xref: /linux/arch/x86/xen/mmu_pv.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 #ifdef CONFIG_KEXEC_CORE
53 #include <linux/kexec.h>
54 #endif
55 
56 #include <trace/events/xen.h>
57 
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/fixmap.h>
61 #include <asm/mmu_context.h>
62 #include <asm/setup.h>
63 #include <asm/paravirt.h>
64 #include <asm/e820/api.h>
65 #include <asm/linkage.h>
66 #include <asm/page.h>
67 #include <asm/init.h>
68 #include <asm/pat.h>
69 #include <asm/smp.h>
70 
71 #include <asm/xen/hypercall.h>
72 #include <asm/xen/hypervisor.h>
73 
74 #include <xen/xen.h>
75 #include <xen/page.h>
76 #include <xen/interface/xen.h>
77 #include <xen/interface/hvm/hvm_op.h>
78 #include <xen/interface/version.h>
79 #include <xen/interface/memory.h>
80 #include <xen/hvc-console.h>
81 
82 #include "multicalls.h"
83 #include "mmu.h"
84 #include "debugfs.h"
85 
86 #ifdef CONFIG_X86_32
87 /*
88  * Identity map, in addition to plain kernel map.  This needs to be
89  * large enough to allocate page table pages to allocate the rest.
90  * Each page can map 2MB.
91  */
92 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94 #endif
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
99 
100 /*
101  * Note about cr3 (pagetable base) values:
102  *
103  * xen_cr3 contains the current logical cr3 value; it contains the
104  * last set cr3.  This may not be the current effective cr3, because
105  * its update may be being lazily deferred.  However, a vcpu looking
106  * at its own cr3 can use this value knowing that it everything will
107  * be self-consistent.
108  *
109  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110  * hypercall to set the vcpu cr3 is complete (so it may be a little
111  * out of date, but it will never be set early).  If one vcpu is
112  * looking at another vcpu's cr3 value, it should use this variable.
113  */
114 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
116 
117 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
118 
119 /*
120  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
121  * redzone above it, so round it up to a PGD boundary.
122  */
123 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 
125 void make_lowmem_page_readonly(void *vaddr)
126 {
127 	pte_t *pte, ptev;
128 	unsigned long address = (unsigned long)vaddr;
129 	unsigned int level;
130 
131 	pte = lookup_address(address, &level);
132 	if (pte == NULL)
133 		return;		/* vaddr missing */
134 
135 	ptev = pte_wrprotect(*pte);
136 
137 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
138 		BUG();
139 }
140 
141 void make_lowmem_page_readwrite(void *vaddr)
142 {
143 	pte_t *pte, ptev;
144 	unsigned long address = (unsigned long)vaddr;
145 	unsigned int level;
146 
147 	pte = lookup_address(address, &level);
148 	if (pte == NULL)
149 		return;		/* vaddr missing */
150 
151 	ptev = pte_mkwrite(*pte);
152 
153 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154 		BUG();
155 }
156 
157 
158 static bool xen_page_pinned(void *ptr)
159 {
160 	struct page *page = virt_to_page(ptr);
161 
162 	return PagePinned(page);
163 }
164 
165 static void xen_extend_mmu_update(const struct mmu_update *update)
166 {
167 	struct multicall_space mcs;
168 	struct mmu_update *u;
169 
170 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
171 
172 	if (mcs.mc != NULL) {
173 		mcs.mc->args[1]++;
174 	} else {
175 		mcs = __xen_mc_entry(sizeof(*u));
176 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
177 	}
178 
179 	u = mcs.args;
180 	*u = *update;
181 }
182 
183 static void xen_extend_mmuext_op(const struct mmuext_op *op)
184 {
185 	struct multicall_space mcs;
186 	struct mmuext_op *u;
187 
188 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
189 
190 	if (mcs.mc != NULL) {
191 		mcs.mc->args[1]++;
192 	} else {
193 		mcs = __xen_mc_entry(sizeof(*u));
194 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
195 	}
196 
197 	u = mcs.args;
198 	*u = *op;
199 }
200 
201 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
202 {
203 	struct mmu_update u;
204 
205 	preempt_disable();
206 
207 	xen_mc_batch();
208 
209 	/* ptr may be ioremapped for 64-bit pagetable setup */
210 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
211 	u.val = pmd_val_ma(val);
212 	xen_extend_mmu_update(&u);
213 
214 	xen_mc_issue(PARAVIRT_LAZY_MMU);
215 
216 	preempt_enable();
217 }
218 
219 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
220 {
221 	trace_xen_mmu_set_pmd(ptr, val);
222 
223 	/* If page is not pinned, we can just update the entry
224 	   directly */
225 	if (!xen_page_pinned(ptr)) {
226 		*ptr = val;
227 		return;
228 	}
229 
230 	xen_set_pmd_hyper(ptr, val);
231 }
232 
233 /*
234  * Associate a virtual page frame with a given physical page frame
235  * and protection flags for that frame.
236  */
237 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
238 {
239 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
240 }
241 
242 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
243 {
244 	struct mmu_update u;
245 
246 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
247 		return false;
248 
249 	xen_mc_batch();
250 
251 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
252 	u.val = pte_val_ma(pteval);
253 	xen_extend_mmu_update(&u);
254 
255 	xen_mc_issue(PARAVIRT_LAZY_MMU);
256 
257 	return true;
258 }
259 
260 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
261 {
262 	if (!xen_batched_set_pte(ptep, pteval)) {
263 		/*
264 		 * Could call native_set_pte() here and trap and
265 		 * emulate the PTE write but with 32-bit guests this
266 		 * needs two traps (one for each of the two 32-bit
267 		 * words in the PTE) so do one hypercall directly
268 		 * instead.
269 		 */
270 		struct mmu_update u;
271 
272 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
273 		u.val = pte_val_ma(pteval);
274 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
275 	}
276 }
277 
278 static void xen_set_pte(pte_t *ptep, pte_t pteval)
279 {
280 	trace_xen_mmu_set_pte(ptep, pteval);
281 	__xen_set_pte(ptep, pteval);
282 }
283 
284 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
285 		    pte_t *ptep, pte_t pteval)
286 {
287 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
288 	__xen_set_pte(ptep, pteval);
289 }
290 
291 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
292 				 unsigned long addr, pte_t *ptep)
293 {
294 	/* Just return the pte as-is.  We preserve the bits on commit */
295 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
296 	return *ptep;
297 }
298 
299 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
300 				 pte_t *ptep, pte_t pte)
301 {
302 	struct mmu_update u;
303 
304 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
305 	xen_mc_batch();
306 
307 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
308 	u.val = pte_val_ma(pte);
309 	xen_extend_mmu_update(&u);
310 
311 	xen_mc_issue(PARAVIRT_LAZY_MMU);
312 }
313 
314 /* Assume pteval_t is equivalent to all the other *val_t types. */
315 static pteval_t pte_mfn_to_pfn(pteval_t val)
316 {
317 	if (val & _PAGE_PRESENT) {
318 		unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
319 		unsigned long pfn = mfn_to_pfn(mfn);
320 
321 		pteval_t flags = val & PTE_FLAGS_MASK;
322 		if (unlikely(pfn == ~0))
323 			val = flags & ~_PAGE_PRESENT;
324 		else
325 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
326 	}
327 
328 	return val;
329 }
330 
331 static pteval_t pte_pfn_to_mfn(pteval_t val)
332 {
333 	if (val & _PAGE_PRESENT) {
334 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
335 		pteval_t flags = val & PTE_FLAGS_MASK;
336 		unsigned long mfn;
337 
338 		mfn = __pfn_to_mfn(pfn);
339 
340 		/*
341 		 * If there's no mfn for the pfn, then just create an
342 		 * empty non-present pte.  Unfortunately this loses
343 		 * information about the original pfn, so
344 		 * pte_mfn_to_pfn is asymmetric.
