xref: /linux/arch/x86/xen/mmu_pv.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Xen mmu operations
5  *
6  * This file contains the various mmu fetch and update operations.
7  * The most important job they must perform is the mapping between the
8  * domain's pfn and the overall machine mfns.
9  *
10  * Xen allows guests to directly update the pagetable, in a controlled
11  * fashion.  In other words, the guest modifies the same pagetable
12  * that the CPU actually uses, which eliminates the overhead of having
13  * a separate shadow pagetable.
14  *
15  * In order to allow this, it falls on the guest domain to map its
16  * notion of a "physical" pfn - which is just a domain-local linear
17  * address - into a real "machine address" which the CPU's MMU can
18  * use.
19  *
20  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21  * inserted directly into the pagetable.  When creating a new
22  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
23  * when reading the content back with __(pgd|pmd|pte)_val, it converts
24  * the mfn back into a pfn.
25  *
26  * The other constraint is that all pages which make up a pagetable
27  * must be mapped read-only in the guest.  This prevents uncontrolled
28  * guest updates to the pagetable.  Xen strictly enforces this, and
29  * will disallow any pagetable update which will end up mapping a
30  * pagetable page RW, and will disallow using any writable page as a
31  * pagetable.
32  *
33  * Naively, when loading %cr3 with the base of a new pagetable, Xen
34  * would need to validate the whole pagetable before going on.
35  * Naturally, this is quite slow.  The solution is to "pin" a
36  * pagetable, which enforces all the constraints on the pagetable even
37  * when it is not actively in use.  This means that Xen can be assured
38  * that it is still valid when you do load it into %cr3, and doesn't
39  * need to revalidate it.
40  *
41  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
42  */
43 #include <linux/sched/mm.h>
44 #include <linux/debugfs.h>
45 #include <linux/bug.h>
46 #include <linux/vmalloc.h>
47 #include <linux/export.h>
48 #include <linux/init.h>
49 #include <linux/gfp.h>
50 #include <linux/memblock.h>
51 #include <linux/seq_file.h>
52 #include <linux/crash_dump.h>
53 #include <linux/pgtable.h>
54 #ifdef CONFIG_KEXEC_CORE
55 #include <linux/kexec.h>
56 #endif
57 
58 #include <trace/events/xen.h>
59 
60 #include <asm/tlbflush.h>
61 #include <asm/fixmap.h>
62 #include <asm/mmu_context.h>
63 #include <asm/setup.h>
64 #include <asm/paravirt.h>
65 #include <asm/e820/api.h>
66 #include <asm/linkage.h>
67 #include <asm/page.h>
68 #include <asm/init.h>
69 #include <asm/memtype.h>
70 #include <asm/smp.h>
71 #include <asm/tlb.h>
72 
73 #include <asm/xen/hypercall.h>
74 #include <asm/xen/hypervisor.h>
75 
76 #include <xen/xen.h>
77 #include <xen/page.h>
78 #include <xen/interface/xen.h>
79 #include <xen/interface/hvm/hvm_op.h>
80 #include <xen/interface/version.h>
81 #include <xen/interface/memory.h>
82 #include <xen/hvc-console.h>
83 #include <xen/swiotlb-xen.h>
84 
85 #include "xen-ops.h"
86 
87 /*
88  * Prototypes for functions called via PV_CALLEE_SAVE_REGS_THUNK() in order
89  * to avoid warnings with "-Wmissing-prototypes".
90  */
91 pteval_t xen_pte_val(pte_t pte);
92 pgdval_t xen_pgd_val(pgd_t pgd);
93 pmdval_t xen_pmd_val(pmd_t pmd);
94 pudval_t xen_pud_val(pud_t pud);
95 p4dval_t xen_p4d_val(p4d_t p4d);
96 pte_t xen_make_pte(pteval_t pte);
97 pgd_t xen_make_pgd(pgdval_t pgd);
98 pmd_t xen_make_pmd(pmdval_t pmd);
99 pud_t xen_make_pud(pudval_t pud);
100 p4d_t xen_make_p4d(p4dval_t p4d);
101 pte_t xen_make_pte_init(pteval_t pte);
102 
103 #ifdef CONFIG_X86_VSYSCALL_EMULATION
104 /* l3 pud for userspace vsyscall mapping */
105 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
106 #endif
107 
108 /*
109  * Protects atomic reservation decrease/increase against concurrent increases.
110  * Also protects non-atomic updates of current_pages and balloon lists.
111  */
112 static DEFINE_SPINLOCK(xen_reservation_lock);
113 
114 /*
115  * Note about cr3 (pagetable base) values:
116  *
117  * xen_cr3 contains the current logical cr3 value; it contains the
118  * last set cr3.  This may not be the current effective cr3, because
119  * its update may be being lazily deferred.  However, a vcpu looking
120  * at its own cr3 can use this value knowing that it everything will
121  * be self-consistent.
122  *
123  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
124  * hypercall to set the vcpu cr3 is complete (so it may be a little
125  * out of date, but it will never be set early).  If one vcpu is
126  * looking at another vcpu's cr3 value, it should use this variable.
127  */
128 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
129 static DEFINE_PER_CPU(unsigned long, xen_current_cr3);	/* actual vcpu cr3 */
130 
131 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
132 
133 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
134 
135 /*
136  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
137  * redzone above it, so round it up to a PGD boundary.
138  */
139 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
140 
141 void make_lowmem_page_readonly(void *vaddr)
142 {
143 	pte_t *pte, ptev;
144 	unsigned long address = (unsigned long)vaddr;
145 	unsigned int level;
146 
147 	pte = lookup_address(address, &level);
148 	if (pte == NULL)
149 		return;		/* vaddr missing */
150 
151 	ptev = pte_wrprotect(*pte);
152 
153 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154 		BUG();
155 }
156 
157 void make_lowmem_page_readwrite(void *vaddr)
158 {
159 	pte_t *pte, ptev;
160 	unsigned long address = (unsigned long)vaddr;
161 	unsigned int level;
162 
163 	pte = lookup_address(address, &level);
164 	if (pte == NULL)
165 		return;		/* vaddr missing */
166 
167 	ptev = pte_mkwrite_novma(*pte);
168 
169 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
170 		BUG();
171 }
172 
173 
174 /*
175  * During early boot all page table pages are pinned, but we do not have struct
176  * pages, so return true until struct pages are ready.
177  */
178 static bool xen_page_pinned(void *ptr)
179 {
180 	if (static_branch_likely(&xen_struct_pages_ready)) {
181 		struct page *page = virt_to_page(ptr);
182 
183 		return PagePinned(page);
184 	}
185 	return true;
186 }
187 
188 static void xen_extend_mmu_update(const struct mmu_update *update)
189 {
190 	struct multicall_space mcs;
191 	struct mmu_update *u;
192 
193 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
194 
195 	if (mcs.mc != NULL) {
196 		mcs.mc->args[1]++;
197 	} else {
198 		mcs = __xen_mc_entry(sizeof(*u));
199 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
200 	}
201 
202 	u = mcs.args;
203 	*u = *update;
204 }
205 
206 static void xen_extend_mmuext_op(const struct mmuext_op *op)
207 {
208 	struct multicall_space mcs;
209 	struct mmuext_op *u;
210 
211 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
212 
213 	if (mcs.mc != NULL) {
214 		mcs.mc->args[1]++;
215 	} else {
216 		mcs = __xen_mc_entry(sizeof(*u));
217 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
218 	}
219 
220 	u = mcs.args;
221 	*u = *op;
222 }
223 
224 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
225 {
226 	struct mmu_update u;
227 
228 	preempt_disable();
229 
230 	xen_mc_batch();
231 
232 	/* ptr may be ioremapped for 64-bit pagetable setup */
233 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
234 	u.val = pmd_val_ma(val);
235 	xen_extend_mmu_update(&u);
236 
237 	xen_mc_issue(XEN_LAZY_MMU);
238 
239 	preempt_enable();
240 }
241 
242 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
243 {
244 	trace_xen_mmu_set_pmd(ptr, val);
245 
246 	/* If page is not pinned, we can just update the entry
247 	   directly */
248 	if (!xen_page_pinned(ptr)) {
249 		*ptr = val;
250 		return;
251 	}
252 
253 	xen_set_pmd_hyper(ptr, val);
254 }
255 
256 /*
257  * Associate a virtual page frame with a given physical page frame
258  * and protection flags for that frame.
259  */
260 void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
261 {
262 	if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
263 					 UVMF_INVLPG))
264 		BUG();
265 }
266 
267 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
268 {
269 	struct mmu_update u;
270 
271 	if (xen_get_lazy_mode() != XEN_LAZY_MMU)
272 		return false;
273 
274 	xen_mc_batch();
275 
276 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
277 	u.val = pte_val_ma(pteval);
278 	xen_extend_mmu_update(&u);
279 
280 	xen_mc_issue(XEN_LAZY_MMU);
281 
282 	return true;
283 }
284 
285 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
286 {
287 	if (!xen_batched_set_pte(ptep, pteval)) {
288 		/*
289 		 * Could call native_set_pte() here and trap and
290 		 * emulate the PTE write, but a hypercall is much cheaper.
