 {
464 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
465 	unsigned offset = pgd - pgd_page;
466 	pgd_t *user_ptr = NULL;
467 
468 	if (offset < pgd_index(USER_LIMIT)) {
469 		struct page *page = virt_to_page(pgd_page);
470 		user_ptr = (pgd_t *)page->private;
471 		if (user_ptr)
472 			user_ptr += offset;
473 	}
474 
475 	return user_ptr;
476 }
477 
478 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
479 {
480 	struct mmu_update u;
481 
482 	u.ptr = virt_to_machine(ptr).maddr;
483 	u.val = p4d_val_ma(val);
484 	xen_extend_mmu_update(&u);
485 }
486 
487 /*
488  * Raw hypercall-based set_p4d, intended for in early boot before
489  * there's a page structure.  This implies:
490  *  1. The only existing pagetable is the kernel's
491  *  2. It is always pinned
492  *  3. It has no user pagetable attached to it
493  */
494 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
495 {
496 	preempt_disable();
497 
498 	xen_mc_batch();
499 
500 	__xen_set_p4d_hyper(ptr, val);
501 
502 	xen_mc_issue(XEN_LAZY_MMU);
503 
504 	preempt_enable();
505 }
506 
507 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
508 {
509 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
510 	pgd_t pgd_val;
511 
512 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
513 
514 	/* If page is not pinned, we can just update the entry
515 	   directly */
516 	if (!xen_page_pinned(ptr)) {
517 		*ptr = val;
518 		if (user_ptr) {
519 			WARN_ON(xen_page_pinned(user_ptr));
520 			pgd_val.pgd = p4d_val_ma(val);
521 			*user_ptr = pgd_val;
522 		}
523 		return;
524 	}
525 
526 	/* If it's pinned, then we can at least batch the kernel and
527 	   user updates together. */
528 	xen_mc_batch();
529 
530 	__xen_set_p4d_hyper(ptr, val);
531 	if (user_ptr)
532 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
533 
534 	xen_mc_issue(XEN_LAZY_MMU);
535 }
536 
537 #if CONFIG_PGTABLE_LEVELS >= 5
538 __visible p4dval_t xen_p4d_val(p4d_t p4d)
539 {
540 	return pte_mfn_to_pfn(p4d.p4d);
541 }
542 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
543 
544 __visible p4d_t xen_make_p4d(p4dval_t p4d)
545 {
546 	p4d = pte_pfn_to_mfn(p4d);
547 
548 	return native_make_p4d(p4d);
549 }
550 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
551 #endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
552 
553 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
554 			 void (*func)(struct mm_struct *mm, struct page *,
555 				      enum pt_level),
556 			 bool last, unsigned long limit)
557 {
558 	int i, nr;
559 
560 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
561 	for (i = 0; i < nr; i++) {
562 		if (!pmd_none(pmd[i]))
563 			(*func)(mm, pmd_page(pmd[i]), PT_PTE);
564 	}
565 }
566 
567 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
568 			 void (*func)(struct mm_struct *mm, struct page *,
569 				      enum pt_level),
570 			 bool last, unsigned long limit)
571 {
572 	int i, nr;
573 
574 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
575 	for (i = 0; i < nr; i++) {
576 		pmd_t *pmd;
577 
578 		if (pud_none(pud[i]))
579 			continue;
580 
581 		pmd = pmd_offset(&pud[i], 0);
582 		if (PTRS_PER_PMD > 1)
583 			(*func)(mm, virt_to_page(pmd), PT_PMD);
584 		xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
585 	}
586 }
587 
588 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
589 			 void (*func)(struct mm_struct *mm, struct page *,
590 				      enum pt_level),
591 			 bool last, unsigned long limit)
592 {
593 	pud_t *pud;
594 
595 
596 	if (p4d_none(*p4d))
597 		return;
598 
599 	pud = pud_offset(p4d, 0);
600 	if (PTRS_PER_PUD > 1)
601 		(*func)(mm, virt_to_page(pud), PT_PUD);
602 	xen_pud_walk(mm, pud, func, last, limit);
603 }
604 
605 /*
606  * (Yet another) pagetable walker.  This one is intended for pinning a
607  * pagetable.  This means that it walks a pagetable and calls the
608  * callback function on each page it finds making up the page table,
609  * at every level.  It walks the entire pagetable, but it only bothers
610  * pinning pte pages which are below limit.  In the normal case this
611  * will be STACK_TOP_MAX, but at boot we need to pin up to
612  * FIXADDR_TOP.
613  *
614  * We must skip the Xen hole in the middle of the address space, just after
615  * the big x86-64 virtual hole.
616  */
617 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
618 			   void (*func)(struct mm_struct *mm, struct page *,
619 					enum pt_level),
620 			   unsigned long limit)
621 {
622 	int i, nr;
623 	unsigned hole_low = 0, hole_high = 0;
624 
625 	/* The limit is the last byte to be touched */
626 	limit--;
627 	BUG_ON(limit >= FIXADDR_TOP);
628 
629 	/*
630 	 * 64-bit has a great big hole in the middle of the address
631 	 * space, which contains the Xen mappings.
632 	 */
633 	hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
634 	hole_high = pgd_index(GUARD_HOLE_END_ADDR);
635 
636 	nr = pgd_index(limit) + 1;
637 	for (i = 0; i < nr; i++) {
638 		p4d_t *p4d;
639 
640 		if (i >= hole_low && i < hole_high)
641 			continue;
642 
643 		if (pgd_none(pgd[i]))
644 			continue;
645 
646 		p4d = p4d_offset(&pgd[i], 0);
647 		xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
648 	}
649 
650 	/* Do the top level last, so that the callbacks can use it as
651 	   a cue to do final things like tlb flushes. */
652 	(*func)(mm, virt_to_page(pgd), PT_PGD);
653 }
654 
655 static void xen_pgd_walk(struct mm_struct *mm,
656 			 void (*func)(struct mm_struct *mm, struct page *,
657 				      enum pt_level),
658 			 unsigned long limit)
659 {
660 	__xen_pgd_walk(mm, mm->pgd, func, limit);
661 }
662 
663 /* If we're using split pte locks, then take the page's lock and
664    return a pointer to it.  Otherwise return NULL. */
665 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
666 {
667 	spinlock_t *ptl = NULL;
668 
669 #if USE_SPLIT_PTE_PTLOCKS
670 	ptl = ptlock_ptr(page_ptdesc(page));
671 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
672 #endif
673 
674 	return ptl;
675 }
676 
677 static void xen_pte_unlock(void *v)
678 {
679 	spinlock_t *ptl = v;
680 	spin_unlock(ptl);
681 }
682 
683 static void xen_do_pin(unsigned level, unsigned long pfn)
684 {
685 	struct mmuext_op op;
686 
687 	op.cmd = level;
688 	op.arg1.mfn = pfn_to_mfn(pfn);
689 
690 	xen_extend_mmuext_op(&op);
691 }
692 
693 static void xen_pin_page(struct mm_struct *mm, struct page *page,
694 			 enum pt_level level)
695 {
696 	unsigned pgfl = TestSetPagePinned(page);
697 
698 	if (!pgfl) {
699 		void *pt = lowmem_page_address(page);
700 		unsigned long pfn = page_to_pfn(page);
701 		struct multicall_space mcs = __xen_mc_entry(0);
702 		spinlock_t *ptl;
703 
704 		/*
705 		 * We need to hold the pagetable lock between the time
706 		 * we make the pagetable RO and when we actually pin
707 		 * it.  If we don't, then other users may come in and
708 		 * attempt to update the pagetable by writing it,
709 		 * which will fail because the memory is RO but not
710 		 * pinned, so Xen won't do the trap'n'emulate.
711 		 *
712 		 * If we're using split pte locks, we can't hold the
713 		 * entire pagetable's worth of locks during the
714 		 * traverse, because we may wrap the preempt count (8
715 		 * bits).  The solution is to mark RO and pin each PTE
716 		 * page while holding the lock.  This means the number
717 		 * of locks we end up holding is never more than a
718 		 * batch size (~32 entries, at present).