345 		 */
346 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
347 			mfn = 0;
348 			flags = 0;
349 		} else
350 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
351 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
352 	}
353 
354 	return val;
355 }
356 
357 __visible pteval_t xen_pte_val(pte_t pte)
358 {
359 	pteval_t pteval = pte.pte;
360 
361 	return pte_mfn_to_pfn(pteval);
362 }
363 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
364 
365 __visible pgdval_t xen_pgd_val(pgd_t pgd)
366 {
367 	return pte_mfn_to_pfn(pgd.pgd);
368 }
369 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
370 
371 __visible pte_t xen_make_pte(pteval_t pte)
372 {
373 	pte = pte_pfn_to_mfn(pte);
374 
375 	return native_make_pte(pte);
376 }
377 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
378 
379 __visible pgd_t xen_make_pgd(pgdval_t pgd)
380 {
381 	pgd = pte_pfn_to_mfn(pgd);
382 	return native_make_pgd(pgd);
383 }
384 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
385 
386 __visible pmdval_t xen_pmd_val(pmd_t pmd)
387 {
388 	return pte_mfn_to_pfn(pmd.pmd);
389 }
390 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
391 
392 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
393 {
394 	struct mmu_update u;
395 
396 	preempt_disable();
397 
398 	xen_mc_batch();
399 
400 	/* ptr may be ioremapped for 64-bit pagetable setup */
401 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
402 	u.val = pud_val_ma(val);
403 	xen_extend_mmu_update(&u);
404 
405 	xen_mc_issue(PARAVIRT_LAZY_MMU);
406 
407 	preempt_enable();
408 }
409 
410 static void xen_set_pud(pud_t *ptr, pud_t val)
411 {
412 	trace_xen_mmu_set_pud(ptr, val);
413 
414 	/* If page is not pinned, we can just update the entry
415 	   directly */
416 	if (!xen_page_pinned(ptr)) {
417 		*ptr = val;
418 		return;
419 	}
420 
421 	xen_set_pud_hyper(ptr, val);
422 }
423 
424 #ifdef CONFIG_X86_PAE
425 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
426 {
427 	trace_xen_mmu_set_pte_atomic(ptep, pte);
428 	set_64bit((u64 *)ptep, native_pte_val(pte));
429 }
430 
431 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
432 {
433 	trace_xen_mmu_pte_clear(mm, addr, ptep);
434 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
435 		native_pte_clear(mm, addr, ptep);
436 }
437 
438 static void xen_pmd_clear(pmd_t *pmdp)
439 {
440 	trace_xen_mmu_pmd_clear(pmdp);
441 	set_pmd(pmdp, __pmd(0));
442 }
443 #endif	/* CONFIG_X86_PAE */
444 
445 __visible pmd_t xen_make_pmd(pmdval_t pmd)
446 {
447 	pmd = pte_pfn_to_mfn(pmd);
448 	return native_make_pmd(pmd);
449 }
450 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
451 
452 #ifdef CONFIG_X86_64
453 __visible pudval_t xen_pud_val(pud_t pud)
454 {
455 	return pte_mfn_to_pfn(pud.pud);
456 }
457 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
458 
459 __visible pud_t xen_make_pud(pudval_t pud)
460 {
461 	pud = pte_pfn_to_mfn(pud);
462 
463 	return native_make_pud(pud);
464 }
465 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
466 
467 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
468 {
469 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
470 	unsigned offset = pgd - pgd_page;
471 	pgd_t *user_ptr = NULL;
472 
473 	if (offset < pgd_index(USER_LIMIT)) {
474 		struct page *page = virt_to_page(pgd_page);
475 		user_ptr = (pgd_t *)page->private;
476 		if (user_ptr)
477 			user_ptr += offset;
478 	}
479 
480 	return user_ptr;
481 }
482 
483 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
484 {
485 	struct mmu_update u;
486 
487 	u.ptr = virt_to_machine(ptr).maddr;
488 	u.val = p4d_val_ma(val);
489 	xen_extend_mmu_update(&u);
490 }
491 
492 /*
493  * Raw hypercall-based set_p4d, intended for in early boot before
494  * there's a page structure.  This implies:
495  *  1. The only existing pagetable is the kernel's
496  *  2. It is always pinned
497  *  3. It has no user pagetable attached to it
498  */
499 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
500 {
501 	preempt_disable();
502 
503 	xen_mc_batch();
504 
505 	__xen_set_p4d_hyper(ptr, val);
506 
507 	xen_mc_issue(PARAVIRT_LAZY_MMU);
508 
509 	preempt_enable();
510 }
511 
512 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
513 {
514 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
515 	pgd_t pgd_val;
516 
517 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
518 
519 	/* If page is not pinned, we can just update the entry
520 	   directly */
521 	if (!xen_page_pinned(ptr)) {
522 		*ptr = val;
523 		if (user_ptr) {
524 			WARN_ON(xen_page_pinned(user_ptr));
525 			pgd_val.pgd = p4d_val_ma(val);
526 			*user_ptr = pgd_val;
527 		}
528 		return;
529 	}
530 
531 	/* If it's pinned, then we can at least batch the kernel and
532 	   user updates together. */
533 	xen_mc_batch();
534 
535 	__xen_set_p4d_hyper(ptr, val);
536 	if (user_ptr)
537 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
538 
539 	xen_mc_issue(PARAVIRT_LAZY_MMU);
540 }
541 
542 #if CONFIG_PGTABLE_LEVELS >= 5
543 __visible p4dval_t xen_p4d_val(p4d_t p4d)
544 {
545 	return pte_mfn_to_pfn(p4d.p4d);
546 }
547 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
548 
549 __visible p4d_t xen_make_p4d(p4dval_t p4d)
550 {
551 	p4d = pte_pfn_to_mfn(p4d);
552 
553 	return native_make_p4d(p4d);
554 }
555 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
556 #endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
557 #endif	/* CONFIG_X86_64 */
558 
559 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
560 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
561 		bool last, unsigned long limit)
562 {
563 	int i, nr, flush = 0;
564 
565 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
566 	for (i = 0; i < nr; i++) {
567 		if (!pmd_none(pmd[i]))
568 			flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
569 	}
570 	return flush;
571 }
572 
573 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
574 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
575 		bool last, unsigned long limit)
576 {
577 	int i, nr, flush = 0;
578 
579 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
580 	for (i = 0; i < nr; i++) {
581 		pmd_t *pmd;
582 
583 		if (pud_none(pud[i]))
584 			continue;
585 
586 		pmd = pmd_offset(&pud[i], 0);
587 		if (PTRS_PER_PMD > 1)
588 			flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
589 		flush |= xen_pmd_walk(mm, pmd, func,
590 				last && i == nr - 1, limit);
591 	}
592 	return flush;
593 }
594 
595 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
596 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
597 		bool last, unsigned long limit)
598 {
599 	int flush = 0;
600 	pud_t *pud;
601 
602 
603 	if (p4d_none(*p4d))
604 		return flush;
605 
606 	pud = pud_offset(p4d, 0);
607 	if (PTRS_PER_PUD > 1)
608 		flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
609 	flush |= xen_pud_walk(mm, pud, func, last, limit);
610 	return flush;
611 }
612 
613 /*
614  * (Yet another) pagetable walker.  This one is intended for pinning a
615  * pagetable.  This means that it walks a pagetable and calls the
616  * callback function on each page it finds making up the page table,
617  * at every level.  It walks the entire pagetable, but it only bothers
618  * pinning pte pages which are below limit.  In the normal case this
619  * will be STACK_TOP_MAX, but at boot we need to pin up to
620  * FIXADDR_TOP.
621  *
622  * For 32-bit the important bit is that we don't pin beyond there,
623  * because then we start getting into Xen's ptes.
624  *
625  * For 64-bit, we must skip the Xen hole in the middle of the address
626  * space, just after the big x86-64 virtual hole.
627  */
628 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
629 			  int (*func)(struct mm_struct *mm, struct page *,
630 				      enum pt_level),
631 			  unsigned long limit)
632 {
633 	int i, nr, flush = 0;
634 	unsigned hole_low, hole_high;
635 
636 	/* The limit is the last byte to be touched */
637 	limit--;
638 	BUG_ON(limit >= FIXADDR_TOP);
639 
640 	/*
641 	 * 64-bit has a great big hole in the middle of the address
642 	 * space, which contains the Xen mappings.  On 32-bit these
643 	 * will end up making a zero-sized hole and so is a no-op.
644 	 */
645 	hole_low = pgd_index(USER_LIMIT);
646 	hole_high = pgd_index(PAGE_OFFSET);
647 
648 	nr = pgd_index(limit) + 1;
649 	for (i = 0; i < nr; i++) {
650 		p4d_t *p4d;
651 
652 		if (i >= hole_low && i < hole_high)
653 			continue;
654 
655 		if (pgd_none(pgd[i]))
656 			continue;
657 
658 		p4d = p4d_offset(&pgd[i], 0);
659 		flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
660 	}
661 
662 	/* Do the top level last, so that the callbacks can use it as
663 	   a cue to do final things like tlb flushes. */
664 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
665 
666 	return flush;
667 }
668 
669 static int xen_pgd_walk(struct mm_struct *mm,
670 			int (*func)(struct mm_struct *mm, struct page *,
671 				    enum pt_level),
672 			unsigned long limit)
673 {
674 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
675 }
676 
677 /* If we're using split pte locks, then take the page's lock and
678    return a pointer to it.  Otherwise return NULL. */
679 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
680 {
681 	spinlock_t *ptl = NULL;
682 
683 #if USE_SPLIT_PTE_PTLOCKS
684 	ptl = ptlock_ptr(page);
685 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
686 #endif
687 
688 	return ptl;
689 }
690 
691 static void xen_pte_unlock(void *v)
692 {
693 	spinlock_t *ptl = v;
694 	spin_unlock(ptl);
695 }
696 
697 static void xen_do_pin(unsigned level, unsigned long pfn)
698 {
699 	struct mmuext_op op;
700 
701 	op.cmd = level;
702 	op.arg1.mfn = pfn_to_mfn(pfn);
703 
704 	xen_extend_mmuext_op(&op);
705 }
706 
707 static int xen_pin_page(struct mm_struct *mm, struct page *page,
708 			enum pt_level level)
709 {
710 	unsigned pgfl = TestSetPagePinned(page);
711 	int flush;
712 
713 	if (pgfl)
714 		flush = 0;		/* already pinned */
715 	else if (PageHighMem(page))
716 		/* kmaps need flushing if we found an unpinned
717 		   highpage */
718 		flush = 1;
719 	else {
720 		void *pt = lowmem_page_address(page);
721 		unsigned long pfn = page_to_pfn(page);
722 		struct multicall_space mcs = __xen_mc_entry(0);
723 		spinlock_t *ptl;
724 
725 		flush = 0;
726 
727 		/*
728 		 * We need to hold the pagetable lock between the time
729 		 * we make the pagetable RO and when we actually pin
730 		 * it.  If we don't, then other users may come in and
731 		 * attempt to update the pagetable by writing it,
732 		 * which will fail because the memory is RO but not
733 		 * pinned, so Xen won't do the trap'n'emulate.
