1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched/mm.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/export.h> 47 #include <linux/init.h> 48 #include <linux/gfp.h> 49 #include <linux/memblock.h> 50 #include <linux/seq_file.h> 51 #include <linux/crash_dump.h> 52 #ifdef CONFIG_KEXEC_CORE 53 #include <linux/kexec.h> 54 #endif 55 56 #include <trace/events/xen.h> 57 58 #include <asm/pgtable.h> 59 #include <asm/tlbflush.h> 60 #include <asm/fixmap.h> 61 #include <asm/mmu_context.h> 62 #include <asm/setup.h> 63 #include <asm/paravirt.h> 64 #include <asm/e820/api.h> 65 #include <asm/linkage.h> 66 #include <asm/page.h> 67 #include <asm/init.h> 68 #include <asm/pat.h> 69 #include <asm/smp.h> 70 71 #include <asm/xen/hypercall.h> 72 #include <asm/xen/hypervisor.h> 73 74 #include <xen/xen.h> 75 #include <xen/page.h> 76 #include <xen/interface/xen.h> 77 #include <xen/interface/hvm/hvm_op.h> 78 #include <xen/interface/version.h> 79 #include <xen/interface/memory.h> 80 #include <xen/hvc-console.h> 81 82 #include "multicalls.h" 83 #include "mmu.h" 84 #include "debugfs.h" 85 86 #ifdef CONFIG_X86_32 87 /* 88 * Identity map, in addition to plain kernel map. This needs to be 89 * large enough to allocate page table pages to allocate the rest. 90 * Each page can map 2MB. 91 */ 92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 94 #endif 95 #ifdef CONFIG_X86_64 96 /* l3 pud for userspace vsyscall mapping */ 97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 98 #endif /* CONFIG_X86_64 */ 99 100 /* 101 * Note about cr3 (pagetable base) values: 102 * 103 * xen_cr3 contains the current logical cr3 value; it contains the 104 * last set cr3. This may not be the current effective cr3, because 105 * its update may be being lazily deferred. However, a vcpu looking 106 * at its own cr3 can use this value knowing that it everything will 107 * be self-consistent. 108 * 109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 110 * hypercall to set the vcpu cr3 is complete (so it may be a little 111 * out of date, but it will never be set early). If one vcpu is 112 * looking at another vcpu's cr3 value, it should use this variable. 113 */ 114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 116 117 static phys_addr_t xen_pt_base, xen_pt_size __initdata; 118 119 /* 120 * Just beyond the highest usermode address. STACK_TOP_MAX has a 121 * redzone above it, so round it up to a PGD boundary. 122 */ 123 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 124 125 void make_lowmem_page_readonly(void *vaddr) 126 { 127 pte_t *pte, ptev; 128 unsigned long address = (unsigned long)vaddr; 129 unsigned int level; 130 131 pte = lookup_address(address, &level); 132 if (pte == NULL) 133 return; /* vaddr missing */ 134 135 ptev = pte_wrprotect(*pte); 136 137 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 138 BUG(); 139 } 140 141 void make_lowmem_page_readwrite(void *vaddr) 142 { 143 pte_t *pte, ptev; 144 unsigned long address = (unsigned long)vaddr; 145 unsigned int level; 146 147 pte = lookup_address(address, &level); 148 if (pte == NULL) 149 return; /* vaddr missing */ 150 151 ptev = pte_mkwrite(*pte); 152 153 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 154 BUG(); 155 } 156 157 158 static bool xen_page_pinned(void *ptr) 159 { 160 struct page *page = virt_to_page(ptr); 161 162 return PagePinned(page); 163 } 164 165 static void xen_extend_mmu_update(const struct mmu_update *update) 166 { 167 struct multicall_space mcs; 168 struct mmu_update *u; 169 170 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 171 172 if (mcs.mc != NULL) { 173 mcs.mc->args[1]++; 174 } else { 175 mcs = __xen_mc_entry(sizeof(*u)); 176 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 177 } 178 179 u = mcs.args; 180 *u = *update; 181 } 182 183 static void xen_extend_mmuext_op(const struct mmuext_op *op) 184 { 185 struct multicall_space mcs; 186 struct mmuext_op *u; 187 188 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 189 190 if (mcs.mc != NULL) { 191 mcs.mc->args[1]++; 192 } else { 193 mcs = __xen_mc_entry(sizeof(*u)); 194 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 195 } 196 197 u = mcs.args; 198 *u = *op; 199 } 200 201 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 202 { 203 struct mmu_update u; 204 205 preempt_disable(); 206 207 xen_mc_batch(); 208 209 /* ptr may be ioremapped for 64-bit pagetable setup */ 210 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 211 u.val = pmd_val_ma(val); 212 xen_extend_mmu_update(&u); 213 214 xen_mc_issue(PARAVIRT_LAZY_MMU); 215 216 preempt_enable(); 217 } 218 219 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 220 { 221 trace_xen_mmu_set_pmd(ptr, val); 222 223 /* If page is not pinned, we can just update the entry 224 directly */ 225 if (!xen_page_pinned(ptr)) { 226 *ptr = val; 227 return; 228 } 229 230 xen_set_pmd_hyper(ptr, val); 231 } 232 233 /* 234 * Associate a virtual page frame with a given physical page frame 235 * and protection flags for that frame. 236 */ 237 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 238 { 239 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 240 } 241 242 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 243 { 244 struct mmu_update u; 245 246 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 247 return false; 248 249 xen_mc_batch(); 250 251 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 252 u.val = pte_val_ma(pteval); 253 xen_extend_mmu_update(&u); 254 255 xen_mc_issue(PARAVIRT_LAZY_MMU); 256 257 return true; 258 } 259 260 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 261 { 262 if (!xen_batched_set_pte(ptep, pteval)) { 263 /* 264 * Could call native_set_pte() here and trap and 265 * emulate the PTE write but with 32-bit guests this 266 * needs two traps (one for each of the two 32-bit 267 * words in the PTE) so do one hypercall directly 268 * instead. 269 */ 270 struct mmu_update u; 271 272 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 273 u.val = pte_val_ma(pteval); 274 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 275 } 276 } 277 278 static void xen_set_pte(pte_t *ptep, pte_t pteval) 279 { 280 trace_xen_mmu_set_pte(ptep, pteval); 281 __xen_set_pte(ptep, pteval); 282 } 283 284 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 285 pte_t *ptep, pte_t pteval) 286 { 287 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 288 __xen_set_pte(ptep, pteval); 289 } 290 291 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 292 unsigned long addr, pte_t *ptep) 293 { 294 /* Just return the pte as-is. We preserve the bits on commit */ 295 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); 296 return *ptep; 297 } 298 299 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 300 pte_t *ptep, pte_t pte) 301 { 302 struct mmu_update u; 303 304 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); 305 xen_mc_batch(); 306 307 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 308 u.val = pte_val_ma(pte); 309 xen_extend_mmu_update(&u); 310 311 xen_mc_issue(PARAVIRT_LAZY_MMU); 312 } 313 314 /* Assume pteval_t is equivalent to all the other *val_t types. */ 315 static pteval_t pte_mfn_to_pfn(pteval_t val) 316 { 317 if (val & _PAGE_PRESENT) { 318 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; 319 unsigned long pfn = mfn_to_pfn(mfn); 320 321 pteval_t flags = val & PTE_FLAGS_MASK; 322 if (unlikely(pfn == ~0)) 323 val = flags & ~_PAGE_PRESENT; 324 else 325 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 326 } 327 328 return val; 329 } 330 331 static pteval_t pte_pfn_to_mfn(pteval_t val) 332 { 333 if (val & _PAGE_PRESENT) { 334 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 335 pteval_t flags = val & PTE_FLAGS_MASK; 336 unsigned long mfn; 337 338 mfn = __pfn_to_mfn(pfn); 339 340 /* 341 * If there's no mfn for the pfn, then just create an 342 * empty non-present pte. Unfortunately this loses 343 * information about the original pfn, so 344 * pte_mfn_to_pfn is asymmetric. 345 */ 346 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 347 mfn = 0; 348 flags = 0; 349 } else 350 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 351 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 352 } 353 354 return val; 355 } 356 357 __visible pteval_t xen_pte_val(pte_t pte) 358 { 359 pteval_t pteval = pte.pte; 360 361 return pte_mfn_to_pfn(pteval); 362 } 363 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 364 365 __visible pgdval_t xen_pgd_val(pgd_t pgd) 366 { 367 return pte_mfn_to_pfn(pgd.pgd); 368 } 369 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 370 371 __visible pte_t xen_make_pte(pteval_t pte) 372 { 373 pte = pte_pfn_to_mfn(pte); 374 375 return native_make_pte(pte); 376 } 377 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 378 379 __visible pgd_t xen_make_pgd(pgdval_t pgd) 380 { 381 pgd = pte_pfn_to_mfn(pgd); 382 return native_make_pgd(pgd); 383 } 384 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 385 386 __visible pmdval_t xen_pmd_val(pmd_t pmd) 387 { 388 return pte_mfn_to_pfn(pmd.pmd); 389 } 390 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 391 392 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 393 { 394 struct mmu_update u; 395 396 preempt_disable(); 397 398 xen_mc_batch(); 399 400 /* ptr may be ioremapped for 64-bit pagetable setup */ 401 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 402 u.val = pud_val_ma(val); 403 xen_extend_mmu_update(&u); 404 405 xen_mc_issue(PARAVIRT_LAZY_MMU); 406 407 