291 		 */
292 		struct mmu_update u;
293 
294 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
295 		u.val = pte_val_ma(pteval);
296 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
297 	}
298 }
299 
300 static void xen_set_pte(pte_t *ptep, pte_t pteval)
301 {
302 	trace_xen_mmu_set_pte(ptep, pteval);
303 	__xen_set_pte(ptep, pteval);
304 }
305 
306 static pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
307 					unsigned long addr, pte_t *ptep)
308 {
309 	/* Just return the pte as-is.  We preserve the bits on commit */
310 	trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
311 	return *ptep;
312 }
313 
314 static void xen_ptep_modify_prot_commit(struct vm_area_struct *vma,
315 					unsigned long addr,
316 					pte_t *ptep, pte_t pte)
317 {
318 	struct mmu_update u;
319 
320 	trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
321 	xen_mc_batch();
322 
323 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
324 	u.val = pte_val_ma(pte);
325 	xen_extend_mmu_update(&u);
326 
327 	xen_mc_issue(XEN_LAZY_MMU);
328 }
329 
330 /* Assume pteval_t is equivalent to all the other *val_t types. */
331 static pteval_t pte_mfn_to_pfn(pteval_t val)
332 {
333 	if (val & _PAGE_PRESENT) {
334 		unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
335 		unsigned long pfn = mfn_to_pfn(mfn);
336 
337 		pteval_t flags = val & PTE_FLAGS_MASK;
338 		if (unlikely(pfn == ~0))
339 			val = flags & ~_PAGE_PRESENT;
340 		else
341 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
342 	}
343 
344 	return val;
345 }
346 
347 static pteval_t pte_pfn_to_mfn(pteval_t val)
348 {
349 	if (val & _PAGE_PRESENT) {
350 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
351 		pteval_t flags = val & PTE_FLAGS_MASK;
352 		unsigned long mfn;
353 
354 		mfn = __pfn_to_mfn(pfn);
355 
356 		/*
357 		 * If there's no mfn for the pfn, then just create an
358 		 * empty non-present pte.  Unfortunately this loses
359 		 * information about the original pfn, so
360 		 * pte_mfn_to_pfn is asymmetric.
361 		 */
362 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
363 			mfn = 0;
364 			flags = 0;
365 		} else
366 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
367 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
368 	}
369 
370 	return val;
371 }
372 
373 __visible pteval_t xen_pte_val(pte_t pte)
374 {
375 	pteval_t pteval = pte.pte;
376 
377 	return pte_mfn_to_pfn(pteval);
378 }
379 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
380 
381 __visible pgdval_t xen_pgd_val(pgd_t pgd)
382 {
383 	return pte_mfn_to_pfn(pgd.pgd);
384 }
385 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
386 
387 __visible pte_t xen_make_pte(pteval_t pte)
388 {
389 	pte = pte_pfn_to_mfn(pte);
390 
391 	return native_make_pte(pte);
392 }
393 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
394 
395 __visible pgd_t xen_make_pgd(pgdval_t pgd)
396 {
397 	pgd = pte_pfn_to_mfn(pgd);
398 	return native_make_pgd(pgd);
399 }
400 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
401 
402 __visible pmdval_t xen_pmd_val(pmd_t pmd)
403 {
404 	return pte_mfn_to_pfn(pmd.pmd);
405 }
406 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
407 
408 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
409 {
410 	struct mmu_update u;
411 
412 	preempt_disable();
413 
414 	xen_mc_batch();
415 
416 	/* ptr may be ioremapped for 64-bit pagetable setup */
417 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
418 	u.val = pud_val_ma(val);
419 	xen_extend_mmu_update(&u);
420 
421 	xen_mc_issue(XEN_LAZY_MMU);
422 
423 	preempt_enable();
424 }
425 
426 static void xen_set_pud(pud_t *ptr, pud_t val)
427 {
428 	trace_xen_mmu_set_pud(ptr, val);
429 
430 	/* If page is not pinned, we can just update the entry
431 	   directly */
432 	if (!xen_page_pinned(ptr)) {
433 		*ptr = val;
434 		return;
435 	}
436 
437 	xen_set_pud_hyper(ptr, val);
438 }
439 
440 __visible pmd_t xen_make_pmd(pmdval_t pmd)
441 {
442 	pmd = pte_pfn_to_mfn(pmd);
443 	return native_make_pmd(pmd);
444 }
445 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
446 
447 __visible pudval_t xen_pud_val(pud_t pud)
448 {
449 	return pte_mfn_to_pfn(pud.pud);
450 }
451 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
452 
453 __visible pud_t xen_make_pud(pudval_t pud)
454 {
455 	pud = pte_pfn_to_mfn(pud);
456 
457 	return native_make_pud(pud);
458 }
459 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
460 
461 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
462 {
463 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
464 	unsigned offset = pgd - pgd_page;
465 	pgd_t *user_ptr = NULL;
466 
467 	if (offset < pgd_index(USER_LIMIT)) {
468 		struct page *page = virt_to_page(pgd_page);
469 		user_ptr = (pgd_t *)page->private;
470 		if (user_ptr)
471 			user_ptr += offset;
472 	}
473 
474 	return user_ptr;
475 }
476 
477 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
478 {
479 	struct mmu_update u;
480 
481 	u.ptr = virt_to_machine(ptr).maddr;
482 	u.val = p4d_val_ma(val);
483 	xen_extend_mmu_update(&u);
484 }
485 
486 /*
487  * Raw hypercall-based set_p4d, intended for in early boot before
488  * there's a page structure.  This implies:
489  *  1. The only existing pagetable is the kernel's
490  *  2. It is always pinned
491  *  3. It has no user pagetable attached to it
492  */
493 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
494 {
495 	preempt_disable();
496 
497 	xen_mc_batch();
498 
499 	__xen_set_p4d_hyper(ptr, val);
500 
501 	xen_mc_issue(XEN_LAZY_MMU);
502 
503 	preempt_enable();
504 }
505 
506 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
507 {
508 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
509 	pgd_t pgd_val;
510 
511 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
512 
513 	/* If page is not pinned, we can just update the entry
514 	   directly */
515 	if (!xen_page_pinned(ptr)) {
516 		*ptr = val;
517 		if (user_ptr) {
518 			WARN_ON(xen_page_pinned(user_ptr));
519 			pgd_val.pgd = p4d_val_ma(val);
520 			*user_ptr = pgd_val;
521 		}
522 		return;
523 	}
524 
525 	/* If it's pinned, then we can at least batch the kernel and
526 	   user updates together. */
527 	xen_mc_batch();
528 
529 	__xen_set_p4d_hyper(ptr, val);
530 	if (user_ptr)
531 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
532 
533 	xen_mc_issue(XEN_LAZY_MMU);
534 }
535 
536 #if CONFIG_PGTABLE_LEVELS >= 5
537 __visible p4dval_t xen_p4d_val(p4d_t p4d)
538 {
539 	return pte_mfn_to_pfn(p4d.p4d);
540 }
541 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
542 
543 __visible p4d_t xen_make_p4d(p4dval_t p4d)
544 {
545 	p4d = pte_pfn_to_mfn(p4d);
546 
547 	return native_make_p4d(p4d);
548 }
549 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
550 #endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
551 
552 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
553 			 void (*func)(struct mm_struct *mm, struct page *,
554 				      enum pt_level),
555 			 bool last, unsigned long limit)
556 {
557 	int i, nr;
558 
559 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
560 	for (i = 0; i < nr; i++) {
561 		if (!pmd_none(pmd[i]))
562 			(*func)(mm, pmd_page(pmd[i]), PT_PTE);
563 	}
564 }
565 
566 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
567 			 void (*func)(struct mm_struct *mm, struct page *,
568 				      enum pt_level),
569 			 bool last, unsigned long limit)
570 {
571 	int i, nr;
572 
573 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
574 	for (i = 0; i < nr; i++) {
575 		pmd_t *pmd;
576 
577 		if (pud_none(pud[i]))
578 			continue;
579 
580 		pmd = pmd_offset(&pud[i], 0);
581 		if (PTRS_PER_PMD > 1)
582 			(*func)(mm, virt_to_page(pmd), PT_PMD);
583 		xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
584 	}
585 }
586 
587 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
588 			 void (*func)(struct mm_struct *mm, struct page *,
589 				      enum pt_level),
590 			 bool last, unsigned long limit)
591 {
592 	pud_t *pud;
593 
594 
595 	if (p4d_none(*p4d))
596 		return;
597 
598 	pud = pud_offset(p4d, 0);
599 	if (PTRS_PER_PUD > 1)
600 		(*func)(mm, virt_to_page(pud), PT_PUD);
601 	xen_pud_walk(mm, pud, func, last, limit);
602 }
603 
604 /*
605  * (Yet another) pagetable walker.  This one is intended for pinning a
606  * pagetable.  This means that it walks a pagetable and calls the
607  * callback function on each page it finds making up the page table,
608  * at every level.  It walks the entire pagetable, but it only bothers
609  * pinning pte pages which are below limit.  In the normal case this
610  * will be STACK_TOP_MAX, but at boot we need to pin up to
611  * FIXADDR_TOP.
612  *
613  * We must skip the Xen hole in the middle of the address space, just after
614  * the big x86-64 virtual hole.
615  */
616 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
617 			   void (*func)(struct mm_struct *mm, struct page *,
618 					enum pt_level),
619 			   unsigned long limit)
620 {
621 	int i, nr;
622 	unsigned hole_low = 0, hole_high = 0;
623 
624 	/* The limit is the last byte to be touched */
625 	limit--;
626 	BUG_ON(limit >= FIXADDR_TOP);
627 
628 	/*
629 	 * 64-bit has a great big hole in the middle of the address
630 	 * space, which contains the Xen mappings.