719 		 *
720 		 * If we're not using split pte locks, we needn't pin
721 		 * the PTE pages independently, because we're
722 		 * protected by the overall pagetable lock.
723 		 */
724 		ptl = NULL;
725 		if (level == PT_PTE)
726 			ptl = xen_pte_lock(page, mm);
727 
728 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
729 					pfn_pte(pfn, PAGE_KERNEL_RO),
730 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
731 
732 		if (ptl) {
733 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
734 
735 			/* Queue a deferred unlock for when this batch
736 			   is completed. */
737 			xen_mc_callback(xen_pte_unlock, ptl);
738 		}
739 	}
740 }
741 
742 /* This is called just after a mm has been created, but it has not
743    been used yet.  We need to make sure that its pagetable is all
744    read-only, and can be pinned. */
745 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
746 {
747 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
748 
749 	trace_xen_mmu_pgd_pin(mm, pgd);
750 
751 	xen_mc_batch();
752 
753 	__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
754 
755 	xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
756 
757 	if (user_pgd) {
758 		xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
759 		xen_do_pin(MMUEXT_PIN_L4_TABLE,
760 			   PFN_DOWN(__pa(user_pgd)));
761 	}
762 
763 	xen_mc_issue(0);
764 }
765 
766 static void xen_pgd_pin(struct mm_struct *mm)
767 {
768 	__xen_pgd_pin(mm, mm->pgd);
769 }
770 
771 /*
772  * On save, we need to pin all pagetables to make sure they get their
773  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
774  * them (unpinned pgds are not currently in use, probably because the
775  * process is under construction or destruction).
776  *
777  * Expected to be called in stop_machine() ("equivalent to taking
778  * every spinlock in the system"), so the locking doesn't really
779  * matter all that much.
780  */
781 void xen_mm_pin_all(void)
782 {
783 	struct page *page;
784 
785 	spin_lock(&pgd_lock);
786 
787 	list_for_each_entry(page, &pgd_list, lru) {
788 		if (!PagePinned(page)) {
789 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
790 			SetPageSavePinned(page);
791 		}
792 	}
793 
794 	spin_unlock(&pgd_lock);
795 }
796 
797 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
798 				   enum pt_level level)
799 {
800 	SetPagePinned(page);
801 }
802 
803 /*
804  * The init_mm pagetable is really pinned as soon as its created, but
805  * that's before we have page structures to store the bits.  So do all
806  * the book-keeping now once struct pages for allocated pages are
807  * initialized. This happens only after memblock_free_all() is called.
808  */
809 static void __init xen_after_bootmem(void)
810 {
811 	static_branch_enable(&xen_struct_pages_ready);
812 #ifdef CONFIG_X86_VSYSCALL_EMULATION
813 	SetPagePinned(virt_to_page(level3_user_vsyscall));
814 #endif
815 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
816 }
817 
818 static void xen_unpin_page(struct mm_struct *mm, struct page *page,
819 			   enum pt_level level)
820 {
821 	unsigned pgfl = TestClearPagePinned(page);
822 
823 	if (pgfl) {
824 		void *pt = lowmem_page_address(page);
825 		unsigned long pfn = page_to_pfn(page);
826 		spinlock_t *ptl = NULL;
827 		struct multicall_space mcs;
828 
829 		/*
830 		 * Do the converse to pin_page.  If we're using split
831 		 * pte locks, we must be holding the lock for while
832 		 * the pte page is unpinned but still RO to prevent
833 		 * concurrent updates from seeing it in this
834 		 * partially-pinned state.
835 		 */
836 		if (level == PT_PTE) {
837 			ptl = xen_pte_lock(page, mm);
838 
839 			if (ptl)
840 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
841 		}
842 
843 		mcs = __xen_mc_entry(0);
844 
845 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
846 					pfn_pte(pfn, PAGE_KERNEL),
847 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
848 
849 		if (ptl) {
850 			/* unlock when batch completed */
851 			xen_mc_callback(xen_pte_unlock, ptl);
852 		}
853 	}
854 }
855 
856 /* Release a pagetables pages back as normal RW */
857 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
858 {
859 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
860 
861 	trace_xen_mmu_pgd_unpin(mm, pgd);
862 
863 	xen_mc_batch();
864 
865 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
866 
867 	if (user_pgd) {
868 		xen_do_pin(MMUEXT_UNPIN_TABLE,
869 			   PFN_DOWN(__pa(user_pgd)));
870 		xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
871 	}
872 
873 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
874 
875 	xen_mc_issue(0);
876 }
877 
878 static void xen_pgd_unpin(struct mm_struct *mm)
879 {
880 	__xen_pgd_unpin(mm, mm->pgd);
881 }
882 
883 /*
884  * On resume, undo any pinning done at save, so that the rest of the
885  * kernel doesn't see any unexpected pinned pagetables.
886  */
887 void xen_mm_unpin_all(void)
888 {
889 	struct page *page;
890 
891 	spin_lock(&pgd_lock);
892 
893 	list_for_each_entry(page, &pgd_list, lru) {
894 		if (PageSavePinned(page)) {
895 			BUG_ON(!PagePinned(page));
896 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
897 			ClearPageSavePinned(page);
898 		}
899 	}
900 
901 	spin_unlock(&pgd_lock);
902 }
903 
904 static void xen_enter_mmap(struct mm_struct *mm)
905 {
906 	spin_lock(&mm->page_table_lock);
907 	xen_pgd_pin(mm);
908 	spin_unlock(&mm->page_table_lock);
909 }
910 
911 static void drop_mm_ref_this_cpu(void *info)
912 {
913 	struct mm_struct *mm = info;
914 
915 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
916 		leave_mm();
917 
918 	/*
919 	 * If this cpu still has a stale cr3 reference, then make sure
920 	 * it has been flushed.
921 	 */
922 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
923 		xen_mc_flush();
924 }
925 
926 #ifdef CONFIG_SMP
927 /*
928  * Another cpu may still have their %cr3 pointing at the pagetable, so
929  * we need to repoint it somewhere else before we can unpin it.
930  */
931 static void xen_drop_mm_ref(struct mm_struct *mm)
932 {
933 	cpumask_var_t mask;
934 	unsigned cpu;
935 
936 	drop_mm_ref_this_cpu(mm);
937 
938 	/* Get the "official" set of cpus referring to our pagetable. */
939 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
940 		for_each_online_cpu(cpu) {
941 			if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
942 				continue;
943 			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
944 		}
945 		return;
946 	}
947 
948 	/*
949 	 * It's possible that a vcpu may have a stale reference to our
950 	 * cr3, because its in lazy mode, and it hasn't yet flushed
951 	 * its set of pending hypercalls yet.  In this case, we can
952 	 * look at its actual current cr3 value, and force it to flush
953 	 * if needed.
954 	 */
955 	cpumask_clear(mask);
956 	for_each_online_cpu(cpu) {
957 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
958 			cpumask_set_cpu(cpu, mask);
959 	}
960 
961 	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
962 	free_cpumask_var(mask);
963 }
964 #else
965 static void xen_drop_mm_ref(struct mm_struct *mm)
966 {
967 	drop_mm_ref_this_cpu(mm);
968 }
969 #endif
970 
971 /*
972  * While a process runs, Xen pins its pagetables, which means that the
973  * hypervisor forces it to be read-only, and it controls all updates
974  * to it.  This means that all pagetable updates have to go via the
975  * hypervisor, which is moderately expensive.
976  *
977  * Since we're pulling the pagetable down, we switch to use init_mm,
978  * unpin old process pagetable and mark it all read-write, which
979  * allows further operations on it to be simple memory accesses.
980  *
981  * The only subtle point is that another CPU may be still using the
982  * pagetable because of lazy tlb flushing.  This means we need need to
983  * switch all CPUs off this pagetable before we can unpin it.