preempt_enable(); 408 } 409 410 static void xen_set_pud(pud_t *ptr, pud_t val) 411 { 412 trace_xen_mmu_set_pud(ptr, val); 413 414 /* If page is not pinned, we can just update the entry 415 directly */ 416 if (!xen_page_pinned(ptr)) { 417 *ptr = val; 418 return; 419 } 420 421 xen_set_pud_hyper(ptr, val); 422 } 423 424 #ifdef CONFIG_X86_PAE 425 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 426 { 427 trace_xen_mmu_set_pte_atomic(ptep, pte); 428 set_64bit((u64 *)ptep, native_pte_val(pte)); 429 } 430 431 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 432 { 433 trace_xen_mmu_pte_clear(mm, addr, ptep); 434 if (!xen_batched_set_pte(ptep, native_make_pte(0))) 435 native_pte_clear(mm, addr, ptep); 436 } 437 438 static void xen_pmd_clear(pmd_t *pmdp) 439 { 440 trace_xen_mmu_pmd_clear(pmdp); 441 set_pmd(pmdp, __pmd(0)); 442 } 443 #endif /* CONFIG_X86_PAE */ 444 445 __visible pmd_t xen_make_pmd(pmdval_t pmd) 446 { 447 pmd = pte_pfn_to_mfn(pmd); 448 return native_make_pmd(pmd); 449 } 450 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 451 452 #ifdef CONFIG_X86_64 453 __visible pudval_t xen_pud_val(pud_t pud) 454 { 455 return pte_mfn_to_pfn(pud.pud); 456 } 457 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 458 459 __visible pud_t xen_make_pud(pudval_t pud) 460 { 461 pud = pte_pfn_to_mfn(pud); 462 463 return native_make_pud(pud); 464 } 465 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 466 467 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 468 { 469 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 470 unsigned offset = pgd - pgd_page; 471 pgd_t *user_ptr = NULL; 472 473 if (offset < pgd_index(USER_LIMIT)) { 474 struct page *page = virt_to_page(pgd_page); 475 user_ptr = (pgd_t *)page->private; 476 if (user_ptr) 477 user_ptr += offset; 478 } 479 480 return user_ptr; 481 } 482 483 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 484 { 485 struct mmu_update u; 486 487 u.ptr = virt_to_machine(ptr).maddr; 488 u.val = p4d_val_ma(val); 489 xen_extend_mmu_update(&u); 490 } 491 492 /* 493 * Raw hypercall-based set_p4d, intended for in early boot before 494 * there's a page structure. This implies: 495 * 1. The only existing pagetable is the kernel's 496 * 2. It is always pinned 497 * 3. It has no user pagetable attached to it 498 */ 499 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 500 { 501 preempt_disable(); 502 503 xen_mc_batch(); 504 505 __xen_set_p4d_hyper(ptr, val); 506 507 xen_mc_issue(PARAVIRT_LAZY_MMU); 508 509 preempt_enable(); 510 } 511 512 static void xen_set_p4d(p4d_t *ptr, p4d_t val) 513 { 514 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); 515 pgd_t pgd_val; 516 517 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); 518 519 /* If page is not pinned, we can just update the entry 520 directly */ 521 if (!xen_page_pinned(ptr)) { 522 *ptr = val; 523 if (user_ptr) { 524 WARN_ON(xen_page_pinned(user_ptr)); 525 pgd_val.pgd = p4d_val_ma(val); 526 *user_ptr = pgd_val; 527 } 528 return; 529 } 530 531 /* If it's pinned, then we can at least batch the kernel and 532 user updates together. */ 533 xen_mc_batch(); 534 535 __xen_set_p4d_hyper(ptr, val); 536 if (user_ptr) 537 __xen_set_p4d_hyper((p4d_t *)user_ptr, val); 538 539 xen_mc_issue(PARAVIRT_LAZY_MMU); 540 } 541 542 #if CONFIG_PGTABLE_LEVELS >= 5 543 __visible p4dval_t xen_p4d_val(p4d_t p4d) 544 { 545 return pte_mfn_to_pfn(p4d.p4d); 546 } 547 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val); 548 549 __visible p4d_t xen_make_p4d(p4dval_t p4d) 550 { 551 p4d = pte_pfn_to_mfn(p4d); 552 553 return native_make_p4d(p4d); 554 } 555 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d); 556 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ 557 #endif /* CONFIG_X86_64 */ 558 559 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, 560 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 561 bool last, unsigned long limit) 562 { 563 int i, nr, flush = 0; 564 565 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; 566 for (i = 0; i < nr; i++) { 567 if (!pmd_none(pmd[i])) 568 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE); 569 } 570 return flush; 571 } 572 573 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud, 574 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 575 bool last, unsigned long limit) 576 { 577 int i, nr, flush = 0; 578 579 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; 580 for (i = 0; i < nr; i++) { 581 pmd_t *pmd; 582 583 if (pud_none(pud[i])) 584 continue; 585 586 pmd = pmd_offset(&pud[i], 0); 587 if (PTRS_PER_PMD > 1) 588 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 589 flush |= xen_pmd_walk(mm, pmd, func, 590 last && i == nr - 1, limit); 591 } 592 return flush; 593 } 594 595 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, 596 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 597 bool last, unsigned long limit) 598 { 599 int flush = 0; 600 pud_t *pud; 601 602 603 if (p4d_none(*p4d)) 604 return flush; 605 606 pud = pud_offset(p4d, 0); 607 if (PTRS_PER_PUD > 1) 608 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 609 flush |= xen_pud_walk(mm, pud, func, last, limit); 610 return flush; 611 } 612 613 /* 614 * (Yet another) pagetable walker. This one is intended for pinning a 615 * pagetable. This means that it walks a pagetable and calls the 616 * callback function on each page it finds making up the page table, 617 * at every level. It walks the entire pagetable, but it only bothers 618 * pinning pte pages which are below limit. In the normal case this 619 * will be STACK_TOP_MAX, but at boot we need to pin up to 620 * FIXADDR_TOP. 621 * 622 * For 32-bit the important bit is that we don't pin beyond there, 623 * because then we start getting into Xen's ptes. 624 * 625 * For 64-bit, we must skip the Xen hole in the middle of the address 626 * space, just after the big x86-64 virtual hole. 627 */ 628 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 629 int (*func)(struct mm_struct *mm, struct page *, 630 enum pt_level), 631 unsigned long limit) 632 { 633 int i, nr, flush = 0; 634 unsigned hole_low, hole_high; 635 636 /* The limit is the last byte to be touched */ 637 limit--; 638 BUG_ON(limit >= FIXADDR_TOP); 639 640 /* 641 * 64-bit has a great big hole in the middle of the address 642 * space, which contains the Xen mappings. On 32-bit these 643 * will end up making a zero-sized hole and so is a no-op. 644 */ 645 hole_low = pgd_index(USER_LIMIT); 646 hole_high = pgd_index(PAGE_OFFSET); 647 648 nr = pgd_index(limit) + 1; 649 for (i = 0; i < nr; i++) { 650 p4d_t *p4d; 651 652 if (i >= hole_low && i < hole_high) 653 continue; 654 655 if (pgd_none(pgd[i])) 656 continue; 657 658 p4d = p4d_offset(&pgd[i], 0); 659 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); 660 } 661 662 /* Do the top level last, so that the callbacks can use it as 663 a cue to do final things like tlb flushes. */ 664 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 665 666 return flush; 667 } 668 669 static int xen_pgd_walk(struct mm_struct *mm, 670 int (*func)(struct mm_struct *mm, struct page *, 671 enum pt_level), 672 unsigned long limit) 673 { 674 return __xen_pgd_walk(mm, mm->pgd, func, limit); 675 } 676 677 /* If we're using split pte locks, then take the page's lock and 678 return a pointer to it. Otherwise return NULL. */ 679 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 680 { 681 spinlock_t *ptl = NULL; 682 683 #if USE_SPLIT_PTE_PTLOCKS 684 ptl = ptlock_ptr(page); 685 spin_lock_nest_lock(ptl, &mm->page_table_lock); 686 #endif 687 688 return ptl; 689 } 690 691 static void xen_pte_unlock(void *v) 692 { 693 spinlock_t *ptl = v; 694 spin_unlock(ptl); 695 } 696 697 static void xen_do_pin(unsigned level, unsigned long pfn) 698 { 699 struct mmuext_op op; 700 701 op.cmd = level; 702 op.arg1.mfn = pfn_to_mfn(pfn); 703 704 xen_extend_mmuext_op(&op); 705 } 706 707 static int xen_pin_page(struct mm_struct *mm, struct page *page, 708 enum pt_level level) 709 { 710 unsigned pgfl = TestSetPagePinned(page); 711 int flush; 712 713 if (pgfl) 714 flush = 0; /* already pinned */ 715 else if (PageHighMem(page)) 716 /* kmaps need flushing if we found an unpinned 717 highpage */ 718 flush = 1; 719 else { 720 void *pt = lowmem_page_address(page); 721 unsigned long pfn = page_to_pfn(page); 722 struct multicall_space mcs = __xen_mc_entry(0); 723 spinlock_t *ptl; 724 725 flush = 0; 726 727 /* 728 * We need to hold the pagetable lock between the time 729 * we make the pagetable RO and when we actually pin 730 * it. If we don't, then other users may come in and 731 * attempt to update the pagetable by writing it, 732 * which will fail because the memory is RO but not 733 * pinned, so Xen won't do the trap'n'emulate. 734 * 735 * If we're using split pte locks, we can't hold the 736 * entire pagetable's worth of locks during the 737 * traverse, because we may wrap the preempt count (8 738 * bits). The solution is to mark RO and pin each PTE 739 * page while holding the lock. This means the number 740 * of locks we end up holding is never more than a 741 * batch size (~32 entries, at present). 