631 	 */
632 	hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
633 	hole_high = pgd_index(GUARD_HOLE_END_ADDR);
634 
635 	nr = pgd_index(limit) + 1;
636 	for (i = 0; i < nr; i++) {
637 		p4d_t *p4d;
638 
639 		if (i >= hole_low && i < hole_high)
640 			continue;
641 
642 		if (pgd_none(pgd[i]))
643 			continue;
644 
645 		p4d = p4d_offset(&pgd[i], 0);
646 		xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
647 	}
648 
649 	/* Do the top level last, so that the callbacks can use it as
650 	   a cue to do final things like tlb flushes. */
651 	(*func)(mm, virt_to_page(pgd), PT_PGD);
652 }
653 
654 static void xen_pgd_walk(struct mm_struct *mm,
655 			 void (*func)(struct mm_struct *mm, struct page *,
656 				      enum pt_level),
657 			 unsigned long limit)
658 {
659 	__xen_pgd_walk(mm, mm->pgd, func, limit);
660 }
661 
662 /* If we're using split pte locks, then take the page's lock and
663    return a pointer to it.  Otherwise return NULL. */
664 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
665 {
666 	spinlock_t *ptl = NULL;
667 
668 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
669 	ptl = ptlock_ptr(page_ptdesc(page));
670 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
671 #endif
672 
673 	return ptl;
674 }
675 
676 static void xen_pte_unlock(void *v)
677 {
678 	spinlock_t *ptl = v;
679 	spin_unlock(ptl);
680 }
681 
682 static void xen_do_pin(unsigned level, unsigned long pfn)
683 {
684 	struct mmuext_op op;
685 
686 	op.cmd = level;
687 	op.arg1.mfn = pfn_to_mfn(pfn);
688 
689 	xen_extend_mmuext_op(&op);
690 }
691 
692 static void xen_pin_page(struct mm_struct *mm, struct page *page,
693 			 enum pt_level level)
694 {
695 	unsigned pgfl = TestSetPagePinned(page);
696 
697 	if (!pgfl) {
698 		void *pt = lowmem_page_address(page);
699 		unsigned long pfn = page_to_pfn(page);
700 		struct multicall_space mcs = __xen_mc_entry(0);
701 		spinlock_t *ptl;
702 
703 		/*
704 		 * We need to hold the pagetable lock between the time
705 		 * we make the pagetable RO and when we actually pin
706 		 * it.  If we don't, then other users may come in and
707 		 * attempt to update the pagetable by writing it,
708 		 * which will fail because the memory is RO but not
709 		 * pinned, so Xen won't do the trap'n'emulate.
710 		 *
711 		 * If we're using split pte locks, we can't hold the
712 		 * entire pagetable's worth of locks during the
713 		 * traverse, because we may wrap the preempt count (8
714 		 * bits).  The solution is to mark RO and pin each PTE
715 		 * page while holding the lock.  This means the number
716 		 * of locks we end up holding is never more than a
717 		 * batch size (~32 entries, at present).
718 		 *
719 		 * If we're not using split pte locks, we needn't pin
720 		 * the PTE pages independently, because we're
721 		 * protected by the overall pagetable lock.
722 		 */
723 		ptl = NULL;
724 		if (level == PT_PTE)
725 			ptl = xen_pte_lock(page, mm);
726 
727 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
728 					pfn_pte(pfn, PAGE_KERNEL_RO),
729 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
730 
731 		if (ptl) {
732 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
733 
734 			/* Queue a deferred unlock for when this batch
735 			   is completed. */
736 			xen_mc_callback(xen_pte_unlock, ptl);
737 		}
738 	}
739 }
740 
741 /* This is called just after a mm has been created, but it has not
742    been used yet.  We need to make sure that its pagetable is all
743    read-only, and can be pinned. */
744 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
745 {
746 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
747 
748 	trace_xen_mmu_pgd_pin(mm, pgd);
749 
750 	xen_mc_batch();
751 
752 	__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
753 
754 	xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
755 
756 	if (user_pgd) {
757 		xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
758 		xen_do_pin(MMUEXT_PIN_L4_TABLE,
759 			   PFN_DOWN(__pa(user_pgd)));
760 	}
761 
762 	xen_mc_issue(0);
763 }
764 
765 static void xen_pgd_pin(struct mm_struct *mm)
766 {
767 	__xen_pgd_pin(mm, mm->pgd);
768 }
769 
770 /*
771  * On save, we need to pin all pagetables to make sure they get their
772  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
773  * them (unpinned pgds are not currently in use, probably because the
774  * process is under construction or destruction).
775  *
776  * Expected to be called in stop_machine() ("equivalent to taking
777  * every spinlock in the system"), so the locking doesn't really
778  * matter all that much.
779  */
780 void xen_mm_pin_all(void)
781 {
782 	struct page *page;
783 
784 	spin_lock(&pgd_lock);
785 
786 	list_for_each_entry(page, &pgd_list, lru) {
787 		if (!PagePinned(page)) {
788 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
789 			SetPageSavePinned(page);
790 		}
791 	}
792 
793 	spin_unlock(&pgd_lock);
794 }
795 
796 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
797 				   enum pt_level level)
798 {
799 	SetPagePinned(page);
800 }
801 
802 /*
803  * The init_mm pagetable is really pinned as soon as its created, but
804  * that's before we have page structures to store the bits.  So do all
805  * the book-keeping now once struct pages for allocated pages are
806  * initialized. This happens only after memblock_free_all() is called.
807  */
808 static void __init xen_after_bootmem(void)
809 {
810 	static_branch_enable(&xen_struct_pages_ready);
811 #ifdef CONFIG_X86_VSYSCALL_EMULATION
812 	SetPagePinned(virt_to_page(level3_user_vsyscall));
813 #endif
814 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
815 }
816 
817 static void xen_unpin_page(struct mm_struct *mm, struct page *page,
818 			   enum pt_level level)
819 {
820 	unsigned pgfl = TestClearPagePinned(page);
821 
822 	if (pgfl) {
823 		void *pt = lowmem_page_address(page);
824 		unsigned long pfn = page_to_pfn(page);
825 		spinlock_t *ptl = NULL;
826 		struct multicall_space mcs;
827 
828 		/*
829 		 * Do the converse to pin_page.  If we're using split
830 		 * pte locks, we must be holding the lock for while
831 		 * the pte page is unpinned but still RO to prevent
832 		 * concurrent updates from seeing it in this
833 		 * partially-pinned state.
834 		 */
835 		if (level == PT_PTE) {
836 			ptl = xen_pte_lock(page, mm);
837 
838 			if (ptl)
839 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
840 		}
841 
842 		mcs = __xen_mc_entry(0);
843 
844 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
845 					pfn_pte(pfn, PAGE_KERNEL),
846 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
847 
848 		if (ptl) {
849 			/* unlock when batch completed */
850 			xen_mc_callback(xen_pte_unlock, ptl);
851 		}
852 	}
853 }
854 
855 /* Release a pagetables pages back as normal RW */
856 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
857 {
858 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
859 
860 	trace_xen_mmu_pgd_unpin(mm, pgd);
861 
862 	xen_mc_batch();
863 
864 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
865 
866 	if (user_pgd) {
867 		xen_do_pin(MMUEXT_UNPIN_TABLE,
868 			   PFN_DOWN(__pa(user_pgd)));
869 		xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
870 	}
871 
872 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
873 
874 	xen_mc_issue(0);
875 }
876 
877 static void xen_pgd_unpin(struct mm_struct *mm)
878 {
879 	__xen_pgd_unpin(mm, mm->pgd);
880 }
881 
882 /*
883  * On resume, undo any pinning done at save, so that the rest of the
884  * kernel doesn't see any unexpected pinned pagetables.
885  */
886 void xen_mm_unpin_all(void)
887 {
888 	struct page *page;
889 
890 	spin_lock(&pgd_lock);
891 
892 	list_for_each_entry(page, &pgd_list, lru) {
893 		if (PageSavePinned(page)) {
894 			BUG_ON(!PagePinned(page));
895 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
896 			ClearPageSavePinned(page);
897 		}
898 	}
899 
900 	spin_unlock(&pgd_lock);
901 }
902 
903 static void xen_enter_mmap(struct mm_struct *mm)
904 {
905 	spin_lock(&mm->page_table_lock);
906 	xen_pgd_pin(mm);
907 	spin_unlock(&mm->page_table_lock);
908 }
909 
910 static void drop_mm_ref_this_cpu(void *info)
911 {
912 	struct mm_struct *mm = info;
913 
914 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
915 		leave_mm();
916 
917 	/*
918 	 * If this cpu still has a stale cr3 reference, then make sure
919 	 * it has been flushed.
920 	 */
921 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
922 		xen_mc_flush();
923 }
924 
925 #ifdef CONFIG_SMP
926 /*
927  * Another cpu may still have their %cr3 pointing at the pagetable, so
928  * we need to repoint it somewhere else before we can unpin it.
929  */
930 static void xen_drop_mm_ref(struct mm_struct *mm)
931 {
932 	cpumask_var_t mask;
933 	unsigned cpu;
934 
935 	drop_mm_ref_this_cpu(mm);
936 
937 	/* Get the "official" set of cpus referring to our pagetable. */
938 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
939 		for_each_online_cpu(cpu) {
940 			if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
941 				continue;
942 			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
943 		}
944 		return;
945 	}
946 
947 	/*
948 	 * It's possible that a vcpu may have a stale reference to our
949 	 * cr3, because its in lazy mode, and it hasn't yet flushed
950 	 * its set of pending hypercalls yet.  In this case, we can
951 	 * look at its actual current cr3 value, and force it to flush
952 	 * if needed.
953 	 */
954 	cpumask_clear(mask);
955 	for_each_online_cpu(cpu) {
956 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
957 			cpumask_set_cpu(cpu, mask);
958 	}
959 
960 	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
961 	free_cpumask_var(mask);
962 }
963 #else
964 static void xen_drop_mm_ref(struct mm_struct *mm)
965 {
966 	drop_mm_ref_this_cpu(mm);
967 }
968 #endif
969 
970 /*
971  * While a process runs, Xen pins its pagetables, which means that the
972  * hypervisor forces it to be read-only, and it controls all updates
973  * to it.  This means that all pagetable updates have to go via the
974  * hypervisor, which is moderately expensive.