984  */
985 static void xen_exit_mmap(struct mm_struct *mm)
986 {
987 	get_cpu();		/* make sure we don't move around */
988 	xen_drop_mm_ref(mm);
989 	put_cpu();
990 
991 	spin_lock(&mm->page_table_lock);
992 
993 	/* pgd may not be pinned in the error exit path of execve */
994 	if (xen_page_pinned(mm->pgd))
995 		xen_pgd_unpin(mm);
996 
997 	spin_unlock(&mm->page_table_lock);
998 }
999 
1000 static void xen_post_allocator_init(void);
1001 
1002 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1003 {
1004 	struct mmuext_op op;
1005 
1006 	op.cmd = cmd;
1007 	op.arg1.mfn = pfn_to_mfn(pfn);
1008 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1009 		BUG();
1010 }
1011 
1012 static void __init xen_cleanhighmap(unsigned long vaddr,
1013 				    unsigned long vaddr_end)
1014 {
1015 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1016 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1017 
1018 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1019 	 * We include the PMD passed in on _both_ boundaries. */
1020 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1021 			pmd++, vaddr += PMD_SIZE) {
1022 		if (pmd_none(*pmd))
1023 			continue;
1024 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1025 			set_pmd(pmd, __pmd(0));
1026 	}
1027 	/* In case we did something silly, we should crash in this function
1028 	 * instead of somewhere later and be confusing. */
1029 	xen_mc_flush();
1030 }
1031 
1032 /*
1033  * Make a page range writeable and free it.
1034  */
1035 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1036 {
1037 	void *vaddr = __va(paddr);
1038 	void *vaddr_end = vaddr + size;
1039 
1040 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1041 		make_lowmem_page_readwrite(vaddr);
1042 
1043 	memblock_phys_free(paddr, size);
1044 }
1045 
1046 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1047 {
1048 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1049 
1050 	if (unpin)
1051 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1052 	ClearPagePinned(virt_to_page(__va(pa)));
1053 	xen_free_ro_pages(pa, PAGE_SIZE);
1054 }
1055 
1056 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1057 {
1058 	unsigned long pa;
1059 	pte_t *pte_tbl;
1060 	int i;
1061 
1062 	if (pmd_leaf(*pmd)) {
1063 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1064 		xen_free_ro_pages(pa, PMD_SIZE);
1065 		return;
1066 	}
1067 
1068 	pte_tbl = pte_offset_kernel(pmd, 0);
1069 	for (i = 0; i < PTRS_PER_PTE; i++) {
1070 		if (pte_none(pte_tbl[i]))
1071 			continue;
1072 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1073 		xen_free_ro_pages(pa, PAGE_SIZE);
1074 	}
1075 	set_pmd(pmd, __pmd(0));
1076 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1077 }
1078 
1079 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1080 {
1081 	unsigned long pa;
1082 	pmd_t *pmd_tbl;
1083 	int i;
1084 
1085 	if (pud_leaf(*pud)) {
1086 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1087 		xen_free_ro_pages(pa, PUD_SIZE);
1088 		return;
1089 	}
1090 
1091 	pmd_tbl = pmd_offset(pud, 0);
1092 	for (i = 0; i < PTRS_PER_PMD; i++) {
1093 		if (pmd_none(pmd_tbl[i]))
1094 			continue;
1095 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1096 	}
1097 	set_pud(pud, __pud(0));
1098 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1099 }
1100 
1101 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1102 {
1103 	unsigned long pa;
1104 	pud_t *pud_tbl;
1105 	int i;
1106 
1107 	if (p4d_leaf(*p4d)) {
1108 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1109 		xen_free_ro_pages(pa, P4D_SIZE);
1110 		return;
1111 	}
1112 
1113 	pud_tbl = pud_offset(p4d, 0);
1114 	for (i = 0; i < PTRS_PER_PUD; i++) {
1115 		if (pud_none(pud_tbl[i]))
1116 			continue;
1117 		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1118 	}
1119 	set_p4d(p4d, __p4d(0));
1120 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1121 }
1122 
1123 /*
1124  * Since it is well isolated we can (and since it is perhaps large we should)
1125  * also free the page tables mapping the initial P->M table.
1126  */
1127 static void __init xen_cleanmfnmap(unsigned long vaddr)
1128 {
1129 	pgd_t *pgd;
1130 	p4d_t *p4d;
1131 	bool unpin;
1132 
1133 	unpin = (vaddr == 2 * PGDIR_SIZE);
1134 	vaddr &= PMD_MASK;
1135 	pgd = pgd_offset_k(vaddr);
1136 	p4d = p4d_offset(pgd, 0);
1137 	if (!p4d_none(*p4d))
1138 		xen_cleanmfnmap_p4d(p4d, unpin);
1139 }
1140 
1141 static void __init xen_pagetable_p2m_free(void)
1142 {
1143 	unsigned long size;
1144 	unsigned long addr;
1145 
1146 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1147 
1148 	/* No memory or already called. */
1149 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1150 		return;
1151 
1152 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1153 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1154 
1155 	addr = xen_start_info->mfn_list;
1156 	/*
1157 	 * We could be in __ka space.
1158 	 * We roundup to the PMD, which means that if anybody at this stage is
1159 	 * using the __ka address of xen_start_info or
1160 	 * xen_start_info->shared_info they are in going to crash. Fortunately
1161 	 * we have already revectored in xen_setup_kernel_pagetable.
1162 	 */
1163 	size = roundup(size, PMD_SIZE);
1164 
1165 	if (addr >= __START_KERNEL_map) {
1166 		xen_cleanhighmap(addr, addr + size);
1167 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1168 				  sizeof(unsigned long));
1169 		memblock_free((void *)addr, size);
1170 	} else {
1171 		xen_cleanmfnmap(addr);
1172 	}
1173 }
1174 
1175 static void __init xen_pagetable_cleanhighmap(void)
1176 {
1177 	unsigned long size;
1178 	unsigned long addr;
1179 
1180 	/* At this stage, cleanup_highmap has already cleaned __ka space
1181 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1182 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1183 	 * tables - do note that they are accessible at this stage via __va.
1184 	 * As Xen is aligning the memory end to a 4MB boundary, for good
1185 	 * measure we also round up to PMD_SIZE * 2 - which means that if
1186 	 * anybody is using __ka address to the initial boot-stack - and try
1187 	 * to use it - they are going to crash. The xen_start_info has been
1188 	 * taken care of already in xen_setup_kernel_pagetable. */
1189 	addr = xen_start_info->pt_base;
1190 	size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1191 
1192 	xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1193 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1194 }
1195 
1196 static void __init xen_pagetable_p2m_setup(void)
1197 {
1198 	xen_vmalloc_p2m_tree();
1199 
1200 	xen_pagetable_p2m_free();
1201 
1202 	xen_pagetable_cleanhighmap();
1203 
1204 	/* And revector! Bye bye old array */
1205 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1206 }
1207 
1208 static void __init xen_pagetable_init(void)
1209 {
1210 	/*
1211 	 * The majority of further PTE writes is to pagetables already
1212 	 * announced as such to Xen. Hence it is more efficient to use
1213 	 * hypercalls for these updates.