742 * 743 * If we're not using split pte locks, we needn't pin 744 * the PTE pages independently, because we're 745 * protected by the overall pagetable lock. 746 */ 747 ptl = NULL; 748 if (level == PT_PTE) 749 ptl = xen_pte_lock(page, mm); 750 751 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 752 pfn_pte(pfn, PAGE_KERNEL_RO), 753 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 754 755 if (ptl) { 756 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 757 758 /* Queue a deferred unlock for when this batch 759 is completed. */ 760 xen_mc_callback(xen_pte_unlock, ptl); 761 } 762 } 763 764 return flush; 765 } 766 767 /* This is called just after a mm has been created, but it has not 768 been used yet. We need to make sure that its pagetable is all 769 read-only, and can be pinned. */ 770 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 771 { 772 trace_xen_mmu_pgd_pin(mm, pgd); 773 774 xen_mc_batch(); 775 776 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 777 /* re-enable interrupts for flushing */ 778 xen_mc_issue(0); 779 780 kmap_flush_unused(); 781 782 xen_mc_batch(); 783 } 784 785 #ifdef CONFIG_X86_64 786 { 787 pgd_t *user_pgd = xen_get_user_pgd(pgd); 788 789 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 790 791 if (user_pgd) { 792 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 793 xen_do_pin(MMUEXT_PIN_L4_TABLE, 794 PFN_DOWN(__pa(user_pgd))); 795 } 796 } 797 #else /* CONFIG_X86_32 */ 798 #ifdef CONFIG_X86_PAE 799 /* Need to make sure unshared kernel PMD is pinnable */ 800 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 801 PT_PMD); 802 #endif 803 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 804 #endif /* CONFIG_X86_64 */ 805 xen_mc_issue(0); 806 } 807 808 static void xen_pgd_pin(struct mm_struct *mm) 809 { 810 __xen_pgd_pin(mm, mm->pgd); 811 } 812 813 /* 814 * On save, we need to pin all pagetables to make sure they get their 815 * mfns turned into pfns. Search the list for any unpinned pgds and pin 816 * them (unpinned pgds are not currently in use, probably because the 817 * process is under construction or destruction). 818 * 819 * Expected to be called in stop_machine() ("equivalent to taking 820 * every spinlock in the system"), so the locking doesn't really 821 * matter all that much. 822 */ 823 void xen_mm_pin_all(void) 824 { 825 struct page *page; 826 827 spin_lock(&pgd_lock); 828 829 list_for_each_entry(page, &pgd_list, lru) { 830 if (!PagePinned(page)) { 831 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 832 SetPageSavePinned(page); 833 } 834 } 835 836 spin_unlock(&pgd_lock); 837 } 838 839 /* 840 * The init_mm pagetable is really pinned as soon as its created, but 841 * that's before we have page structures to store the bits. So do all 842 * the book-keeping now. 843 */ 844 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 845 enum pt_level level) 846 { 847 SetPagePinned(page); 848 return 0; 849 } 850 851 static void __init xen_mark_init_mm_pinned(void) 852 { 853 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 854 } 855 856 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 857 enum pt_level level) 858 { 859 unsigned pgfl = TestClearPagePinned(page); 860 861 if (pgfl && !PageHighMem(page)) { 862 void *pt = lowmem_page_address(page); 863 unsigned long pfn = page_to_pfn(page); 864 spinlock_t *ptl = NULL; 865 struct multicall_space mcs; 866 867 /* 868 * Do the converse to pin_page. If we're using split 869 * pte locks, we must be holding the lock for while 870 * the pte page is unpinned but still RO to prevent 871 * concurrent updates from seeing it in this 872 * partially-pinned state. 873 */ 874 if (level == PT_PTE) { 875 ptl = xen_pte_lock(page, mm); 876 877 if (ptl) 878 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 879 } 880 881 mcs = __xen_mc_entry(0); 882 883 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 884 pfn_pte(pfn, PAGE_KERNEL), 885 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 886 887 if (ptl) { 888 /* unlock when batch completed */ 889 xen_mc_callback(xen_pte_unlock, ptl); 890 } 891 } 892 893 return 0; /* never need to flush on unpin */ 894 } 895 896 /* Release a pagetables pages back as normal RW */ 897 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 898 { 899 trace_xen_mmu_pgd_unpin(mm, pgd); 900 901 xen_mc_batch(); 902 903 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 904 905 #ifdef CONFIG_X86_64 906 { 907 pgd_t *user_pgd = xen_get_user_pgd(pgd); 908 909 if (user_pgd) { 910 xen_do_pin(MMUEXT_UNPIN_TABLE, 911 PFN_DOWN(__pa(user_pgd))); 912 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 913 } 914 } 915 #endif 916 917 #ifdef CONFIG_X86_PAE 918 /* Need to make sure unshared kernel PMD is unpinned */ 919 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 920 PT_PMD); 921 #endif 922 923 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 924 925 xen_mc_issue(0); 926 } 927 928 static void xen_pgd_unpin(struct mm_struct *mm) 929 { 930 __xen_pgd_unpin(mm, mm->pgd); 931 } 932 933 /* 934 * On resume, undo any pinning done at save, so that the rest of the 935 * kernel doesn't see any unexpected pinned pagetables. 936 */ 937 void xen_mm_unpin_all(void) 938 { 939 struct page *page; 940 941 spin_lock(&pgd_lock); 942 943 list_for_each_entry(page, &pgd_list, lru) { 944 if (PageSavePinned(page)) { 945 BUG_ON(!PagePinned(page)); 946 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 947 ClearPageSavePinned(page); 948 } 949 } 950 951 spin_unlock(&pgd_lock); 952 } 953 954 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 955 { 956 spin_lock(&next->page_table_lock); 957 xen_pgd_pin(next); 958 spin_unlock(&next->page_table_lock); 959 } 960 961 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 962 { 963 spin_lock(&mm->page_table_lock); 964 xen_pgd_pin(mm); 965 spin_unlock(&mm->page_table_lock); 966 } 967 968 static void drop_mm_ref_this_cpu(void *info) 969 { 970 struct mm_struct *mm = info; 971 972 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) 973 leave_mm(smp_processor_id()); 974 975 /* 976 * If this cpu still has a stale cr3 reference, then make sure 977 * it has been flushed. 978 */ 979 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 980 xen_mc_flush(); 981 } 982 983 #ifdef CONFIG_SMP 984 /* 985 * Another cpu may still have their %cr3 pointing at the pagetable, so 986 * we need to repoint it somewhere else before we can unpin it. 987 */ 988 static void xen_drop_mm_ref(struct mm_struct *mm) 989 { 990 cpumask_var_t mask; 991 unsigned cpu; 992 993 drop_mm_ref_this_cpu(mm); 994 995 /* Get the "official" set of cpus referring to our pagetable. */ 996 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 997 for_each_online_cpu(cpu) { 998 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 999 continue; 1000 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); 1001 } 1002 return; 1003 } 1004 1005 /* 1006 * It's possible that a vcpu may have a stale reference to our 1007 * cr3, because its in lazy mode, and it hasn't yet flushed 1008 * its set of pending hypercalls yet. In this case, we can 1009 * look at its actual current cr3 value, and force it to flush 1010 * if needed. 1011 */ 1012 cpumask_clear(mask); 1013 for_each_online_cpu(cpu) { 1014 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1015 cpumask_set_cpu(cpu, mask); 1016 } 1017 1018 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); 1019 free_cpumask_var(mask); 1020 } 1021 #else 1022 static void xen_drop_mm_ref(struct mm_struct *mm) 1023 { 1024 drop_mm_ref_this_cpu(mm); 1025 } 1026 #endif 1027 1028 /* 1029 * While a process runs, Xen pins its pagetables, which means that the 1030 * hypervisor forces it to be read-only, and it controls all updates 1031 * to it. This means that all pagetable updates have to go via the 1032 * hypervisor, which is moderately expensive. 1033 * 1034 * Since we're pulling the pagetable down, we switch to use init_mm, 1035 * unpin old process pagetable and mark it all read-write, which 1036 * allows further operations on it to be simple memory accesses. 1037 * 1038 * The only subtle point is that another CPU may be still using the 1039 * pagetable because of lazy tlb flushing. This means we need need to 1040 * switch all CPUs off this pagetable before we can unpin it. 1041 */ 1042 static void xen_exit_mmap(struct mm_struct *mm) 1043 { 1044 get_cpu(); /* make sure we don't move around */ 1045 xen_drop_mm_ref(mm); 1046 put_cpu(); 1047 1048 spin_lock(&mm->page_table_lock); 1049 1050 /* pgd may not be pinned in the error exit path of execve */ 1051 if (xen_page_pinned(mm->pgd)) 1052 xen_pgd_unpin(mm); 1053 1054 spin_unlock(&mm->page_table_lock); 1055 } 1056 1057 static void xen_post_allocator_init(void); 1058 1059 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1060 { 1061 struct mmuext_op op; 1062 1063 op.cmd = cmd; 1064 op.arg1.mfn = pfn_to_mfn(pfn); 1065 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1066 BUG(); 1067 } 1068 1069 #ifdef CONFIG_X86_64 1070 static void __init xen_cleanhighmap(unsigned long vaddr, 1071 unsigned long vaddr_end) 1072 { 1073 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1074 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1075 1076 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1077 * We include the PMD passed in on _both_ boundaries. */ 1078 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); 1079 pmd++, vaddr += PMD_SIZE) { 1080 if (pmd_none(*pmd)) 1081 continue; 1082 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1083 set_pmd(pmd, __pmd(0)); 1084 } 1085 /* In case we did something silly, we should crash in this function 1086 * instead of somewhere later and be confusing. */ 1087 xen_mc_flush(); 1088 } 1089 1090 /* 1091 * Make a page range writeable and free it. 1092 */ 1093 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) 1094 { 1095 