975  *
976  * Since we're pulling the pagetable down, we switch to use init_mm,
977  * unpin old process pagetable and mark it all read-write, which
978  * allows further operations on it to be simple memory accesses.
979  *
980  * The only subtle point is that another CPU may be still using the
981  * pagetable because of lazy tlb flushing.  This means we need need to
982  * switch all CPUs off this pagetable before we can unpin it.
983  */
984 static void xen_exit_mmap(struct mm_struct *mm)
985 {
986 	get_cpu();		/* make sure we don't move around */
987 	xen_drop_mm_ref(mm);
988 	put_cpu();
989 
990 	spin_lock(&mm->page_table_lock);
991 
992 	/* pgd may not be pinned in the error exit path of execve */
993 	if (xen_page_pinned(mm->pgd))
994 		xen_pgd_unpin(mm);
995 
996 	spin_unlock(&mm->page_table_lock);
997 }
998 
999 static void xen_post_allocator_init(void);
1000 
1001 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1002 {
1003 	struct mmuext_op op;
1004 
1005 	op.cmd = cmd;
1006 	op.arg1.mfn = pfn_to_mfn(pfn);
1007 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1008 		BUG();
1009 }
1010 
1011 static void __init xen_cleanhighmap(unsigned long vaddr,
1012 				    unsigned long vaddr_end)
1013 {
1014 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1015 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1016 
1017 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1018 	 * We include the PMD passed in on _both_ boundaries. */
1019 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1020 			pmd++, vaddr += PMD_SIZE) {
1021 		if (pmd_none(*pmd))
1022 			continue;
1023 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1024 			set_pmd(pmd, __pmd(0));
1025 	}
1026 	/* In case we did something silly, we should crash in this function
1027 	 * instead of somewhere later and be confusing. */
1028 	xen_mc_flush();
1029 }
1030 
1031 /*
1032  * Make a page range writeable and free it.
1033  */
1034 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1035 {
1036 	void *vaddr = __va(paddr);
1037 	void *vaddr_end = vaddr + size;
1038 
1039 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1040 		make_lowmem_page_readwrite(vaddr);
1041 
1042 	memblock_phys_free(paddr, size);
1043 }
1044 
1045 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1046 {
1047 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1048 
1049 	if (unpin)
1050 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1051 	ClearPagePinned(virt_to_page(__va(pa)));
1052 	xen_free_ro_pages(pa, PAGE_SIZE);
1053 }
1054 
1055 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1056 {
1057 	unsigned long pa;
1058 	pte_t *pte_tbl;
1059 	int i;
1060 
1061 	if (pmd_leaf(*pmd)) {
1062 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1063 		xen_free_ro_pages(pa, PMD_SIZE);
1064 		return;
1065 	}
1066 
1067 	pte_tbl = pte_offset_kernel(pmd, 0);
1068 	for (i = 0; i < PTRS_PER_PTE; i++) {
1069 		if (pte_none(pte_tbl[i]))
1070 			continue;
1071 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1072 		xen_free_ro_pages(pa, PAGE_SIZE);
1073 	}
1074 	set_pmd(pmd, __pmd(0));
1075 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1076 }
1077 
1078 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1079 {
1080 	unsigned long pa;
1081 	pmd_t *pmd_tbl;
1082 	int i;
1083 
1084 	if (pud_leaf(*pud)) {
1085 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1086 		xen_free_ro_pages(pa, PUD_SIZE);
1087 		return;
1088 	}
1089 
1090 	pmd_tbl = pmd_offset(pud, 0);
1091 	for (i = 0; i < PTRS_PER_PMD; i++) {
1092 		if (pmd_none(pmd_tbl[i]))
1093 			continue;
1094 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1095 	}
1096 	set_pud(pud, __pud(0));
1097 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1098 }
1099 
1100 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1101 {
1102 	unsigned long pa;
1103 	pud_t *pud_tbl;
1104 	int i;
1105 
1106 	if (p4d_leaf(*p4d)) {
1107 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1108 		xen_free_ro_pages(pa, P4D_SIZE);
1109 		return;
1110 	}
1111 
1112 	pud_tbl = pud_offset(p4d, 0);
1113 	for (i = 0; i < PTRS_PER_PUD; i++) {
1114 		if (pud_none(pud_tbl[i]))
1115 			continue;
1116 		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1117 	}
1118 	set_p4d(p4d, __p4d(0));
1119 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1120 }
1121 
1122 /*
1123  * Since it is well isolated we can (and since it is perhaps large we should)
1124  * also free the page tables mapping the initial P->M table.
1125  */
1126 static void __init xen_cleanmfnmap(unsigned long vaddr)
1127 {
1128 	pgd_t *pgd;
1129 	p4d_t *p4d;
1130 	bool unpin;
1131 
1132 	unpin = (vaddr == 2 * PGDIR_SIZE);
1133 	vaddr &= PMD_MASK;
1134 	pgd = pgd_offset_k(vaddr);
1135 	p4d = p4d_offset(pgd, 0);
1136 	if (!p4d_none(*p4d))
1137 		xen_cleanmfnmap_p4d(p4d, unpin);
1138 }
1139 
1140 static void __init xen_pagetable_p2m_free(void)
1141 {
1142 	unsigned long size;
1143 	unsigned long addr;
1144 
1145 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1146 
1147 	/* No memory or already called. */
1148 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1149 		return;
1150 
1151 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1152 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1153 
1154 	addr = xen_start_info->mfn_list;
1155 	/*
1156 	 * We could be in __ka space.
1157 	 * We roundup to the PMD, which means that if anybody at this stage is
1158 	 * using the __ka address of xen_start_info or
1159 	 * xen_start_info->shared_info they are in going to crash. Fortunately
1160 	 * we have already revectored in xen_setup_kernel_pagetable.
1161 	 */
1162 	size = roundup(size, PMD_SIZE);
1163 
1164 	if (addr >= __START_KERNEL_map) {
1165 		xen_cleanhighmap(addr, addr + size);
1166 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1167 				  sizeof(unsigned long));
1168 		memblock_free((void *)addr, size);
1169 	} else {
1170 		xen_cleanmfnmap(addr);
1171 	}
1172 }
1173 
1174 static void __init xen_pagetable_cleanhighmap(void)
1175 {
1176 	unsigned long size;
1177 	unsigned long addr;
1178 
1179 	/* At this stage, cleanup_highmap has already cleaned __ka space
1180 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1181 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1182 	 * tables - do note that they are accessible at this stage via __va.
1183 	 * As Xen is aligning the memory end to a 4MB boundary, for good
1184 	 * measure we also round up to PMD_SIZE * 2 - which means that if
1185 	 * anybody is using __ka address to the initial boot-stack - and try
1186 	 * to use it - they are going to crash. The xen_start_info has been
1187 	 * taken care of already in xen_setup_kernel_pagetable. */
1188 	addr = xen_start_info->pt_base;
1189 	size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1190 
1191 	xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1192 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1193 }
1194 
1195 static void __init xen_pagetable_p2m_setup(void)
1196 {
1197 	xen_vmalloc_p2m_tree();
1198 
1199 	xen_pagetable_p2m_free();
1200 
1201 	xen_pagetable_cleanhighmap();
1202 
1203 	/* And revector! Bye bye old array */
1204 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1205 }
1206 
1207 static void __init xen_pagetable_init(void)
1208 {
1209 	/*
1210 	 * The majority of further PTE writes is to pagetables already
1211 	 * announced as such to Xen. Hence it is more efficient to use
1212 	 * hypercalls for these updates.