734 		 *
735 		 * If we're using split pte locks, we can't hold the
736 		 * entire pagetable's worth of locks during the
737 		 * traverse, because we may wrap the preempt count (8
738 		 * bits).  The solution is to mark RO and pin each PTE
739 		 * page while holding the lock.  This means the number
740 		 * of locks we end up holding is never more than a
741 		 * batch size (~32 entries, at present).
742 		 *
743 		 * If we're not using split pte locks, we needn't pin
744 		 * the PTE pages independently, because we're
745 		 * protected by the overall pagetable lock.
746 		 */
747 		ptl = NULL;
748 		if (level == PT_PTE)
749 			ptl = xen_pte_lock(page, mm);
750 
751 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
752 					pfn_pte(pfn, PAGE_KERNEL_RO),
753 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
754 
755 		if (ptl) {
756 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
757 
758 			/* Queue a deferred unlock for when this batch
759 			   is completed. */
760 			xen_mc_callback(xen_pte_unlock, ptl);
761 		}
762 	}
763 
764 	return flush;
765 }
766 
767 /* This is called just after a mm has been created, but it has not
768    been used yet.  We need to make sure that its pagetable is all
769    read-only, and can be pinned. */
770 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
771 {
772 	trace_xen_mmu_pgd_pin(mm, pgd);
773 
774 	xen_mc_batch();
775 
776 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
777 		/* re-enable interrupts for flushing */
778 		xen_mc_issue(0);
779 
780 		kmap_flush_unused();
781 
782 		xen_mc_batch();
783 	}
784 
785 #ifdef CONFIG_X86_64
786 	{
787 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
788 
789 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
790 
791 		if (user_pgd) {
792 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
793 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
794 				   PFN_DOWN(__pa(user_pgd)));
795 		}
796 	}
797 #else /* CONFIG_X86_32 */
798 #ifdef CONFIG_X86_PAE
799 	/* Need to make sure unshared kernel PMD is pinnable */
800 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
801 		     PT_PMD);
802 #endif
803 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
804 #endif /* CONFIG_X86_64 */
805 	xen_mc_issue(0);
806 }
807 
808 static void xen_pgd_pin(struct mm_struct *mm)
809 {
810 	__xen_pgd_pin(mm, mm->pgd);
811 }
812 
813 /*
814  * On save, we need to pin all pagetables to make sure they get their
815  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
816  * them (unpinned pgds are not currently in use, probably because the
817  * process is under construction or destruction).
818  *
819  * Expected to be called in stop_machine() ("equivalent to taking
820  * every spinlock in the system"), so the locking doesn't really
821  * matter all that much.
822  */
823 void xen_mm_pin_all(void)
824 {
825 	struct page *page;
826 
827 	spin_lock(&pgd_lock);
828 
829 	list_for_each_entry(page, &pgd_list, lru) {
830 		if (!PagePinned(page)) {
831 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
832 			SetPageSavePinned(page);
833 		}
834 	}
835 
836 	spin_unlock(&pgd_lock);
837 }
838 
839 /*
840  * The init_mm pagetable is really pinned as soon as its created, but
841  * that's before we have page structures to store the bits.  So do all
842  * the book-keeping now.
843  */
844 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
845 				  enum pt_level level)
846 {
847 	SetPagePinned(page);
848 	return 0;
849 }
850 
851 static void __init xen_mark_init_mm_pinned(void)
852 {
853 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
854 }
855 
856 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
857 			  enum pt_level level)
858 {
859 	unsigned pgfl = TestClearPagePinned(page);
860 
861 	if (pgfl && !PageHighMem(page)) {
862 		void *pt = lowmem_page_address(page);
863 		unsigned long pfn = page_to_pfn(page);
864 		spinlock_t *ptl = NULL;
865 		struct multicall_space mcs;
866 
867 		/*
868 		 * Do the converse to pin_page.  If we're using split
869 		 * pte locks, we must be holding the lock for while
870 		 * the pte page is unpinned but still RO to prevent
871 		 * concurrent updates from seeing it in this
872 		 * partially-pinned state.
873 		 */
874 		if (level == PT_PTE) {
875 			ptl = xen_pte_lock(page, mm);
876 
877 			if (ptl)
878 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
879 		}
880 
881 		mcs = __xen_mc_entry(0);
882 
883 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
884 					pfn_pte(pfn, PAGE_KERNEL),
885 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
886 
887 		if (ptl) {
888 			/* unlock when batch completed */
889 			xen_mc_callback(xen_pte_unlock, ptl);
890 		}
891 	}
892 
893 	return 0;		/* never need to flush on unpin */
894 }
895 
896 /* Release a pagetables pages back as normal RW */
897 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
898 {
899 	trace_xen_mmu_pgd_unpin(mm, pgd);
900 
901 	xen_mc_batch();
902 
903 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
904 
905 #ifdef CONFIG_X86_64
906 	{
907 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
908 
909 		if (user_pgd) {
910 			xen_do_pin(MMUEXT_UNPIN_TABLE,
911 				   PFN_DOWN(__pa(user_pgd)));
912 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
913 		}
914 	}
915 #endif
916 
917 #ifdef CONFIG_X86_PAE
918 	/* Need to make sure unshared kernel PMD is unpinned */
919 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
920 		       PT_PMD);
921 #endif
922 
923 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
924 
925 	xen_mc_issue(0);
926 }
927 
928 static void xen_pgd_unpin(struct mm_struct *mm)
929 {
930 	__xen_pgd_unpin(mm, mm->pgd);
931 }
932 
933 /*
934  * On resume, undo any pinning done at save, so that the rest of the
935  * kernel doesn't see any unexpected pinned pagetables.
936  */
937 void xen_mm_unpin_all(void)
938 {
939 	struct page *page;
940 
941 	spin_lock(&pgd_lock);
942 
943 	list_for_each_entry(page, &pgd_list, lru) {
944 		if (PageSavePinned(page)) {
945 			BUG_ON(!PagePinned(page));
946 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
947 			ClearPageSavePinned(page);
948 		}
949 	}
950 
951 	spin_unlock(&pgd_lock);
952 }
953 
954 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
955 {
956 	spin_lock(&next->page_table_lock);
957 	xen_pgd_pin(next);
958 	spin_unlock(&next->page_table_lock);
959 }
960 
961 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
962 {
963 	spin_lock(&mm->page_table_lock);
964 	xen_pgd_pin(mm);
965 	spin_unlock(&mm->page_table_lock);
966 }
967 
968 static void drop_mm_ref_this_cpu(void *info)
969 {
970 	struct mm_struct *mm = info;
971 
972 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
973 		leave_mm(smp_processor_id());
974 
975 	/*
976 	 * If this cpu still has a stale cr3 reference, then make sure
977 	 * it has been flushed.
978 	 */
979 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
980 		xen_mc_flush();
981 }
982 
983 #ifdef CONFIG_SMP
984 /*
985  * Another cpu may still have their %cr3 pointing at the pagetable, so
986  * we need to repoint it somewhere else before we can unpin it.
987  */
988 static void xen_drop_mm_ref(struct mm_struct *mm)
989 {
990 	cpumask_var_t mask;
991 	unsigned cpu;
992 
993 	drop_mm_ref_this_cpu(mm);
994 
995 	/* Get the "official" set of cpus referring to our pagetable. */
996 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
997 		for_each_online_cpu(cpu) {
998 			if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
999 				continue;
1000 			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
1001 		}
1002 		return;
1003 	}
1004 
1005 	/*
1006 	 * It's possible that a vcpu may have a stale reference to our
1007 	 * cr3, because its in lazy mode, and it hasn't yet flushed
1008 	 * its set of pending hypercalls yet.  In this case, we can
1009 	 * look at its actual current cr3 value, and force it to flush
1010 	 * if needed.
1011 	 */
1012 	cpumask_clear(mask);
1013 	for_each_online_cpu(cpu) {
1014 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1015 			cpumask_set_cpu(cpu, mask);
1016 	}
1017 
1018 	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
1019 	free_cpumask_var(mask);
1020 }
1021 #else
1022 static void xen_drop_mm_ref(struct mm_struct *mm)
1023 {
1024 	drop_mm_ref_this_cpu(mm);
1025 }
1026 #endif
1027 
1028 /*
1029  * While a process runs, Xen pins its pagetables, which means that the
1030  * hypervisor forces it to be read-only, and it controls all updates
1031  * to it.  This means that all pagetable updates have to go via the
1032  * hypervisor, which is moderately expensive.
1033  *
1034  * Since we're pulling the pagetable down, we switch to use init_mm,
1035  * unpin old process pagetable and mark it all read-write, which
1036  * allows further operations on it to be simple memory accesses.
1037  *
1038  * The only subtle point is that another CPU may be still using the
1039  * pagetable because of lazy tlb flushing.  This means we need need to
1040  * switch all CPUs off this pagetable before we can unpin it.