1214 	 */
1215 	pv_ops.mmu.set_pte = __xen_set_pte;
1216 
1217 	paging_init();
1218 	xen_post_allocator_init();
1219 
1220 	xen_pagetable_p2m_setup();
1221 
1222 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1223 	xen_build_mfn_list_list();
1224 
1225 	/* Remap memory freed due to conflicts with E820 map */
1226 	xen_remap_memory();
1227 	xen_setup_mfn_list_list();
1228 }
1229 
1230 static noinstr void xen_write_cr2(unsigned long cr2)
1231 {
1232 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1233 }
1234 
1235 static noinline void xen_flush_tlb(void)
1236 {
1237 	struct mmuext_op *op;
1238 	struct multicall_space mcs;
1239 
1240 	preempt_disable();
1241 
1242 	mcs = xen_mc_entry(sizeof(*op));
1243 
1244 	op = mcs.args;
1245 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1246 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1247 
1248 	xen_mc_issue(XEN_LAZY_MMU);
1249 
1250 	preempt_enable();
1251 }
1252 
1253 static void xen_flush_tlb_one_user(unsigned long addr)
1254 {
1255 	struct mmuext_op *op;
1256 	struct multicall_space mcs;
1257 
1258 	trace_xen_mmu_flush_tlb_one_user(addr);
1259 
1260 	preempt_disable();
1261 
1262 	mcs = xen_mc_entry(sizeof(*op));
1263 	op = mcs.args;
1264 	op->cmd = MMUEXT_INVLPG_LOCAL;
1265 	op->arg1.linear_addr = addr & PAGE_MASK;
1266 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1267 
1268 	xen_mc_issue(XEN_LAZY_MMU);
1269 
1270 	preempt_enable();
1271 }
1272 
1273 static void xen_flush_tlb_multi(const struct cpumask *cpus,
1274 				const struct flush_tlb_info *info)
1275 {
1276 	struct {
1277 		struct mmuext_op op;
1278 		DECLARE_BITMAP(mask, NR_CPUS);
1279 	} *args;
1280 	struct multicall_space mcs;
1281 	const size_t mc_entry_size = sizeof(args->op) +
1282 		sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1283 
1284 	trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
1285 
1286 	if (cpumask_empty(cpus))
1287 		return;		/* nothing to do */
1288 
1289 	mcs = xen_mc_entry(mc_entry_size);
1290 	args = mcs.args;
1291 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1292 
1293 	/* Remove any offline CPUs */
1294 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1295 
1296 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1297 	if (info->end != TLB_FLUSH_ALL &&
1298 	    (info->end - info->start) <= PAGE_SIZE) {
1299 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1300 		args->op.arg1.linear_addr = info->start;
1301 	}
1302 
1303 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1304 
1305 	xen_mc_issue(XEN_LAZY_MMU);
1306 }
1307 
1308 static unsigned long xen_read_cr3(void)
1309 {
1310 	return this_cpu_read(xen_cr3);
1311 }
1312 
1313 static void set_current_cr3(void *v)
1314 {
1315 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1316 }
1317 
1318 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1319 {
1320 	struct mmuext_op op;
1321 	unsigned long mfn;
1322 
1323 	trace_xen_mmu_write_cr3(kernel, cr3);
1324 
1325 	if (cr3)
1326 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1327 	else
1328 		mfn = 0;
1329 
1330 	WARN_ON(mfn == 0 && kernel);
1331 
1332 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1333 	op.arg1.mfn = mfn;
1334 
1335 	xen_extend_mmuext_op(&op);
1336 
1337 	if (kernel) {
1338 		this_cpu_write(xen_cr3, cr3);
1339 
1340 		/* Update xen_current_cr3 once the batch has actually
1341 		   been submitted. */
1342 		xen_mc_callback(set_current_cr3, (void *)cr3);
1343 	}
1344 }
1345 static void xen_write_cr3(unsigned long cr3)
1346 {
1347 	pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1348 
1349 	BUG_ON(preemptible());
1350 
1351 	xen_mc_batch();  /* disables interrupts */
1352 
1353 	/* Update while interrupts are disabled, so its atomic with
1354 	   respect to ipis */
1355 	this_cpu_write(xen_cr3, cr3);
1356 
1357 	__xen_write_cr3(true, cr3);
1358 
1359 	if (user_pgd)
1360 		__xen_write_cr3(false, __pa(user_pgd));
1361 	else
1362 		__xen_write_cr3(false, 0);
1363 
1364 	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1365 }
1366 
1367 /*
1368  * At the start of the day - when Xen launches a guest, it has already
1369  * built pagetables for the guest. We diligently look over them
1370  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1371  * init_top_pgt and its friends. Then when we are happy we load
1372  * the new init_top_pgt - and continue on.
1373  *
1374  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1375  * up the rest of the pagetables. When it has completed it loads the cr3.
1376  * N.B. that baremetal would start at 'start_kernel' (and the early
1377  * #PF handler would create bootstrap pagetables) - so we are running
1378  * with the same assumptions as what to do when write_cr3 is executed
1379  * at this point.
1380  *
1381  * Since there are no user-page tables at all, we have two variants
1382  * of xen_write_cr3 - the early bootup (this one), and the late one
1383  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1384  * the Linux kernel and user-space are both in ring 3 while the
1385  * hypervisor is in ring 0.
1386  */
1387 static void __init xen_write_cr3_init(unsigned long cr3)
1388 {
1389 	BUG_ON(preemptible());
1390 
1391 	xen_mc_batch();  /* disables interrupts */
1392 
1393 	/* Update while interrupts are disabled, so its atomic with
1394 	   respect to ipis */
1395 	this_cpu_write(xen_cr3, cr3);
1396 
1397 	__xen_write_cr3(true, cr3);
1398 
1399 	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1400 }
1401 
1402 static int xen_pgd_alloc(struct mm_struct *mm)
1403 {
1404 	pgd_t *pgd = mm->pgd;
1405 	struct page *page = virt_to_page(pgd);
1406 	pgd_t *user_pgd;
1407 	int ret = -ENOMEM;
1408 
1409 	BUG_ON(PagePinned(virt_to_page(pgd)));
1410 	BUG_ON(page->private != 0);
1411 
1412 	user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1413 	page->private = (unsigned long)user_pgd;
1414 
1415 	if (user_pgd != NULL) {
1416 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1417 		user_pgd[pgd_index(VSYSCALL_ADDR)] =
1418 			__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1419 #endif
1420 		ret = 0;
1421 	}
1422 
1423 	BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1424 
1425 	return ret;
1426 }
1427 
1428 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1429 {
1430 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1431 
1432 	if (user_pgd)
1433 		free_page((unsigned long)user_pgd);
1434 }
1435 
1436 /*
1437  * Init-time set_pte while constructing initial pagetables, which
1438  * doesn't allow RO page table pages to be remapped RW.
1439  *
1440  * If there is no MFN for this PFN then this page is initially
1441  * ballooned out so clear the PTE (as in decrease_reservation() in
1442  * drivers/xen/balloon.c).
1443  *
1444  * Many of these PTE updates are done on unpinned and writable pages
1445  * and doing a hypercall for these is unnecessary and expensive.  At
1446  * this point it is rarely possible to tell if a page is pinned, so
1447  * mostly write the PTE directly and rely on Xen trapping and
1448  * emulating any updates as necessary.
1449  */
1450 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1451 {
1452 	if (unlikely(is_early_ioremap_ptep(ptep)))
1453 		__xen_set_pte(ptep, pte);
1454 	else
1455 		native_set_pte(ptep, pte);
1456 }
1457 
1458 __visible pte_t xen_make_pte_init(pteval_t pte)
1459 {
1460 	unsigned long pfn;
1461 
1462 	/*
1463 	 * Pages belonging to the initial p2m list mapped outside the default
1464 	 * address range must be mapped read-only. This region contains the
1465 	 * page tables for mapping the p2m list, too, and page tables MUST be
1466 	 * mapped read-only.