1213 	 */
1214 	pv_ops.mmu.set_pte = __xen_set_pte;
1215 
1216 	paging_init();
1217 	xen_post_allocator_init();
1218 
1219 	xen_pagetable_p2m_setup();
1220 
1221 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1222 	xen_build_mfn_list_list();
1223 
1224 	/* Remap memory freed due to conflicts with E820 map */
1225 	xen_remap_memory();
1226 	xen_setup_mfn_list_list();
1227 }
1228 
1229 static noinstr void xen_write_cr2(unsigned long cr2)
1230 {
1231 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1232 }
1233 
1234 static noinline void xen_flush_tlb(void)
1235 {
1236 	struct mmuext_op *op;
1237 	struct multicall_space mcs;
1238 
1239 	preempt_disable();
1240 
1241 	mcs = xen_mc_entry(sizeof(*op));
1242 
1243 	op = mcs.args;
1244 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1245 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1246 
1247 	xen_mc_issue(XEN_LAZY_MMU);
1248 
1249 	preempt_enable();
1250 }
1251 
1252 static void xen_flush_tlb_one_user(unsigned long addr)
1253 {
1254 	struct mmuext_op *op;
1255 	struct multicall_space mcs;
1256 
1257 	trace_xen_mmu_flush_tlb_one_user(addr);
1258 
1259 	preempt_disable();
1260 
1261 	mcs = xen_mc_entry(sizeof(*op));
1262 	op = mcs.args;
1263 	op->cmd = MMUEXT_INVLPG_LOCAL;
1264 	op->arg1.linear_addr = addr & PAGE_MASK;
1265 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1266 
1267 	xen_mc_issue(XEN_LAZY_MMU);
1268 
1269 	preempt_enable();
1270 }
1271 
1272 static void xen_flush_tlb_multi(const struct cpumask *cpus,
1273 				const struct flush_tlb_info *info)
1274 {
1275 	struct {
1276 		struct mmuext_op op;
1277 		DECLARE_BITMAP(mask, NR_CPUS);
1278 	} *args;
1279 	struct multicall_space mcs;
1280 	const size_t mc_entry_size = sizeof(args->op) +
1281 		sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1282 
1283 	trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
1284 
1285 	if (cpumask_empty(cpus))
1286 		return;		/* nothing to do */
1287 
1288 	mcs = xen_mc_entry(mc_entry_size);
1289 	args = mcs.args;
1290 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1291 
1292 	/* Remove any offline CPUs */
1293 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1294 
1295 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1296 	if (info->end != TLB_FLUSH_ALL &&
1297 	    (info->end - info->start) <= PAGE_SIZE) {
1298 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1299 		args->op.arg1.linear_addr = info->start;
1300 	}
1301 
1302 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1303 
1304 	xen_mc_issue(XEN_LAZY_MMU);
1305 }
1306 
1307 static unsigned long xen_read_cr3(void)
1308 {
1309 	return this_cpu_read(xen_cr3);
1310 }
1311 
1312 static void set_current_cr3(void *v)
1313 {
1314 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1315 }
1316 
1317 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1318 {
1319 	struct mmuext_op op;
1320 	unsigned long mfn;
1321 
1322 	trace_xen_mmu_write_cr3(kernel, cr3);
1323 
1324 	if (cr3)
1325 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1326 	else
1327 		mfn = 0;
1328 
1329 	WARN_ON(mfn == 0 && kernel);
1330 
1331 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1332 	op.arg1.mfn = mfn;
1333 
1334 	xen_extend_mmuext_op(&op);
1335 
1336 	if (kernel) {
1337 		this_cpu_write(xen_cr3, cr3);
1338 
1339 		/* Update xen_current_cr3 once the batch has actually
1340 		   been submitted. */
1341 		xen_mc_callback(set_current_cr3, (void *)cr3);
1342 	}
1343 }
1344 static void xen_write_cr3(unsigned long cr3)
1345 {
1346 	pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1347 
1348 	BUG_ON(preemptible());
1349 
1350 	xen_mc_batch();  /* disables interrupts */
1351 
1352 	/* Update while interrupts are disabled, so its atomic with
1353 	   respect to ipis */
1354 	this_cpu_write(xen_cr3, cr3);
1355 
1356 	__xen_write_cr3(true, cr3);
1357 
1358 	if (user_pgd)
1359 		__xen_write_cr3(false, __pa(user_pgd));
1360 	else
1361 		__xen_write_cr3(false, 0);
1362 
1363 	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1364 }
1365 
1366 /*
1367  * At the start of the day - when Xen launches a guest, it has already
1368  * built pagetables for the guest. We diligently look over them
1369  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1370  * init_top_pgt and its friends. Then when we are happy we load
1371  * the new init_top_pgt - and continue on.
1372  *
1373  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1374  * up the rest of the pagetables. When it has completed it loads the cr3.
1375  * N.B. that baremetal would start at 'start_kernel' (and the early
1376  * #PF handler would create bootstrap pagetables) - so we are running
1377  * with the same assumptions as what to do when write_cr3 is executed
1378  * at this point.
1379  *
1380  * Since there are no user-page tables at all, we have two variants
1381  * of xen_write_cr3 - the early bootup (this one), and the late one
1382  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1383  * the Linux kernel and user-space are both in ring 3 while the
1384  * hypervisor is in ring 0.
1385  */
1386 static void __init xen_write_cr3_init(unsigned long cr3)
1387 {
1388 	BUG_ON(preemptible());
1389 
1390 	xen_mc_batch();  /* disables interrupts */
1391 
1392 	/* Update while interrupts are disabled, so its atomic with
1393 	   respect to ipis */
1394 	this_cpu_write(xen_cr3, cr3);
1395 
1396 	__xen_write_cr3(true, cr3);
1397 
1398 	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1399 }
1400 
1401 static int xen_pgd_alloc(struct mm_struct *mm)
1402 {
1403 	pgd_t *pgd = mm->pgd;
1404 	struct page *page = virt_to_page(pgd);
1405 	pgd_t *user_pgd;
1406 	int ret = -ENOMEM;
1407 
1408 	BUG_ON(PagePinned(virt_to_page(pgd)));
1409 	BUG_ON(page->private != 0);
1410 
1411 	user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1412 	page->private = (unsigned long)user_pgd;
1413 
1414 	if (user_pgd != NULL) {
1415 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1416 		user_pgd[pgd_index(VSYSCALL_ADDR)] =
1417 			__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1418 #endif
1419 		ret = 0;
1420 	}
1421 
1422 	BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1423 
1424 	return ret;
1425 }
1426 
1427 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1428 {
1429 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1430 
1431 	if (user_pgd)
1432 		free_page((unsigned long)user_pgd);
1433 }
1434 
1435 /*
1436  * Init-time set_pte while constructing initial pagetables, which
1437  * doesn't allow RO page table pages to be remapped RW.
1438  *
1439  * If there is no MFN for this PFN then this page is initially
1440  * ballooned out so clear the PTE (as in decrease_reservation() in
1441  * drivers/xen/balloon.c).
1442  *
1443  * Many of these PTE updates are done on unpinned and writable pages
1444  * and doing a hypercall for these is unnecessary and expensive.  At
1445  * this point it is rarely possible to tell if a page is pinned, so
1446  * mostly write the PTE directly and rely on Xen trapping and
1447  * emulating any updates as necessary.
1448  */
1449 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1450 {
1451 	if (unlikely(is_early_ioremap_ptep(ptep)))
1452 		__xen_set_pte(ptep, pte);
1453 	else
1454 		native_set_pte(ptep, pte);
1455 }
1456 
1457 __visible pte_t xen_make_pte_init(pteval_t pte)
1458 {
1459 	unsigned long pfn;
1460 
1461 	/*
1462 	 * Pages belonging to the initial p2m list mapped outside the default
1463 	 * address range must be mapped read-only. This region contains the
1464 	 * page tables for mapping the p2m list, too, and page tables MUST be
1465 	 * mapped read-only.
1466 	 */
1467 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1468 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1469 	    pfn >= xen_start_info->first_p2m_pfn &&
1470 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1471 		pte &= ~_PAGE_RW;
1472 
1473 	pte = pte_pfn_to_mfn(pte);
1474 	return native_make_pte(pte);
1475 }
1476 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1477 
1478 /* Early in boot, while setting up the initial pagetable, assume
1479    everything is pinned. */
1480 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1481 {
1482 #ifdef CONFIG_FLATMEM
1483 	BUG_ON(mem_map);	/* should only be used early */
1484 #endif
1485 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1486 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1487 }
1488 
1489 /* Used for pmd and pud */
1490 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1491 {
1492 #ifdef CONFIG_FLATMEM
1493 	BUG_ON(mem_map);	/* should only be used early */
1494 #endif
1495 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1496 }
1497 
1498 /* Early release_pte assumes that all pts are pinned, since there's
1499    only init_mm and anything attached to that is pinned. */
1500 static void __init xen_release_pte_init(unsigned long pfn)
1501 {
1502 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1503 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1504 }
1505 
1506 static void __init xen_release_pmd_init(unsigned long pfn)
1507 {
1508 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1509 }
1510 
1511 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1512 {
1513 	struct multicall_space mcs;
1514 	struct mmuext_op *op;
1515 
1516 	mcs = __xen_mc_entry(sizeof(*op));
1517 	op = mcs.args;
1518 	op->cmd = cmd;
1519 	op->arg1.mfn = pfn_to_mfn(pfn);
1520 
1521 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1522 }
1523 
1524 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1525 {
1526 	struct multicall_space mcs;
1527 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1528 
1529 	mcs = __xen_mc_entry(0);
1530 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1531 				pfn_pte(pfn, prot), 0);
1532 }
1533 
1534 /* This needs to make sure the new pte page is pinned iff its being
1535    attached to a pinned pagetable. */
1536 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1537 				    unsigned level)
1538 {
1539 	bool pinned = xen_page_pinned(mm->pgd);
1540 
1541 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1542 
1543 	if (pinned) {
1544 		struct page *page = pfn_to_page(pfn);
1545 
1546 		pinned = false;
1547 		if (static_branch_likely(&xen_struct_pages_ready)) {
1548 			pinned = PagePinned(page);
1549 			SetPagePinned(page);
1550 		}
1551 
1552 		xen_mc_batch();
1553 
1554 		__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1555 
1556 		if (level == PT_PTE && IS_ENABLED(CONFIG_SPLIT_PTE_PTLOCKS) &&
1557 		    !pinned)
1558 			__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1559 
1560 		xen_mc_issue(XEN_LAZY_MMU);
1561 	}
1562 }
1563 
1564 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1565 {
1566 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1567 }
1568 
1569 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1570 {
1571 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1572 }
1573 
1574 /* This should never happen until we're OK to use struct page */
1575 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1576 {
1577 	struct page *page = pfn_to_page(pfn);
1578 	bool pinned = PagePinned(page);
1579 
1580 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1581 
1582 	if (pinned) {
1583 		xen_mc_batch();
1584 
1585 		if (level == PT_PTE && IS_ENABLED(CONFIG_SPLIT_PTE_PTLOCKS))
1586 			__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1587 
1588 		__set_pfn_prot(pfn, PAGE_KERNEL);
1589 
1590 		xen_mc_issue(XEN_LAZY_MMU);
1591 
1592 		ClearPagePinned(page);
1593 	}
1594 }
1595 
1596 static void xen_release_pte(unsigned long pfn)
1597 {
1598 	xen_release_ptpage(pfn, PT_PTE);
1599 }
1600 
1601 static void xen_release_pmd(unsigned long pfn)
1602 {
1603 	xen_release_ptpage(pfn, PT_PMD);
1604 }
1605 
1606 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1607 {
1608 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1609 }
1610 
1611 static void xen_release_pud(unsigned long pfn)
1612 {
1613 	xen_release_ptpage(pfn, PT_PUD);
1614 }
1615 
1616 /*
1617  * Like __va(), but returns address in the kernel mapping (which is
1618  * all we have until the physical memory mapping has been set up.