1041  */
1042 static void xen_exit_mmap(struct mm_struct *mm)
1043 {
1044 	get_cpu();		/* make sure we don't move around */
1045 	xen_drop_mm_ref(mm);
1046 	put_cpu();
1047 
1048 	spin_lock(&mm->page_table_lock);
1049 
1050 	/* pgd may not be pinned in the error exit path of execve */
1051 	if (xen_page_pinned(mm->pgd))
1052 		xen_pgd_unpin(mm);
1053 
1054 	spin_unlock(&mm->page_table_lock);
1055 }
1056 
1057 static void xen_post_allocator_init(void);
1058 
1059 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1060 {
1061 	struct mmuext_op op;
1062 
1063 	op.cmd = cmd;
1064 	op.arg1.mfn = pfn_to_mfn(pfn);
1065 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1066 		BUG();
1067 }
1068 
1069 #ifdef CONFIG_X86_64
1070 static void __init xen_cleanhighmap(unsigned long vaddr,
1071 				    unsigned long vaddr_end)
1072 {
1073 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1074 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1075 
1076 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1077 	 * We include the PMD passed in on _both_ boundaries. */
1078 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1079 			pmd++, vaddr += PMD_SIZE) {
1080 		if (pmd_none(*pmd))
1081 			continue;
1082 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1083 			set_pmd(pmd, __pmd(0));
1084 	}
1085 	/* In case we did something silly, we should crash in this function
1086 	 * instead of somewhere later and be confusing. */
1087 	xen_mc_flush();
1088 }
1089 
1090 /*
1091  * Make a page range writeable and free it.
1092  */
1093 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1094 {
1095 	void *vaddr = __va(paddr);
1096 	void *vaddr_end = vaddr + size;
1097 
1098 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1099 		make_lowmem_page_readwrite(vaddr);
1100 
1101 	memblock_free(paddr, size);
1102 }
1103 
1104 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1105 {
1106 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1107 
1108 	if (unpin)
1109 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1110 	ClearPagePinned(virt_to_page(__va(pa)));
1111 	xen_free_ro_pages(pa, PAGE_SIZE);
1112 }
1113 
1114 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1115 {
1116 	unsigned long pa;
1117 	pte_t *pte_tbl;
1118 	int i;
1119 
1120 	if (pmd_large(*pmd)) {
1121 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1122 		xen_free_ro_pages(pa, PMD_SIZE);
1123 		return;
1124 	}
1125 
1126 	pte_tbl = pte_offset_kernel(pmd, 0);
1127 	for (i = 0; i < PTRS_PER_PTE; i++) {
1128 		if (pte_none(pte_tbl[i]))
1129 			continue;
1130 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1131 		xen_free_ro_pages(pa, PAGE_SIZE);
1132 	}
1133 	set_pmd(pmd, __pmd(0));
1134 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1135 }
1136 
1137 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1138 {
1139 	unsigned long pa;
1140 	pmd_t *pmd_tbl;
1141 	int i;
1142 
1143 	if (pud_large(*pud)) {
1144 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1145 		xen_free_ro_pages(pa, PUD_SIZE);
1146 		return;
1147 	}
1148 
1149 	pmd_tbl = pmd_offset(pud, 0);
1150 	for (i = 0; i < PTRS_PER_PMD; i++) {
1151 		if (pmd_none(pmd_tbl[i]))
1152 			continue;
1153 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1154 	}
1155 	set_pud(pud, __pud(0));
1156 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1157 }
1158 
1159 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1160 {
1161 	unsigned long pa;
1162 	pud_t *pud_tbl;
1163 	int i;
1164 
1165 	if (p4d_large(*p4d)) {
1166 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1167 		xen_free_ro_pages(pa, P4D_SIZE);
1168 		return;
1169 	}
1170 
1171 	pud_tbl = pud_offset(p4d, 0);
1172 	for (i = 0; i < PTRS_PER_PUD; i++) {
1173 		if (pud_none(pud_tbl[i]))
1174 			continue;
1175 		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1176 	}
1177 	set_p4d(p4d, __p4d(0));
1178 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1179 }
1180 
1181 /*
1182  * Since it is well isolated we can (and since it is perhaps large we should)
1183  * also free the page tables mapping the initial P->M table.
1184  */
1185 static void __init xen_cleanmfnmap(unsigned long vaddr)
1186 {
1187 	pgd_t *pgd;
1188 	p4d_t *p4d;
1189 	bool unpin;
1190 
1191 	unpin = (vaddr == 2 * PGDIR_SIZE);
1192 	vaddr &= PMD_MASK;
1193 	pgd = pgd_offset_k(vaddr);
1194 	p4d = p4d_offset(pgd, 0);
1195 	if (!p4d_none(*p4d))
1196 		xen_cleanmfnmap_p4d(p4d, unpin);
1197 }
1198 
1199 static void __init xen_pagetable_p2m_free(void)
1200 {
1201 	unsigned long size;
1202 	unsigned long addr;
1203 
1204 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1205 
1206 	/* No memory or already called. */
1207 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1208 		return;
1209 
1210 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1211 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1212 
1213 	addr = xen_start_info->mfn_list;
1214 	/*
1215 	 * We could be in __ka space.
1216 	 * We roundup to the PMD, which means that if anybody at this stage is
1217 	 * using the __ka address of xen_start_info or
1218 	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1219 	 * we have already revectored in xen_setup_kernel_pagetable and in
1220 	 * xen_setup_shared_info.
1221 	 */
1222 	size = roundup(size, PMD_SIZE);
1223 
1224 	if (addr >= __START_KERNEL_map) {
1225 		xen_cleanhighmap(addr, addr + size);
1226 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1227 				  sizeof(unsigned long));
1228 		memblock_free(__pa(addr), size);
1229 	} else {
1230 		xen_cleanmfnmap(addr);
1231 	}
1232 }
1233 
1234 static void __init xen_pagetable_cleanhighmap(void)
1235 {
1236 	unsigned long size;
1237 	unsigned long addr;
1238 
1239 	/* At this stage, cleanup_highmap has already cleaned __ka space
1240 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1241 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1242 	 * tables - do note that they are accessible at this stage via __va.
1243 	 * As Xen is aligning the memory end to a 4MB boundary, for good
1244 	 * measure we also round up to PMD_SIZE * 2 - which means that if
1245 	 * anybody is using __ka address to the initial boot-stack - and try
1246 	 * to use it - they are going to crash. The xen_start_info has been
1247 	 * taken care of already in xen_setup_kernel_pagetable. */
1248 	addr = xen_start_info->pt_base;
1249 	size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1250 
1251 	xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1252 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1253 }
1254 #endif
1255 
1256 static void __init xen_pagetable_p2m_setup(void)
1257 {
1258 	xen_vmalloc_p2m_tree();
1259 
1260 #ifdef CONFIG_X86_64
1261 	xen_pagetable_p2m_free();
1262 
1263 	xen_pagetable_cleanhighmap();
1264 #endif
1265 	/* And revector! Bye bye old array */
1266 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1267 }
1268 
1269 static void __init xen_pagetable_init(void)
1270 {
1271 	paging_init();
1272 	xen_post_allocator_init();
1273 
1274 	xen_pagetable_p2m_setup();
1275 
1276 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1277 	xen_build_mfn_list_list();
1278 
1279 	/* Remap memory freed due to conflicts with E820 map */
1280 	xen_remap_memory();
1281 
1282 	xen_setup_shared_info();
1283 }
1284 static void xen_write_cr2(unsigned long cr2)
1285 {
1286 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1287 }
1288 
1289 static unsigned long xen_read_cr2(void)
1290 {
1291 	return this_cpu_read(xen_vcpu)->arch.cr2;
1292 }
1293 
1294 unsigned long xen_read_cr2_direct(void)
1295 {
1296 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1297 }
1298 
1299 static void xen_flush_tlb(void)
1300 {
1301 	struct mmuext_op *op;
1302 	struct multicall_space mcs;
1303 
1304 	trace_xen_mmu_flush_tlb(0);
1305 
1306 	preempt_disable();
1307 
1308 	mcs = xen_mc_entry(sizeof(*op));
1309 
1310 	op = mcs.args;
1311 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1312 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1313 
1314 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1315 
1316 	preempt_enable();
1317 }
1318 
1319 static void xen_flush_tlb_one_user(unsigned long addr)
1320 {
1321 	struct mmuext_op *op;
1322 	struct multicall_space mcs;
1323 
1324 	trace_xen_mmu_flush_tlb_one_user(addr);
1325 
1326 	preempt_disable();
1327 
1328 	mcs = xen_mc_entry(sizeof(*op));
1329 	op = mcs.args;
1330 	op->cmd = MMUEXT_INVLPG_LOCAL;
1331 	op->arg1.linear_addr = addr & PAGE_MASK;
1332 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1333 
1334 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1335 
1336 	preempt_enable();
1337 }
1338 
1339 static void xen_flush_tlb_others(const struct cpumask *cpus,
1340 				 const struct flush_tlb_info *info)
1341 {
1342 	struct {
1343 		struct mmuext_op op;
1344 		DECLARE_BITMAP(mask, NR_CPUS);
1345 	} *args;
1346 	struct multicall_space mcs;
1347 	const size_t mc_entry_size = sizeof(args->op) +
1348 		sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1349 
1350 	trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
1351 
1352 	if (cpumask_empty(cpus))
1353 		return;		/* nothing to do */
1354 
1355 	mcs = xen_mc_entry(mc_entry_size);
1356 	args = mcs.args;
1357 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1358 
1359 	/* Remove us, and any offline CPUS. */
1360 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1361 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1362 
1363 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1364 	if (info->end != TLB_FLUSH_ALL &&
1365 	    (info->end - info->start) <= PAGE_SIZE) {
1366 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1367 		args->op.arg1.linear_addr = info->start;
1368 	}
1369 
1370 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1371 
1372 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1373 }
1374 
1375 static unsigned long xen_read_cr3(void)
1376 {
1377 	return this_cpu_read(xen_cr3);
1378 }
1379 
1380 static void set_current_cr3(void *v)
1381 {
1382 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1383 }
1384 
1385 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1386 {
1387 	struct mmuext_op op;
1388 	unsigned long mfn;
1389 
1390 	trace_xen_mmu_write_cr3(kernel, cr3);
1391 
1392 	if (cr3)
1393 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1394 	else
1395 		mfn = 0;
1396 
1397 	WARN_ON(mfn == 0 && kernel);
1398 
1399 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1400 	op.arg1.mfn = mfn;
1401 
1402 	xen_extend_mmuext_op(&op);
1403 
1404 	if (kernel) {
1405 		this_cpu_write(xen_cr3, cr3);
1406 
1407 		/* Update xen_current_cr3 once the batch has actually
1408 		   been submitted. */
1409 		xen_mc_callback(set_current_cr3, (void *)cr3);
1410 	}
1411 }
1412 static void xen_write_cr3(unsigned long cr3)
1413 {
1414 	BUG_ON(preemptible());
1415 
1416 	xen_mc_batch();  /* disables interrupts */
1417 
1418 	/* Update while interrupts are disabled, so its atomic with
1419 	   respect to ipis */
1420 	this_cpu_write(xen_cr3, cr3);
1421 
1422 	__xen_write_cr3(true, cr3);
1423 
1424 #ifdef CONFIG_X86_64
1425 	{
1426 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1427 		if (user_pgd)
1428 			__xen_write_cr3(false, __pa(user_pgd));
1429 		else
1430 			__xen_write_cr3(false, 0);
1431 	}
1432 #endif
1433 
1434 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1435 }
1436 
1437 #ifdef CONFIG_X86_64
1438 /*
1439  * At the start of the day - when Xen launches a guest, it has already
1440  * built pagetables for the guest. We diligently look over them
1441  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1442  * init_top_pgt and its friends. Then when we are happy we load
1443  * the new init_top_pgt - and continue on.