void *vaddr = __va(paddr); 1096 void *vaddr_end = vaddr + size; 1097 1098 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) 1099 make_lowmem_page_readwrite(vaddr); 1100 1101 memblock_free(paddr, size); 1102 } 1103 1104 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) 1105 { 1106 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; 1107 1108 if (unpin) 1109 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); 1110 ClearPagePinned(virt_to_page(__va(pa))); 1111 xen_free_ro_pages(pa, PAGE_SIZE); 1112 } 1113 1114 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) 1115 { 1116 unsigned long pa; 1117 pte_t *pte_tbl; 1118 int i; 1119 1120 if (pmd_large(*pmd)) { 1121 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; 1122 xen_free_ro_pages(pa, PMD_SIZE); 1123 return; 1124 } 1125 1126 pte_tbl = pte_offset_kernel(pmd, 0); 1127 for (i = 0; i < PTRS_PER_PTE; i++) { 1128 if (pte_none(pte_tbl[i])) 1129 continue; 1130 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; 1131 xen_free_ro_pages(pa, PAGE_SIZE); 1132 } 1133 set_pmd(pmd, __pmd(0)); 1134 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); 1135 } 1136 1137 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) 1138 { 1139 unsigned long pa; 1140 pmd_t *pmd_tbl; 1141 int i; 1142 1143 if (pud_large(*pud)) { 1144 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; 1145 xen_free_ro_pages(pa, PUD_SIZE); 1146 return; 1147 } 1148 1149 pmd_tbl = pmd_offset(pud, 0); 1150 for (i = 0; i < PTRS_PER_PMD; i++) { 1151 if (pmd_none(pmd_tbl[i])) 1152 continue; 1153 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); 1154 } 1155 set_pud(pud, __pud(0)); 1156 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); 1157 } 1158 1159 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) 1160 { 1161 unsigned long pa; 1162 pud_t *pud_tbl; 1163 int i; 1164 1165 if (p4d_large(*p4d)) { 1166 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; 1167 xen_free_ro_pages(pa, P4D_SIZE); 1168 return; 1169 } 1170 1171 pud_tbl = pud_offset(p4d, 0); 1172 for (i = 0; i < PTRS_PER_PUD; i++) { 1173 if (pud_none(pud_tbl[i])) 1174 continue; 1175 xen_cleanmfnmap_pud(pud_tbl + i, unpin); 1176 } 1177 set_p4d(p4d, __p4d(0)); 1178 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); 1179 } 1180 1181 /* 1182 * Since it is well isolated we can (and since it is perhaps large we should) 1183 * also free the page tables mapping the initial P->M table. 1184 */ 1185 static void __init xen_cleanmfnmap(unsigned long vaddr) 1186 { 1187 pgd_t *pgd; 1188 p4d_t *p4d; 1189 bool unpin; 1190 1191 unpin = (vaddr == 2 * PGDIR_SIZE); 1192 vaddr &= PMD_MASK; 1193 pgd = pgd_offset_k(vaddr); 1194 p4d = p4d_offset(pgd, 0); 1195 if (!p4d_none(*p4d)) 1196 xen_cleanmfnmap_p4d(p4d, unpin); 1197 } 1198 1199 static void __init xen_pagetable_p2m_free(void) 1200 { 1201 unsigned long size; 1202 unsigned long addr; 1203 1204 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1205 1206 /* No memory or already called. */ 1207 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) 1208 return; 1209 1210 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1211 memset((void *)xen_start_info->mfn_list, 0xff, size); 1212 1213 addr = xen_start_info->mfn_list; 1214 /* 1215 * We could be in __ka space. 1216 * We roundup to the PMD, which means that if anybody at this stage is 1217 * using the __ka address of xen_start_info or 1218 * xen_start_info->shared_info they are in going to crash. Fortunatly 1219 * we have already revectored in xen_setup_kernel_pagetable and in 1220 * xen_setup_shared_info. 1221 */ 1222 size = roundup(size, PMD_SIZE); 1223 1224 if (addr >= __START_KERNEL_map) { 1225 xen_cleanhighmap(addr, addr + size); 1226 size = PAGE_ALIGN(xen_start_info->nr_pages * 1227 sizeof(unsigned long)); 1228 memblock_free(__pa(addr), size); 1229 } else { 1230 xen_cleanmfnmap(addr); 1231 } 1232 } 1233 1234 static void __init xen_pagetable_cleanhighmap(void) 1235 { 1236 unsigned long size; 1237 unsigned long addr; 1238 1239 /* At this stage, cleanup_highmap has already cleaned __ka space 1240 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1241 * the ramdisk). We continue on, erasing PMD entries that point to page 1242 * tables - do note that they are accessible at this stage via __va. 1243 * As Xen is aligning the memory end to a 4MB boundary, for good 1244 * measure we also round up to PMD_SIZE * 2 - which means that if 1245 * anybody is using __ka address to the initial boot-stack - and try 1246 * to use it - they are going to crash. The xen_start_info has been 1247 * taken care of already in xen_setup_kernel_pagetable. */ 1248 addr = xen_start_info->pt_base; 1249 size = xen_start_info->nr_pt_frames * PAGE_SIZE; 1250 1251 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); 1252 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1253 } 1254 #endif 1255 1256 static void __init xen_pagetable_p2m_setup(void) 1257 { 1258 xen_vmalloc_p2m_tree(); 1259 1260 #ifdef CONFIG_X86_64 1261 xen_pagetable_p2m_free(); 1262 1263 xen_pagetable_cleanhighmap(); 1264 #endif 1265 /* And revector! Bye bye old array */ 1266 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1267 } 1268 1269 static void __init xen_pagetable_init(void) 1270 { 1271 paging_init(); 1272 xen_post_allocator_init(); 1273 1274 xen_pagetable_p2m_setup(); 1275 1276 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1277 xen_build_mfn_list_list(); 1278 1279 /* Remap memory freed due to conflicts with E820 map */ 1280 xen_remap_memory(); 1281 1282 xen_setup_shared_info(); 1283 } 1284 static void xen_write_cr2(unsigned long cr2) 1285 { 1286 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1287 } 1288 1289 static unsigned long xen_read_cr2(void) 1290 { 1291 return this_cpu_read(xen_vcpu)->arch.cr2; 1292 } 1293 1294 unsigned long xen_read_cr2_direct(void) 1295 { 1296 return this_cpu_read(xen_vcpu_info.arch.cr2); 1297 } 1298 1299 static void xen_flush_tlb(void) 1300 { 1301 struct mmuext_op *op; 1302 struct multicall_space mcs; 1303 1304 trace_xen_mmu_flush_tlb(0); 1305 1306 preempt_disable(); 1307 1308 mcs = xen_mc_entry(sizeof(*op)); 1309 1310 op = mcs.args; 1311 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1312 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1313 1314 xen_mc_issue(PARAVIRT_LAZY_MMU); 1315 1316 preempt_enable(); 1317 } 1318 1319 static void xen_flush_tlb_one_user(unsigned long addr) 1320 { 1321 struct mmuext_op *op; 1322 struct multicall_space mcs; 1323 1324 trace_xen_mmu_flush_tlb_one_user(addr); 1325 1326 preempt_disable(); 1327 1328 mcs = xen_mc_entry(sizeof(*op)); 1329 op = mcs.args; 1330 op->cmd = MMUEXT_INVLPG_LOCAL; 1331 op->arg1.linear_addr = addr & PAGE_MASK; 1332 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1333 1334 xen_mc_issue(PARAVIRT_LAZY_MMU); 1335 1336 preempt_enable(); 1337 } 1338 1339 static void xen_flush_tlb_others(const struct cpumask *cpus, 1340 const struct flush_tlb_info *info) 1341 { 1342 struct { 1343 struct mmuext_op op; 1344 DECLARE_BITMAP(mask, NR_CPUS); 1345 } *args; 1346 struct multicall_space mcs; 1347 const size_t mc_entry_size = sizeof(args->op) + 1348 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus()); 1349 1350 trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end); 1351 1352 if (cpumask_empty(cpus)) 1353 return; /* nothing to do */ 1354 1355 mcs = xen_mc_entry(mc_entry_size); 1356 args = mcs.args; 1357 args->op.arg2.vcpumask = to_cpumask(args->mask); 1358 1359 /* Remove us, and any offline CPUS. */ 1360 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1361 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1362 1363 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1364 if (info->end != TLB_FLUSH_ALL && 1365 (info->end - info->start) <= PAGE_SIZE) { 1366 args->op.cmd = MMUEXT_INVLPG_MULTI; 1367 args->op.arg1.linear_addr = info->start; 1368 } 1369 1370 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1371 1372 xen_mc_issue(PARAVIRT_LAZY_MMU); 1373 } 1374 1375 static unsigned long xen_read_cr3(void) 1376 { 1377 return this_cpu_read(xen_cr3); 1378 } 1379 1380 static void set_current_cr3(void *v) 1381 { 1382 this_cpu_write(xen_current_cr3, (unsigned long)v); 1383 } 1384 1385 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1386 { 1387 struct mmuext_op op; 1388 unsigned long mfn; 1389 1390 trace_xen_mmu_write_cr3(kernel, cr3); 1391 1392 if (cr3) 1393 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1394 else 1395 mfn = 0; 1396 1397 WARN_ON(mfn == 0 && kernel); 1398 1399 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1400 op.arg1.mfn = mfn; 1401 1402 xen_extend_mmuext_op(&op); 1403 1404 if (kernel) { 1405 this_cpu_write(xen_cr3, cr3); 1406 1407 /* Update xen_current_cr3 once the batch has actually 1408 been submitted. */ 1409 xen_mc_callback(set_current_cr3, (void *)cr3); 1410 } 1411 } 1412 static void xen_write_cr3(unsigned long cr3) 1413 { 1414 BUG_ON(preemptible()); 1415 1416 xen_mc_batch(); /* disables interrupts */ 1417 1418 /* Update while interrupts are disabled, so its atomic with 1419 respect to ipis */ 1420 this_cpu_write(xen_cr3, cr3); 1421 1422 __xen_write_cr3(true, cr3); 1423 1424 #ifdef CONFIG_X86_64 1425 { 1426 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1427 if (user_pgd) 1428 __xen_write_cr3(false, __pa(user_pgd)); 1429 else 1430 __xen_write_cr3(false, 0); 1431 } 1432 #endif 1433 1434 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1435 } 1436 1437 #ifdef CONFIG_X86_64 1438 /* 1439 * At the start of the day - when Xen launches a guest, it has already 1440 * built pagetables for the guest. We diligently look over them 1441 * in xen_setup_kernel_pagetable and graft as appropriate them in the 1442 * init_top_pgt and its friends. Then when we are happy we load 1443 * the new init_top_pgt - and continue on. 1444 * 1445 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1446 * up the rest of the pagetables. When it has completed it loads the cr3. 