1619  */
1620 static void * __init __ka(phys_addr_t paddr)
1621 {
1622 	return (void *)(paddr + __START_KERNEL_map);
1623 }
1624 
1625 /* Convert a machine address to physical address */
1626 static unsigned long __init m2p(phys_addr_t maddr)
1627 {
1628 	phys_addr_t paddr;
1629 
1630 	maddr &= XEN_PTE_MFN_MASK;
1631 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1632 
1633 	return paddr;
1634 }
1635 
1636 /* Convert a machine address to kernel virtual */
1637 static void * __init m2v(phys_addr_t maddr)
1638 {
1639 	return __ka(m2p(maddr));
1640 }
1641 
1642 /* Set the page permissions on an identity-mapped pages */
1643 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1644 				       unsigned long flags)
1645 {
1646 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1647 	pte_t pte = pfn_pte(pfn, prot);
1648 
1649 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1650 		BUG();
1651 }
1652 static void __init set_page_prot(void *addr, pgprot_t prot)
1653 {
1654 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1655 }
1656 
1657 void __init xen_setup_machphys_mapping(void)
1658 {
1659 	struct xen_machphys_mapping mapping;
1660 
1661 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1662 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1663 		machine_to_phys_nr = mapping.max_mfn + 1;
1664 	} else {
1665 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1666 	}
1667 }
1668 
1669 static void __init convert_pfn_mfn(void *v)
1670 {
1671 	pte_t *pte = v;
1672 	int i;
1673 
1674 	/* All levels are converted the same way, so just treat them
1675 	   as ptes. */
1676 	for (i = 0; i < PTRS_PER_PTE; i++)
1677 		pte[i] = xen_make_pte(pte[i].pte);
1678 }
1679 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1680 				 unsigned long addr)
1681 {
1682 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1683 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1684 		clear_page((void *)addr);
1685 		(*pt_base)++;
1686 	}
1687 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1688 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1689 		clear_page((void *)addr);
1690 		(*pt_end)--;
1691 	}
1692 }
1693 /*
1694  * Set up the initial kernel pagetable.
1695  *
1696  * We can construct this by grafting the Xen provided pagetable into
1697  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1698  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1699  * kernel has a physical mapping to start with - but that's enough to
1700  * get __va working.  We need to fill in the rest of the physical
1701  * mapping once some sort of allocator has been set up.
1702  */
1703 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1704 {
1705 	pud_t *l3;
1706 	pmd_t *l2;
1707 	unsigned long addr[3];
1708 	unsigned long pt_base, pt_end;
1709 	unsigned i;
1710 
1711 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1712 	 * mappings. Considering that on Xen after the kernel mappings we
1713 	 * have the mappings of some pages that don't exist in pfn space, we
1714 	 * set max_pfn_mapped to the last real pfn mapped. */
1715 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1716 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1717 	else
1718 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1719 
1720 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1721 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1722 
1723 	/* Zap identity mapping */
1724 	init_top_pgt[0] = __pgd(0);
1725 
1726 	/* Pre-constructed entries are in pfn, so convert to mfn */
1727 	/* L4[273] -> level3_ident_pgt  */
1728 	/* L4[511] -> level3_kernel_pgt */
1729 	convert_pfn_mfn(init_top_pgt);
1730 
1731 	/* L3_i[0] -> level2_ident_pgt */
1732 	convert_pfn_mfn(level3_ident_pgt);
1733 	/* L3_k[510] -> level2_kernel_pgt */
1734 	/* L3_k[511] -> level2_fixmap_pgt */
1735 	convert_pfn_mfn(level3_kernel_pgt);
1736 
1737 	/* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1738 	convert_pfn_mfn(level2_fixmap_pgt);
1739 
1740 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1741 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1742 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1743 
1744 	addr[0] = (unsigned long)pgd;
1745 	addr[1] = (unsigned long)l3;
1746 	addr[2] = (unsigned long)l2;
1747 	/* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1748 	 * Both L4[273][0] and L4[511][510] have entries that point to the same
1749 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1750 	 * it will be also modified in the __ka space! (But if you just
1751 	 * modify the PMD table to point to other PTE's or none, then you
1752 	 * are OK - which is what cleanup_highmap does) */
1753 	copy_page(level2_ident_pgt, l2);
1754 	/* Graft it onto L4[511][510] */
1755 	copy_page(level2_kernel_pgt, l2);
1756 
1757 	/*
1758 	 * Zap execute permission from the ident map. Due to the sharing of
1759 	 * L1 entries we need to do this in the L2.
1760 	 */
1761 	if (__supported_pte_mask & _PAGE_NX) {
1762 		for (i = 0; i < PTRS_PER_PMD; ++i) {
1763 			if (pmd_none(level2_ident_pgt[i]))
1764 				continue;
1765 			level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1766 		}
1767 	}
1768 
1769 	/* Copy the initial P->M table mappings if necessary. */
1770 	i = pgd_index(xen_start_info->mfn_list);
1771 	if (i && i < pgd_index(__START_KERNEL_map))
1772 		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1773 
1774 	/* Make pagetable pieces RO */
1775 	set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1776 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1777 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1778 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1779 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1780 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1781 
1782 	for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1783 		set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1784 			      PAGE_KERNEL_RO);
1785 	}
1786 
1787 	/* Pin down new L4 */
1788 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1789 			  PFN_DOWN(__pa_symbol(init_top_pgt)));
1790 
1791 	/* Unpin Xen-provided one */
1792 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1793 
1794 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1795 	/* Pin user vsyscall L3 */
1796 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1797 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1798 			  PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1799 #endif
1800 
1801 	/*
1802 	 * At this stage there can be no user pgd, and no page structure to
1803 	 * attach it to, so make sure we just set kernel pgd.
1804 	 */
1805 	xen_mc_batch();
1806 	__xen_write_cr3(true, __pa(init_top_pgt));
1807 	xen_mc_issue(XEN_LAZY_CPU);
1808 
1809 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1810 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1811 	 * the initial domain. For guests using the toolstack, they are in:
1812 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1813 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1814 	 */
1815 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1816 		check_pt_base(&pt_base, &pt_end, addr[i]);
1817 
1818 	/* Our (by three pages) smaller Xen pagetable that we are using */
1819 	xen_pt_base = PFN_PHYS(pt_base);
1820 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1821 	memblock_reserve(xen_pt_base, xen_pt_size);
1822 
1823 	/* Revector the xen_start_info */
1824 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1825 }
1826 
1827 /*
1828  * Read a value from a physical address.
1829  */
1830 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1831 {
1832 	unsigned long *vaddr;
1833 	unsigned long val;
1834 
1835 	vaddr = early_memremap_ro(addr, sizeof(val));
1836 	val = *vaddr;
1837 	early_memunmap(vaddr, sizeof(val));
1838 	return val;
1839 }
1840 
1841 /*
1842  * Translate a virtual address to a physical one without relying on mapped
1843  * page tables. Don't rely on big pages being aligned in (guest) physical
1844  * space!
1845  */
1846 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1847 {
1848 	phys_addr_t pa;
1849 	pgd_t pgd;
1850 	pud_t pud;
1851 	pmd_t pmd;
1852 	pte_t pte;
1853 
1854 	pa = read_cr3_pa();
1855 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1856 						       sizeof(pgd)));
1857 	if (!pgd_present(pgd))
1858 		return 0;
1859 
1860 	pa = pgd_val(pgd) & PTE_PFN_MASK;
1861 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1862 						       sizeof(pud)));
1863 	if (!pud_present(pud))
1864 		return 0;
1865 	pa = pud_val(pud) & PTE_PFN_MASK;
1866 	if (pud_leaf(pud))
1867 		return pa + (vaddr & ~PUD_MASK);
1868 
1869 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1870 						       sizeof(pmd)));
1871 	if (!pmd_present(pmd))
1872 		return 0;
1873 	pa = pmd_val(pmd) & PTE_PFN_MASK;
1874 	if (pmd_leaf(pmd))
1875 		return pa + (vaddr & ~PMD_MASK);
1876 
1877 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1878 						       sizeof(pte)));
1879 	if (!pte_present(pte))
1880 		return 0;
1881 	pa = pte_pfn(pte) << PAGE_SHIFT;
1882 
1883 	return pa | (vaddr & ~PAGE_MASK);
1884 }
1885 
1886 /*
1887  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1888  * this area.
1889  */
1890 void __init xen_relocate_p2m(void)
1891 {
1892 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1893 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1894 	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1895 	pte_t *pt;
1896 	pmd_t *pmd;
1897 	pud_t *pud;
1898 	pgd_t *pgd;
1899 	unsigned long *new_p2m;
1900 
1901 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1902 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1903 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1904 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1905 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1906 	n_frames = n_pte + n_pt + n_pmd + n_pud;
1907 
1908 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
1909 	if (!new_area) {
1910 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1911 		BUG();
1912 	}
1913 
1914 	/*
1915 	 * Setup the page tables for addressing the new p2m list.
1916 	 * We have asked the hypervisor to map the p2m list at the user address
1917 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
1918 	 * address depending on the Xen version.
1919 	 * To avoid any possible virtual address collision, just use
1920 	 * 2 * PUD_SIZE for the new area.