1444  *
1445  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1446  * up the rest of the pagetables. When it has completed it loads the cr3.
1447  * N.B. that baremetal would start at 'start_kernel' (and the early
1448  * #PF handler would create bootstrap pagetables) - so we are running
1449  * with the same assumptions as what to do when write_cr3 is executed
1450  * at this point.
1451  *
1452  * Since there are no user-page tables at all, we have two variants
1453  * of xen_write_cr3 - the early bootup (this one), and the late one
1454  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1455  * the Linux kernel and user-space are both in ring 3 while the
1456  * hypervisor is in ring 0.
1457  */
1458 static void __init xen_write_cr3_init(unsigned long cr3)
1459 {
1460 	BUG_ON(preemptible());
1461 
1462 	xen_mc_batch();  /* disables interrupts */
1463 
1464 	/* Update while interrupts are disabled, so its atomic with
1465 	   respect to ipis */
1466 	this_cpu_write(xen_cr3, cr3);
1467 
1468 	__xen_write_cr3(true, cr3);
1469 
1470 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1471 }
1472 #endif
1473 
1474 static int xen_pgd_alloc(struct mm_struct *mm)
1475 {
1476 	pgd_t *pgd = mm->pgd;
1477 	int ret = 0;
1478 
1479 	BUG_ON(PagePinned(virt_to_page(pgd)));
1480 
1481 #ifdef CONFIG_X86_64
1482 	{
1483 		struct page *page = virt_to_page(pgd);
1484 		pgd_t *user_pgd;
1485 
1486 		BUG_ON(page->private != 0);
1487 
1488 		ret = -ENOMEM;
1489 
1490 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1491 		page->private = (unsigned long)user_pgd;
1492 
1493 		if (user_pgd != NULL) {
1494 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1495 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1496 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1497 #endif
1498 			ret = 0;
1499 		}
1500 
1501 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1502 	}
1503 #endif
1504 	return ret;
1505 }
1506 
1507 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1508 {
1509 #ifdef CONFIG_X86_64
1510 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1511 
1512 	if (user_pgd)
1513 		free_page((unsigned long)user_pgd);
1514 #endif
1515 }
1516 
1517 /*
1518  * Init-time set_pte while constructing initial pagetables, which
1519  * doesn't allow RO page table pages to be remapped RW.
1520  *
1521  * If there is no MFN for this PFN then this page is initially
1522  * ballooned out so clear the PTE (as in decrease_reservation() in
1523  * drivers/xen/balloon.c).
1524  *
1525  * Many of these PTE updates are done on unpinned and writable pages
1526  * and doing a hypercall for these is unnecessary and expensive.  At
1527  * this point it is not possible to tell if a page is pinned or not,
1528  * so always write the PTE directly and rely on Xen trapping and
1529  * emulating any updates as necessary.
1530  */
1531 __visible pte_t xen_make_pte_init(pteval_t pte)
1532 {
1533 #ifdef CONFIG_X86_64
1534 	unsigned long pfn;
1535 
1536 	/*
1537 	 * Pages belonging to the initial p2m list mapped outside the default
1538 	 * address range must be mapped read-only. This region contains the
1539 	 * page tables for mapping the p2m list, too, and page tables MUST be
1540 	 * mapped read-only.
1541 	 */
1542 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1543 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1544 	    pfn >= xen_start_info->first_p2m_pfn &&
1545 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1546 		pte &= ~_PAGE_RW;
1547 #endif
1548 	pte = pte_pfn_to_mfn(pte);
1549 	return native_make_pte(pte);
1550 }
1551 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1552 
1553 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1554 {
1555 #ifdef CONFIG_X86_32
1556 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1557 	if (pte_mfn(pte) != INVALID_P2M_ENTRY
1558 	    && pte_val_ma(*ptep) & _PAGE_PRESENT)
1559 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1560 			       pte_val_ma(pte));
1561 #endif
1562 	native_set_pte(ptep, pte);
1563 }
1564 
1565 /* Early in boot, while setting up the initial pagetable, assume
1566    everything is pinned. */
1567 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1568 {
1569 #ifdef CONFIG_FLATMEM
1570 	BUG_ON(mem_map);	/* should only be used early */
1571 #endif
1572 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1573 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1574 }
1575 
1576 /* Used for pmd and pud */
1577 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1578 {
1579 #ifdef CONFIG_FLATMEM
1580 	BUG_ON(mem_map);	/* should only be used early */
1581 #endif
1582 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1583 }
1584 
1585 /* Early release_pte assumes that all pts are pinned, since there's
1586    only init_mm and anything attached to that is pinned. */
1587 static void __init xen_release_pte_init(unsigned long pfn)
1588 {
1589 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1590 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1591 }
1592 
1593 static void __init xen_release_pmd_init(unsigned long pfn)
1594 {
1595 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1596 }
1597 
1598 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1599 {
1600 	struct multicall_space mcs;
1601 	struct mmuext_op *op;
1602 
1603 	mcs = __xen_mc_entry(sizeof(*op));
1604 	op = mcs.args;
1605 	op->cmd = cmd;
1606 	op->arg1.mfn = pfn_to_mfn(pfn);
1607 
1608 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1609 }
1610 
1611 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1612 {
1613 	struct multicall_space mcs;
1614 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1615 
1616 	mcs = __xen_mc_entry(0);
1617 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1618 				pfn_pte(pfn, prot), 0);
1619 }
1620 
1621 /* This needs to make sure the new pte page is pinned iff its being
1622    attached to a pinned pagetable. */
1623 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1624 				    unsigned level)
1625 {
1626 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1627 
1628 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1629 
1630 	if (pinned) {
1631 		struct page *page = pfn_to_page(pfn);
1632 
1633 		SetPagePinned(page);
1634 
1635 		if (!PageHighMem(page)) {
1636 			xen_mc_batch();
1637 
1638 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1639 
1640 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1641 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1642 
1643 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1644 		} else {
1645 			/* make sure there are no stray mappings of
1646 			   this page */
1647 			kmap_flush_unused();
1648 		}
1649 	}
1650 }
1651 
1652 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1653 {
1654 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1655 }
1656 
1657 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1658 {
1659 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1660 }
1661 
1662 /* This should never happen until we're OK to use struct page */
1663 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1664 {
1665 	struct page *page = pfn_to_page(pfn);
1666 	bool pinned = PagePinned(page);
1667 
1668 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1669 
1670 	if (pinned) {
1671 		if (!PageHighMem(page)) {
1672 			xen_mc_batch();
1673 
1674 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1675 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1676 
1677 			__set_pfn_prot(pfn, PAGE_KERNEL);
1678 
1679 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1680 		}
1681 		ClearPagePinned(page);
1682 	}
1683 }
1684 
1685 static void xen_release_pte(unsigned long pfn)
1686 {
1687 	xen_release_ptpage(pfn, PT_PTE);
1688 }
1689 
1690 static void xen_release_pmd(unsigned long pfn)
1691 {
1692 	xen_release_ptpage(pfn, PT_PMD);
1693 }
1694 
1695 #ifdef CONFIG_X86_64
1696 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1697 {
1698 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1699 }
1700 
1701 static void xen_release_pud(unsigned long pfn)
1702 {
1703 	xen_release_ptpage(pfn, PT_PUD);
1704 }
1705 #endif
1706 
1707 void __init xen_reserve_top(void)
1708 {
1709 #ifdef CONFIG_X86_32
1710 	unsigned long top = HYPERVISOR_VIRT_START;
1711 	struct xen_platform_parameters pp;
1712 
1713 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1714 		top = pp.virt_start;
1715 
1716 	reserve_top_address(-top);
1717 #endif	/* CONFIG_X86_32 */
1718 }
1719 
1720 /*
1721  * Like __va(), but returns address in the kernel mapping (which is
1722  * all we have until the physical memory mapping has been set up.