1467 	 */
1468 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1469 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1470 	    pfn >= xen_start_info->first_p2m_pfn &&
1471 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1472 		pte &= ~_PAGE_RW;
1473 
1474 	pte = pte_pfn_to_mfn(pte);
1475 	return native_make_pte(pte);
1476 }
1477 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1478 
1479 /* Early in boot, while setting up the initial pagetable, assume
1480    everything is pinned. */
1481 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1482 {
1483 #ifdef CONFIG_FLATMEM
1484 	BUG_ON(mem_map);	/* should only be used early */
1485 #endif
1486 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1487 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1488 }
1489 
1490 /* Used for pmd and pud */
1491 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1492 {
1493 #ifdef CONFIG_FLATMEM
1494 	BUG_ON(mem_map);	/* should only be used early */
1495 #endif
1496 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1497 }
1498 
1499 /* Early release_pte assumes that all pts are pinned, since there's
1500    only init_mm and anything attached to that is pinned. */
1501 static void __init xen_release_pte_init(unsigned long pfn)
1502 {
1503 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1504 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1505 }
1506 
1507 static void __init xen_release_pmd_init(unsigned long pfn)
1508 {
1509 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1510 }
1511 
1512 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1513 {
1514 	struct multicall_space mcs;
1515 	struct mmuext_op *op;
1516 
1517 	mcs = __xen_mc_entry(sizeof(*op));
1518 	op = mcs.args;
1519 	op->cmd = cmd;
1520 	op->arg1.mfn = pfn_to_mfn(pfn);
1521 
1522 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1523 }
1524 
1525 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1526 {
1527 	struct multicall_space mcs;
1528 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1529 
1530 	mcs = __xen_mc_entry(0);
1531 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1532 				pfn_pte(pfn, prot), 0);
1533 }
1534 
1535 /* This needs to make sure the new pte page is pinned iff its being
1536    attached to a pinned pagetable. */
1537 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1538 				    unsigned level)
1539 {
1540 	bool pinned = xen_page_pinned(mm->pgd);
1541 
1542 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1543 
1544 	if (pinned) {
1545 		struct page *page = pfn_to_page(pfn);
1546 
1547 		pinned = false;
1548 		if (static_branch_likely(&xen_struct_pages_ready)) {
1549 			pinned = PagePinned(page);
1550 			SetPagePinned(page);
1551 		}
1552 
1553 		xen_mc_batch();
1554 
1555 		__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1556 
1557 		if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned)
1558 			__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1559 
1560 		xen_mc_issue(XEN_LAZY_MMU);
1561 	}
1562 }
1563 
1564 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1565 {
1566 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1567 }
1568 
1569 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1570 {
1571 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1572 }
1573 
1574 /* This should never happen until we're OK to use struct page */
1575 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1576 {
1577 	struct page *page = pfn_to_page(pfn);
1578 	bool pinned = PagePinned(page);
1579 
1580 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1581 
1582 	if (pinned) {
1583 		xen_mc_batch();
1584 
1585 		if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1586 			__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1587 
1588 		__set_pfn_prot(pfn, PAGE_KERNEL);
1589 
1590 		xen_mc_issue(XEN_LAZY_MMU);
1591 
1592 		ClearPagePinned(page);
1593 	}
1594 }
1595 
1596 static void xen_release_pte(unsigned long pfn)
1597 {
1598 	xen_release_ptpage(pfn, PT_PTE);
1599 }
1600 
1601 static void xen_release_pmd(unsigned long pfn)
1602 {
1603 	xen_release_ptpage(pfn, PT_PMD);
1604 }
1605 
1606 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1607 {
1608 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1609 }
1610 
1611 static void xen_release_pud(unsigned long pfn)
1612 {
1613 	xen_release_ptpage(pfn, PT_PUD);
1614 }
1615 
1616 /*
1617  * Like __va(), but returns address in the kernel mapping (which is
1618  * all we have until the physical memory mapping has been set up.
1619  */
1620 static void * __init __ka(phys_addr_t paddr)
1621 {
1622 	return (void *)(paddr + __START_KERNEL_map);
1623 }
1624 
1625 /* Convert a machine address to physical address */
1626 static unsigned long __init m2p(phys_addr_t maddr)
1627 {
1628 	phys_addr_t paddr;
1629 
1630 	maddr &= XEN_PTE_MFN_MASK;
1631 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1632 
1633 	return paddr;
1634 }
1635 
1636 /* Convert a machine address to kernel virtual */
1637 static void * __init m2v(phys_addr_t maddr)
1638 {
1639 	return __ka(m2p(maddr));
1640 }
1641 
1642 /* Set the page permissions on an identity-mapped pages */
1643 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1644 				       unsigned long flags)
1645 {
1646 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1647 	pte_t pte = pfn_pte(pfn, prot);
1648 
1649 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1650 		BUG();
1651 }
1652 static void __init set_page_prot(void *addr, pgprot_t prot)
1653 {
1654 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1655 }
1656 
1657 void __init xen_setup_machphys_mapping(void)
1658 {
1659 	struct xen_machphys_mapping mapping;
1660 
1661 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1662 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1663 		machine_to_phys_nr = mapping.max_mfn + 1;
1664 	} else {
1665 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1666 	}
1667 }
1668 
1669 static void __init convert_pfn_mfn(void *v)
1670 {
1671 	pte_t *pte = v;
1672 	int i;
1673 
1674 	/* All levels are converted the same way, so just treat them
1675 	   as ptes. */
1676 	for (i = 0; i < PTRS_PER_PTE; i++)
1677 		pte[i] = xen_make_pte(pte[i].pte);
1678 }
1679 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1680 				 unsigned long addr)
1681 {
1682 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1683 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1684 		clear_page((void *)addr);
1685 		(*pt_base)++;
1686 	}
1687 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1688 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1689 		clear_page((void *)addr);
1690 		(*pt_end)--;
1691 	}
1692 }
1693 /*
1694  * Set up the initial kernel pagetable.
1695  *
1696  * We can construct this by grafting the Xen provided pagetable into
1697  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1698  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1699  * kernel has a physical mapping to start with - but that's enough to
1700  * get __va working.  We need to fill in the rest of the physical
1701  * mapping once some sort of allocator has been set up.
1702  */
1703 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1704 {
1705 	pud_t *l3;
1706 	pmd_t *l2;
1707 	unsigned long addr[3];
1708 	unsigned long pt_base, pt_end;
1709 	unsigned i;
1710 
1711 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1712 	 * mappings. Considering that on Xen after the kernel mappings we
1713 	 * have the mappings of some pages that don't exist in pfn space, we
1714 	 * set max_pfn_mapped to the last real pfn mapped. */
1715 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1716 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1717 	else
1718 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1719 
1720 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1721 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1722 
1723 	/* Zap identity mapping */
1724 	init_top_pgt[0] = __pgd(0);
1725 
1726 	/* Pre-constructed entries are in pfn, so convert to mfn */
1727 	/* L4[273] -> level3_ident_pgt  */
1728 	/* L4[511] -> level3_kernel_pgt */
1729 	convert_pfn_mfn(init_top_pgt);
1730 
1731 	/* L3_i[0] -> level2_ident_pgt */
1732 	convert_pfn_mfn(level3_ident_pgt);
1733 	/* L3_k[510] -> level2_kernel_pgt */
1734 	/* L3_k[511] -> level2_fixmap_pgt */
1735 	convert_pfn_mfn(level3_kernel_pgt);
1736 
1737 	/* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1738 	convert_pfn_mfn(level2_fixmap_pgt);
1739 
1740 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1741 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1742 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1743 
1744 	addr[0] = (unsigned long)pgd;
1745 	addr[1] = (unsigned long)l3;
1746 	addr[2] = (unsigned long)l2;
1747 	/* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1748 	 * Both L4[273][0] and L4[511][510] have entries that point to the same
1749 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1750 	 * it will be also modified in the __ka space! (But if you just
1751 	 * modify the PMD table to point to other PTE's or none, then you
1752 	 * are OK - which is what cleanup_highmap does) */
1753 	copy_page(level2_ident_pgt, l2);
1754 	/* Graft it onto L4[511][510] */
1755 	copy_page(level2_kernel_pgt, l2);
1756 
1757 	/*
1758 	 * Zap execute permission from the ident map. Due to the sharing of
1759 	 * L1 entries we need to do this in the L2.