1921 	 */
1922 	pud_phys = new_area;
1923 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
1924 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1925 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1926 
1927 	pgd = __va(read_cr3_pa());
1928 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1929 	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1930 		pud = early_memremap(pud_phys, PAGE_SIZE);
1931 		clear_page(pud);
1932 		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1933 				idx_pmd++) {
1934 			pmd = early_memremap(pmd_phys, PAGE_SIZE);
1935 			clear_page(pmd);
1936 			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1937 					idx_pt++) {
1938 				pt = early_memremap(pt_phys, PAGE_SIZE);
1939 				clear_page(pt);
1940 				for (idx_pte = 0;
1941 				     idx_pte < min(n_pte, PTRS_PER_PTE);
1942 				     idx_pte++) {
1943 					pt[idx_pte] = pfn_pte(p2m_pfn,
1944 							      PAGE_KERNEL);
1945 					p2m_pfn++;
1946 				}
1947 				n_pte -= PTRS_PER_PTE;
1948 				early_memunmap(pt, PAGE_SIZE);
1949 				make_lowmem_page_readonly(__va(pt_phys));
1950 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1951 						PFN_DOWN(pt_phys));
1952 				pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1953 				pt_phys += PAGE_SIZE;
1954 			}
1955 			n_pt -= PTRS_PER_PMD;
1956 			early_memunmap(pmd, PAGE_SIZE);
1957 			make_lowmem_page_readonly(__va(pmd_phys));
1958 			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1959 					PFN_DOWN(pmd_phys));
1960 			pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1961 			pmd_phys += PAGE_SIZE;
1962 		}
1963 		n_pmd -= PTRS_PER_PUD;
1964 		early_memunmap(pud, PAGE_SIZE);
1965 		make_lowmem_page_readonly(__va(pud_phys));
1966 		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1967 		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1968 		pud_phys += PAGE_SIZE;
1969 	}
1970 
1971 	/* Now copy the old p2m info to the new area. */
1972 	memcpy(new_p2m, xen_p2m_addr, size);
1973 	xen_p2m_addr = new_p2m;
1974 
1975 	/* Release the old p2m list and set new list info. */
1976 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1977 	BUG_ON(!p2m_pfn);
1978 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1979 
1980 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
1981 		pfn = xen_start_info->first_p2m_pfn;
1982 		pfn_end = xen_start_info->first_p2m_pfn +
1983 			  xen_start_info->nr_p2m_frames;
1984 		set_pgd(pgd + 1, __pgd(0));
1985 	} else {
1986 		pfn = p2m_pfn;
1987 		pfn_end = p2m_pfn_end;
1988 	}
1989 
1990 	memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1991 	while (pfn < pfn_end) {
1992 		if (pfn == p2m_pfn) {
1993 			pfn = p2m_pfn_end;
1994 			continue;
1995 		}
1996 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1997 		pfn++;
1998 	}
1999 
2000 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2001 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2002 	xen_start_info->nr_p2m_frames = n_frames;
2003 }
2004 
2005 void __init xen_reserve_special_pages(void)
2006 {
2007 	phys_addr_t paddr;
2008 
2009 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2010 	if (xen_start_info->store_mfn) {
2011 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2012 		memblock_reserve(paddr, PAGE_SIZE);
2013 	}
2014 	if (!xen_initial_domain()) {
2015 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2016 		memblock_reserve(paddr, PAGE_SIZE);
2017 	}
2018 }
2019 
2020 void __init xen_pt_check_e820(void)
2021 {
2022 	xen_chk_is_e820_usable(xen_pt_base, xen_pt_size, "page table");
2023 }
2024 
2025 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2026 
2027 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2028 {
2029 	pte_t pte;
2030 	unsigned long vaddr;
2031 
2032 	phys >>= PAGE_SHIFT;
2033 
2034 	switch (idx) {
2035 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2036 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2037 	case VSYSCALL_PAGE:
2038 #endif
2039 		/* All local page mappings */
2040 		pte = pfn_pte(phys, prot);
2041 		break;
2042 
2043 #ifdef CONFIG_X86_LOCAL_APIC
2044 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2045 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2046 		break;
2047 #endif
2048 
2049 #ifdef CONFIG_X86_IO_APIC
2050 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2051 		/*
2052 		 * We just don't map the IO APIC - all access is via
2053 		 * hypercalls.  Keep the address in the pte for reference.
2054 		 */
2055 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2056 		break;
2057 #endif
2058 
2059 	case FIX_PARAVIRT_BOOTMAP:
2060 		/* This is an MFN, but it isn't an IO mapping from the
2061 		   IO domain */
2062 		pte = mfn_pte(phys, prot);
2063 		break;
2064 
2065 	default:
2066 		/* By default, set_fixmap is used for hardware mappings */
2067 		pte = mfn_pte(phys, prot);
2068 		break;
2069 	}
2070 
2071 	vaddr = __fix_to_virt(idx);
2072 	if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
2073 		BUG();
2074 
2075 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2076 	/* Replicate changes to map the vsyscall page into the user
2077 	   pagetable vsyscall mapping. */
2078 	if (idx == VSYSCALL_PAGE)
2079 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2080 #endif
2081 }
2082 
2083 static void xen_enter_lazy_mmu(void)
2084 {
2085 	enter_lazy(XEN_LAZY_MMU);
2086 }
2087 
2088 static void xen_flush_lazy_mmu(void)
2089 {
2090 	preempt_disable();
2091 
2092 	if (xen_get_lazy_mode() == XEN_LAZY_MMU) {
2093 		arch_leave_lazy_mmu_mode();
2094 		arch_enter_lazy_mmu_mode();
2095 	}
2096 
2097 	preempt_enable();
2098 }
2099 
2100 static void __init xen_post_allocator_init(void)
2101 {
2102 	pv_ops.mmu.set_pte = xen_set_pte;
2103 	pv_ops.mmu.set_pmd = xen_set_pmd;
2104 	pv_ops.mmu.set_pud = xen_set_pud;
2105 	pv_ops.mmu.set_p4d = xen_set_p4d;
2106 
2107 	/* This will work as long as patching hasn't happened yet
2108 	   (which it hasn't) */
2109 	pv_ops.mmu.alloc_pte = xen_alloc_pte;
2110 	pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2111 	pv_ops.mmu.release_pte = xen_release_pte;
2112 	pv_ops.mmu.release_pmd = xen_release_pmd;
2113 	pv_ops.mmu.alloc_pud = xen_alloc_pud;
2114 	pv_ops.mmu.release_pud = xen_release_pud;
2115 	pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2116 
2117 	pv_ops.mmu.write_cr3 = &xen_write_cr3;
2118 }
2119 
2120 static void xen_leave_lazy_mmu(void)
2121 {
2122 	preempt_disable();
2123 	xen_mc_flush();
2124 	leave_lazy(XEN_LAZY_MMU);
2125 	preempt_enable();
2126 }
2127 
2128 static const typeof(pv_ops) xen_mmu_ops __initconst = {
2129 	.mmu = {
2130 		.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2131 		.write_cr2 = xen_write_cr2,
2132 
2133 		.read_cr3 = xen_read_cr3,
2134 		.write_cr3 = xen_write_cr3_init,
2135 
2136 		.flush_tlb_user = xen_flush_tlb,
2137 		.flush_tlb_kernel = xen_flush_tlb,
2138 		.flush_tlb_one_user = xen_flush_tlb_one_user,
2139 		.flush_tlb_multi = xen_flush_tlb_multi,
2140 		.tlb_remove_table = tlb_remove_table,
2141 
2142 		.pgd_alloc = xen_pgd_alloc,
2143 		.pgd_free = xen_pgd_free,
2144 
2145 		.alloc_pte = xen_alloc_pte_init,
2146 		.release_pte = xen_release_pte_init,
2147 		.alloc_pmd = xen_alloc_pmd_init,
2148 		.release_pmd = xen_release_pmd_init,
2149 
2150 		.set_pte = xen_set_pte_init,
2151 		.set_pmd = xen_set_pmd_hyper,
2152 
2153 		.ptep_modify_prot_start = xen_ptep_modify_prot_start,
2154 		.ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2155 
2156 		.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2157 		.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2158 
2159 		.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2160 		.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2161 
2162 		.set_pud = xen_set_pud_hyper,
2163 
2164 		.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2165 		.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2166 
2167 		.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2168 		.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2169 		.set_p4d = xen_set_p4d_hyper,
2170 
2171 		.alloc_pud = xen_alloc_pmd_init,
2172 		.release_pud = xen_release_pmd_init,
2173 
2174 #if CONFIG_PGTABLE_LEVELS >= 5
2175 		.p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2176 		.make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2177 #endif
2178 
2179 		.enter_mmap = xen_enter_mmap,
2180 		.exit_mmap = xen_exit_mmap,
2181 
2182 		.lazy_mode = {
2183 			.enter = xen_enter_lazy_mmu,
2184 			.leave = xen_leave_lazy_mmu,
2185 			.flush = xen_flush_lazy_mmu,
2186 		},
2187 
2188 		.set_fixmap = xen_set_fixmap,
2189 	},
2190 };
2191 
2192 void __init xen_init_mmu_ops(void)
2193 {
2194 	x86_init.paging.pagetable_init = xen_pagetable_init;
2195 	x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2196 
2197 	pv_ops.mmu = xen_mmu_ops.mmu;
2198 
2199 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2200 }
2201 
2202 /* Protected by xen_reservation_lock. */
2203 #define MAX_CONTIG_ORDER 9 /* 2MB */
2204 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2205 
2206 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2207 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2208 				unsigned long *in_frames,
2209 				unsigned long *out_frames)
2210 {
2211 	int i;
2212 	struct multicall_space mcs;
2213 
2214 	xen_mc_batch();
2215 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2216 		mcs = __xen_mc_entry(0);
2217 
2218 		if (in_frames)
2219 			in_frames[i] = virt_to_mfn((void *)vaddr);
2220 
2221 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2222 		__set_phys_to_machine(virt_to_pfn((void *)vaddr), INVALID_P2M_ENTRY);
2223 
2224 		if (out_frames)
2225 			out_frames[i] = virt_to_pfn((void *)vaddr);
2226 	}
2227 	xen_mc_issue(0);
2228 }
2229 
2230 /*
2231  * Update the pfn-to-mfn mappings for a virtual address range, either to
2232  * point to an array of mfns, or contiguously from a single starting
2233  * mfn.