1723  */
1724 static void * __init __ka(phys_addr_t paddr)
1725 {
1726 #ifdef CONFIG_X86_64
1727 	return (void *)(paddr + __START_KERNEL_map);
1728 #else
1729 	return __va(paddr);
1730 #endif
1731 }
1732 
1733 /* Convert a machine address to physical address */
1734 static unsigned long __init m2p(phys_addr_t maddr)
1735 {
1736 	phys_addr_t paddr;
1737 
1738 	maddr &= XEN_PTE_MFN_MASK;
1739 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1740 
1741 	return paddr;
1742 }
1743 
1744 /* Convert a machine address to kernel virtual */
1745 static void * __init m2v(phys_addr_t maddr)
1746 {
1747 	return __ka(m2p(maddr));
1748 }
1749 
1750 /* Set the page permissions on an identity-mapped pages */
1751 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1752 				       unsigned long flags)
1753 {
1754 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1755 	pte_t pte = pfn_pte(pfn, prot);
1756 
1757 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1758 		BUG();
1759 }
1760 static void __init set_page_prot(void *addr, pgprot_t prot)
1761 {
1762 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1763 }
1764 #ifdef CONFIG_X86_32
1765 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1766 {
1767 	unsigned pmdidx, pteidx;
1768 	unsigned ident_pte;
1769 	unsigned long pfn;
1770 
1771 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1772 				      PAGE_SIZE);
1773 
1774 	ident_pte = 0;
1775 	pfn = 0;
1776 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1777 		pte_t *pte_page;
1778 
1779 		/* Reuse or allocate a page of ptes */
1780 		if (pmd_present(pmd[pmdidx]))
1781 			pte_page = m2v(pmd[pmdidx].pmd);
1782 		else {
1783 			/* Check for free pte pages */
1784 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1785 				break;
1786 
1787 			pte_page = &level1_ident_pgt[ident_pte];
1788 			ident_pte += PTRS_PER_PTE;
1789 
1790 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1791 		}
1792 
1793 		/* Install mappings */
1794 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1795 			pte_t pte;
1796 
1797 			if (pfn > max_pfn_mapped)
1798 				max_pfn_mapped = pfn;
1799 
1800 			if (!pte_none(pte_page[pteidx]))
1801 				continue;
1802 
1803 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1804 			pte_page[pteidx] = pte;
1805 		}
1806 	}
1807 
1808 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1809 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1810 
1811 	set_page_prot(pmd, PAGE_KERNEL_RO);
1812 }
1813 #endif
1814 void __init xen_setup_machphys_mapping(void)
1815 {
1816 	struct xen_machphys_mapping mapping;
1817 
1818 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1819 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1820 		machine_to_phys_nr = mapping.max_mfn + 1;
1821 	} else {
1822 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1823 	}
1824 #ifdef CONFIG_X86_32
1825 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1826 		< machine_to_phys_mapping);
1827 #endif
1828 }
1829 
1830 #ifdef CONFIG_X86_64
1831 static void __init convert_pfn_mfn(void *v)
1832 {
1833 	pte_t *pte = v;
1834 	int i;
1835 
1836 	/* All levels are converted the same way, so just treat them
1837 	   as ptes. */
1838 	for (i = 0; i < PTRS_PER_PTE; i++)
1839 		pte[i] = xen_make_pte(pte[i].pte);
1840 }
1841 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1842 				 unsigned long addr)
1843 {
1844 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1845 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1846 		clear_page((void *)addr);
1847 		(*pt_base)++;
1848 	}
1849 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1850 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1851 		clear_page((void *)addr);
1852 		(*pt_end)--;
1853 	}
1854 }
1855 /*
1856  * Set up the initial kernel pagetable.
1857  *
1858  * We can construct this by grafting the Xen provided pagetable into
1859  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1860  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1861  * kernel has a physical mapping to start with - but that's enough to
1862  * get __va working.  We need to fill in the rest of the physical
1863  * mapping once some sort of allocator has been set up.
1864  */
1865 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1866 {
1867 	pud_t *l3;
1868 	pmd_t *l2;
1869 	unsigned long addr[3];
1870 	unsigned long pt_base, pt_end;
1871 	unsigned i;
1872 
1873 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1874 	 * mappings. Considering that on Xen after the kernel mappings we
1875 	 * have the mappings of some pages that don't exist in pfn space, we
1876 	 * set max_pfn_mapped to the last real pfn mapped. */
1877 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1878 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1879 	else
1880 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1881 
1882 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1883 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1884 
1885 	/* Zap identity mapping */
1886 	init_top_pgt[0] = __pgd(0);
1887 
1888 	/* Pre-constructed entries are in pfn, so convert to mfn */
1889 	/* L4[272] -> level3_ident_pgt  */
1890 	/* L4[511] -> level3_kernel_pgt */
1891 	convert_pfn_mfn(init_top_pgt);
1892 
1893 	/* L3_i[0] -> level2_ident_pgt */
1894 	convert_pfn_mfn(level3_ident_pgt);
1895 	/* L3_k[510] -> level2_kernel_pgt */
1896 	/* L3_k[511] -> level2_fixmap_pgt */
1897 	convert_pfn_mfn(level3_kernel_pgt);
1898 
1899 	/* L3_k[511][506] -> level1_fixmap_pgt */
1900 	convert_pfn_mfn(level2_fixmap_pgt);
1901 
1902 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1903 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1904 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1905 
1906 	addr[0] = (unsigned long)pgd;
1907 	addr[1] = (unsigned long)l3;
1908 	addr[2] = (unsigned long)l2;
1909 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1910 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1911 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1912 	 * it will be also modified in the __ka space! (But if you just
1913 	 * modify the PMD table to point to other PTE's or none, then you
1914 	 * are OK - which is what cleanup_highmap does) */
1915 	copy_page(level2_ident_pgt, l2);
1916 	/* Graft it onto L4[511][510] */
1917 	copy_page(level2_kernel_pgt, l2);
1918 
1919 	/*
1920 	 * Zap execute permission from the ident map. Due to the sharing of
1921 	 * L1 entries we need to do this in the L2.
1922 	 */
1923 	if (__supported_pte_mask & _PAGE_NX) {
1924 		for (i = 0; i < PTRS_PER_PMD; ++i) {
1925 			if (pmd_none(level2_ident_pgt[i]))
1926 				continue;
1927 			level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1928 		}
1929 	}
1930 
1931 	/* Copy the initial P->M table mappings if necessary. */
1932 	i = pgd_index(xen_start_info->mfn_list);
1933 	if (i && i < pgd_index(__START_KERNEL_map))
1934 		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1935 
1936 	/* Make pagetable pieces RO */
1937 	set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1938 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1939 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1940 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1941 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1942 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1943 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1944 	set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1945 
1946 	/* Pin down new L4 */
1947 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1948 			  PFN_DOWN(__pa_symbol(init_top_pgt)));
1949 
1950 	/* Unpin Xen-provided one */
1951 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1952 
1953 	/*
1954 	 * At this stage there can be no user pgd, and no page structure to
1955 	 * attach it to, so make sure we just set kernel pgd.
1956 	 */
1957 	xen_mc_batch();
1958 	__xen_write_cr3(true, __pa(init_top_pgt));
1959 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1960 
1961 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1962 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1963 	 * the initial domain. For guests using the toolstack, they are in:
1964 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1965 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1966 	 */
1967 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1968 		check_pt_base(&pt_base, &pt_end, addr[i]);
1969 
1970 	/* Our (by three pages) smaller Xen pagetable that we are using */
1971 	xen_pt_base = PFN_PHYS(pt_base);
1972 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1973 	memblock_reserve(xen_pt_base, xen_pt_size);
1974 
1975 	/* Revector the xen_start_info */
1976 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1977 }
1978 
1979 /*
1980  * Read a value from a physical address.
1981  */
1982 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1983 {
1984 	unsigned long *vaddr;
1985 	unsigned long val;
1986 
1987 	vaddr = early_memremap_ro(addr, sizeof(val));
1988 	val = *vaddr;
1989 	early_memunmap(vaddr, sizeof(val));
1990 	return val;
1991 }
1992 
1993 /*
1994  * Translate a virtual address to a physical one without relying on mapped
1995  * page tables. Don't rely on big pages being aligned in (guest) physical
1996  * space!
1997  */
1998 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1999 {
2000 	phys_addr_t pa;
2001 	pgd_t pgd;
2002 	pud_t pud;
2003 	pmd_t pmd;
2004 	pte_t pte;
2005 
2006 	pa = read_cr3_pa();
2007 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2008 						       sizeof(pgd)));
2009 	if (!pgd_present(pgd))
2010 		return 0;
2011 
2012 	pa = pgd_val(pgd) & PTE_PFN_MASK;
2013 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2014 						       sizeof(pud)));
2015 	if (!pud_present(pud))
2016 		return 0;
2017 	pa = pud_val(pud) & PTE_PFN_MASK;
2018 	if (pud_large(pud))
2019 		return pa + (vaddr & ~PUD_MASK);
2020 
2021 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2022 						       sizeof(pmd)));
2023 	if (!pmd_present(pmd))
2024 		return 0;
2025 	pa = pmd_val(pmd) & PTE_PFN_MASK;
2026 	if (pmd_large(pmd))
2027 		return pa + (vaddr & ~PMD_MASK);
2028 
2029 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2030 						       sizeof(pte)));
2031 	if (!pte_present(pte))
2032 		return 0;
2033 	pa = pte_pfn(pte) << PAGE_SHIFT;
2034 
2035 	return pa | (vaddr & ~PAGE_MASK);
2036 }
2037 
2038 /*
2039  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2040  * this area.