1447 * N.B. that baremetal would start at 'start_kernel' (and the early 1448 * #PF handler would create bootstrap pagetables) - so we are running 1449 * with the same assumptions as what to do when write_cr3 is executed 1450 * at this point. 1451 * 1452 * Since there are no user-page tables at all, we have two variants 1453 * of xen_write_cr3 - the early bootup (this one), and the late one 1454 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1455 * the Linux kernel and user-space are both in ring 3 while the 1456 * hypervisor is in ring 0. 1457 */ 1458 static void __init xen_write_cr3_init(unsigned long cr3) 1459 { 1460 BUG_ON(preemptible()); 1461 1462 xen_mc_batch(); /* disables interrupts */ 1463 1464 /* Update while interrupts are disabled, so its atomic with 1465 respect to ipis */ 1466 this_cpu_write(xen_cr3, cr3); 1467 1468 __xen_write_cr3(true, cr3); 1469 1470 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1471 } 1472 #endif 1473 1474 static int xen_pgd_alloc(struct mm_struct *mm) 1475 { 1476 pgd_t *pgd = mm->pgd; 1477 int ret = 0; 1478 1479 BUG_ON(PagePinned(virt_to_page(pgd))); 1480 1481 #ifdef CONFIG_X86_64 1482 { 1483 struct page *page = virt_to_page(pgd); 1484 pgd_t *user_pgd; 1485 1486 BUG_ON(page->private != 0); 1487 1488 ret = -ENOMEM; 1489 1490 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1491 page->private = (unsigned long)user_pgd; 1492 1493 if (user_pgd != NULL) { 1494 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1495 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1496 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1497 #endif 1498 ret = 0; 1499 } 1500 1501 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1502 } 1503 #endif 1504 return ret; 1505 } 1506 1507 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1508 { 1509 #ifdef CONFIG_X86_64 1510 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1511 1512 if (user_pgd) 1513 free_page((unsigned long)user_pgd); 1514 #endif 1515 } 1516 1517 /* 1518 * Init-time set_pte while constructing initial pagetables, which 1519 * doesn't allow RO page table pages to be remapped RW. 1520 * 1521 * If there is no MFN for this PFN then this page is initially 1522 * ballooned out so clear the PTE (as in decrease_reservation() in 1523 * drivers/xen/balloon.c). 1524 * 1525 * Many of these PTE updates are done on unpinned and writable pages 1526 * and doing a hypercall for these is unnecessary and expensive. At 1527 * this point it is not possible to tell if a page is pinned or not, 1528 * so always write the PTE directly and rely on Xen trapping and 1529 * emulating any updates as necessary. 1530 */ 1531 __visible pte_t xen_make_pte_init(pteval_t pte) 1532 { 1533 #ifdef CONFIG_X86_64 1534 unsigned long pfn; 1535 1536 /* 1537 * Pages belonging to the initial p2m list mapped outside the default 1538 * address range must be mapped read-only. This region contains the 1539 * page tables for mapping the p2m list, too, and page tables MUST be 1540 * mapped read-only. 1541 */ 1542 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; 1543 if (xen_start_info->mfn_list < __START_KERNEL_map && 1544 pfn >= xen_start_info->first_p2m_pfn && 1545 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) 1546 pte &= ~_PAGE_RW; 1547 #endif 1548 pte = pte_pfn_to_mfn(pte); 1549 return native_make_pte(pte); 1550 } 1551 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); 1552 1553 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1554 { 1555 #ifdef CONFIG_X86_32 1556 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1557 if (pte_mfn(pte) != INVALID_P2M_ENTRY 1558 && pte_val_ma(*ptep) & _PAGE_PRESENT) 1559 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1560 pte_val_ma(pte)); 1561 #endif 1562 native_set_pte(ptep, pte); 1563 } 1564 1565 /* Early in boot, while setting up the initial pagetable, assume 1566 everything is pinned. */ 1567 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1568 { 1569 #ifdef CONFIG_FLATMEM 1570 BUG_ON(mem_map); /* should only be used early */ 1571 #endif 1572 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1573 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1574 } 1575 1576 /* Used for pmd and pud */ 1577 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1578 { 1579 #ifdef CONFIG_FLATMEM 1580 BUG_ON(mem_map); /* should only be used early */ 1581 #endif 1582 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1583 } 1584 1585 /* Early release_pte assumes that all pts are pinned, since there's 1586 only init_mm and anything attached to that is pinned. */ 1587 static void __init xen_release_pte_init(unsigned long pfn) 1588 { 1589 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1590 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1591 } 1592 1593 static void __init xen_release_pmd_init(unsigned long pfn) 1594 { 1595 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1596 } 1597 1598 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1599 { 1600 struct multicall_space mcs; 1601 struct mmuext_op *op; 1602 1603 mcs = __xen_mc_entry(sizeof(*op)); 1604 op = mcs.args; 1605 op->cmd = cmd; 1606 op->arg1.mfn = pfn_to_mfn(pfn); 1607 1608 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1609 } 1610 1611 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1612 { 1613 struct multicall_space mcs; 1614 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1615 1616 mcs = __xen_mc_entry(0); 1617 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1618 pfn_pte(pfn, prot), 0); 1619 } 1620 1621 /* This needs to make sure the new pte page is pinned iff its being 1622 attached to a pinned pagetable. */ 1623 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1624 unsigned level) 1625 { 1626 bool pinned = PagePinned(virt_to_page(mm->pgd)); 1627 1628 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1629 1630 if (pinned) { 1631 struct page *page = pfn_to_page(pfn); 1632 1633 SetPagePinned(page); 1634 1635 if (!PageHighMem(page)) { 1636 xen_mc_batch(); 1637 1638 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1639 1640 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1641 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1642 1643 xen_mc_issue(PARAVIRT_LAZY_MMU); 1644 } else { 1645 /* make sure there are no stray mappings of 1646 this page */ 1647 kmap_flush_unused(); 1648 } 1649 } 1650 } 1651 1652 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1653 { 1654 xen_alloc_ptpage(mm, pfn, PT_PTE); 1655 } 1656 1657 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1658 { 1659 xen_alloc_ptpage(mm, pfn, PT_PMD); 1660 } 1661 1662 /* This should never happen until we're OK to use struct page */ 1663 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1664 { 1665 struct page *page = pfn_to_page(pfn); 1666 bool pinned = PagePinned(page); 1667 1668 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1669 1670 if (pinned) { 1671 if (!PageHighMem(page)) { 1672 xen_mc_batch(); 1673 1674 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1675 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1676 1677 __set_pfn_prot(pfn, PAGE_KERNEL); 1678 1679 xen_mc_issue(PARAVIRT_LAZY_MMU); 1680 } 1681 ClearPagePinned(page); 1682 } 1683 } 1684 1685 static void xen_release_pte(unsigned long pfn) 1686 { 1687 xen_release_ptpage(pfn, PT_PTE); 1688 } 1689 1690 static void xen_release_pmd(unsigned long pfn) 1691 { 1692 xen_release_ptpage(pfn, PT_PMD); 1693 } 1694 1695 #ifdef CONFIG_X86_64 1696 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1697 { 1698 xen_alloc_ptpage(mm, pfn, PT_PUD); 1699 } 1700 1701 static void xen_release_pud(unsigned long pfn) 1702 { 1703 xen_release_ptpage(pfn, PT_PUD); 1704 } 1705 #endif 1706 1707 void __init xen_reserve_top(void) 1708 { 1709 #ifdef CONFIG_X86_32 1710 unsigned long top = HYPERVISOR_VIRT_START; 1711 struct xen_platform_parameters pp; 1712 1713 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1714 top = pp.virt_start; 1715 1716 reserve_top_address(-top); 1717 #endif /* CONFIG_X86_32 */ 1718 } 1719 1720 /* 1721 * Like __va(), but returns address in the kernel mapping (which is 1722 * all we have until the physical memory mapping has been set up. 1723 */ 1724 static void * __init __ka(phys_addr_t paddr) 1725 { 1726 #ifdef CONFIG_X86_64 1727 return (void *)(paddr + __START_KERNEL_map); 1728 #else 1729 return __va(paddr); 1730 #endif 1731 } 1732 1733 /* Convert a machine address to physical address */ 1734 static unsigned long __init m2p(phys_addr_t maddr) 1735 { 1736 phys_addr_t paddr; 1737 1738 maddr &= XEN_PTE_MFN_MASK; 1739 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1740 1741 return paddr; 1742 } 1743 1744 /* Convert a machine address to kernel virtual */ 1745 static void * __init m2v(phys_addr_t maddr) 1746 { 1747 return __ka(m2p(maddr)); 1748 } 1749 1750 /* Set the page permissions on an identity-mapped pages */ 1751 static void __init set_page_prot_flags(void *addr, pgprot_t prot, 1752 unsigned long flags) 1753 { 1754 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1755 