2234  */
2235 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2236 				     unsigned long *mfns,
2237 				     unsigned long first_mfn)
2238 {
2239 	unsigned i, limit;
2240 	unsigned long mfn;
2241 
2242 	xen_mc_batch();
2243 
2244 	limit = 1u << order;
2245 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2246 		struct multicall_space mcs;
2247 		unsigned flags;
2248 
2249 		mcs = __xen_mc_entry(0);
2250 		if (mfns)
2251 			mfn = mfns[i];
2252 		else
2253 			mfn = first_mfn + i;
2254 
2255 		if (i < (limit - 1))
2256 			flags = 0;
2257 		else {
2258 			if (order == 0)
2259 				flags = UVMF_INVLPG | UVMF_ALL;
2260 			else
2261 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2262 		}
2263 
2264 		MULTI_update_va_mapping(mcs.mc, vaddr,
2265 				mfn_pte(mfn, PAGE_KERNEL), flags);
2266 
2267 		set_phys_to_machine(virt_to_pfn((void *)vaddr), mfn);
2268 	}
2269 
2270 	xen_mc_issue(0);
2271 }
2272 
2273 /*
2274  * Perform the hypercall to exchange a region of our pfns to point to
2275  * memory with the required contiguous alignment.  Takes the pfns as
2276  * input, and populates mfns as output.
2277  *
2278  * Returns a success code indicating whether the hypervisor was able to
2279  * satisfy the request or not.
2280  */
2281 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2282 			       unsigned long *pfns_in,
2283 			       unsigned long extents_out,
2284 			       unsigned int order_out,
2285 			       unsigned long *mfns_out,
2286 			       unsigned int address_bits)
2287 {
2288 	long rc;
2289 	int success;
2290 
2291 	struct xen_memory_exchange exchange = {
2292 		.in = {
2293 			.nr_extents   = extents_in,
2294 			.extent_order = order_in,
2295 			.extent_start = pfns_in,
2296 			.domid        = DOMID_SELF
2297 		},
2298 		.out = {
2299 			.nr_extents   = extents_out,
2300 			.extent_order = order_out,
2301 			.extent_start = mfns_out,
2302 			.address_bits = address_bits,
2303 			.domid        = DOMID_SELF
2304 		}
2305 	};
2306 
2307 	BUG_ON(extents_in << order_in != extents_out << order_out);
2308 
2309 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2310 	success = (exchange.nr_exchanged == extents_in);
2311 
2312 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2313 	BUG_ON(success && (rc != 0));
2314 
2315 	return success;
2316 }
2317 
2318 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2319 				 unsigned int address_bits,
2320 				 dma_addr_t *dma_handle)
2321 {
2322 	unsigned long *in_frames = discontig_frames, out_frame;
2323 	unsigned long  flags;
2324 	int            success;
2325 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2326 
2327 	if (unlikely(order > MAX_CONTIG_ORDER))
2328 		return -ENOMEM;
2329 
2330 	memset((void *) vstart, 0, PAGE_SIZE << order);
2331 
2332 	spin_lock_irqsave(&xen_reservation_lock, flags);
2333 
2334 	/* 1. Zap current PTEs, remembering MFNs. */
2335 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2336 
2337 	/* 2. Get a new contiguous memory extent. */
2338 	out_frame = virt_to_pfn((void *)vstart);
2339 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2340 				      1, order, &out_frame,
2341 				      address_bits);
2342 
2343 	/* 3. Map the new extent in place of old pages. */
2344 	if (success)
2345 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2346 	else
2347 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2348 
2349 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2350 
2351 	*dma_handle = virt_to_machine(vstart).maddr;
2352 	return success ? 0 : -ENOMEM;
2353 }
2354 
2355 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2356 {
2357 	unsigned long *out_frames = discontig_frames, in_frame;
2358 	unsigned long  flags;
2359 	int success;
2360 	unsigned long vstart;
2361 
2362 	if (unlikely(order > MAX_CONTIG_ORDER))
2363 		return;
2364 
2365 	vstart = (unsigned long)phys_to_virt(pstart);
2366 	memset((void *) vstart, 0, PAGE_SIZE << order);
2367 
2368 	spin_lock_irqsave(&xen_reservation_lock, flags);
2369 
2370 	/* 1. Find start MFN of contiguous extent. */
2371 	in_frame = virt_to_mfn((void *)vstart);
2372 
2373 	/* 2. Zap current PTEs. */
2374 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2375 
2376 	/* 3. Do the exchange for non-contiguous MFNs. */
2377 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2378 					0, out_frames, 0);
2379 
2380 	/* 4. Map new pages in place of old pages. */
2381 	if (success)
2382 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2383 	else
2384 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2385 
2386 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2387 }
2388 
2389 static noinline void xen_flush_tlb_all(void)
2390 {
2391 	struct mmuext_op *op;
2392 	struct multicall_space mcs;
2393 
2394 	preempt_disable();
2395 
2396 	mcs = xen_mc_entry(sizeof(*op));
2397 
2398 	op = mcs.args;
2399 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
2400 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2401 
2402 	xen_mc_issue(XEN_LAZY_MMU);
2403 
2404 	preempt_enable();
2405 }
2406 
2407 #define REMAP_BATCH_SIZE 16
2408 
2409 struct remap_data {
2410 	xen_pfn_t *pfn;
2411 	bool contiguous;
2412 	bool no_translate;
2413 	pgprot_t prot;
2414 	struct mmu_update *mmu_update;
2415 };
2416 
2417 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2418 {
2419 	struct remap_data *rmd = data;
2420 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2421 
2422 	/*
2423 	 * If we have a contiguous range, just update the pfn itself,
2424 	 * else update pointer to be "next pfn".
2425 	 */
2426 	if (rmd->contiguous)
2427 		(*rmd->pfn)++;
2428 	else
2429 		rmd->pfn++;
2430 
2431 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2432 	rmd->mmu_update->ptr |= rmd->no_translate ?
2433 		MMU_PT_UPDATE_NO_TRANSLATE :
2434 		MMU_NORMAL_PT_UPDATE;
2435 	rmd->mmu_update->val = pte_val_ma(pte);
2436 	rmd->mmu_update++;
2437 
2438 	return 0;
2439 }
2440 
2441 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2442 		  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2443 		  unsigned int domid, bool no_translate)
2444 {
2445 	int err = 0;
2446 	struct remap_data rmd;
2447 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2448 	unsigned long range;
2449 	int mapped = 0;
2450 
2451 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2452 
2453 	rmd.pfn = pfn;
2454 	rmd.prot = prot;
2455 	/*
2456 	 * We use the err_ptr to indicate if there we are doing a contiguous
2457 	 * mapping or a discontiguous mapping.
2458 	 */
2459 	rmd.contiguous = !err_ptr;
2460 	rmd.no_translate = no_translate;
2461 
2462 	while (nr) {
2463 		int index = 0;
2464 		int done = 0;
2465 		int batch = min(REMAP_BATCH_SIZE, nr);
2466 		int batch_left = batch;
2467 
2468 		range = (unsigned long)batch << PAGE_SHIFT;
2469 
2470 		rmd.mmu_update = mmu_update;
2471 		err = apply_to_page_range(vma->vm_mm, addr, range,
2472 					  remap_area_pfn_pte_fn, &rmd);
2473 		if (err)
2474 			goto out;
2475 
2476 		/*
2477 		 * We record the error for each page that gives an error, but
2478 		 * continue mapping until the whole set is done
2479 		 */
2480 		do {
2481 			int i;
2482 
2483 			err = HYPERVISOR_mmu_update(&mmu_update[index],
2484 						    batch_left, &done, domid);
2485 
2486 			/*
2487 			 * @err_ptr may be the same buffer as @gfn, so
2488 			 * only clear it after each chunk of @gfn is
2489 			 * used.
2490 			 */
2491 			if (err_ptr) {
2492 				for (i = index; i < index + done; i++)
2493 					err_ptr[i] = 0;
2494 			}
2495 			if (err < 0) {
2496 				if (!err_ptr)
2497 					goto out;
2498 				err_ptr[i] = err;
2499 				done++; /* Skip failed frame. */
2500 			} else
2501 				mapped += done;
2502 			batch_left -= done;
2503 			index += done;
2504 		} while (batch_left);
2505 
2506 		nr -= batch;
2507 		addr += range;
2508 		if (err_ptr)
2509 			err_ptr += batch;
2510 		cond_resched();
2511 	}
2512 out:
2513 
2514 	xen_flush_tlb_all();
2515 
2516 	return err < 0 ? err : mapped;
2517 }
2518 EXPORT_SYMBOL_GPL(xen_remap_pfn);
2519 
2520 #ifdef CONFIG_VMCORE_INFO
2521 phys_addr_t paddr_vmcoreinfo_note(void)
2522 {
2523 	if (xen_pv_domain())
2524 		return virt_to_machine(vmcoreinfo_note).maddr;
2525 	else
2526 		return __pa(vmcoreinfo_note);
2527 }
2528 #endif /* CONFIG_KEXEC_CORE */
2529