2041  */
2042 void __init xen_relocate_p2m(void)
2043 {
2044 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2045 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2046 	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2047 	pte_t *pt;
2048 	pmd_t *pmd;
2049 	pud_t *pud;
2050 	pgd_t *pgd;
2051 	unsigned long *new_p2m;
2052 	int save_pud;
2053 
2054 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2055 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2056 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2057 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2058 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2059 	n_frames = n_pte + n_pt + n_pmd + n_pud;
2060 
2061 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
2062 	if (!new_area) {
2063 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2064 		BUG();
2065 	}
2066 
2067 	/*
2068 	 * Setup the page tables for addressing the new p2m list.
2069 	 * We have asked the hypervisor to map the p2m list at the user address
2070 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
2071 	 * address depending on the Xen version.
2072 	 * To avoid any possible virtual address collision, just use
2073 	 * 2 * PUD_SIZE for the new area.
2074 	 */
2075 	pud_phys = new_area;
2076 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
2077 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2078 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2079 
2080 	pgd = __va(read_cr3_pa());
2081 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2082 	save_pud = n_pud;
2083 	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2084 		pud = early_memremap(pud_phys, PAGE_SIZE);
2085 		clear_page(pud);
2086 		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2087 				idx_pmd++) {
2088 			pmd = early_memremap(pmd_phys, PAGE_SIZE);
2089 			clear_page(pmd);
2090 			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2091 					idx_pt++) {
2092 				pt = early_memremap(pt_phys, PAGE_SIZE);
2093 				clear_page(pt);
2094 				for (idx_pte = 0;
2095 						idx_pte < min(n_pte, PTRS_PER_PTE);
2096 						idx_pte++) {
2097 					set_pte(pt + idx_pte,
2098 							pfn_pte(p2m_pfn, PAGE_KERNEL));
2099 					p2m_pfn++;
2100 				}
2101 				n_pte -= PTRS_PER_PTE;
2102 				early_memunmap(pt, PAGE_SIZE);
2103 				make_lowmem_page_readonly(__va(pt_phys));
2104 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2105 						PFN_DOWN(pt_phys));
2106 				set_pmd(pmd + idx_pt,
2107 						__pmd(_PAGE_TABLE | pt_phys));
2108 				pt_phys += PAGE_SIZE;
2109 			}
2110 			n_pt -= PTRS_PER_PMD;
2111 			early_memunmap(pmd, PAGE_SIZE);
2112 			make_lowmem_page_readonly(__va(pmd_phys));
2113 			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2114 					PFN_DOWN(pmd_phys));
2115 			set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2116 			pmd_phys += PAGE_SIZE;
2117 		}
2118 		n_pmd -= PTRS_PER_PUD;
2119 		early_memunmap(pud, PAGE_SIZE);
2120 		make_lowmem_page_readonly(__va(pud_phys));
2121 		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2122 		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2123 		pud_phys += PAGE_SIZE;
2124 	}
2125 
2126 	/* Now copy the old p2m info to the new area. */
2127 	memcpy(new_p2m, xen_p2m_addr, size);
2128 	xen_p2m_addr = new_p2m;
2129 
2130 	/* Release the old p2m list and set new list info. */
2131 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2132 	BUG_ON(!p2m_pfn);
2133 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2134 
2135 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2136 		pfn = xen_start_info->first_p2m_pfn;
2137 		pfn_end = xen_start_info->first_p2m_pfn +
2138 			  xen_start_info->nr_p2m_frames;
2139 		set_pgd(pgd + 1, __pgd(0));
2140 	} else {
2141 		pfn = p2m_pfn;
2142 		pfn_end = p2m_pfn_end;
2143 	}
2144 
2145 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2146 	while (pfn < pfn_end) {
2147 		if (pfn == p2m_pfn) {
2148 			pfn = p2m_pfn_end;
2149 			continue;
2150 		}
2151 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2152 		pfn++;
2153 	}
2154 
2155 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2156 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2157 	xen_start_info->nr_p2m_frames = n_frames;
2158 }
2159 
2160 #else	/* !CONFIG_X86_64 */
2161 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2162 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2163 
2164 static void __init xen_write_cr3_init(unsigned long cr3)
2165 {
2166 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2167 
2168 	BUG_ON(read_cr3_pa() != __pa(initial_page_table));
2169 	BUG_ON(cr3 != __pa(swapper_pg_dir));
2170 
2171 	/*
2172 	 * We are switching to swapper_pg_dir for the first time (from
2173 	 * initial_page_table) and therefore need to mark that page
2174 	 * read-only and then pin it.
2175 	 *
2176 	 * Xen disallows sharing of kernel PMDs for PAE
2177 	 * guests. Therefore we must copy the kernel PMD from
2178 	 * initial_page_table into a new kernel PMD to be used in
2179 	 * swapper_pg_dir.
2180 	 */
2181 	swapper_kernel_pmd =
2182 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2183 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2184 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2185 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2186 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2187 
2188 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2189 	xen_write_cr3(cr3);
2190 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2191 
2192 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2193 			  PFN_DOWN(__pa(initial_page_table)));
2194 	set_page_prot(initial_page_table, PAGE_KERNEL);
2195 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2196 
2197 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2198 }
2199 
2200 /*
2201  * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2202  * not the first page table in the page table pool.
2203  * Iterate through the initial page tables to find the real page table base.
2204  */
2205 static phys_addr_t __init xen_find_pt_base(pmd_t *pmd)
2206 {
2207 	phys_addr_t pt_base, paddr;
2208 	unsigned pmdidx;
2209 
2210 	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2211 
2212 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2213 		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2214 			paddr = m2p(pmd[pmdidx].pmd);
2215 			pt_base = min(pt_base, paddr);
2216 		}
2217 
2218 	return pt_base;
2219 }
2220 
2221 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2222 {
2223 	pmd_t *kernel_pmd;
2224 
2225 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2226 
2227 	xen_pt_base = xen_find_pt_base(kernel_pmd);
2228 	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2229 
2230 	initial_kernel_pmd =
2231 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2232 
2233 	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2234 
2235 	copy_page(initial_kernel_pmd, kernel_pmd);
2236 
2237 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2238 
2239 	copy_page(initial_page_table, pgd);
2240 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2241 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2242 
2243 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2244 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2245 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2246 
2247 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2248 
2249 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2250 			  PFN_DOWN(__pa(initial_page_table)));
2251 	xen_write_cr3(__pa(initial_page_table));
2252 
2253 	memblock_reserve(xen_pt_base, xen_pt_size);
2254 }
2255 #endif	/* CONFIG_X86_64 */
2256 
2257 void __init xen_reserve_special_pages(void)
2258 {
2259 	phys_addr_t paddr;
2260 
2261 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2262 	if (xen_start_info->store_mfn) {
2263 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2264 		memblock_reserve(paddr, PAGE_SIZE);
2265 	}
2266 	if (!xen_initial_domain()) {
2267 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2268 		memblock_reserve(paddr, PAGE_SIZE);
2269 	}
2270 }
2271 
2272 void __init xen_pt_check_e820(void)
2273 {
2274 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2275 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2276 		BUG();
2277 	}
2278 }
2279 
2280 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2281 
2282 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2283 {
2284 	pte_t pte;
2285 
2286 	phys >>= PAGE_SHIFT;
2287 
2288 	switch (idx) {
2289 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2290 #ifdef CONFIG_X86_32
2291 	case FIX_WP_TEST:
2292 # ifdef CONFIG_HIGHMEM
2293 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2294 # endif
2295 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2296 	case VSYSCALL_PAGE:
2297 #endif
2298 	case FIX_TEXT_POKE0:
2299 	case FIX_TEXT_POKE1:
2300 		/* All local page mappings */
2301 		pte = pfn_pte(phys, prot);
2302 		break;
2303 
2304 #ifdef CONFIG_X86_LOCAL_APIC
2305 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2306 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2307 		break;
2308 #endif
2309 
2310 #ifdef CONFIG_X86_IO_APIC
2311 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2312 		/*
2313 		 * We just don't map the IO APIC - all access is via
2314 		 * hypercalls.  Keep the address in the pte for reference.