pte_t pte = pfn_pte(pfn, prot); 1756 1757 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1758 BUG(); 1759 } 1760 static void __init set_page_prot(void *addr, pgprot_t prot) 1761 { 1762 return set_page_prot_flags(addr, prot, UVMF_NONE); 1763 } 1764 #ifdef CONFIG_X86_32 1765 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1766 { 1767 unsigned pmdidx, pteidx; 1768 unsigned ident_pte; 1769 unsigned long pfn; 1770 1771 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1772 PAGE_SIZE); 1773 1774 ident_pte = 0; 1775 pfn = 0; 1776 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1777 pte_t *pte_page; 1778 1779 /* Reuse or allocate a page of ptes */ 1780 if (pmd_present(pmd[pmdidx])) 1781 pte_page = m2v(pmd[pmdidx].pmd); 1782 else { 1783 /* Check for free pte pages */ 1784 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1785 break; 1786 1787 pte_page = &level1_ident_pgt[ident_pte]; 1788 ident_pte += PTRS_PER_PTE; 1789 1790 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1791 } 1792 1793 /* Install mappings */ 1794 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1795 pte_t pte; 1796 1797 if (pfn > max_pfn_mapped) 1798 max_pfn_mapped = pfn; 1799 1800 if (!pte_none(pte_page[pteidx])) 1801 continue; 1802 1803 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1804 pte_page[pteidx] = pte; 1805 } 1806 } 1807 1808 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1809 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1810 1811 set_page_prot(pmd, PAGE_KERNEL_RO); 1812 } 1813 #endif 1814 void __init xen_setup_machphys_mapping(void) 1815 { 1816 struct xen_machphys_mapping mapping; 1817 1818 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1819 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1820 machine_to_phys_nr = mapping.max_mfn + 1; 1821 } else { 1822 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1823 } 1824 #ifdef CONFIG_X86_32 1825 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) 1826 < machine_to_phys_mapping); 1827 #endif 1828 } 1829 1830 #ifdef CONFIG_X86_64 1831 static void __init convert_pfn_mfn(void *v) 1832 { 1833 pte_t *pte = v; 1834 int i; 1835 1836 /* All levels are converted the same way, so just treat them 1837 as ptes. */ 1838 for (i = 0; i < PTRS_PER_PTE; i++) 1839 pte[i] = xen_make_pte(pte[i].pte); 1840 } 1841 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1842 unsigned long addr) 1843 { 1844 if (*pt_base == PFN_DOWN(__pa(addr))) { 1845 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1846 clear_page((void *)addr); 1847 (*pt_base)++; 1848 } 1849 if (*pt_end == PFN_DOWN(__pa(addr))) { 1850 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1851 clear_page((void *)addr); 1852 (*pt_end)--; 1853 } 1854 } 1855 /* 1856 * Set up the initial kernel pagetable. 1857 * 1858 * We can construct this by grafting the Xen provided pagetable into 1859 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1860 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1861 * kernel has a physical mapping to start with - but that's enough to 1862 * get __va working. We need to fill in the rest of the physical 1863 * mapping once some sort of allocator has been set up. 1864 */ 1865 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1866 { 1867 pud_t *l3; 1868 pmd_t *l2; 1869 unsigned long addr[3]; 1870 unsigned long pt_base, pt_end; 1871 unsigned i; 1872 1873 /* max_pfn_mapped is the last pfn mapped in the initial memory 1874 * mappings. Considering that on Xen after the kernel mappings we 1875 * have the mappings of some pages that don't exist in pfn space, we 1876 * set max_pfn_mapped to the last real pfn mapped. */ 1877 if (xen_start_info->mfn_list < __START_KERNEL_map) 1878 max_pfn_mapped = xen_start_info->first_p2m_pfn; 1879 else 1880 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1881 1882 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1883 pt_end = pt_base + xen_start_info->nr_pt_frames; 1884 1885 /* Zap identity mapping */ 1886 init_top_pgt[0] = __pgd(0); 1887 1888 /* Pre-constructed entries are in pfn, so convert to mfn */ 1889 /* L4[272] -> level3_ident_pgt */ 1890 /* L4[511] -> level3_kernel_pgt */ 1891 convert_pfn_mfn(init_top_pgt); 1892 1893 /* L3_i[0] -> level2_ident_pgt */ 1894 convert_pfn_mfn(level3_ident_pgt); 1895 /* L3_k[510] -> level2_kernel_pgt */ 1896 /* L3_k[511] -> level2_fixmap_pgt */ 1897 convert_pfn_mfn(level3_kernel_pgt); 1898 1899 /* L3_k[511][506] -> level1_fixmap_pgt */ 1900 convert_pfn_mfn(level2_fixmap_pgt); 1901 1902 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1903 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1904 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1905 1906 addr[0] = (unsigned long)pgd; 1907 addr[1] = (unsigned long)l3; 1908 addr[2] = (unsigned long)l2; 1909 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: 1910 * Both L4[272][0] and L4[511][510] have entries that point to the same 1911 * L2 (PMD) tables. Meaning that if you modify it in __va space 1912 * it will be also modified in the __ka space! (But if you just 1913 * modify the PMD table to point to other PTE's or none, then you 1914 * are OK - which is what cleanup_highmap does) */ 1915 copy_page(level2_ident_pgt, l2); 1916 /* Graft it onto L4[511][510] */ 1917 copy_page(level2_kernel_pgt, l2); 1918 1919 /* 1920 * Zap execute permission from the ident map. Due to the sharing of 1921 * L1 entries we need to do this in the L2. 1922 */ 1923 if (__supported_pte_mask & _PAGE_NX) { 1924 for (i = 0; i < PTRS_PER_PMD; ++i) { 1925 if (pmd_none(level2_ident_pgt[i])) 1926 continue; 1927 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); 1928 } 1929 } 1930 1931 /* Copy the initial P->M table mappings if necessary. */ 1932 i = pgd_index(xen_start_info->mfn_list); 1933 if (i && i < pgd_index(__START_KERNEL_map)) 1934 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; 1935 1936 /* Make pagetable pieces RO */ 1937 set_page_prot(init_top_pgt, PAGE_KERNEL_RO); 1938 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1939 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1940 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1941 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1942 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1943 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1944 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO); 1945 1946 /* Pin down new L4 */ 1947 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1948 PFN_DOWN(__pa_symbol(init_top_pgt))); 1949 1950 /* Unpin Xen-provided one */ 1951 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1952 1953 /* 1954 * At this stage there can be no user pgd, and no page structure to 1955 * attach it to, so make sure we just set kernel pgd. 1956 */ 1957 xen_mc_batch(); 1958 __xen_write_cr3(true, __pa(init_top_pgt)); 1959 xen_mc_issue(PARAVIRT_LAZY_CPU); 1960 1961 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 1962 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 1963 * the initial domain. For guests using the toolstack, they are in: 1964 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 1965 * rip out the [L4] (pgd), but for guests we shave off three pages. 1966 */ 1967 for (i = 0; i < ARRAY_SIZE(addr); i++) 1968 check_pt_base(&pt_base, &pt_end, addr[i]); 1969 1970 /* Our (by three pages) smaller Xen pagetable that we are using */ 1971 xen_pt_base = PFN_PHYS(pt_base); 1972 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; 1973 memblock_reserve(xen_pt_base, xen_pt_size); 1974 1975 /* Revector the xen_start_info */ 1976 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 1977 } 1978 1979 /* 1980 * Read a value from a physical address. 1981 */ 1982 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) 1983 { 1984 unsigned long *vaddr; 1985 unsigned long val; 1986 1987 vaddr = early_memremap_ro(addr, sizeof(val)); 1988 val = *vaddr; 1989 early_memunmap(vaddr, sizeof(val)); 1990 return val; 1991 } 1992 1993 /* 1994 * Translate a virtual address to a physical one without relying on mapped 1995 * page tables. Don't rely on big pages being aligned in (guest) physical 1996 * space! 1997 */ 1998 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) 1999 { 2000 phys_addr_t pa; 2001 pgd_t pgd; 2002 pud_t pud; 2003 pmd_t pmd; 2004 pte_t pte; 2005 2006 pa = read_cr3_pa(); 2007 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * 2008 sizeof(pgd))); 2009 if (!pgd_present(pgd)) 2010 return 0; 2011 2012 pa = pgd_val(pgd) & PTE_PFN_MASK; 2013 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * 2014 sizeof(pud))); 2015 if (!pud_present(pud)) 2016 return 0; 2017 pa = pud_val(pud) & PTE_PFN_MASK; 2018 if (pud_large(pud)) 2019 return pa + (vaddr & ~PUD_MASK); 2020 2021 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * 2022 sizeof(pmd))); 2023 if (!pmd_present(pmd)) 2024 return 0; 2025 pa = pmd_val(pmd) & PTE_PFN_MASK; 2026 if (pmd_large(pmd)) 2027 return pa + (vaddr & ~PMD_MASK); 2028 2029 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * 2030 sizeof(pte))); 2031 if (!pte_present(pte)) 2032 return 0; 2033 pa = pte_pfn(pte) << PAGE_SHIFT; 2034 2035 return pa | (vaddr & ~PAGE_MASK); 2036 } 2037 2038 /* 2039 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to 2040 * this area. 2041 */ 2042 void __init xen_relocate_p2m(void) 2043 { 2044 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; 2045 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; 2046 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; 2047 pte_t *pt; 2048 pmd_t *pmd; 2049 pud_t *pud; 2050 pgd_t *pgd; 2051 unsigned long *new_p2m; 2052 int save_pud; 2053 2054 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 2055 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; 2056 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; 2057 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; 2058 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; 2059 n_frames = n_pte + n_pt + n_pmd + n_pud; 2060 2061 new_area = xen_find_free_area(PFN_PHYS(n_frames)); 2062 if (!new_area) { 2063 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); 2064 BUG(); 2065 } 2066 2067 /* 2068 * Setup the page tables for addressing the new p2m list. 2069 * We have asked the hypervisor to map the p2m list at the user address 2070 * PUD_SIZE. It may have done so, or it may have used a kernel space 2071 * address depending on the Xen version. 