1760 	 */
1761 	if (__supported_pte_mask & _PAGE_NX) {
1762 		for (i = 0; i < PTRS_PER_PMD; ++i) {
1763 			if (pmd_none(level2_ident_pgt[i]))
1764 				continue;
1765 			level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1766 		}
1767 	}
1768 
1769 	/* Copy the initial P->M table mappings if necessary. */
1770 	i = pgd_index(xen_start_info->mfn_list);
1771 	if (i && i < pgd_index(__START_KERNEL_map))
1772 		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1773 
1774 	/* Make pagetable pieces RO */
1775 	set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1776 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1777 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1778 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1779 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1780 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1781 
1782 	for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1783 		set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1784 			      PAGE_KERNEL_RO);
1785 	}
1786 
1787 	/* Pin down new L4 */
1788 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1789 			  PFN_DOWN(__pa_symbol(init_top_pgt)));
1790 
1791 	/* Unpin Xen-provided one */
1792 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1793 
1794 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1795 	/* Pin user vsyscall L3 */
1796 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1797 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1798 			  PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1799 #endif
1800 
1801 	/*
1802 	 * At this stage there can be no user pgd, and no page structure to
1803 	 * attach it to, so make sure we just set kernel pgd.
1804 	 */
1805 	xen_mc_batch();
1806 	__xen_write_cr3(true, __pa(init_top_pgt));
1807 	xen_mc_issue(XEN_LAZY_CPU);
1808 
1809 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1810 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1811 	 * the initial domain. For guests using the toolstack, they are in:
1812 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1813 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1814 	 */
1815 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1816 		check_pt_base(&pt_base, &pt_end, addr[i]);
1817 
1818 	/* Our (by three pages) smaller Xen pagetable that we are using */
1819 	xen_pt_base = PFN_PHYS(pt_base);
1820 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1821 	memblock_reserve(xen_pt_base, xen_pt_size);
1822 
1823 	/* Revector the xen_start_info */
1824 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1825 }
1826 
1827 /*
1828  * Read a value from a physical address.
1829  */
1830 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1831 {
1832 	unsigned long *vaddr;
1833 	unsigned long val;
1834 
1835 	vaddr = early_memremap_ro(addr, sizeof(val));
1836 	val = *vaddr;
1837 	early_memunmap(vaddr, sizeof(val));
1838 	return val;
1839 }
1840 
1841 /*
1842  * Translate a virtual address to a physical one without relying on mapped
1843  * page tables. Don't rely on big pages being aligned in (guest) physical
1844  * space!
1845  */
1846 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1847 {
1848 	phys_addr_t pa;
1849 	pgd_t pgd;
1850 	pud_t pud;
1851 	pmd_t pmd;
1852 	pte_t pte;
1853 
1854 	pa = read_cr3_pa();
1855 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1856 						       sizeof(pgd)));
1857 	if (!pgd_present(pgd))
1858 		return 0;
1859 
1860 	pa = pgd_val(pgd) & PTE_PFN_MASK;
1861 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1862 						       sizeof(pud)));
1863 	if (!pud_present(pud))
1864 		return 0;
1865 	pa = pud_val(pud) & PTE_PFN_MASK;
1866 	if (pud_leaf(pud))
1867 		return pa + (vaddr & ~PUD_MASK);
1868 
1869 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1870 						       sizeof(pmd)));
1871 	if (!pmd_present(pmd))
1872 		return 0;
1873 	pa = pmd_val(pmd) & PTE_PFN_MASK;
1874 	if (pmd_leaf(pmd))
1875 		return pa + (vaddr & ~PMD_MASK);
1876 
1877 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1878 						       sizeof(pte)));
1879 	if (!pte_present(pte))
1880 		return 0;
1881 	pa = pte_pfn(pte) << PAGE_SHIFT;
1882 
1883 	return pa | (vaddr & ~PAGE_MASK);
1884 }
1885 
1886 /*
1887  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1888  * this area.
1889  */
1890 void __init xen_relocate_p2m(void)
1891 {
1892 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1893 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1894 	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1895 	pte_t *pt;
1896 	pmd_t *pmd;
1897 	pud_t *pud;
1898 	pgd_t *pgd;
1899 	unsigned long *new_p2m;
1900 
1901 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1902 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1903 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1904 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1905 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1906 	n_frames = n_pte + n_pt + n_pmd + n_pud;
1907 
1908 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
1909 	if (!new_area) {
1910 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1911 		BUG();
1912 	}
1913 
1914 	/*
1915 	 * Setup the page tables for addressing the new p2m list.
1916 	 * We have asked the hypervisor to map the p2m list at the user address
1917 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
1918 	 * address depending on the Xen version.
1919 	 * To avoid any possible virtual address collision, just use
1920 	 * 2 * PUD_SIZE for the new area.
1921 	 */
1922 	pud_phys = new_area;
1923 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
1924 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1925 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1926 
1927 	pgd = __va(read_cr3_pa());
1928 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1929 	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1930 		pud = early_memremap(pud_phys, PAGE_SIZE);
1931 		clear_page(pud);
1932 		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1933 				idx_pmd++) {
1934 			pmd = early_memremap(pmd_phys, PAGE_SIZE);
1935 			clear_page(pmd);
1936 			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1937 					idx_pt++) {
1938 				pt = early_memremap(pt_phys, PAGE_SIZE);
1939 				clear_page(pt);
1940 				for (idx_pte = 0;
1941 				     idx_pte < min(n_pte, PTRS_PER_PTE);
1942 				     idx_pte++) {
1943 					pt[idx_pte] = pfn_pte(p2m_pfn,
1944 							      PAGE_KERNEL);
1945 					p2m_pfn++;
1946 				}
1947 				n_pte -= PTRS_PER_PTE;
1948 				early_memunmap(pt, PAGE_SIZE);
1949 				make_lowmem_page_readonly(__va(pt_phys));
1950 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1951 						PFN_DOWN(pt_phys));
1952 				pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1953 				pt_phys += PAGE_SIZE;
1954 			}
1955 			n_pt -= PTRS_PER_PMD;
1956 			early_memunmap(pmd, PAGE_SIZE);
1957 			make_lowmem_page_readonly(__va(pmd_phys));
1958 			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1959 					PFN_DOWN(pmd_phys));
1960 			pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1961 			pmd_phys += PAGE_SIZE;
1962 		}
1963 		n_pmd -= PTRS_PER_PUD;
1964 		early_memunmap(pud, PAGE_SIZE);
1965 		make_lowmem_page_readonly(__va(pud_phys));
1966 		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1967 		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1968 		pud_phys += PAGE_SIZE;
1969 	}
1970 
1971 	/* Now copy the old p2m info to the new area. */
1972 	memcpy(new_p2m, xen_p2m_addr, size);
1973 	xen_p2m_addr = new_p2m;
1974 
1975 	/* Release the old p2m list and set new list info. */
1976 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1977 	BUG_ON(!p2m_pfn);
1978 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1979 
1980 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
1981 		pfn = xen_start_info->first_p2m_pfn;
1982 		pfn_end = xen_start_info->first_p2m_pfn +
1983 			  xen_start_info->nr_p2m_frames;
1984 		set_pgd(pgd + 1, __pgd(0));
1985 	} else {
1986 		pfn = p2m_pfn;
1987 		pfn_end = p2m_pfn_end;
1988 	}
1989 
1990 	memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1991 	while (pfn < pfn_end) {
1992 		if (pfn == p2m_pfn) {
1993 			pfn = p2m_pfn_end;
1994 			continue;
1995 		}
1996 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1997 		pfn++;
1998 	}
1999 
2000 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2001 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2002 	xen_start_info->nr_p2m_frames = n_frames;
2003 }
2004 
2005 void __init xen_reserve_special_pages(void)
2006 {
2007 	phys_addr_t paddr;
2008 
2009 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2010 	if (xen_start_info->store_mfn) {
2011 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2012 		memblock_reserve(paddr, PAGE_SIZE);
2013 	}
2014 	if (!xen_initial_domain()) {
2015 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2016 		memblock_reserve(paddr, PAGE_SIZE);
2017 	}
2018 }
2019 
2020 void __init xen_pt_check_e820(void)
2021 {
2022 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2023 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2024 		BUG();
2025 	}
2026 }
2027 
2028 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2029 
2030 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2031 {
2032 	pte_t pte;
2033 	unsigned long vaddr;
2034 
2035 	phys >>= PAGE_SHIFT;
2036 
2037 	switch (idx) {
2038 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2039 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2040 	case VSYSCALL_PAGE:
2041 #endif
2042 		/* All local page mappings */
2043 		pte = pfn_pte(phys, prot);
2044 		break;
2045 
2046 #ifdef CONFIG_X86_LOCAL_APIC
2047 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2048 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2049 		break;
2050 #endif
2051 
2052 #ifdef CONFIG_X86_IO_APIC
2053 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2054 		/*
2055 		 * We just don't map the IO APIC - all access is via
2056 		 * hypercalls.  Keep the address in the pte for reference.