2315 		 */
2316 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2317 		break;
2318 #endif
2319 
2320 	case FIX_PARAVIRT_BOOTMAP:
2321 		/* This is an MFN, but it isn't an IO mapping from the
2322 		   IO domain */
2323 		pte = mfn_pte(phys, prot);
2324 		break;
2325 
2326 	default:
2327 		/* By default, set_fixmap is used for hardware mappings */
2328 		pte = mfn_pte(phys, prot);
2329 		break;
2330 	}
2331 
2332 	__native_set_fixmap(idx, pte);
2333 
2334 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2335 	/* Replicate changes to map the vsyscall page into the user
2336 	   pagetable vsyscall mapping. */
2337 	if (idx == VSYSCALL_PAGE) {
2338 		unsigned long vaddr = __fix_to_virt(idx);
2339 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2340 	}
2341 #endif
2342 }
2343 
2344 static void __init xen_post_allocator_init(void)
2345 {
2346 	pv_mmu_ops.set_pte = xen_set_pte;
2347 	pv_mmu_ops.set_pmd = xen_set_pmd;
2348 	pv_mmu_ops.set_pud = xen_set_pud;
2349 #ifdef CONFIG_X86_64
2350 	pv_mmu_ops.set_p4d = xen_set_p4d;
2351 #endif
2352 
2353 	/* This will work as long as patching hasn't happened yet
2354 	   (which it hasn't) */
2355 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2356 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2357 	pv_mmu_ops.release_pte = xen_release_pte;
2358 	pv_mmu_ops.release_pmd = xen_release_pmd;
2359 #ifdef CONFIG_X86_64
2360 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2361 	pv_mmu_ops.release_pud = xen_release_pud;
2362 #endif
2363 	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2364 
2365 #ifdef CONFIG_X86_64
2366 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2367 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2368 #endif
2369 	xen_mark_init_mm_pinned();
2370 }
2371 
2372 static void xen_leave_lazy_mmu(void)
2373 {
2374 	preempt_disable();
2375 	xen_mc_flush();
2376 	paravirt_leave_lazy_mmu();
2377 	preempt_enable();
2378 }
2379 
2380 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2381 	.read_cr2 = xen_read_cr2,
2382 	.write_cr2 = xen_write_cr2,
2383 
2384 	.read_cr3 = xen_read_cr3,
2385 	.write_cr3 = xen_write_cr3_init,
2386 
2387 	.flush_tlb_user = xen_flush_tlb,
2388 	.flush_tlb_kernel = xen_flush_tlb,
2389 	.flush_tlb_one_user = xen_flush_tlb_one_user,
2390 	.flush_tlb_others = xen_flush_tlb_others,
2391 
2392 	.pgd_alloc = xen_pgd_alloc,
2393 	.pgd_free = xen_pgd_free,
2394 
2395 	.alloc_pte = xen_alloc_pte_init,
2396 	.release_pte = xen_release_pte_init,
2397 	.alloc_pmd = xen_alloc_pmd_init,
2398 	.release_pmd = xen_release_pmd_init,
2399 
2400 	.set_pte = xen_set_pte_init,
2401 	.set_pte_at = xen_set_pte_at,
2402 	.set_pmd = xen_set_pmd_hyper,
2403 
2404 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2405 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2406 
2407 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2408 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2409 
2410 	.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2411 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2412 
2413 #ifdef CONFIG_X86_PAE
2414 	.set_pte_atomic = xen_set_pte_atomic,
2415 	.pte_clear = xen_pte_clear,
2416 	.pmd_clear = xen_pmd_clear,
2417 #endif	/* CONFIG_X86_PAE */
2418 	.set_pud = xen_set_pud_hyper,
2419 
2420 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2421 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2422 
2423 #ifdef CONFIG_X86_64
2424 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2425 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2426 	.set_p4d = xen_set_p4d_hyper,
2427 
2428 	.alloc_pud = xen_alloc_pmd_init,
2429 	.release_pud = xen_release_pmd_init,
2430 
2431 #if CONFIG_PGTABLE_LEVELS >= 5
2432 	.p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2433 	.make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2434 #endif
2435 #endif	/* CONFIG_X86_64 */
2436 
2437 	.activate_mm = xen_activate_mm,
2438 	.dup_mmap = xen_dup_mmap,
2439 	.exit_mmap = xen_exit_mmap,
2440 
2441 	.lazy_mode = {
2442 		.enter = paravirt_enter_lazy_mmu,
2443 		.leave = xen_leave_lazy_mmu,
2444 		.flush = paravirt_flush_lazy_mmu,
2445 	},
2446 
2447 	.set_fixmap = xen_set_fixmap,
2448 };
2449 
2450 void __init xen_init_mmu_ops(void)
2451 {
2452 	x86_init.paging.pagetable_init = xen_pagetable_init;
2453 
2454 	pv_mmu_ops = xen_mmu_ops;
2455 
2456 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2457 }
2458 
2459 /* Protected by xen_reservation_lock. */
2460 #define MAX_CONTIG_ORDER 9 /* 2MB */
2461 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2462 
2463 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2464 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2465 				unsigned long *in_frames,
2466 				unsigned long *out_frames)
2467 {
2468 	int i;
2469 	struct multicall_space mcs;
2470 
2471 	xen_mc_batch();
2472 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2473 		mcs = __xen_mc_entry(0);
2474 
2475 		if (in_frames)
2476 			in_frames[i] = virt_to_mfn(vaddr);
2477 
2478 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2479 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2480 
2481 		if (out_frames)
2482 			out_frames[i] = virt_to_pfn(vaddr);
2483 	}
2484 	xen_mc_issue(0);
2485 }
2486 
2487 /*
2488  * Update the pfn-to-mfn mappings for a virtual address range, either to
2489  * point to an array of mfns, or contiguously from a single starting
2490  * mfn.
2491  */
2492 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2493 				     unsigned long *mfns,
2494 				     unsigned long first_mfn)
2495 {
2496 	unsigned i, limit;
2497 	unsigned long mfn;
2498 
2499 	xen_mc_batch();
2500 
2501 	limit = 1u << order;
2502 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2503 		struct multicall_space mcs;
2504 		unsigned flags;
2505 
2506 		mcs = __xen_mc_entry(0);
2507 		if (mfns)
2508 			mfn = mfns[i];
2509 		else
2510 			mfn = first_mfn + i;
2511 
2512 		if (i < (limit - 1))
2513 			flags = 0;
2514 		else {
2515 			if (order == 0)
2516 				flags = UVMF_INVLPG | UVMF_ALL;
2517 			else
2518 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2519 		}
2520 
2521 		MULTI_update_va_mapping(mcs.mc, vaddr,
2522 				mfn_pte(mfn, PAGE_KERNEL), flags);
2523 
2524 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2525 	}
2526 
2527 	xen_mc_issue(0);
2528 }
2529 
2530 /*
2531  * Perform the hypercall to exchange a region of our pfns to point to
2532  * memory with the required contiguous alignment.  Takes the pfns as
2533  * input, and populates mfns as output.
2534  *
2535  * Returns a success code indicating whether the hypervisor was able to
2536  * satisfy the request or not.
2537  */
2538 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2539 			       unsigned long *pfns_in,
2540 			       unsigned long extents_out,
2541 			       unsigned int order_out,
2542 			       unsigned long *mfns_out,
2543 			       unsigned int address_bits)
2544 {
2545 	long rc;
2546 	int success;
2547 
2548 	struct xen_memory_exchange exchange = {
2549 		.in = {
2550 			.nr_extents   = extents_in,
2551 			.extent_order = order_in,
2552 			.extent_start = pfns_in,
2553 			.domid        = DOMID_SELF
2554 		},
2555 		.out = {
2556 			.nr_extents   = extents_out,
2557 			.extent_order = order_out,
2558 			.extent_start = mfns_out,
2559 			.address_bits = address_bits,
2560 			.domid        = DOMID_SELF
2561 		}
2562 	};
2563 
2564 	BUG_ON(extents_in << order_in != extents_out << order_out);
2565 
2566 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2567 	success = (exchange.nr_exchanged == extents_in);
2568 
2569 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2570 	BUG_ON(success && (rc != 0));
2571 
2572 	return success;
2573 }
2574 
2575 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2576 				 unsigned int address_bits,
2577 				 dma_addr_t *dma_handle)
2578 {
2579 	unsigned long *in_frames = discontig_frames, out_frame;
2580 	unsigned long  flags;
2581 	int            success;
2582 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2583 
2584 	/*
2585 	 * Currently an auto-translated guest will not perform I/O, nor will
2586 	 * it require PAE page directories below 4GB. Therefore any calls to
2587 	 * this function are redundant and can be ignored.
2588 	 */
2589 
2590 	if (unlikely(order > MAX_CONTIG_ORDER))
2591 		return -ENOMEM;
2592 
2593 	memset((void *) vstart, 0, PAGE_SIZE << order);
2594 
2595 	spin_lock_irqsave(&xen_reservation_lock, flags);
2596 
2597 	/* 1. Zap current PTEs, remembering MFNs. */
2598 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2599 
2600 	/* 2. Get a new contiguous memory extent. */
2601 	out_frame = virt_to_pfn(vstart);
2602 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2603 				      1, order, &out_frame,
2604 				      address_bits);
2605 
2606 	/* 3. Map the new extent in place of old pages. */
2607 	if (success)
2608 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2609 	else
2610 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2611 
2612 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2613 
2614 	*dma_handle = virt_to_machine(vstart).maddr;
2615 	return success ? 0 : -ENOMEM;
2616 }
2617 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2618 
2619 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2620 {
2621 	unsigned long *out_frames = discontig_frames, in_frame;
2622 	unsigned long  flags;
2623 	int success;
2624 	unsigned long vstart;
2625 
2626 	if (unlikely(order > MAX_CONTIG_ORDER))
2627 		return;
2628 
2629 	vstart = (unsigned long)phys_to_virt(pstart);
2630 	memset((void *) vstart, 0, PAGE_SIZE << order);
2631 
2632 	spin_lock_irqsave(&xen_reservation_lock, flags);
2633 
2634 	/* 1. Find start MFN of contiguous extent. */
2635 	in_frame = virt_to_mfn(vstart);
2636 
2637 	/* 2. Zap current PTEs. */
2638 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2639 
2640 	/* 3. Do the exchange for non-contiguous MFNs. */
2641 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2642 					0, out_frames, 0);
2643 
2644 	/* 4. Map new pages in place of old pages. */
2645 	if (success)
2646 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2647 	else
2648 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2649 
2650 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2651 }
2652 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2653 
2654 #ifdef CONFIG_KEXEC_CORE
2655 phys_addr_t paddr_vmcoreinfo_note(void)
2656 {
2657 	if (xen_pv_domain())
2658 		return virt_to_machine(vmcoreinfo_note).maddr;
2659 	else
2660 		return __pa(vmcoreinfo_note);
2661 }
2662 #endif /* CONFIG_KEXEC_CORE */
2663