2072 * To avoid any possible virtual address collision, just use 2073 * 2 * PUD_SIZE for the new area. 2074 */ 2075 pud_phys = new_area; 2076 pmd_phys = pud_phys + PFN_PHYS(n_pud); 2077 pt_phys = pmd_phys + PFN_PHYS(n_pmd); 2078 p2m_pfn = PFN_DOWN(pt_phys) + n_pt; 2079 2080 pgd = __va(read_cr3_pa()); 2081 new_p2m = (unsigned long *)(2 * PGDIR_SIZE); 2082 save_pud = n_pud; 2083 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { 2084 pud = early_memremap(pud_phys, PAGE_SIZE); 2085 clear_page(pud); 2086 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); 2087 idx_pmd++) { 2088 pmd = early_memremap(pmd_phys, PAGE_SIZE); 2089 clear_page(pmd); 2090 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); 2091 idx_pt++) { 2092 pt = early_memremap(pt_phys, PAGE_SIZE); 2093 clear_page(pt); 2094 for (idx_pte = 0; 2095 idx_pte < min(n_pte, PTRS_PER_PTE); 2096 idx_pte++) { 2097 set_pte(pt + idx_pte, 2098 pfn_pte(p2m_pfn, PAGE_KERNEL)); 2099 p2m_pfn++; 2100 } 2101 n_pte -= PTRS_PER_PTE; 2102 early_memunmap(pt, PAGE_SIZE); 2103 make_lowmem_page_readonly(__va(pt_phys)); 2104 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, 2105 PFN_DOWN(pt_phys)); 2106 set_pmd(pmd + idx_pt, 2107 __pmd(_PAGE_TABLE | pt_phys)); 2108 pt_phys += PAGE_SIZE; 2109 } 2110 n_pt -= PTRS_PER_PMD; 2111 early_memunmap(pmd, PAGE_SIZE); 2112 make_lowmem_page_readonly(__va(pmd_phys)); 2113 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, 2114 PFN_DOWN(pmd_phys)); 2115 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys)); 2116 pmd_phys += PAGE_SIZE; 2117 } 2118 n_pmd -= PTRS_PER_PUD; 2119 early_memunmap(pud, PAGE_SIZE); 2120 make_lowmem_page_readonly(__va(pud_phys)); 2121 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); 2122 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); 2123 pud_phys += PAGE_SIZE; 2124 } 2125 2126 /* Now copy the old p2m info to the new area. */ 2127 memcpy(new_p2m, xen_p2m_addr, size); 2128 xen_p2m_addr = new_p2m; 2129 2130 /* Release the old p2m list and set new list info. */ 2131 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); 2132 BUG_ON(!p2m_pfn); 2133 p2m_pfn_end = p2m_pfn + PFN_DOWN(size); 2134 2135 if (xen_start_info->mfn_list < __START_KERNEL_map) { 2136 pfn = xen_start_info->first_p2m_pfn; 2137 pfn_end = xen_start_info->first_p2m_pfn + 2138 xen_start_info->nr_p2m_frames; 2139 set_pgd(pgd + 1, __pgd(0)); 2140 } else { 2141 pfn = p2m_pfn; 2142 pfn_end = p2m_pfn_end; 2143 } 2144 2145 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); 2146 while (pfn < pfn_end) { 2147 if (pfn == p2m_pfn) { 2148 pfn = p2m_pfn_end; 2149 continue; 2150 } 2151 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 2152 pfn++; 2153 } 2154 2155 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 2156 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); 2157 xen_start_info->nr_p2m_frames = n_frames; 2158 } 2159 2160 #else /* !CONFIG_X86_64 */ 2161 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 2162 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 2163 2164 static void __init xen_write_cr3_init(unsigned long cr3) 2165 { 2166 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 2167 2168 BUG_ON(read_cr3_pa() != __pa(initial_page_table)); 2169 BUG_ON(cr3 != __pa(swapper_pg_dir)); 2170 2171 /* 2172 * We are switching to swapper_pg_dir for the first time (from 2173 * initial_page_table) and therefore need to mark that page 2174 * read-only and then pin it. 2175 * 2176 * Xen disallows sharing of kernel PMDs for PAE 2177 * guests. Therefore we must copy the kernel PMD from 2178 * initial_page_table into a new kernel PMD to be used in 2179 * swapper_pg_dir. 2180 */ 2181 swapper_kernel_pmd = 2182 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2183 copy_page(swapper_kernel_pmd, initial_kernel_pmd); 2184 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 2185 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 2186 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 2187 2188 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 2189 xen_write_cr3(cr3); 2190 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 2191 2192 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 2193 PFN_DOWN(__pa(initial_page_table))); 2194 set_page_prot(initial_page_table, PAGE_KERNEL); 2195 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 2196 2197 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2198 } 2199 2200 /* 2201 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be 2202 * not the first page table in the page table pool. 2203 * Iterate through the initial page tables to find the real page table base. 2204 */ 2205 static phys_addr_t __init xen_find_pt_base(pmd_t *pmd) 2206 { 2207 phys_addr_t pt_base, paddr; 2208 unsigned pmdidx; 2209 2210 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd)); 2211 2212 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) 2213 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) { 2214 paddr = m2p(pmd[pmdidx].pmd); 2215 pt_base = min(pt_base, paddr); 2216 } 2217 2218 return pt_base; 2219 } 2220 2221 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 2222 { 2223 pmd_t *kernel_pmd; 2224 2225 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 2226 2227 xen_pt_base = xen_find_pt_base(kernel_pmd); 2228 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE; 2229 2230 initial_kernel_pmd = 2231 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2232 2233 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024); 2234 2235 copy_page(initial_kernel_pmd, kernel_pmd); 2236 2237 xen_map_identity_early(initial_kernel_pmd, max_pfn); 2238 2239 copy_page(initial_page_table, pgd); 2240 initial_page_table[KERNEL_PGD_BOUNDARY] = 2241 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 2242 2243 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 2244 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 2245 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 2246 2247 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 2248 2249 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 2250 PFN_DOWN(__pa(initial_page_table))); 2251 xen_write_cr3(__pa(initial_page_table)); 2252 2253 memblock_reserve(xen_pt_base, xen_pt_size); 2254 } 2255 #endif /* CONFIG_X86_64 */ 2256 2257 void __init xen_reserve_special_pages(void) 2258 { 2259 phys_addr_t paddr; 2260 2261 memblock_reserve(__pa(xen_start_info), PAGE_SIZE); 2262 if (xen_start_info->store_mfn) { 2263 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); 2264 memblock_reserve(paddr, PAGE_SIZE); 2265 } 2266 if (!xen_initial_domain()) { 2267 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); 2268 memblock_reserve(paddr, PAGE_SIZE); 2269 } 2270 } 2271 2272 void __init xen_pt_check_e820(void) 2273 { 2274 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { 2275 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); 2276 BUG(); 2277 } 2278 } 2279 2280 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2281 2282 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2283 { 2284 pte_t pte; 2285 2286 phys >>= PAGE_SHIFT; 2287 2288 switch (idx) { 2289 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2290 #ifdef CONFIG_X86_32 2291 case FIX_WP_TEST: 2292 # ifdef CONFIG_HIGHMEM 2293 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 2294 # endif 2295 #elif defined(CONFIG_X86_VSYSCALL_EMULATION) 2296 case VSYSCALL_PAGE: 2297 #endif 2298 case FIX_TEXT_POKE0: 2299 case FIX_TEXT_POKE1: 2300 /* All local page mappings */ 2301 pte = pfn_pte(phys, prot); 2302 break; 2303 2304 #ifdef CONFIG_X86_LOCAL_APIC 2305 case FIX_APIC_BASE: /* maps dummy local APIC */ 2306 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2307 break; 2308 #endif 2309 2310 #ifdef CONFIG_X86_IO_APIC 2311 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2312 /* 2313 * We just don't map the IO APIC - all access is via 2314 * hypercalls. Keep the address in the pte for reference. 