2057 		 */
2058 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2059 		break;
2060 #endif
2061 
2062 	case FIX_PARAVIRT_BOOTMAP:
2063 		/* This is an MFN, but it isn't an IO mapping from the
2064 		   IO domain */
2065 		pte = mfn_pte(phys, prot);
2066 		break;
2067 
2068 	default:
2069 		/* By default, set_fixmap is used for hardware mappings */
2070 		pte = mfn_pte(phys, prot);
2071 		break;
2072 	}
2073 
2074 	vaddr = __fix_to_virt(idx);
2075 	if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
2076 		BUG();
2077 
2078 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2079 	/* Replicate changes to map the vsyscall page into the user
2080 	   pagetable vsyscall mapping. */
2081 	if (idx == VSYSCALL_PAGE)
2082 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2083 #endif
2084 }
2085 
2086 static void xen_enter_lazy_mmu(void)
2087 {
2088 	enter_lazy(XEN_LAZY_MMU);
2089 }
2090 
2091 static void xen_flush_lazy_mmu(void)
2092 {
2093 	preempt_disable();
2094 
2095 	if (xen_get_lazy_mode() == XEN_LAZY_MMU) {
2096 		arch_leave_lazy_mmu_mode();
2097 		arch_enter_lazy_mmu_mode();
2098 	}
2099 
2100 	preempt_enable();
2101 }
2102 
2103 static void __init xen_post_allocator_init(void)
2104 {
2105 	pv_ops.mmu.set_pte = xen_set_pte;
2106 	pv_ops.mmu.set_pmd = xen_set_pmd;
2107 	pv_ops.mmu.set_pud = xen_set_pud;
2108 	pv_ops.mmu.set_p4d = xen_set_p4d;
2109 
2110 	/* This will work as long as patching hasn't happened yet
2111 	   (which it hasn't) */
2112 	pv_ops.mmu.alloc_pte = xen_alloc_pte;
2113 	pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2114 	pv_ops.mmu.release_pte = xen_release_pte;
2115 	pv_ops.mmu.release_pmd = xen_release_pmd;
2116 	pv_ops.mmu.alloc_pud = xen_alloc_pud;
2117 	pv_ops.mmu.release_pud = xen_release_pud;
2118 	pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2119 
2120 	pv_ops.mmu.write_cr3 = &xen_write_cr3;
2121 }
2122 
2123 static void xen_leave_lazy_mmu(void)
2124 {
2125 	preempt_disable();
2126 	xen_mc_flush();
2127 	leave_lazy(XEN_LAZY_MMU);
2128 	preempt_enable();
2129 }
2130 
2131 static const typeof(pv_ops) xen_mmu_ops __initconst = {
2132 	.mmu = {
2133 		.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2134 		.write_cr2 = xen_write_cr2,
2135 
2136 		.read_cr3 = xen_read_cr3,
2137 		.write_cr3 = xen_write_cr3_init,
2138 
2139 		.flush_tlb_user = xen_flush_tlb,
2140 		.flush_tlb_kernel = xen_flush_tlb,
2141 		.flush_tlb_one_user = xen_flush_tlb_one_user,
2142 		.flush_tlb_multi = xen_flush_tlb_multi,
2143 		.tlb_remove_table = tlb_remove_table,
2144 
2145 		.pgd_alloc = xen_pgd_alloc,
2146 		.pgd_free = xen_pgd_free,
2147 
2148 		.alloc_pte = xen_alloc_pte_init,
2149 		.release_pte = xen_release_pte_init,
2150 		.alloc_pmd = xen_alloc_pmd_init,
2151 		.release_pmd = xen_release_pmd_init,
2152 
2153 		.set_pte = xen_set_pte_init,
2154 		.set_pmd = xen_set_pmd_hyper,
2155 
2156 		.ptep_modify_prot_start = xen_ptep_modify_prot_start,
2157 		.ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2158 
2159 		.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2160 		.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2161 
2162 		.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2163 		.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2164 
2165 		.set_pud = xen_set_pud_hyper,
2166 
2167 		.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2168 		.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2169 
2170 		.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2171 		.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2172 		.set_p4d = xen_set_p4d_hyper,
2173 
2174 		.alloc_pud = xen_alloc_pmd_init,
2175 		.release_pud = xen_release_pmd_init,
2176 
2177 #if CONFIG_PGTABLE_LEVELS >= 5
2178 		.p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2179 		.make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2180 #endif
2181 
2182 		.enter_mmap = xen_enter_mmap,
2183 		.exit_mmap = xen_exit_mmap,
2184 
2185 		.lazy_mode = {
2186 			.enter = xen_enter_lazy_mmu,
2187 			.leave = xen_leave_lazy_mmu,
2188 			.flush = xen_flush_lazy_mmu,
2189 		},
2190 
2191 		.set_fixmap = xen_set_fixmap,
2192 	},
2193 };
2194 
2195 void __init xen_init_mmu_ops(void)
2196 {
2197 	x86_init.paging.pagetable_init = xen_pagetable_init;
2198 	x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2199 
2200 	pv_ops.mmu = xen_mmu_ops.mmu;
2201 
2202 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2203 }
2204 
2205 /* Protected by xen_reservation_lock. */
2206 #define MAX_CONTIG_ORDER 9 /* 2MB */
2207 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2208 
2209 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2210 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2211 				unsigned long *in_frames,
2212 				unsigned long *out_frames)
2213 {
2214 	int i;
2215 	struct multicall_space mcs;
2216 
2217 	xen_mc_batch();
2218 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2219 		mcs = __xen_mc_entry(0);
2220 
2221 		if (in_frames)
2222 			in_frames[i] = virt_to_mfn((void *)vaddr);
2223 
2224 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2225 		__set_phys_to_machine(virt_to_pfn((void *)vaddr), INVALID_P2M_ENTRY);
2226 
2227 		if (out_frames)
2228 			out_frames[i] = virt_to_pfn((void *)vaddr);
2229 	}
2230 	xen_mc_issue(0);
2231 }
2232 
2233 /*
2234  * Update the pfn-to-mfn mappings for a virtual address range, either to
2235  * point to an array of mfns, or contiguously from a single starting
2236  * mfn.
2237  */
2238 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2239 				     unsigned long *mfns,
2240 				     unsigned long first_mfn)
2241 {
2242 	unsigned i, limit;
2243 	unsigned long mfn;
2244 
2245 	xen_mc_batch();
2246 
2247 	limit = 1u << order;
2248 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2249 		struct multicall_space mcs;
2250 		unsigned flags;
2251 
2252 		mcs = __xen_mc_entry(0);
2253 		if (mfns)
2254 			mfn = mfns[i];
2255 		else
2256 			mfn = first_mfn + i;
2257 
2258 		if (i < (limit - 1))
2259 			flags = 0;
2260 		else {
2261 			if (order == 0)
2262 				flags = UVMF_INVLPG | UVMF_ALL;
2263 			else
2264 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2265 		}
2266 
2267 		MULTI_update_va_mapping(mcs.mc, vaddr,
2268 				mfn_pte(mfn, PAGE_KERNEL), flags);
2269 
2270 		set_phys_to_machine(virt_to_pfn((void *)vaddr), mfn);
2271 	}
2272 
2273 	xen_mc_issue(0);
2274 }
2275 
2276 /*
2277  * Perform the hypercall to exchange a region of our pfns to point to
2278  * memory with the required contiguous alignment.  Takes the pfns as
2279  * input, and populates mfns as output.
2280  *
2281  * Returns a success code indicating whether the hypervisor was able to
2282  * satisfy the request or not.
2283  */
2284 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2285 			       unsigned long *pfns_in,
2286 			       unsigned long extents_out,
2287 			       unsigned int order_out,
2288 			       unsigned long *mfns_out,
2289 			       unsigned int address_bits)
2290 {
2291 	long rc;
2292 	int success;
2293 
2294 	struct xen_memory_exchange exchange = {
2295 		.in = {
2296 			.nr_extents   = extents_in,
2297 			.extent_order = order_in,
2298 			.extent_start = pfns_in,
2299 			.domid        = DOMID_SELF
2300 		},
2301 		.out = {
2302 			.nr_extents   = extents_out,
2303 			.extent_order = order_out,
2304 			.extent_start = mfns_out,
2305 			.address_bits = address_bits,
2306 			.domid        = DOMID_SELF
2307 		}
2308 	};
2309 
2310 	BUG_ON(extents_in << order_in != extents_out << order_out);
2311 
2312 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2313 	success = (exchange.nr_exchanged == extents_in);
2314 
2315 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2316 	BUG_ON(success && (rc != 0));
2317 
2318 	return success;
2319 }
2320 
2321 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2322 				 unsigned int address_bits,
2323 				 dma_addr_t *dma_handle)
2324 {
2325 	unsigned long *in_frames = discontig_frames, out_frame;
2326 	unsigned long  flags;
2327 	int            success;
2328 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2329 
2330 	if (unlikely(order > MAX_CONTIG_ORDER))
2331 		return -ENOMEM;
2332 
2333 	memset((void *) vstart, 0, PAGE_SIZE << order);
2334 
2335 	spin_lock_irqsave(&xen_reservation_lock, flags);
2336 
2337 	/* 1. Zap current PTEs, remembering MFNs. */
2338 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2339 
2340 	/* 2. Get a new contiguous memory extent. */
2341 	out_frame = virt_to_pfn((void *)vstart);
2342 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2343 				      1, order, &out_frame,
2344 				      address_bits);
2345 
2346 	/* 3. Map the new extent in place of old pages. */
2347 	if (success)
2348 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2349 	else
2350 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2351 
2352 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2353 
2354 	*dma_handle = virt_to_machine(vstart).maddr;
2355 	return success ? 0 : -ENOMEM;
2356 }
2357 
2358 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2359 {
2360 	unsigned long *out_frames = discontig_frames, in_frame;
2361 	unsigned long  flags;
2362 	int success;
2363 	unsigned long vstart;
2364 
2365 	if (unlikely(order > MAX_CONTIG_ORDER))
2366 		return;
2367 
2368 	vstart = (unsigned long)phys_to_virt(pstart);
2369 	memset((void *) vstart, 0, PAGE_SIZE << order);
2370 
2371 	spin_lock_irqsave(&xen_reservation_lock, flags);
2372 
2373 	/* 1. Find start MFN of contiguous extent. */
2374 	in_frame = virt_to_mfn((void *)vstart);
2375 
2376 	/* 2. Zap current PTEs. */
2377 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2378 
2379 	/* 3. Do the exchange for non-contiguous MFNs. */
2380 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2381 					0, out_frames, 0);
2382 
2383 	/* 4. Map new pages in place of old pages. */
2384 	if (success)
2385 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2386 	else
2387 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2388 
2389 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2390 }
2391 
2392 static noinline void xen_flush_tlb_all(void)
2393 {
2394 	struct mmuext_op *op;
2395 	struct multicall_space mcs;
2396 
2397 	preempt_disable();
2398 
2399 	mcs = xen_mc_entry(sizeof(*op));
2400 
2401 	op = mcs.args;
2402 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
2403 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2404 
2405 	xen_mc_issue(XEN_LAZY_MMU);
2406 
2407 	preempt_enable();
2408 }
2409 
2410 #define REMAP_BATCH_SIZE 16
2411 
2412 struct remap_data {
2413 	xen_pfn_t *pfn;
2414 	bool contiguous;
2415 	bool no_translate;
2416 	pgprot_t prot;
2417 	struct mmu_update *mmu_update;
2418 };
2419 
2420 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2421 {
2422 	struct remap_data *rmd = data;
2423 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2424 
2425 	/*
2426 	 * If we have a contiguous range, just update the pfn itself,
2427 	 * else update pointer to be "next pfn".
2428 	 */
2429 	if (rmd->contiguous)
2430 		(*rmd->pfn)++;
2431 	else
2432 		rmd->pfn++;
2433 
2434 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2435 	rmd->mmu_update->ptr |= rmd->no_translate ?
2436 		MMU_PT_UPDATE_NO_TRANSLATE :
2437 		MMU_NORMAL_PT_UPDATE;
2438 	rmd->mmu_update->val = pte_val_ma(pte);
2439 	rmd->mmu_update++;
2440 
2441 	return 0;
2442 }
2443 
2444 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2445 		  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2446 		  unsigned int domid, bool no_translate)
2447 {
2448 	int err = 0;
2449 	struct remap_data rmd;
2450 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2451 	unsigned long range;
2452 	int mapped = 0;
2453 
2454 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2455 
2456 	rmd.pfn = pfn;
2457 	rmd.prot = prot;
2458 	/*
2459 	 * We use the err_ptr to indicate if there we are doing a contiguous
2460 	 * mapping or a discontiguous mapping.
2461 	 */
2462 	rmd.contiguous = !err_ptr;
2463 	rmd.no_translate = no_translate;
2464 
2465 	while (nr) {
2466 		int index = 0;
2467 		int done = 0;
2468 		int batch = min(REMAP_BATCH_SIZE, nr);
2469 		int batch_left = batch;
2470 
2471 		range = (unsigned long)batch << PAGE_SHIFT;
2472 
2473 		rmd.mmu_update = mmu_update;
2474 		err = apply_to_page_range(vma->vm_mm, addr, range,
2475 					  remap_area_pfn_pte_fn, &rmd);
2476 		if (err)
2477 			goto out;
2478 
2479 		/*
2480 		 * We record the error for each page that gives an error, but
2481 		 * continue mapping until the whole set is done
2482 		 */
2483 		do {
2484 			int i;
2485 
2486 			err = HYPERVISOR_mmu_update(&mmu_update[index],
2487 						    batch_left, &done, domid);
2488 
2489 			/*
2490 			 * @err_ptr may be the same buffer as @gfn, so
2491 			 * only clear it after each chunk of @gfn is
2492 			 * used.
2493 			 */
2494 			if (err_ptr) {
2495 				for (i = index; i < index + done; i++)
2496 					err_ptr[i] = 0;
2497 			}
2498 			if (err < 0) {
2499 				if (!err_ptr)
2500 					goto out;
2501 				err_ptr[i] = err;
2502 				done++; /* Skip failed frame. */
2503 			} else
2504 				mapped += done;
2505 			batch_left -= done;
2506 			index += done;
2507 		} while (batch_left);
2508 
2509 		nr -= batch;
2510 		addr += range;
2511 		if (err_ptr)
2512 			err_ptr += batch;
2513 		cond_resched();
2514 	}
2515 out:
2516 
2517 	xen_flush_tlb_all();
2518 
2519 	return err < 0 ? err : mapped;
2520 }
2521 EXPORT_SYMBOL_GPL(xen_remap_pfn);
2522 
2523 #ifdef CONFIG_VMCORE_INFO
2524 phys_addr_t paddr_vmcoreinfo_note(void)
2525 {
2526 	if (xen_pv_domain())
2527 		return virt_to_machine(vmcoreinfo_note).maddr;
2528 	else
2529 		return __pa(vmcoreinfo_note);
2530 }
2531 #endif /* CONFIG_KEXEC_CORE */
2532