2315 */ 2316 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2317 break; 2318 #endif 2319 2320 case FIX_PARAVIRT_BOOTMAP: 2321 /* This is an MFN, but it isn't an IO mapping from the 2322 IO domain */ 2323 pte = mfn_pte(phys, prot); 2324 break; 2325 2326 default: 2327 /* By default, set_fixmap is used for hardware mappings */ 2328 pte = mfn_pte(phys, prot); 2329 break; 2330 } 2331 2332 __native_set_fixmap(idx, pte); 2333 2334 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2335 /* Replicate changes to map the vsyscall page into the user 2336 pagetable vsyscall mapping. */ 2337 if (idx == VSYSCALL_PAGE) { 2338 unsigned long vaddr = __fix_to_virt(idx); 2339 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2340 } 2341 #endif 2342 } 2343 2344 static void __init xen_post_allocator_init(void) 2345 { 2346 pv_mmu_ops.set_pte = xen_set_pte; 2347 pv_mmu_ops.set_pmd = xen_set_pmd; 2348 pv_mmu_ops.set_pud = xen_set_pud; 2349 #ifdef CONFIG_X86_64 2350 pv_mmu_ops.set_p4d = xen_set_p4d; 2351 #endif 2352 2353 /* This will work as long as patching hasn't happened yet 2354 (which it hasn't) */ 2355 pv_mmu_ops.alloc_pte = xen_alloc_pte; 2356 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 2357 pv_mmu_ops.release_pte = xen_release_pte; 2358 pv_mmu_ops.release_pmd = xen_release_pmd; 2359 #ifdef CONFIG_X86_64 2360 pv_mmu_ops.alloc_pud = xen_alloc_pud; 2361 pv_mmu_ops.release_pud = xen_release_pud; 2362 #endif 2363 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte); 2364 2365 #ifdef CONFIG_X86_64 2366 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2367 SetPagePinned(virt_to_page(level3_user_vsyscall)); 2368 #endif 2369 xen_mark_init_mm_pinned(); 2370 } 2371 2372 static void xen_leave_lazy_mmu(void) 2373 { 2374 preempt_disable(); 2375 xen_mc_flush(); 2376 paravirt_leave_lazy_mmu(); 2377 preempt_enable(); 2378 } 2379 2380 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 2381 .read_cr2 = xen_read_cr2, 2382 .write_cr2 = xen_write_cr2, 2383 2384 .read_cr3 = xen_read_cr3, 2385 .write_cr3 = xen_write_cr3_init, 2386 2387 .flush_tlb_user = xen_flush_tlb, 2388 .flush_tlb_kernel = xen_flush_tlb, 2389 .flush_tlb_one_user = xen_flush_tlb_one_user, 2390 .flush_tlb_others = xen_flush_tlb_others, 2391 2392 .pgd_alloc = xen_pgd_alloc, 2393 .pgd_free = xen_pgd_free, 2394 2395 .alloc_pte = xen_alloc_pte_init, 2396 .release_pte = xen_release_pte_init, 2397 .alloc_pmd = xen_alloc_pmd_init, 2398 .release_pmd = xen_release_pmd_init, 2399 2400 .set_pte = xen_set_pte_init, 2401 .set_pte_at = xen_set_pte_at, 2402 .set_pmd = xen_set_pmd_hyper, 2403 2404 .ptep_modify_prot_start = __ptep_modify_prot_start, 2405 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2406 2407 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2408 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2409 2410 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), 2411 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2412 2413 #ifdef CONFIG_X86_PAE 2414 .set_pte_atomic = xen_set_pte_atomic, 2415 .pte_clear = xen_pte_clear, 2416 .pmd_clear = xen_pmd_clear, 2417 #endif /* CONFIG_X86_PAE */ 2418 .set_pud = xen_set_pud_hyper, 2419 2420 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2421 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2422 2423 #ifdef CONFIG_X86_64 2424 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2425 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2426 .set_p4d = xen_set_p4d_hyper, 2427 2428 .alloc_pud = xen_alloc_pmd_init, 2429 .release_pud = xen_release_pmd_init, 2430 2431 #if CONFIG_PGTABLE_LEVELS >= 5 2432 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val), 2433 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d), 2434 #endif 2435 #endif /* CONFIG_X86_64 */ 2436 2437 .activate_mm = xen_activate_mm, 2438 .dup_mmap = xen_dup_mmap, 2439 .exit_mmap = xen_exit_mmap, 2440 2441 .lazy_mode = { 2442 .enter = paravirt_enter_lazy_mmu, 2443 .leave = xen_leave_lazy_mmu, 2444 .flush = paravirt_flush_lazy_mmu, 2445 }, 2446 2447 .set_fixmap = xen_set_fixmap, 2448 }; 2449 2450 void __init xen_init_mmu_ops(void) 2451 { 2452 x86_init.paging.pagetable_init = xen_pagetable_init; 2453 2454 pv_mmu_ops = xen_mmu_ops; 2455 2456 memset(dummy_mapping, 0xff, PAGE_SIZE); 2457 } 2458 2459 /* Protected by xen_reservation_lock. */ 2460 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2461 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2462 2463 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2464 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2465 unsigned long *in_frames, 2466 unsigned long *out_frames) 2467 { 2468 int i; 2469 struct multicall_space mcs; 2470 2471 xen_mc_batch(); 2472 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2473 mcs = __xen_mc_entry(0); 2474 2475 if (in_frames) 2476 in_frames[i] = virt_to_mfn(vaddr); 2477 2478 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2479 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2480 2481 if (out_frames) 2482 out_frames[i] = virt_to_pfn(vaddr); 2483 } 2484 xen_mc_issue(0); 2485 } 2486 2487 /* 2488 * Update the pfn-to-mfn mappings for a virtual address range, either to 2489 * point to an array of mfns, or contiguously from a single starting 2490 * mfn. 2491 */ 2492 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2493 unsigned long *mfns, 2494 unsigned long first_mfn) 2495 { 2496 unsigned i, limit; 2497 unsigned long mfn; 2498 2499 xen_mc_batch(); 2500 2501 limit = 1u << order; 2502 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2503 struct multicall_space mcs; 2504 unsigned flags; 2505 2506 mcs = __xen_mc_entry(0); 2507 if (mfns) 2508 mfn = mfns[i]; 2509 else 2510 mfn = first_mfn + i; 2511 2512 if (i < (limit - 1)) 2513 flags = 0; 2514 else { 2515 if (order == 0) 2516 flags = UVMF_INVLPG | UVMF_ALL; 2517 else 2518 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2519 } 2520 2521 MULTI_update_va_mapping(mcs.mc, vaddr, 2522 mfn_pte(mfn, PAGE_KERNEL), flags); 2523 2524 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2525 } 2526 2527 xen_mc_issue(0); 2528 } 2529 2530 /* 2531 * Perform the hypercall to exchange a region of our pfns to point to 2532 * memory with the required contiguous alignment. Takes the pfns as 2533 * input, and populates mfns as output. 2534 * 2535 * Returns a success code indicating whether the hypervisor was able to 2536 * satisfy the request or not. 2537 */ 2538 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2539 unsigned long *pfns_in, 2540 unsigned long extents_out, 2541 unsigned int order_out, 2542 unsigned long *mfns_out, 2543 unsigned int address_bits) 2544 { 2545 long rc; 2546 int success; 2547 2548 struct xen_memory_exchange exchange = { 2549 .in = { 2550 .nr_extents = extents_in, 2551 .extent_order = order_in, 2552 .extent_start = pfns_in, 2553 .domid = DOMID_SELF 2554 }, 2555 .out = { 2556 .nr_extents = extents_out, 2557 .extent_order = order_out, 2558 .extent_start = mfns_out, 2559 .address_bits = address_bits, 2560 .domid = DOMID_SELF 2561 } 2562 }; 2563 2564 BUG_ON(extents_in << order_in != extents_out << order_out); 2565 2566 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2567 success = (exchange.nr_exchanged == extents_in); 2568 2569 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2570 BUG_ON(success && (rc != 0)); 2571 2572 return success; 2573 } 2574 2575 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2576 unsigned int address_bits, 2577 dma_addr_t *dma_handle) 2578 { 2579 unsigned long *in_frames = discontig_frames, out_frame; 2580 unsigned long flags; 2581 int success; 2582 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2583 2584 /* 2585 * Currently an auto-translated guest will not perform I/O, nor will 2586 * it require PAE page directories below 4GB. Therefore any calls to 2587 * this function are redundant and can be ignored. 2588 */ 2589 2590 if (unlikely(order > MAX_CONTIG_ORDER)) 2591 return -ENOMEM; 2592 2593 memset((void *) vstart, 0, PAGE_SIZE << order); 2594 2595 spin_lock_irqsave(&xen_reservation_lock, flags); 2596 2597 /* 1. Zap current PTEs, remembering MFNs. */ 2598 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2599 2600 /* 2. Get a new contiguous memory extent. */ 2601 out_frame = virt_to_pfn(vstart); 2602 success = xen_exchange_memory(1UL << order, 0, in_frames, 2603 1, order, &out_frame, 2604 address_bits); 2605 2606 /* 3. Map the new extent in place of old pages. */ 2607 if (success) 2608 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2609 else 2610 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2611 2612 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2613 2614 *dma_handle = virt_to_machine(vstart).maddr; 2615 return success ? 0 : -ENOMEM; 2616 } 2617 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2618 2619 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2620 { 2621 unsigned long *out_frames = discontig_frames, in_frame; 2622 unsigned long flags; 2623 int success; 2624 unsigned long vstart; 2625 2626 if (unlikely(order > MAX_CONTIG_ORDER)) 2627 return; 2628 2629 vstart = (unsigned long)phys_to_virt(pstart); 2630 memset((void *) vstart, 0, PAGE_SIZE << order); 2631 2632 spin_lock_irqsave(&xen_reservation_lock, flags); 2633 2634 /* 1. Find start MFN of contiguous extent. */ 2635 in_frame = virt_to_mfn(vstart); 2636 2637 /* 2. Zap current PTEs. */ 2638 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2639 2640 /* 3. Do the exchange for non-contiguous MFNs. */ 2641 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2642 0, out_frames, 0); 2643 2644 /* 4. Map new pages in place of old pages. */ 2645 if (success) 2646 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2647 else 2648 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2649 2650 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2651 } 2652 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2653 2654 #ifdef CONFIG_KEXEC_CORE 2655 phys_addr_t paddr_vmcoreinfo_note(void) 2656 { 2657 if (xen_pv_domain()) 2658 return virt_to_machine(vmcoreinfo_note).maddr; 2659 else 2660 return __pa(vmcoreinfo_note); 2661 } 2662 #endif /* CONFIG_KEXEC_CORE */ 2663